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STATISTICAL PROPERTIES OF MAGNETIC ACTIVITY IN THE SOLAR CORONA
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ABSTRACT
The long-time statistical behavior of a two-dimensional section of a coronal loop subject to random

magnetic forcing is presented. The highly intermittent nature of dissipation is revealed by means of mag-
netohydrodynamic (MHD) turbulence numerical simulations. Even with a moderate magnetic Reynolds
number, intermittency is clearly present in both space and time. The response of the loop to the random
forcing, as described either by the time series of the average and maximum energy dissipation or by its
spatial distribution at a given time, displays a Gaussian noise component that may be subtracted to
deÐne discrete dissipative events. Distribution functions of both maximum and average current dissi-
pation, for the total energy content, the peak activity, and the duration of such events are all shown to
display robust scaling laws, with scaling indices d that vary from d ^ [1.3 to d ^ [2.8 for the temporal
distribution functions, while d ^ [2.6 for the overall spatial distribution of dissipative events.
Subject headings : MHD È Sun: corona È Sun: Ñares È Sun: magnetic Ðelds È turbulence

1. INTRODUCTION

The nature of energy release in the solar atmosphere
remains one of the main unresolved problems in solar
physics, although the correlation of activity with the inten-
sity of photospheric magnetic Ðelds seems beyond doubt.
This has led to the idea that all coronal activity might be
attributed to the dissipation of magnetic energy either pre-
viously stored in the corona or injected continuously via a
Ñux of waves. was the Ðrst to suggest thatParker (1972)
coronal heating could be the necessary outcome of an
energy Ñux associated with the tangling of coronal Ðeld
lines by photospheric Ñows. Parker &(1983, 1988), Sturrock
Uchida Ballegooijen and(1981), Van (1986), Berger (1991),
among others, further explored the dynamics caused by
such random shuffling of magnetic Ðeld lines. Numerical
simulations by Schnack, & Van Hoven con-Mikic, (1989)
Ðrmed that this process causes a nonlinear cascade, leading
to an exponential growth of local coronal currents. In sub-
sequent papers, Parker clariÐed this scenario for coronal
heating by introducing the terms ““microÑare ÏÏ and then
““ nanoÑare ÏÏ to describe the dissipation of elementary
coronal current sheets developed as a consequence of
random footpoint motion (Parker 1989, 1991).

Observations of the statistical behavior of Ñaring activity
et al. &(Lin 1984 ; Dennis 1985 ; Vilmer 1987 ; Ramaty

Murphy Klein, & Trottet Asch-1987 ; Pick, 1990 ; Crosby,
wanden, & Dennis Rowe, & Yeung1993 ; Pearce, 1993 ;

have shown that distributions such as theBiesecker 1994)
number of Ñares as a function of total energy content, peak
luminosity, or duration all display well-deÐned power laws,
extending over several orders of magnitude, down to instru-
mental resolution. However, if such Ñaring activity is to
account for coronal heating, it is necessary (Hudson 1991)
for the power-law distribution at energies below the
observed lower limit to switch to a signiÐcantly steeper
scaling index (i.e., the number of nanoÑares per interval of
energy should signiÐcantly increase at low energies).
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Observations in the radio domain, which extend to the
lowest recordable energies, indeed indicate that power-law
behavior such as that observed in large Ñares continues to
hold at much lower energies (although with di†erent scaling
indices ; & Trottet Although the viability ofMercier 1997).
the nanoÑare scenario remains an open question obser-
vationally, it is important to remark that a comparison of
the distributions of di†erent observed ““ events ÏÏ may have
little meaning. For example, evidence for the existence of
magnetic separatrices in some Ñaring regions (De� moulin,
He� noux, & Mandrini indicate that complexity1994)
beyond the simple random braiding of an axial Ðeld is
necessary for certain classes of solar Ñares to occur. Stated
di†erently, while for the low-energy activity associated with
coronal heating the integrated energy Ñux from the photo-
sphere is probably always comparable to the coronal dissi-
pated power, in situ storage may be required for the larger
Ñares, marking an important distinction in the dynamics,
although not in the dissipation.

