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Abstract. Solar and stellar flares are interpreted so far as an
instability of a large scale magnetic neutral sheet. In this arti-
cle, however, we assume that the active region is highly inho-
mogeneous: a large number of magnetic loops are simultane-
ously present interacting and randomly forming discontinuitics
in many independent points in space. These magnetic disconti-
nuities release energy and force weaker discontinuities in their
neighbourhood to release energy as well. This complex dynam-
ical system releases constantly energy in the form of small and
large scale explosions. Clustering of many discontinuities in the
same area has the effect of larger scale explosions (flares). This
type of flare with spatiotemporal fragmentation and clustering in
small and large scale structures will be called here the statistical

fare.

The statistical flare is simulated using avalanche models
originally introduced by Bak et al. (1988). Avalanche mod-
els applied so far (o solar flares (Lu & Hamilton 1991) were
isotropic (the field was distributed equally to the closest neigh-
bours of an unstable point). These models simulate relatively
large events (microflares and flares). Here we introduce a more
refined isotropic avalanche model as well as an anisotropic
avalanche model (energy is distributed only among the unsta-
ble point and those neighbours that develop gradients higher
than a critical value). The anisotropic model simulates better
the smaller events (nanoflares): in contrast to the well-known
results of the isotropic model (a power law with index ~ —1.8
in the peak-luminosity distribution), the anisotropic model pro-
duces a much steeper power law with index ~ —3.5. Finally,
we introduce a mixed model (a combination of isotropic and
anisotropic models) which gives rise to two distinct power-
law regions in the peak-luminosity distribution, one with index
~ —3.5 accounting for the small events, and one with index
~ —1.8 accounting for large events. This last model therefore
explains coronal heating as well as flaring.

The three medels introduced in this paper show length-scale
invariant behaviour. Model-dependent memory effects are de-
tected in the peak-luminosity time series produced by these
models.
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1. Introduction

Magnetic energy release in the sun and stars remains as one
of the main unresolved problems in astrophysics. There are re-
gions in the solar surface (called active regions) where magnetic
fields are intense and highlly concentrated. Random motions in
the photosphere split and move these fields in such a way as to
enhance their mutual interactions and to form magnetic discon-
tinuities. Understanding the evolution of these discontinuities
will provide the key for solving the energy-release problem for
the sun and stars.

Research on the possible forms of magnetic energy release
in the sun and stars has been focused, so far, on two distinct
subjects:

(a) Transport of energy along the magnetic field lines from the
convection zone to the corona in the form of waves (Alfvén or
magnetosonic waves) and subsequent dissipation in the corona
(see the review by Zirker 1993).

(b) Magnetic storage and sudden release (triggering) which was
termed as flare (see the review by Priest 1992).

These two processes have been studied in simple magnetic
topologies e.g. solar loop, two interacting loops or well organ-
ised arcades of loops, since only then the problem was mathe-
matically tractable. Isolating the two processes from the begin-
ning and studying them in relatively simple topologies does not
permil to see their interaction (wave propagation in highly in-
homogeneous magnetic topologies (Sudan & Longcope 1990))
or generation of waves and shocks from reconnecting neutral
sheets (Galsgaard & Nordlund 1994), Furthermore, research
on the convection zone and photospheric motions has clearly
shown that the “driver” of the active-region fields is turbulent.
This implicates, in our view, that simplifications of the evolution
of the magnetic topologies above the photosphere as mentioned
above will not be representative for the real system.

Observations of the solar X-ray corona are apparent in the
literature from the early seventies. These reports resulted from

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26A...299..897V&db_key=AST

FTIOLARA © Z 299 Z897V

898

many different ways of observation. With the present instru-
mental capabilities, observations show that the peak-luminosity
distribution of flares displays a widely extended (over 3.5 orders
of magnitude) power law with an index —1.80 4+ 0.05 (Lin et
al. 1984; Dennis 1985; Crosby et al. 1992; Pearce et al. 1993;
Biesecker et al. 1994). Deviations from power-law behaviour
however, are observed at lowest and highest energies. It has
been stated that the lower deviation occurs due to instrumental
limitations.

In the late eighties many scenaria were developed to explain
the mechanism of energy input to the solar corona (see reviews
by Heyvaerts 199(); Eunaudi & Velli 1994; Viahos 1994). This
input has been roughly estimated by Withbroe & Noyes (1977)
to be about 107[erg cm—2s~!]. This energy input is thought
to be due to a continuous, small scale, localised dissipation of
magnetic energy rather than to a few large events that release
vast amounts of energy (Parker 1983; van Ballegooijen 1986;
Berger 1993, 1994), Parker (1988) stresses that what we define
as solar X-ray corona is just a tremendously large number of
nanoflares.! Swarms of nanoflares in a localised region provide
the essential energy input in the corona. According to Parker
{1989}, microflares observed are a result of a superposition of
many nanoflares, while a superposition of a large number of mi-
croflares may give rise to the observational detection of a flare.
This point of view results from the assomption that the same
basic physics should hold for flares, microflares and nanoflares.

Lu & Hamilton {(1991) and Lu et al. (1993) were the first
to propose a different approach to the study of the active re-
gions and the flaring process (LH model). They claimed that
their model can be used to study the operative physics which
leads to the large scale dynamics (and therefore the distribution
of flares) in active regions. They assumed that the emergence as
well as changes of magnetic flux in the photosphere place new
flux at randomly located points inside the active region {mag-
netic loading of active region). This magnetic loading produces
discontinuities in the magnetic field. Simple rules for the redis-
tribution of magnetic field and the release of magnetic energy
in the vicinity of a discontinuity are then applied. This model is
able to predict a power-law behaviour for the number of discon-
tinuities formed versus the total energy released. The power-law
index obtained for peak-luminosity has a value of ~ — 1.8 which
is consistent with observations. Deviations from power-law be-
haviour obtained for lower and higher energies occur due to the
finite resolution of the grid. The lower deviation is due to the
cellular nature of the model, while the upper deviation is caused
by the finite size of the simulation box.