Although power-law behavior of energy release has been
modeled successfully using cellular automaton models
(SOC) of magnetic Ðeld instabilities & Hamilton(Lu 1991 ;

et al. et al. there has been no evi-Lu 1993 ; Vlahos 1995),
dence for such behavior coming either from MHD models
or from the three-dimensional numerical simulations
reported up to now et al.(Mikic 1989 ; Strauss 1993 ;

& Sudan & NordlundLongcope 1994 ; Galsgaard 1996 ;
& Van Hoven Based on the properties of theHendrix 1996).

turbulence observed in three dimensions by Mikic et al. and
Hendrix & Van Hoven, et al. developed aEinaudi (1996)
two-dimensional model allowing for much larger integra-
tion times. Their simulations of magnetically forced MHD
turbulence in a two-dimensional slab geometry, chosen to
model a section of a coronal loop, demonstrated a number
of results for the overall properties of energy release with
varying resolution and Reynolds numbers ; they demon-
strated in particular that for a given random forcing, there
is an increase in average dissipation with increasing Rey-
nolds number as well as an increase of peak to average
energy dissipation. et al.Ïs simulations lastedEinaudi (1996)
about 600 poloidal Alfve� n times, where the poloidal Alfve� n
time is given by the time it takes an Alfve� n wave to cross the
coronal loop given the typical value of the magnetic Ðeld in
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the plane of the simulation, corresponding (as discussed in
the following section) to about 10 times the transit time
along the coronal loop.

Here we extend the simulations of et al. toEinaudi (1996)
much longer times (4000 poloidal Alfve� n times), since a very
large data set is necessary to obtain reliable statistics. We
will show that the spatial average of the dissipated power
displays non-Gaussian statistics and that upon subtraction
of the Gaussian component, a well-deÐned power law
results for the number of ““ dissipative events ÏÏ as a function
of total dissipative energy ; the same result holds for the
local peak dissipation, as well as for the spatial distribution
at a given time. This is to our knowledge the Ðrst direct
connection between the behavior of a system described by
MHD and the observational distribution of power release
in the solar corona. Recently, & Go� mezDmitruk (1997)
have presented a numerical simulation using the same
model of a two-dimensional lattice, although with a lower
spatial resolution (96 ] 96), obtaining similar results.

The two-dimensional nature of our simulation might
appear too restrictive and our previous statement too bold.
From a computational point of view, having Ðelds that
depend on only two spatial variables is essential for simula-
tions of the length that we have carried out. From a theo-
retical point of view, it is important to stress that in
three-dimensional simulations of the Parker problem of
random motion, the presence of a strong axial magnetic
Ðeld makes variations in the axial direction very weak com-
pared to those in a transverse plane and that in such cases
the reduced MHD equations are an applicable model. We
make a further approximation by substituting the advection
of transverse magnetic and velocity Ðelds in the axial direc-
tion via the axial magnetic Ðeld by a random forcing
function, simplifying the problem to a completely two-
dimensional one. The main limitation is then that no net
magnetic helicity is injected in our system, and thus the
energy storage capability is much reduced as compared to a
truly three-dimensional system forced at the boundaries.
We therefore stress that our model does not have much
direct signiÐcance for the interpretation of real observed
solar Ñares.

In we describe the basics of our numerical model. A° 2
statistical analysis of the resulting time series and the spatial
conÐgurations is presented in and in we summarize° 3, ° 4
our results and discuss their impact on the interpretation of
solar coronal phenomena.

2. MODEL DESCRIPTION

We model the cross section of a coronal loop threaded by
a large axial magnetic Ðeld with footpoints at either endB0rooted in the photosphere. Denoting the axial direction by
z, any disturbance originating in the photosphere propa-
gates along z with the associated Alfve� n velocity and gives
rise to perpendicular magnetic and velocity Ðelds andb

M
u
M
.

The time evolution of the perpendicular Ðelds is well
described by the reduced MHD equations (Strauss 1976,
1977) :
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where o is the mass density, p is the plasma pressure, and l
and g are the collisional dissipation coefficients, the kine-
matic viscosity and the resistivity, respectively. These equa-
tions are valid in the limit of a small ratio of kinetic to
magnetic pressure, a large loop-aspect ratio (v4 l/L > 1, L
being the length of the loop and l being the minor radius of
the loop), and a small ratio of poloidal to axial magnetic
Ðeld The latter condition also ensures the(b

M
/B0¹ v).

incompressibility of plasma motion in the plane. As a conse-
quence, the density, considered initially to be uniform, will
remain so, allowing us to make use of the same units for
velocity and magnetic Ðelds via the normalization b ] b/
o1@2. Unless otherwise stated, we will implicitly assume that
magnetic Ðelds are measured in velocity units hereafter. The
Ðelds and depend on z, but they interact nonlinearlyb

M
u
Monly in the perpendicular direction. The communication

across planes at di†erent z is provided by Alfve� n waves
propagating along the mean axial Ðeld, which carry the
energy introduced in the loop by photospheric boundary
motions. Since we are interested in the evolution of the
perpendicular Ðelds driven by such motions, the terms
involved in the large-scale axial Ðeld in equations and(1) (2)
may be considered as forcing terms that can be modeled
according to our present knowledge of the photospheric
driver. In other words, we can write
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where and are unknown forcing functions. In a trulyF
m