Hudson (1991) showed that power-law distributions of peak
luminosity with index ~ —1.8 fail to provide the energy needed
to heat the corona. The power-law exponent should be ~ —4
to account for this heating. Due to the limitations of the current
observational instruments, the existence of such a sharp power-

! Parker defines as “nanoflares” the practically unobservable events

with energy lou[ergs] or less and with highest energy up to 10%*[ergs],
which is our present observational limit,
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law fall-off in the lower part of the peak luminosity distribution
has not yet been confirmed.

In this article the ideas of Parker and Hudson are recon-
ciled following the approach of Lu and Hamilton. A number of
new clements are introduced as compared to the original LH
model: we enrich the (isotropic) LH model with more sophis-
ticated instability criteria which provide for the relaxation of
the (first and second order) neighbourhood of the initial un-
stable point. We obtain a {much more extended) power law
in the peak-luminosity distribution with index ~ —1.8. Fur-
thermore, we introduce an anisotropic model, which turns out
to simulate smaller events and produces a power law with in-
dex ~ —3.5. Finally, we present a mixed model, which com-
bines the two previous models. This model exhibits two distinct
power-law regions in the peak-luminosity distribution, one with
index ~ —3.5 (nanoflares) and one with index ~ —1.8 (mi-
croflares and flares). This last model, covering the entire range
from nanoflares to flares, produces what we call in this article a
statistical flare.

In Sect. 2 we introeduce our alterations of the LH model and
discuss the underlying physical motivation. In Sect. 3 and 4
we analyse the time series produced by our models and focus
attention on correlations between subsequent events. In Sect. 5
we investigate the scaling behaviour exhibited by our models.
Section 6 summarises our results,

2. Models for energy release in an evolving complex active
region

We first review the basic principles of the LH model and briefly
state the difference between these and those of our models. After
that we explain in detail our models.

The I.LH model is based on the concept of self-organised crit-
icality (8OC), first introduced by Bak et al. (1987). LH assume
that the solar corona evolves into a SOC state, in which a sin-
gle discontinuity (reconnection event) can trigger other similar
events, giving rise to an avalanche. This swarm of events taking
place almost simultaneously in a localised region is what we
call a flare.

LH make use of an illustrative model which demonstrates
SOC behaviour and is known as the 3D sandpile model.

Specifically, they construct a 3D cubical lattice with a vector
field F; associated with each grid point i. They define as slope”
the quantity

dF; =F; - > w;Fu;, (1)
i

where w; is an arbitrary weighting function and F; is the field
of the six firsi-order neighbours of the grid point i. One iniro-
duces a critical threshold F¢r and defines an instability criterion
of the form

|dF1| > Fer (2

The algorithm consists in selecting randomly a grid point,
adding to it a small increment §F with §F < F¢r, and searching
the grid for possible instabilities.
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If a grid point is found 1o be unstable, i.e. instability criterion
(2) is satisfied, then itself and its neighbours are automatically
readjusted in such a way that the field is conserved and the re-
distribution is isotropic (conservation laws and symmetry are
established). At the same time an amount of energy (dependent
on the slope |dF;|) is released. The grid is then again scanned,
and if new instabilities are found, the same procedure of read-
justing 1s applied. One keeps scanning the grid and readjusting
the field until the system has relaxed onto a state in which no
grid point is unstable. Then again a small increment 8F is added
to a randomly seiected grid point and the same procedure of
scanning and readjusting is applied.

This model predicts the prevalence of a power-law behaviour
in the distribution functions of the total energy, the peak lumi-
nosity and the duration of the avalanches, extending over several
decades. The consistency with observations leads to the conclu-
sion that one might gain in this way an insight into the physics
underlying the flaring mechanism.

We believe that the LH model is the first step towards the
right direction of understanding flare emergence and flaring ac-
tivity. The next step is to enrich the modet with more realistic
features, which is the subject of this article. Qur models differ
from the original LH model by the following items:

1. Whereas LH define size and peak activity of an avalanche
using the total number of unstable points on which the
avalanche extends, we define these quantities by directly
making use of the energy released.

2. Whereas LH drive their model in a small scale (|§F| < Fer),
we use bigger increments, in accordance with the suggestion
of Galsgaard & Nordlund (1994).

3. We load our grids with scalar fields instead of vector fields.
By doing so we ignore energy placed in twisting magnetic
fields.

4. We introduce three different models, one isotropic (Model
A), one anisotropic {(Model B) and one which is a combina-
tion of the previous two (Model C).

5. We introduce two generalised instability criteria (Criterion
I and Criterion IT) which are applicable to all three models.

We proceed now with a detailed description of our models.

2.1, Model A

We construct a three-dimensicnal cubical lattice at every grid
point of which we define a scalar field B; randomly selected
from a fixed range of values.- The slope at a grid point i is
defined by

1
dBi=B; - ¢ ; B 3

where B, is the field of the j-th first-order neighbour (7 =
1,2,...,6). The instability criterion has the form

dB; > Ber y 4)

where Bgr is the critical threshold. The typical value for By
was set on Bey = 50.

899

Like the LH model, the procedure consists of selecting ran-
domly a grid point, adding a small increment §B and scanning
the whole grid for possible instabilities. The typical value for
6B was set on 8B = 7. If the instability criterion (4) is satisfied,
the dynamical evolution of the system is given by the relations

6
B; - B, — 7Bcr (5)
1
Biy; — B+ 7Bcr (6)

where Eq. (5) provides the readjustments in the field of site ¢
and Eq. (6) gives the readjustments in the fields of neighbour-
ing sites ¢ + §. First-order neighbours or first- and second-order
neighbours (depending on the choice of the instability criterion,
Criterion I or Criterion IT) will then be checked for possible
instabilities and, if any, they will be relaxed according to the
rules of the specific instability criterion chosen. The two insta-
bility criteria are described in detail in Appendix 1. Both crite-
ria share the same philosophy: neighbours of an unstable point
have relaxation criteria which depend on the strength of the
instability of the initial point. The steeper the gradient, the eas-
ier the triggering of the neighbourhood is. Criterion I involves
only first-order neighbours, while Criterion II takes first- and
second-order neighbours into account.

On the other hand, maybe a neighbour satisfies directly cri-
terion (4}, so the relaxation mechanism (5) and (6) is again ac-
tivated and the avalanche increases. When all avalanches acting
within the limits of the lattice have died out, i.e. the system has
become stationary, we repeat the routine of selecting randomly
a grid point, adding the increment § B and so on. Each random
selection and addition of the increment corresponds to what we
call an iteration. Notice that symmetry and conservation laws
are maintained, in agreement with the original SOC concept
(Bak et al. 1987).

Once an instability has occurred, each readjustment of the
field in the vicinity of the unstable point is accompanied by an
elementary energy release given by the formula

6 2
0B, = (Bk - 7Bcr) . (7

Thus, if an avalanche is built of NV relaxation events taken place
in D time steps, then the total energy released is

N
E= Z SE) ®)
k=1

Time step is defined as the time needed for a single scanning of
the grid including the relaxation of instabilities (if any).

The number of the relaxations at a specific time step mul-
tiplied by the elementary energy release (7} provides the peak
luminosity P at this time step.

The total number of time steps from the onset of an avalanche
to the total relaxation of the grid provides the duration D of this
avalanche,
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From the description given above it is clear that Model A
follows closely the philosophy of the LH model, with excep-
tion, of course, of the introduction of the generalised instability
criteria.

2.2. Modei B

We construct a three-dimensional cubical lattice at every grid
point of which we define a scalar field B; randomly selected
from a fixed range of values. Unlike Model A however, each
grid point is characterised by six slopes instead of one. These
slopes are defined by

dB;j = B; — Biyj . )]
The instability criterion is now

dBt'j > Ber, (10)
and it is applied six times for every grid point. For Ber and 6B
the same values were used as in Model A. Tf criterion (10} is
satisfied, only the grid point 7 and the neighbour j are involved
in the relaxation process. Site ¢ will rearrange its field following
the rule

6
Bi — By - chr . (1n

If more than one dB;; are greater than By, then each one of
the respective neighbours 7 will gain an increment é; with

Bi+j — B.;,.,.j + (5j 3 (12)
provided that
6 .

> 6 =5Ber, (13)

J
and

6 dB;;
i= —Bere=—- 14

Either Criterion 1 or Criterion I is applied in the relaxation
process. Definitions of total energy E, peak luminosity P and
duration [ are the same as in Model A,

It is clear that Model B provides a different philosophy as
compared to Model A:

- Model B is clearly anisotropic. The relaxation procedure pro-
vides a directionality towards the neighbour or the neigh-
bours that need to be readjusted according to the instability
criterion (10). In other words, instability in this model finds
its way out, instead of being isotropically distributed.

- From the theoretical point of view, Model B deviates from the
original SOC concept: though conservation laws are main-
tained, symmetry is violated.

L. Vlahos et al.; The statistical flare

2.3. Model C

This model is simply a combination of the two previous mod-
els. We keep the common features of Models A and B, namely
we randomly choose one grid point i per iteration and add the
increment 4 B. The distinguishing feature, however, is that in
obtaining a Model C time series, we just superimpose two time
series, one constructed according to the rules of Model A and
one constructed according to the rules of Model B. Here Model
A and Model B share the same general features (same size of
the sirnulation box, same critical threshold, same instability cri-
terion, and same number of random selections of a point and
additions of the increment).

The physical motivation for this superposition stems from
the idea that our simulation box (of size L) represents only
a very small fraction of the active region which, due to certain
limitations of the observational instruments, cannot be detected.
Instead, one detects a part of the corona which has a much bigger
volume than our simulation box. If in this volume large isotropic
explosions as well as small anisotropic events take place, then
a correct modelling of this volume would require a number, say
N 4, of Model A simulation boxes as well as a number, say Np
of Model B simulation boxes. The time sertes stemming from
observations is then modelled by adding N4 Model A time
series to Ng Model B time series. In a first approximation to
this type of modelling we choose Ny = Ng = 1.

Obviously, our Model C is only a first approach to the prob-
lem. A much more natural model which is at present under con-
sideration and will be presented in a later publication, is based
on the philosophy of allowing the physics to decide how to re-
lax discontinuities. The idea is that, if there is a discontinuity
which leads to the fulfilment of the isotropic instability criterion
(4), then the energy release will take place isotropically creat-
ing large events (flares). If, on the other hand, the gradients are
steep enough to satisfy at least once anisotropic criterion (10),
but not steep enough to give rise to a large isotropic explosion,
then dissipation of energy will indeed take place, but this time
it will lead to the emergence of nanoflares.

Even with our simple Model C however, the results are pretty
encouraging as will be shown in Sect. 3.3.

3. Flare statistics

We first discuss some general features of our models.

Figure 1 shows a Model A simulation box with dimensions
50 x 50 x 50 after 100 time steps. It includes clusters of differ-
ent sizes, indicating the sizes of the avalanches to which they
correspond. Notice that there are clusters consisting of only a
single unstable point, which means that this point was randomly
chosen at a time, but the disturbance was not able to spread to
the vicinity of this point. On the other hand, there are clusters
including a considerable number of points, indicating that the
neighbourhood of the initial unstable point was affected by the
relaxation process (spontaneous triggering of flare).
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Fig. 1. Three-dimensional Model A simulation box with dimensions
50 x 50 x 50 illustrating the clustering of unstable points (avalanches)
after 100 time steps

The relaxation of a single discontinuity is illustrated in Fig.
2. We have taken a cross-section (slice) of a 10 x 10 x 10 grid
and plotted the field of every grid point of the surface,

The large discontinuity at site (5,7), marked by I, is clearly
apparent in Fig. 2a. Figure 2b provides the same picture after
the relaxation of the gradients. In this figure the shapes of the
neighbouring peaks have changed, indicating that each one of
them has received field from the highest peak, which has now
disappeared. All the peaks now have heights below the criti-
cal threshold. Notice that the anisotropic discontinuity at (8,4),
marked by A, has remained unchanged.

We proceed with stating the results of each of our models,

3.1 Model A

As it turns out, the results are not affected by the particular
choice of the instability criterion (Criterion I or Criterion IT). The
basic feature of both models is that the frequency distribution of
energy E, peak luminosity P and duration [ of the avalanches
are well fitted by a functional form

N(X)=X"% (15)

where X = E, P, D. The exponent #x is the same® for both
Criterion I and Criterion II for a fixed X . These power laws are
the most extended for the energy F, and the least extended for
the duration D, ¢f, Fig. 3.