F
uthree-dimensional system, the fact that the plasma pressure

is much smaller than the magnetic pressure implies that the
magnetic Ðeld evolves following a series of force-free states
in which the kinetic energy of the coronal plasma is sub-
stantially smaller than the magnetic free energy. This allows
us to introduce a further simpliÐcation, which is to impose

in our two-dimensional simulations. Moreover, theF
u
\ 0

forcing term of can be rewritten in a moreF
m

equation (3)
convenient way if we express equations and in terms(1) (2)
of the vector potential A and the stream function /. isF

mthen expressed in the form

F
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The spatial structure of the driving term inf
m

equation (5)
should then be conÐned to relatively large scales (because of
large-scale photospheric forcing), while its temporal proÐle
should be reminiscent of the convective cell origin of the
photospheric driver. We have performed numerical simula-
tions with a forcing term of the formf

m

f
m

\ A1(x, y) sin2
A nt
2t*
B

] A2(x, y) sin2
A nt
2t*

]n
2
B

, (6)

where

A
i
\ ;

nm
a
nm
i sin (k

n
x ] k

m
y ] f

nm
i ) . (7)

The wavenumber values k used are all in the range 3 ¹

Notice that the forcing term consists of(k
n
2] k

m
2)1@2¹ 4.

two ““ eddies ÏÏ with a turnover time 2t*, which are tem-
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porally out of phase. At the end of each t* interval, the
terms and are alternately changed randomly (with aa

nm
i f

nm
i

uniform distribution over the intervals [0, 1] and [0, 2n],
respectively) for the eddy of vanishing amplitude. The a

nm
i

are then renormalized so that the spatial average of isA
iimplying that the rms spatial nondimensionalSA

i
T \ 1,

value for the forcing term is also unity Thef
m

(S f
m
T \ 1).

physical units of the model are then Ðxed in terms of the
large-scale magnetic Ðeld the typical photosphericB0,velocity (in units of the loop length L , and the aspectuph B0),ratio 1/v.

Let us denote the units of magnetic Ðeld, velocity, and
length used to render our equations nondimensional by b0and respectively, along with the time unit here-l

M
, q\ l

M
/b0,after called a time step. A dimensional analysis of equations

and then leads to(2), (3), (5)
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The term is the poloidal Alfve� n velocity mentioned in theb0introduction, and this is the only velocity unit directly rele-
vant to our simulations, since the axial Ðeld does not appear
in the equations. Assuming that the photospheric velocity
satisÐes and assuming a value of 1/v\ 10 foruph ^ 0.001B0,the loop-aspect ratio, we obtain from equation (8)

b0
B0

^ 0.01 , q^ 10
L
B0

s . (9)

If km s~1 and L ^ 104 km, q turns out to beB0^ 1000
q^ 100 s. Our numerical domain is a square lattice with
periodic boundary conditions. We have performed a series
of simulations with a resolution of 128 ] 128, q* \ 16q,
extending from t \ 0 up to t \ 4100, that is, D114 hr real
coronal time with the choice of constants given above. As a
result, we have achieved time stationarity (a ““ Ñare ÏÏ
occurring does not imply a signiÐcant impact on the total
energy that has been dissipated until the time of its
occurrence). Resistivity and viscosity are adapted to the grid
(in the case of a 128] 128 resolution, the value used is
g \ l\ 0.01). In addition, we have performed a limited
number of higher resolution runs, using a lattice with
dimensions 256] 256 (the value of the resistivity used in
this case is g \ l\ 0.004). The latter data set will be used
mostly for statistical analysis in space, while an analysis of
the temporal evolution of the system will be carried out for
the lower resolution.

3. TEMPORAL EVOLUTION AND SPATIAL STRUCTURE

In this section we discuss the statistical analysis per-
formed on the data representing both the time evolution
and the spatial structure of the model introduced above.

In we show the time evolution of the currentFigure 1a
dissipation averaged over the whole system, E

D
\ SgJ2T.

The time series is characterized by a high level of inter-
mittency, with an order of magnitude variation of the dissi-
pated energy over short timescales. Intense dissipative
events occur well above a continuous active background of
small-scale Ñickering. In order to quantitatively deÐne a
dissipative event, we must apply an adequate method of

FIG. 1.È(a) Time evolution of the average current dissipation. Dashed
line corresponds to the temporal noise threshold. (b) Low-energy part of
the SgJ2T distribution function (solid line) and the best s2 Ðt obtained
(dashed line).

noise reduction ; in particular, we must deÐne a threshold
that allows us to deÐne the beginning and end of an event.
For this reason, the data plotted in have beenFigure 1a
used to build up a discrete distribution function of the dissi-
pated power over the entire time series. The technique used
to derive the distribution function from the data is
described in the The resulting distribution func-Appendix.
tion, restricted to its low-energy band to clearly demon-
strate the features of the noise present in the time series, is
shown by the solid line in The noise componentFigure 1b.
is well represented by a s2 distribution function of the form