In Fig. 3a comparison with the LH model is given. For the
LH model we have used the energy release formula (7). Notice
that the introduction of Criterion I or Criterion II forces the
power-law regime to extend dramatically, without any serious
difference in power-law indices. Power-law indices for grids
with linear dimensions varying from 30 to 100 are given in
Table 1. The values tabulated in Table 1 correspond to Criterion

*  The only difference between Criterion I and Criterion IT is that the

latter gives rise to the emergence of slightly larger events. This however
does not affect the value of the exponent in Eq. (15)
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Fig. 2. a Surface plot of the field magnitudes for a cross-section of
a 10 x 10 x 10 grid. b The same surface plot after the relaxation
of gradients using Model A criteria.  denotes an isotropic gradient,
whereas A denotes an anisotropic one

Table 1. Power-law indices for total energy E,peak luminosity P and
duration 7 for Model A grids of different size. Eachindex is an average
taken over ten runs of 22000 time steps

L]  ée] ér[ én]
30] 1.65] 1.82] 2.57
40| 165] 182] 274
S0 165 1.90] 242
60] 1.66| 184] 2.63
70| 1e3| 189 2.56
80] 1.60] 1.84f 256
90} 1.60] 1.76] 232
100] 1.59] 1.88] 2.34
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Fig. 3a—c. Frequency distributions of a energy E, b peak luminosity
P and ¢ duration D of the avalanches in a 100 x 100 x 100 Mode! A
grid. The triangles correspond to the results of a model using exactly
the same criterion as the LH mode]

II but do not differ significantly (in a statistical sense) from the
values corresponding to Criterion I. From our statistical analysis
we obtain the following numerical results:

1. A power-law index for energy with value ~ —1.62 + (.03,

2. A power-law index for peak-luminosity with value ~
—1.84 £ 0.04.

3. A power-law index for duration with value ~ —2.5 £ 0.1.

We remark that these exponents are insensitive to the randomly
chosen initial configuration of the field and to the value of the
increment 8 B provided that the latter is not bigger than 20 % of
the critical threshold.

The quantity which can directly be compared with observa-
tions is the peak-luminosity P. The power-law index —1.84 is
consistent with observations. The power-law index for energy is
slightly higher than the index provided by the LH model. There
is some ambiguity in determining the power-law index for the
the duration distribution. This is due to the fact that the exten-
sion of this power-law is not big enough to allow for an accurate
power-law fitting (Fig. 3c).
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We also observe certain deviations from power-law be-
haviour at the lowest and highest energies (Fig. 3a,b). Explana-
tions for these deviations have already been mentioned in the
introduction.

Model A is rather similar to the LH model. But we find our-
selves in coatradiction with the assertion of LH that power-law
scaling is not obtained if one lowers the instability criterion (4)
or forces the neighbouring sites to undergo retaxation. Instabil-
ity Criteria I and 1T are based on the philosophy of forcing the
vicinity of the unstable point to relax, in this way attempting
to simulate realistic conditions acting in the solar corona (Gals-
gaard & Nordlund 1994), We do obtain power laws, and find
that the power-law indices are consistent with those of the LH
model.

3.2. Model B

The first conclusion drawn from our simulations is that the re-
sults are not affected by choosing either Criterion I or Criterion
I1. The second conclusion is that the behaviour of Model B de-
viates significantly from that of Model A.

The basic feature, which can be directly read off from a
typical model B time series (Fig. 4b) is the occurrence of swarms
of small and short events. The energy scale of these events is
some orders of magnitude less than the scale of events obtained
from Model A (Fig, 4a),

In Fig. 4a a typical Model A time series is presented. Notice
that the Model B time series of Fig. 4b displays a much more
complex microstructure than Model A. The form of the Model
B time series is explained by the fact that now (magnetic) energy
cannot be stored in big quantities in a single lattice site or in its
neighbourhood. It dissipates much easily than in the isotropic
model (Model A), since only the unstable peoint and one neigh-
bour are needed for an event to occur. This fact contributes to a

-picture of a very frequent, small localised dissipation of energy,

instead of the prevalence of a few enormous events which re-
lease the vast majority of energy availabie (Model A). The two
pictures are apparent in Fig. 5ab.

Figure 5a corresponds to a 50 x 50 x 50 Model A simulation
box, while Fig. 5b shows the simulation box of a system with
the same size exhibiting Model B behaviour.

The different simulation rules are reflected by the frequency
distributions of energy and peak luminosity. Typical distribu-
tions for a 100 x 100 x 100 Model B are given in Fig. 6. Notice
that the distributions of energy and peak luminosity begin with
a plateau of roughly constant occurrence rates and terminate
in a sharp cut-off. The slopes of these cut-offs are significantly
higher than in Model A. Their absolute values are given in Table
2 for a range of lattice sizes varying from (30) till (100)3.

From our analysis we conclude:

1. We obtain a cut-off for the energy F with a power-law index
~ =34+ 0.1.

2. The cut-off of the peak luminosity P exhibits a power-law
index of ~ —3.65 £ 0.10.

3. The cut-off of the duration D distribution is really very steep,
having an index ~ —8.5 £ 1.5.
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Fig. 4a and b, Typical time series of a Model A behaviour (microflares
and flares), b Model B behaviour (nanoflares)

Table 2. Power-law indices for the total energy E, peak luminosity P
and duration D for a number of Model B grids of different sizes. Each
index is an average taken over ten runs of 22000 time steps.
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30 3.55 3.61 7.32
40 334 3.74 7.28
50 3.36 3382 7.14
60 335 3.59 7.31
70 3431 3.60 7.39
80 3.56 360 1066
20 3.41 3.54 11.38
1001 3560 3720 1141

Notice that the distributions of the energy E and the peak
luminosity P resemble each other very much due to the fact that
we obtain short-duration events.

The general features of Model B are the same as those of
Model A. The initial configuration of the field does not affect
the results, and the cut-off index s insensitive to the increment
&8 as long as this increment is not bigger than 20 % of the
critical threshold. We use the same values of 4B and B, as in
Model A.

The platean which is observed in Fig. 6a and b is strongly
dependent on the critical threshold used. The lower the critical

Fig. Saand b. 50 x 50 x 50 simulation boxes which show the emergence
of events (avalanches) after 100 time steps for a Model A and b for
Model B

threshold, the shorter the extension of the plateau with the cut-
off index remaining practically unchanged.

Model B represents the relaxation processes which give
rise to small events (nanoflares). In fact, Model B materiakises
the ideas expressed by Hudson (1991} and Zirker & Cleve-
land (1993a and b). We conclude that small and short events
(nanoflares} originate from anisotropy while isotropy governs
the emergence of large events (microflares and flares).

3.3. Model C

In Fig. 7 a time series of Model A (Fig. 7a) and a time series
of Model B (Fig. 7b) are added to create a Model C time series
(Fig. 7c). 'We see that this Model C time series exhibits large
events (due to Model A) embedded in an active background of
small events (due to Model B). This picture is, in our view, more
realistic than those of Fig. 7a or b.

The energy, peak luminosity and duration distributions for
a 100 x 100 x 100 Model C grid are given in Fig. 8. For the
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Fig. 8a—c. Frequency distributions of a energy, b peak luminosity and
¢ duration for a 100 x 100 x 100 Model C grid

energy distribution (Fig. 8a) the power-law behaviour is exactly
the same as the power-law behaviour of Model A (Fig. 3a).
All the events presented by the power-law are strictly isotropic.
Small anisotropic events affect only lowest energies, below the
threshold above which power-law scaling appears. Indeed, the
only difference between Fig. 8a and Fig. 3a is located exactly
at these lowest energies.

The distribution of peak luminosity however (Fig. 8b) ex-
hibits different behaviour. Isotropic events last for relatively
many time steps. So isotropic fuminosities have significantly
lower values than isotropic total energies, in this way permit-
ting anisotropic events to become more visible as compared to
the energy distribution. Direct consequence is the emergence of
two scaling regions (Fig, 8b): the low-energy region which has
the sharp Model B index as in Fig. 6b and the high-energy region
which is strictly isotropic, with the same index as in Fig. 3b. We
believe that the occurrence of two scaling regions reflects the
simultaneous presence of two phenomena: flare production and
coronal heating.
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The duration distribution of Model A (Fig. 3c) remains prac-
tically unaffected by the superposition of the Model B duration
distribution. Thus Fig, 8c is almost exactly the same as Fig. 3c.

4. Correlations

Here we discuss the issue of correlation between relaxation
events using basic concepts taken from the theory of multi-
fractals {(Hentschel & Procaccia 1983; Halsey et al, 1986; Tél
1988).

When a peak-luminosity time series is given, and one wants
to examine the self-similarity (multifractality) of this time
series, the most straightforward method is the box-counting
method: If &V denotes the length of the time series, one cov-
ers the time axis with a grid of boxes, each having the same
size A. Expressing the box size A using N as the unit length,
the time series is covered by N/A boxes with (dimensionless)
size ¢ = A/N. The normalised peak luminosity P; of a box i
( running from 1 till N/X) is defined as the sum of the A peak
luminosities inside this box divided by a normalising factor. The
normalising factor is equal to the sum of all N peak luminosi-
ties. Since the sum of all normalised peak luminosities 2; ts
equal to 1, P; can be called a probability.

In most cases of interest, the sum Zt Pf(e) of the prob-
abilities raised to the power g exhibits the following scaling
behaviour:

Z R;q(‘f) ~ gle= DDA (16)
i

Inrelation {16) D{g) corresponds to the generalised dimensions
of the time series which depend on the value of the quantity g
which is called "selector”. In case of multifractality, each value
of the selector g corresponds to a different value of D{(q) where
D(q) = D(§")if ¢ < ¢, i.e. D(g) is a decreasing function. The
best-known generalised dimensions characterising a probability
distribution are (0} which is named “fractal dimension™ and
D{(2) which is called “correlation dimension”.

More generally, the generalised dimensions )(n) with n =
2,3,4, ... arerelated to the n-tuplet (point) correlation integral
CL(¢) by (Hentschel & Procaccia 1983):

_logCriz)

D(n) = )

loge

In the context of this subsection, a "point” corresponds to a
relaxation event and the normalised peak luminosity 7; is to
be interpreted as the (normalised) number of relaxation events
at time step i. A value of D(n) cqual to 1 corresponds to the
absence of correlations in a group of n consecutive relaxation
events, A value of D(n) smaller than 1 indicates that, on the av-
erage, correlation (memory) effects are present within a cluster
of n subsequent relaxation events.

The accuracy of the box counting method depends on the
two parameters A and NV which are united in the single parameter
€= A/N <« 1. The box-counting method is only reliable if for
decreasing values of ¢ relation (16) holds over several order
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Fig. 9. D{g) curves for a random time series, LH model and Models
A, B, and C fora 100 x 100 x 100 grid. The curves for Model A and
Model C are almost coincident

decades of log . In some cases, convergence is only reached in
the limit e — 0.

it is well known that it is almost impossible to obtain ac-
curate estimates of the negative g-part of the D(q) curve, since
the inevitable round-off error in the values for the probabilities
P, is blown up in the left hand side of Eq. (16). This is the
reason why in our analysis we have avoided negative g values.
Another reason is that the negative-g part of the IX{(q) spectrum
provides no information about correlations. In fact, a physical
interpretation of this part of the spectrum is still lacking.

The selfsimilar (fractal) nature of the avalanche models ex-
hibiting SOC behaviour is stressed by several authors (Bak et
al. 1987,1988; Bak & Chen 1991). This selfsimilarity with a
scale-invariant behaviour is believed to cause the emergence of
power-laws.

The D{g) spectra for typical peak-luminosity time series of
Model A, Model B and Model C grids are shown in Fig. 9. We
also have plotted the IX{g) spectrum of the LH model and, to
illustrate the difference between events with no correlation, we
have plotted the D(g) spectrum of a totally random time series.