N(x)\ C
2!(n/2)

Ax
2
Bn@2~1

exp
A
[ x

p
B

, (10)

where !(n/2) is the Gamma function, n is thex 4 E
D
,

number of degrees of freedom, and C and p are the Ðtting
constants. The best Ðt for our time series is obtained for
n \ 17 dashed curve). The s2 conÐdence level of the(Fig. 1b,
Ðt is close to 100%. For the measured dis-E

D
º E

n
\ 1.6,

tribution function begins to deviate signiÐcantly from the s2
Ðt ; such a value can therefore be taken as the temporal
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FIG. 2.ÈScaling laws for the average current dissipation. Straight lines
show the least-square power-law Ðts. (a) Total energy content. (b) Peak
activity. (c) Duration of the events.

noise threshold of the average current dissipation time
series. The threshold is also shown in (dashedFigure 1a
line).

After having subtracted the noisy background of the time
series, we are able to identify a total of 369 discrete events
for the average current dissipation. By means of the
relationship between our time step and real time (eq. [9]),
one may notice that we have recorded a mean number of
events above noise of about 3.2 hr~1.

The distribution functions of the total energy content,
peak activity, and duration of such events are plotted in
Figures and respectively. Although there is some2a, 2b, 2c,
dispersion in the data, the distribution functions of duration
and total energy content may be represented by robust
power laws extending over 2È2.5 orders of magnitude.
Notice that we obtain events that last from D1.6 minutes
(D1q) up to D4.1 hr (150q). The distribution function of the

FIG. 3.ÈTime series of (a) the average magnetic energy and (b) the
average kinetic energy.

peak activity displays a power law over 1 order of magni-
tude. The reason for this is that the maximum current that
can be obtained in the integration box is limited by the
spatial resolution and decreases with increasing resistivity.

The scaling indices of the distribution functions, namely
(for total energy content), (for peak activity), andd

T
d
L

d
D(for duration), as well as the respective mean absolute devi-

ations, the noise threshold and the average andE
n
,

maximum values of the signal-to-noise(S/N)av, (S/N)maxratio are provided in The average power dissipatedTable 1.
in all events above noise is smaller than the average power
dissipated in the background which[(S/N)av ^ 1.878],
again is related to the fact that no large ““ Ñare ÏÏ occurs
during our time series.

Notice that the scaling index for total energy content
is larger than the scaling index for peak activ-(d

T
^ [1.32)

ity which means that the peak-activity fre-(d
L
^ [2.81),

quency distribution is much steeper than the total energy
content distribution. We will come back to this point in the
Ðnal section.

In we present the time evolution of both theFigure 3
magnetic energy and the kinetic energy(Fig. 3a) (Fig. 3b)
averaged over the whole system; the kinetic energy is practi-
cally negligible, as expected since the forcing acts only on
the magnetic Ðeld. However, as we will show later, the
velocity can increase considerably locally with respect to its
average value, exceeding the poloidal Alfve� n velocity in jet-
type structures at the end of current sheets.

It is interesting to note that input power presents varia-

TABLE 1

TEMPORAL NOISE THRESHOLDS AND SCALING INDICES

Case E
n

(S/N)av (S/N)max d
T

d
L

d
D

SgJ2T . . . . . . 1.6 1.878 8.539 [1.32^ 0.24 [2.81^ 0.11 [1.36^ 0.19
gJmax2 . . . . . . 320. 1.134 47.96 [1.27^ 0.08 [2.30^ 0.08 [2.73^ 0.22
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tions of the same order of magnitude and occurring on the
same timescale as the dissipated power and the total energy
content. This feature is due to the fact that the forcing term
for the magnetic energy presents a coupling between y,F

m
(x,

t), which is a smooth function of both time and space, and
the magnetic Ðeld which on the contrary is highly struc-b

M
,

tured. This coupling accounts for the fact that no matter
what forcing term is used in the Faraday equation, the input
power is a strongly Ñuctuating function of both space and
time.

Let us now discuss in detail the spatial structure that
arises as a result of the external forcing. We have analyzed
two time intervals of 24q, corresponding to di†erent levels
of activity in terms of energy dissipation, using higher
resolution conÐgurations (grid dimensions 256 ] 256). The
time evolution of SJ2T is shown by the solid lines in Figure

for the time interval T 1, corresponding to4a
2750q\ t \ 2774q, and in for the time intervalFigure 4b
T 2, corresponding to 2602q\ t \ 2626q. The integration in
each time interval is performed using the corresponding
conÐguration obtained in the time series at low resolution
as an initial condition (Ðelds have been bilinearly inter-
polated to yield a 256] 256 initial condition). Inspection of
Figures and reveals that the time series are di†erent at1a 4
di†erent spatial resolutions.