Clearly, the D{g)} spectrum of the random time series is flat,
i.e. D(g) has almost the same value for different values of ¢.
This value deviates slightly from the exact value 1, since the
length of the random time series was not infinite, but kept the
same as the length of the time series resulting from our models

(N = 22000).
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We further see that the Model-B curve is close to the
“random”-curve, indicating that correlation effects are weak.
The curves corresponding to Model A and Model C are almost
coincident and deviate convincingly from the “random” curve,
indicating the existence of relatively strong correlation effects in
the associated time series. That the Model-A curve lies beneath
the Model-B curve is explained by the observation that flares
(long and strong energy bursts) are dominant in Model A and
absent in Model B (which displays only short and weak bursts
(nanoflares)). Therefore one expects correlations to be much
stronger in Model-A time series as compared to Model-B time
series. This is exactly what one sees in Fig. 9. The fact that the
Model- A curve coincides with the Model-C time series also has
a simple explanation: correlations depend on the strongest and
longest bursts, Since these strongest and longest bursts are the
same for both Model A and Model C (since Model C is simply
a superposition of Model A and the shortly and weakly bursting
Model B}, both models display the same correlation behaviour,

Notice that the D(g) curve of the LH model lies somewhere
between the Model-B curve and the Model-A/Model-C curve.

We conclude that we have found evidence for the existence
of correlations between relaxation events in Model A and Model
C, while, on the other hand, correlations in Model B relaxation
events are relatively weak. The LH model appears to have an
intermediate degree of correlation. Our analysis clearly shows
that there is model-dependent memory effect in our time series.

We recommend the same method of analysis introduced in
this section for observational time series in order for modellists
to compare their data more accurately with observations.

5. Scaling

We will now turn to the scaling behaviour of our models, i.e.
we want to investigate whether the distribution functions of our
models display a length-scale invariant behaviour for grid-sizes
L =60 up to L = 100. If this is true, then the same length-scale
invariant behaviour can be expected for grids with sizes which
are too large for numerical verification.

The relevance of this topic is evident: a correct modelling
of flare phenomena in the corona would require huge gridsizes,
which, however, are completely inaccessible to numerical sim-
ulations with the currently available computers. Therefore, the
only way to be confident that models which are successful for
relatively small gridsizes are also successful for very large grid-
sizes, 1s to search for length-scale invariant behaviour of the
relevant distribution functions.

In connection to this it is important to notice that the ob-
servation done in Sects. 3.1 and 3.2, namely that the power-
law indices associated with the various distribution functions
display a length-scale invariant behaviour (Tables 1 and 2), is
insufficient for predicting that the entire distribution function
is length-scale invariant: the power-law indices resuit from a
power-law fit, and it could well be possible that the range of val-
ues over which the power-law approximation extends depends
on the size of the grid. More precisely, we require that also the
deviations from power-law behaviour display a length-scale in-
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variant behaviour. We only allow deviations at the borders of
the interval over which the distribution function extends. As al-
ready stated in the intreduction, the lower deviation is due to
the cellular nature of the models, while the upper deviation is
caused by the finite size of the grid.

In order to investigate the scaling behaviour of our mod-
cls, we apply three different tools: finite-size scaling (Fischer
1971; Barber 1984), multiscaling (Kadanoff et al. 1989) and
multifractal scaling (Appendix II).

If one has a set of distribution functions, each of which is
associated with a simulation box of different size L, then each
of the three tools mentioned above tries to map these functions
onto a single "universal” curve. Ifthis is possible, then the model
is said to show common behaviour independent of L.

Kadanof et al. {1989) studied the scaling behaviour of sev-
eral one- and two-dimensional avalanche models by means of
finite-size scaling and multiscaling analysis (which in their orig-
inal article was erroneously’ coined "multifractal scaling™).
Here we extend the analysis of Kadanoff et al. to our three-
dimensional avalanche models. Let us first explain briefly the
three tools of analysis.

5.1. Description of tools

1. Finite-size scaling. For different sizes L one trics to express
the distribution functions N (X, L) as follows:
NX,L)= L™ fi(X/L7"), (18)
where X = E, P, D. Expression (18) is called a finite-size
scaling form, because it depends on two critical scaling in-
dices, /7 and v. The function f; is called a scaling function.
If the distribution functions are dominated by a long region

of power-law behaviour with power-law index 8, then é is
related to 3 and v via (Kadanoff et al. 1989)

§=p/v, (1%
while [ and v are related to each other by
2v—-p=3. 20)

2. Multiscaling. The multiscaling fitting form (Kadanoff et al.
1989) is given by
log N(X, L) log(X/ Xg)

log(L/ Lo) log(L/Lo)
and Ly and Ej are fitting constants. The form (21) is called
multiscaling form, because now an entire spectrum of scal-
ing indices arises. These indices correspond to the values
of the derivatives dfy /dc. If the distribution functions are
dominated by a long region of power-law behaviour, then
the scaling function fs is a linear function of a.

3. Multifractal scaling. A new* method comes directly from
the theory of multifractals (see Appendix II). This fitting
form is different as compared to the multiscaling fitting form
(21), and is given by the relation
log(N(X, L)/No)

log L

= fa(a) where a = 2n

log(Xo/X)

= f3{ex) where o = log L

(22

¥ See the last paragraph of Appendix I
*  See, however, ref. 12 in Kadanoff et al. 1989
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and Ny and Xp are fitting constants. Notice that the mul-
tifractal fit (22} corresponds also to a type of multiscaling
fit. Again, if the distribution functions are dominated by a
power-law behaviour, then f3{c) is linear.

The reason for using three fitting forms is that it is a priori
unknown which of the three fitting methods will be successful:
for one-dimensional avalanche models it was found by Kadanoff
et al. (1989) that finite-size scaling works poorly as compared
to multiscaling, For their two-dimensional avalanche moedels
on the other hand, it was found that finite-size scaling works
slightly better than multiscaling.

5.2. Results

Each model (Model A, Model B or Model C) is characterised
by three types of distribution functions: Energy distribution,
peak-luminosity distribution and duration distribution. Since of
these distribution functions, the energy distribution is the most
extended, we feel that it is the most appropriate distribution
function for testing the length-scale invariance of our models.
Length-scale invariant behaviour in terms of peak-luminosity
and duration distribution will be discussed by us in a forthcom-
ing publication.

5.2.1. Model A

We apply the three tools of analysis to the energy distribution.
The scaling functions f of Egs. (18), (21) and (22) are presented
in Fig. 10.