FIG. 4.ÈTime evolution of the square current density (solid line) and
surface Ðlling factor (dashed line) for high-resolution (256 ] 256) spatial
conÐgurations referring to : (a) time interval T 1 starting at t \ 2750q ; (b)
time interval T 2 starting at t \ 2602q.

In Figures (Plate 19) and (Plate 20) we show some5 6
features of the evolution of spatial structures on short time-
scales. The sequence of six frames in each Ðgure corre-
sponds to a total time interval of 1.2q (approximately 120 s
real time) in (Plate 19) and 2.4q in (PlateFigure 5 Figure 6
20). In each frame we show the spatial structure of the
current density in two-dimensional images (bottom panel)
and in the surface plots (middle panel). The contour lines in
the top panel refer to the vector potential contour lines and
correspond to the Ðeld lines of the poloidal magnetic Ðeld

We notice that in both the high- and low-activity timeb
M
.

intervals the overall dynamics is dominated by an inverse
cascade of the vector potential, so that although the forcing
contains three to four randomly oriented eddies, the mag-
netic structure aligns coherently along any one axis of the
numerical domain et al. The trend of the(Einaudi 1996).
system is therefore to organize itself into well-deÐned mag-
netic loops (in the two-dimensional cross section the loops
appear as islands) separated by narrow localized current
sheets where intense dissipation episodes occur. Current
sheets (Ðlaments in our two-dimensional images) can be
identiÐed as brightenings in the two-dimensional images
(bottom) and narrow spikes extending well above the
average current density in the surface plots (middle) ; their
position can also be detected in the magnetic Ðeld contour
lines, which clearly indicate the presence of one or more
X-points. The typical lifetime of those current sheets is on
the order of the dynamical timescale (D0.1q).

The main di†erence between periods of high [Pl.(Fig. 5 ;
19]) and low [Pl. 20]) activity appears to be the(Fig. 6 ;
presence in the high-activity regime of a current loop that is
sustained throughout the period of observation by the
overall dynamics. The current loop makes an appreciable
contribution to the dissipation. In all periods, small-scale
current sheets appear to be the sites of magnetic reconnec-
tion, which occurs on the dynamical timescale and is driven
by the interaction of at least two magnetic islands. This
phenomenon is well represented in the sequence shown in

(Plate 20), where the magnetic island on the rightFigure 6
in the magnetic Ðeld line plot travels toward the bigger
island on the left, while a thin current sheet is formed in
front of it. The two islands are separated by an X-point,
which disappears in the frame [Pl. 20]), whereas(Fig. 6e ;
the current sheet seems to be dissipated 0.4q later in frame

[Pl. 20]). Notice that simultaneously with the inter-(Fig. 6f ;
action of the two islands, current sheets appear sporadically
in various locations throughout the system, indicating the
possible presence of a nonlocal communication process
between dissipating (or ““ Ñaring ÏÏ) sites. The phenomenon
exempliÐed above is typical of the dynamics occurring at all
times, and in fact it can be seen in the sequence shown in

(Plate 19) as well. We have focused on the right-Figure 5
hand side of the frames, in which the formation, evolution,
and disruption of an intense current sheet is evident. In

we present snapshots of the local structure of theFigure 7
magnetic Ðeld current density velocity(Fig. 7a), (Fig. 7b),
Ðeld and vorticity A current sheet(Fig. 7c), (Fig. 7d).
appears clearly in the center of the frame, with a maximum
value in system units of 82.98, almost 1 order of magnitude
higher than the spatial noise threshold deÐned below. The
maximum value attained by the magnetic Ðeld in the box is

much smaller than the large-scale magnetic Ðeld14.53b0, B0we assume to exist in the z-direction. From an inspection of
the velocity and vorticity structure, it appears that recon-
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FIG. 7.ÈSnapshots at t \ 2753.2q of a high-resolution spatial conÐguration showing (a) magnetic Ðeld, (b) current density, (c) velocity Ðeld, and (d)
vorticity.

nection is taking place within the current sheet and that
reconnection is the mechanism responsible for its dis-
ruption. In fact, we observe jets outÑowing along the sheet
with the typical quadrupole structure of the vorticity. The
maximum value of the velocity in poloidal Alfve� n velocity
units is 2.41 inside the jet, whereas the average velocity
throughout the grid is 0.95. The maximum velocity is there-
fore higher than average and much higher than the assumed
photospheric velocity, which in our units is 0.1. It is there-
fore smaller by almost 1 order of magnitude than the
maximum poloidal Alfve� n velocity in the box, but exceeds
the local value of the poloidal Alfve� n velocity around the
current sheet.

In order to carry out a statistical analysis of the spatial
conÐgurations, we must construct, in a fashion analogous
to that of the time series, a distribution function of spatial
dissipation events, i.e., the distribution function of sites with
a given current J as a function of J. To increase the size of
the data set, we have chosen to include data from 120 con-
Ðgurations of the current density in the high-resolution
256 ] 256 run, the corresponding time interval being 24
time steps (ranging from t \ 2750q to t \ 2774q ; we col-
lected the spatial conÐgurations every 0.2q, that is, Ðve con-

Ðgurations per time step). This may be justiÐed on the
grounds of the statistical homogeneity of our sample ; we
assume the 120 spatial conÐgurations at di†erent times to
be equivalent, statistically, to a spatial region of 120 times
greater area taken at one instant. The resulting distribution
is shown in For low values of J, the distributionFigure 8a.
is well Ðtted by a Gaussian component of the form

N(x) \ C1 exp
C
[ (x [ C2)2

p2
D

, (11)

where x 4 J and and p are the Ðtting constantsC1, C2, (Fig.
dashed line). For larger values of J(º9), the distribution8a,

diverges from the white noise (Gaussian) component, and
we therefore use this value to deÐne a threshold for spatial
events. It should be noted at this point that noise threshold
derivations can also be obtained from the spatial conÐgu-
rations of magnetic Ðelds, velocity Ðelds, and vorticities.
Since, however, we are mostly interested in energy dissi-
pation through Ohmic heating, we shall restrict our analysis
to currents.

After having subtracted the background from the spatial
current structures, we may again construct the distribution
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FIG. 8.ÈStatistics in space for high-resolution (256 ] 256) spatial con-
Ðgurations. (a) Spatial distribution function of the current density (solid
line) and Gaussian best Ðt (dashed line). (b) Scaling law for the square
current density above noise. Straight and dashed lines show the least-
square power-law Ðts in the low- and high-energy ranges.

function of their magnitudes. We have plotted in Figure 8b
the distribution function of J2, with J denoting the current
densities that extend above the noise. It is evident that most
of the data can be Ðtted by two power laws with di†erent
scaling indices, namely, for small valuesd1^[2.07 ^ 0.05
of J2 and for higher values. The powerd2 ^[2.61 ^ 0.21
law in the low-energy range of the distribution is Ñatter
than that in the high-energy range. The existence of such a
component could be due to poor spatial resolution and
therefore may not be particularly meaningful.

Since we have determined the noise threshold for spatial
currents, it is of interest to provide an estimate for the
surface Ðlling factor a, deÐned as the ratio between the area
occupied by the currents above threshold and the total area
of the integration box. The quantity a can be directly com-
pared with the analogous quantity f, obtained from observ-
ations, deÐned as the fraction of the observed volume that
radiates strongly in a particular waveband because of either
a di†erent density or a di†erent temperature from its sur-
roundings.

In we show, as already mentioned, the temporalFigure 4

FIG. 9.È(a) Time evolution of the maximum current dissipation.
Dashed line corresponds to the temporal noise threshold. (b) Low-energy
part of the distribution function (solid line) and the best s2 ÐtgJmax2
obtained (dashed line).

proÐle of SJ2T (solid lines) for two time intervals of 24q at
high resolution. The dashed lines in the same Ðgure show
the temporal proÐle of the Ðlling factor a over the same time
intervals. Its value ranges roughly between D0.1 and D0.3
and seems to be fairly well correlated with the average dissi-
pated power. We notice that when the dissipated power
peaks, the Ðlling factor seems to saturate at a certain level
until the dissipated power reduces again. This implies that a
sharp increase of activity occurs as a result of a local
increase in the current rather than because of broadening or
an increase in the number of current sheets.

So far, we have investigated the average dissipation
properties and the spatial distribution of currents over
limited intervals of time. One time series that combines the
two kinds of information is that for the maximum current
(which would correspond to the maximum photon count in
an individual pixel over the whole Ðeld of view as a function
of time) ; in we illustrate the time series of theFigure 9a
maximum current dissipation for each time instantgJmax2
0.1q. Since corresponds to the maximum currentJmaxdensity within the spatial conÐguration at a given instant, it
does not correspond to the temporal proÐle of a single
current sheet, but rather may appear at current sheets in
di†erent locations at di†erent instants (see for example the
surface plots of Figs. and [Pls. 19È20]). We have used5 6 ;
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FIG. 10.ÈScaling laws for maximum current dissipation. Straight lines
are the least-square power-law Ðts. (a) Total energy content. (b) Peak activ-
ity. (c) Duration of the events.

the same method, as in the case of the average dissipation
power, to extract the noise threshold. The low-energy band
of the resulting distribution function is provided in Figure

The noise component may again be well represented by9b.
a s2 probability function in the form of forequation (10),
which we now consider The best Ðt occurs forx 4 gJmax2 .
n \ 5, represented by the dashed curve of TheFigure 9b.
noise threshold in this case is roughly estimated to be E

n
^

320, shown by a (not easily observed) dashed line in
Figure 9a.