From Fig. 10 we conclude that the length-scale invariant
behaviour of Model A is ruled by the multiscaling form (21) as
well as by the multifractal scaling form (22) and it is difficult
to say which method works better. The multiscaling fit displays
only slight deviations in the high-energy part of the distribu-
tions, while the multifractal fit shows deviations only in the
low-energy pari of the distributions. Notice that both fits show a
clear multiscaling, the fitting curves are bended. The immediate
conclusion is that the characterization of Model A energy dis-
tributions by means of a power-law fit (with index ~ —1.8) is,
from the theoretical point of view, a gross simplification. Model
A can be characterized by either a universal curve correspond-
ing to the multiscaling fitting form (21) or by a universal curve
corresponding to the multifractal fitting form (22).

The finite-size fitting form (18) works poorly as compared
to the other two fitting forms. Clearly, the length-scale invariant
behaviour of Model A is not ruled by finite-size scaling.

5.2.2. Model B

The three fitting forms for the energy distributions of Model B
are presented in Figs. 11a, b and c.

From these figures we conclude that the multiscaling fitting
form (21) gives the most convincing fit over the entire energy
range. The multifractal fit works poorly in the low-energy part
of the distributions, but works better in the power-law regime
as compared to the multiscaling fit. Notice that, as could be
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expected, all three fitting forms work more or less well in the
sharp power-law fall-off region of the distributions.

The good result of the muttiscaling fitting (21) indicates
that also for Model B the characterization by means of a single
power-law exponent is a gross simplifaction: Model B can be
characterised by a universal scaling function.

5.2.3. Model C

As was explained in Sect. 3.3, the energy distribution for Model
C is equal to the energy distribution of Model A. The scaling
fits for Model C are therefore the same as those for Model A. In
a more technical language, this means that Model A and Model
C belong to the same universality class.

In summary, the energy-distribution functions of all three mod-
els display length-scale invariant behaviour: the distributions
can be scaled on a bended "universal” curve.

6. Summary and conclusiens

Up till now, research on solar fiares has evolved around concepts
like magnetic storage (due to organised motions in the photo-
sphere), formation of neutral sheets in well behaved magnetic
topologies, plasma heating and acceleration of particles inside
magnetic loops. The statistical flare introduced in this article
replaces these concepts by random magnetic field loading of
a complex active region, random formation of discontinuities,
automatic relaxation of discontinuities, formation of clusters
(avalanches) and heating and acceleration of particles on ran-
dom discontinuities. In our view the statistical flare represents
better inhomogeneous magnetic fields driven by turbulent mo-
tions in convection zone and photosphere.

In this article the evolution of the statistical flare is modelied
using techniques taken from complex systems theory. Specifi-
cally, the occurrence, evolution and disappearance of sharp mag-
netic gradients driving currents which redistribute the magnetic
fields and release energy is modelled using 3D avalanche mod-
els in the spirit of Lu & Hamilton (1991) and Lu et al. (1993).

Our main result is that our most successful model (Model C)
provides a peak-luminosity distribution which exhibits two re-
gions of power-law behaviour: a low-energy region with power-
law index ~ —3.5 and a high-energy region with power-law in-
dex ~ —1.8. We stress that this result is in accordance with the
assertion of Hudson (1991) (who states that a peak-luminosity
power-law index of ~ —4 is needed to account for coronal heat-
ing) and with observations (which provide a power-law index of
~ —1.8 for the peak-luminosity distribution above the observa-
tional threshold). We repeat, however, that the steep power-law
with index ~ —4 has not yet been observed.

In modelling the statistical flare, we introduced a number of
new concepts which can be summarised as follows:

1. We termed the LH model as "isotropic” since the magnetic
field is distributed equally among the six first-order neigh-
bours. Our isotropic model differs from the LH model in
the instability criteria. We assumed that it a specific point
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becomes unstable, the entire region is affected and the first-
and second-order neighbours will have reduced instability
thresholds. In other words: the instability criterion for the
neighbours differs from the instability criterion of the initial
unstable point. We assumed that there is a direct connec-
tion between the steepness of the initial gradient and the
reduced instability thresholds of the neighbours. These in-
stability criteria were developed by us in order to simulate
highly unstable neutral sheets injecting energy into their en-
vironment in the form of jets and shock waves and forcing
the entire neighbourhood to become unstable as well. Notice
that the scenario presented here for the formation of flares
differs from the view of Parker (1989} who suggested that
microflares are the superposition of nanoflares and flares the
superposition of microflares.

. We introduced a new model called the "anisotropic model”,

In this model the initial instability criterion is applied to all
six neighbours and the readjustment is done only with those
neighbours satisfying this criterion. It is obvious that in this
model the energy is redistributed anisotropically and it is
much easter to satisfy the instability criterion. This change
on the original model effects strongly the peak-luminosity
power-law index.

. Finally, we introduced a ’mixed” model which combines the

characteristics from the isotropic and anisotropic model. We
expect this model to be closer to the realistic sitvation since
we believe that inside an inhomogeneous active region both
anisotropic and isotropic events will appear simultaneously.

Our results are the following:

. We confirmed the results of LH with our isotropic model

{a power-law behaviour in the peak-luminosity distribution
with index ~ —1.8). The new instability criteria introduced
in this article do not change the power-law index but create
much larger avalanches and extend the range of the power
law by several orders of magnitude. Our isotropic model
then provides much bigger flares without changing the form
of the Turninosity distribution.

. Our anisotropic model provides much smaller events

(nanoflares) with a power-law index ~ —3.5 for the peak-
luminosity distribution.

. The mixed model is much closer to the realistic evolution

of the active region. In Fig. 2a we observe points where
the isotropic redistribution of the magnetic field will be
proper (e.g. point (5,7) marked as I) and points where the
anisotropic redistribution of the magnetic discontinuity will
be in action (e.g. point (8,4) marked as A). This model pro-
vides simultaneously flaring and coronal heating, and the
peak-luminosity distribution exhibits a double power law.

. We used multifractal theory in order to investigate the oc-

curence of correlations in our peak-luminosity time series.
We found that this approach is quite successful and that cor-
relation effects are strongly model dependent. We recom-
mend the same method of analysis for observational time
series. In this way new models can be more accurately com-
pared with observations, rather than only comparing power-

law indices, Our models A and C display relatively strong
correlations, indicating the presence of memory effects in
these model systems: the time evolution of these systems is
atfected by the past.

5. Our models exhibit a length-scale invariant behaviour in
terms of the energy-distribution function, This implies that
the size of the simulation boxes will not affect the phenom-
ena reported here,

We demonstrated that this new approach of studying the
energy release process in an active region is quite successful.
It provides no information about the microscopic features of an
individual event, but it gives very important information about
the overall characteristics of its evolution.

Furthermore, we have shown that flares and nanoflares are
governed by different relaxation mechanisms, but that these dif-
ferent mechanisms can be derived from one model using the
same basic philosophy for the relaxation of magnetic field taking
place in two different ways (isotropically and anisotropically).

The models presented in this article are still along way from
a realistic representation of the evolution of the active region.
We consider our attempt here to be the first step in achieving
this goal. The main drawbacks of our present modelling are the
following:

1. Models A, B and C should be replaced by a single model
which is able to apply isotropic as well as anisotropic relax-
ation criteria. This future model should treat each disconti-
nuity separately. If a single grid point 1 satisfies the instabil-
ity criteria with all its neighbours, it will relax isotropically.
Otherwise the anisotropic relaxation will be applied. Insta-
bility Criteria I and II will be replaced by only Criterion II.
This model will bring together all the important features of
this study and is currently in preparation,

2. The discontinuities analysed in this article are the simplest
possible for a magnetic field. Treating the magnetic field as
a vector field will provide a number of new and interesting
types of discontinuities {sheared fields, neutral sheets etc.).

3. The relaxation process should also become more realistic. A
way to achieve this is the following: One can use simple 3D
MHD simulations to study separately the evolution of sev-
eral types of discontinuities. The redistribution of magnetic
field, the released energy and the effects on the neighbour-
hood should then provide more realistic criteria for future
models.

Finally, we conclude this article with the following remarks:

Radiation signature models and particle acceleration pro-
cesses can be developed in parallel in highly inhomogeneous
and complex systems (see Vlahos & Raoult 1994; Anastasiadis
& Viahos 1994; Vlahos 1994). We expect that in the future en-
ergy release, particle acceleration and radiation will be modelled
using complex-systems theory, following at the same time the
global evolution as reported by observations.

‘We believe that the peak luminosity distribution of less ener-
getic phenomena like decimetric spikes and type I storms will be
better candidates for the diagnosis of anisotropic relaxation and
steep power laws. We also hope that the results of the upcoming
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SOHO satellite will prove useful in understanding the details
of the statistical flare and ils connection to coronal heating. It
will be interesting to see if, after several decades of research
on the "big flares”, our understanding of the flare process may
come from the other end of the spectrum, ¢.g. nanoflares and
microflares.
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Appendix A

In this appendix we introduce two new instability criteria as
compared to the LH model. Both criteria share the same philos-
ophy: neighbours of an unstable point have relaxation criteria
which depend on the strength of the instability of the initial
point. The steeper the gradient, the easier the triggering of the
neighbourhood is. Criterion I involves only first-order neigh-
bours, while Criterion IT takes first- and second-order neigh-
bours into account.

1. Criterion I. We define as the strength d; of the instability
at grid point ¢ the difference between the slope at that point
and the critical threshold, namely

di = de' - Bcr . (A])

For the first-order neighbours we define a (lowered) critical
threshold

Bir; = (1 —dif)Ber , (A2)

where dif; is given by

) nint(d; — 0.3)

ail = A @ 7 10)
Here nint(d; — 0.5) is the integer nearest to ; — 0.5 and
int(d;+1.0) is the integer part of d; + 1. A; is a free parameter
which in all of our simulations was kept the same (A, = 0.5).
It is clear that the new threshold By, ; is lower than Ber and
depends on the instability d; in such a way that big gradients
give rise to small Bey ;.

2. Criterion II. Criterion II provides a further extension of
Criterion 1. For the second-order neighbours we define a
critical threshold

(A3}

i —

eri = Beri + AaBer (A4)

where the free parameter A; was kept constant in all our sim-
ulations { A = 0.3). It is clear that this second-order thresh-
old is bigger than the first-order threshold and depends on
the strength d,. (Making the second-order threshold smaller
than the first-order threshold would correspond to an un-
physical situation, since avalanches should not propagate
forever.)
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Appendix B

In the f(c) formalism for muitifractals (Halsey et al. 1986),
the support S on which a probability distribution is defined is
partitioned according to

§=J8.
42

Here o« is the Lipschitz-Holder exponent or singularity index
associated with the probability distribution: if one covers S with
a uniform grid of boxes with dimensionless box size

e=AL,

(BI)

(B2)

(L denotes the size of 5), A the size of a box and £ < 1), then
all the boxes covering S, have the same probability

Pla,g) ~ %, (B3)
and the number of boxes covering S,, is given by
N{a,g) ~ e @ (B4)

The exponent f(q) is the fractal dimension of 3, . The graph of
f versus o is usually a concave function and 1s called the f(w)
spectrum of the multifractal. The D(g) spectrum (spectrum of
generalised dimensions) of the multifractal can be obtained from
the f{a) spectrum using a Legendre transformation.

Now, setting A = 1 in Eq. (B2), Eqs. (B3) and (B4} take the
form:

P, L) = o L7%,
N{a, L) = NpLf(@

(B5)
(B6)

where ¢; and Ny are constants. The choice A = 1 corresponds to
a typical numerical-simulation situation: boxes covering a part
of a lattice cannot be smaller than the unit box. The only way
to decrease € is to increase [, the size of the lattice.

If X is the typical physical quantity associated with the
probability distribution, i.e.

X(a, L) = ey P{a, L) where ¢g = Z X, Ly, (B7)
then Egs. (B5) and (B6) can be rephrased as follows:

X, Ly = XoL™™, (B8)
N(X,L) = NyL¥® | (B9)

where X = ¢yc is constant. From these last two equations one
straightforwardly derives the multifractal scaling form:

log(N(X, L)/No) _ f (IOE(XD/X)
log L B log L '

(B10)

Note: the multifractal scaling form, when used as a fitting
form, is selfconsistent when applied to models A, B and C (sec-
tion 5): shifting the curves to the positive a-region results in
positive f(a)'s (Figs. 10c and 11c), whereas the multiscaling fit-
ting form (21) gives rise to negative f{)’s (Figs. 10b and 11b).
Though negative fractal dimensions are not strictly forbidden
(Mandelbrot 1991), they are considered to be unphysical.
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