Subtraction of noise in the time series originates a total of
1950 discrete events (that is, a mean number of events
approximately equal to 17.1 hr~1). The signiÐcant di†er-
ence between this number and that of the average-
dissipation events is, of course, due to the fact that the peaks
shown in correspond to dissipation in singleFigure 9a
current sheets, where we have not applied an averaging
process.

The distribution functions of events derived from the
instantaneous maximum current dissipation are given in

for the total energy content, in forFigure 10a Figure 10b
peak activity, and in for the event duration.Figure 10c
Again, one notices that noise reduction has led to the emer-

gence of power laws, although their extent is slightly
reduced as compared to those determined from the average
dissipation The noise threshold the average and(Fig. 2). E

n
,

maximum values of the signal to noise ratio and[(S/N)avrespectively], and the values of scaling indices for(S/N)max,the total energy content, the peak activity, and the duration
and respectively) for the time series of(d

T
, d

L
, d

D
, Figure 9a

are also given in Notice that, on the average,Table 1.
maximum dissipation peaks are also barely above noise, i.e.,

although in some cases we obtain dissi-(S/N)av^ 1.134,
pative events well above the threshold [(S/N)max^ 47.96].
The value of the total energy scaling index is quite similar to
that obtained from the average-dissipation time series
(within the error bars), while the scaling index of peak activ-
ity is rather lower (in absolute values) than the correspond-
ing index from the average-dissipation time series. The
distribution function of the eventsÏ durations, on the other
hand, is signiÐcantly steeper than in the Ðrst case. Compar-
ing Figures and we notice that the maximum-2c 10c,
dissipation events are signiÐcantly less extended in time
[ranging from D10 s (0.1q) to D300 s (3q)], indicating that
the behavior of maximum dissipation is in fact much more
intermittent than average dissipation. This di†erence
should be expected, since we obtain a much larger number
of maximum-dissipation than average-dissipation events.

4. CONCLUSIONS AND DISCUSSION

We have performed a statistical analysis of data obtained
from an MHD simulation that models the energy-release
process in a two-dimensional cross section of a solar
coronal loop. By concentrating on the overall long-time
behavior of the system, we have shown that magnetically
forced MHD turbulence results in an energy release with
properties analogous to those observed in the solar corona,
namely, the presence of distinct bursts that follow well-
deÐned power laws for total energy content, duration, and
peak luminosity. We have also shown that such bursts cor-
respond to forced reconnection in localized current sheets,
and that such bursts are associated with bipolar jets in
which the plasma is accelerated to the (poloidal) Alfve� n
speed (see et al. for observational evidence ofInnes 1997
such jets seen with SOHO), even though the average kinetic
energy remains negligible compared to the magnetic energy.

The values of the scaling indices we have found should be
taken cum grano salis. Resistivity and viscosity are adapted
to the grid, and our resolution is fairly poor, so extrapo-
lation from our data, obtained with g \ 0.01, to much lower
values is unwarranted. The e†ect of varying the resolution
and the Reynolds number was investigated in et al.Einaudi

where simulations with resolutions of 64 ] 64,(1996),
128 ] 128, and 256 ] 256 were reported. There was both a
qualitative and a quantitative di†erence in the temporal
proÐles for the lower and intermediate resolutions (see Fig.
1 of that paper), while the di†erence between the interme-
diate and higher resolution was mostly quantitative, thus
providing an indication of the existence of a hypothetical
asymptotic ““ large Reynolds number ÏÏ evolution.

The interest of the present results lies in the demonstra-
tion of the existence of power laws in the coronal response
to the photospheric driver, even though the values of the
scaling indices will most probably vary signiÐcantly with
increasing resolution. Another limitation of our results, as
mentioned in the Introduction, arises from the two-
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dimensional nature of our simulations. Within this model it
is impossible to store signiÐcant amounts of energy in the
system, as the turbulent cascade dissipates any input power
in an efficient way. In a truly three-dimensional system,
magnetic helicity is also injected into the system; global
conservation properties associated with minimum-energy
states at given helicity o†er much greater possibilities for
the dynamics that are probably necessary to describe large-
scale energy release manifestations in the sun. One should
therefore be cautious when comparing the scaling indices
resulting from our simulations with those derived from
observational data that refer to events involving topologi-
cally complex magnetic structures. On the other hand, it is
also wrong to extrapolate the results obtained for the highly
energetic Ñares to much lower energies and smaller scales,
where the inÑuence of the three-dimensional magnetic
topology is unclear and a description in terms of simple
loops is more realistic ; in fact, observations of type I bursts
reveal a much steeper distribution function with a power-
law index close to [3 & Trottet(Mercier 1997).

With the caveats given above, it is interesting to remark
on the scaling index of the spatial dissipation power law
(d ^ [2.61) obtained in This results from an analysis of° 3.
the spatial structures of more than 100 conÐgurations
obtained with the highest resolution used and therefore
reÑects details of a large number of highly localized (in
space and time) energy-release episodes. We expect the
absolute value of this index to become larger (i.e., steeper)
with increasing resolution because of the enhanced capacity
for describing smaller scales. This value is about twice the
value of the indices arising from the temporal evolution of
the spatially averaged dissipation and of the maximum dis-
sipation, and this experimental fact may give some insight
into the question of coronal heating via nanoÑares. If we
interpret the average dissipation in our simulation in terms
of events in the same way observers do, the extrapolation
below a given energy may lose meaning, since the spatially
averaged output over a given region may never fall below a
given value, so that a higher spatial resolution is necessary
to deÐne and pick up low-energy events. On the other hand,
our spatial statistics show precisely that the number of
events at small energies does increase considerably with
decreasing energy, providing indirect evidence in favor of
the nanoÑare scenario.

In our two-dimensional simulations, magnetic structures
exhibit a tendency to self-organize in space and time. Gen-
erally speaking, such self-organization relies on the creation
of a relatively small number of large-scale, well-deÐned
magnetic structures, with small-scale current sheets at their
boundaries. In the more general three-dimensional case, the
dynamics of the system must also depend on its capacity to
store magnetic energy at large scales, but the release still
occurs in the current sheets that form and disrupt on the
dynamical timescale, since the local magnetic Reynolds

number is of order 1 on the current sheet scale. In order to
model coronal phenomena such as large two-ribbon Ñares,
compact-loop Ñares, bright points, Ñashes, or explosive
events down to coronal heating, it would be necessary to
simulate the associated magnetic topology by adopting very
large Reynolds numbers. It is, however, currently impossi-
ble to perform three-dimensional runs with the resolution
and length of the two-dimensional experiments carried out
in this paper ; therefore, to proceed in modeling such pheno-
mena it is paramount to investigate possible similarities
between our simulations and existing statistical theories.
One candidate concept seems to be that of self-organized
criticality, or SOC & Hamilton at al.(Lu 1991 ; Lu 1993 ;

et al. whose basic feature isVlahos 1995 ; Galsgaard 1996),
the non-Gaussianity of the response obtained from a purely
Gaussian driver, together with self-similarity and scale
invariance. SOC systems are discrete and become self-
organized after being driven toward a statistically margin-
ally stable state, the route to this state being deÐned by the
existence of instability criteria that, translated to MHD,
loosely imply a critical value of current density. Disruption
of current sheets and subsequent energy dissipation occurs
when the localized current density crosses a critical thresh-
old. It has recently been shown that the SOC state survives
even with large variations of the driver, provided that its
average value remains small compared to the threshold
(Georgoulis & Vlahos We believe that certain1996, 1998).
reÐnements could be introduced in SOC models (e.g., in the
nature of the driver and the critical threshold) to better
allow SOC to Ðt with the continuous MHD model. SpeciÐ-
cally, the results presented in this study introduce some
questions as to whether the critical threshold should be
deÐned only in terms of localized current densities, or
whether the spatial scale of instabilities should be intro-
duced as well. (Plate 19) shows that signiÐcantFigure 5
current concentrations may well appear in relatively
extended spatial scales, without, however, giving rise to
impulsive dissipation. On the contrary, dissipation through
magnetic reconnection originates from gradients at the
smallest spatial scales, triggered mostly by the presence of
localized strong current sheets. This feature is clearly seen in
the intense, point-like brightenings and sharp impulses in
the images and surface plots of Figures and (Plates5 6
19È20 ; see for example In any case, the detailedFig. 6d).
derivation of a SOC-type model from MHD equations
remains an important open problem, which we hope to
pursue in the future.
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the Greek State Foundation for Scholarships (IKY) and the
EEC program ERASMUS.

APPENDIX

All distribution functions N(x) have been obtained in the following way. We use a variable bin size, which increases by an
order of magnitude every time the x-value changes by an order of magnitude. The minimum bin size used, corresponding to
the interval 0 \ x \ 100, is The occurrence frequency N of a given value is obtained by counting the number ofbmin\ 10. x6
times a value of x contained in the bin corresponding to occurs in the time series, and by renormalizing this number with thex6
minimum bin size, i.e., multiplying by where is the bin size corresponding to This procedure is used to determinebmin/b

6 , b6 x6 .
the distribution functions for J, J2, and Jmax2 .
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The distribution functions for the dissipated power are derived from those for J2 and transforming the intervals of xJmax2 ,
and the corresponding bin sizes according to the value of g (x ] gx and b ] gb).
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