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ABSTRACT

Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the
formation of environments in which a dense network of current sheets is established and sustains “turbulent
reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as
scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this
large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy
distribution, and their escape time distribution. We have developed a new method to estimate the transport
coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic
clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the
strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated
transport coefficients and solving the Fokker—Planck (FP) equation, we can recover the energy distribution of the
particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent
reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current
sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
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1. INTRODUCTION

Fermi (1949) introduced a fundamental stochastic process to
solve the problem of particle energization (heating and/or
acceleration) in space and astrophysical plasmas. His goal was
to resolve the mystery of the stable energy distribution of
cosmic rays (CRs; see details in Longair 2011). The core of his
idea had a larger impact on nonlinear processes in general and
has been the driving force behind all subsequent theories on
charged particle energization. He assumed that high-energy
particles with speed close to the speed of light collide with
magnetic clouds that move in random directions with speed V
close to the local Alfvén speed. The reflections of the charged
particles at the magnetic clouds heat or accelerate the particles
to substantial energies. The rate of the energy gain for the
charged particles is proportional to the square of the ratio of the
magnetic cloud speed to the speed of light (V/c)z. A more
realistic proposal was put forward initially by Kulsrud &
Ferrari (1971). The magnetic clouds were replaced by a
Kolmogorov spectrum of low-amplitude MHD waves, and the
energization processes were called “stochastic heating and
acceleration by (weak) turbulence.”

Research on reconnecting magnetic fields has undergone a
dramatic evolution recently due mostly to the development of
the numerical simulation techniques. Long current sheets or
multiple interacting current sheets will form, on a short
timescale, a turbulent environment, consisting of a collection
of current sheets (Matthaeus & Lamkin 1986; Galsgaard &
Nordlund 1996; Drake et al. 2006; Onofri et al. 2006; see also
the recent reviews by Cargill et al. 2012; Lazarian et al. 2012).
On the other hand, Alfvén waves and large-scale disturbances
traveling along complex magnetic topologies will drive
magnetic discontinuities by reinforcing existing current sheets
or form new unstable current sheets (UCSs; see Biskamp &
Welter 1989; Lazarian & Vishniac 1999; Arzner & Vlahos
2004; Dmitruk et al. 2004).

The goals of this article are to introduce three new and
important elements in the current discussion of turbulent
reconnection in large-scale systems: (a) the study of the
characteristics of the energy gain of individual particles; (b) the
use of the same framework of global and statistical analysis for
two types of scatterers: (i) magnetic clouds, which are
representative of stochastic energy gain, (ii) UCSs, which are
representative of systematic energy gain; (c) the development
of a new method to estimate the transport coefficients from the
dynamics of the interaction of the particles with the scatterers.

2. FERMI-TYPE ENERGIZATION OF PARTICLES

Fermi (1949) based his estimates for the proposed accelera-
tion mechanism on several assumptions (see Longair 2011).
The particles move with relativistic velocity u, and the
scatterers (“magnetic clouds”) move with mean speed V much
smaller than the speed of light. The energy gain or loss of the
particles interacting with the scatterers is

A—WQE(VZ—V-U), (1)

w c?

where for head-on collisions V - u < 0 and the particles gain

energy, and for overtaking collisions V -u > 0 and the

particles lose energy. The rate of energy gain in Equation (1)

includes both a first- and second-order term. For relativistic

particles the first-order term dominates the energy gain. For
non-relativistic particles both terms are second order.

The rate of energy gain for relativistic particles is estimated
as dW/dt = W/t,., where fc = (3A\c)/(4V?) and X is the
mean free path the particles travel between the scatterers.
Assuming that the distribution of the scatterers is uniform
inside the acceleration volume and their density is ng., the mean

free path will be \ = (3/ns. )~ L. The particles are not trapped
inside the scatterers, their interaction is instantaneous, and the
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temporal evolution of the mean energy is
(W () = Woe' . (2)

Fermi (1949) used the Fokker—Planck (FP) equation in order to
estimate the change of the energy distribution n(W, f) of the
accelerated particles. In order to simplify the diffusion
equation, he assumed that spatial diffusion is not important
and the particles diffuse only in energy space,
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where 7 is the escape time from an acceleration region with

characteristic length L, Q is the injection rate, D is the energy
diffusion coefficient
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is the energy convection coefficient representing the systematic
acceleration, which, as mentioned, here takes the form F (W,
1) = W/taee- With {...)yy we denote the conditional average that
W(r) = W (see, e.g., Ragwitz & Kantz 2001). Fermi reached his
famous result by assuming that: (a) the particles reach a steady
state before escaping from the acceleration volume and (b) the
energy diffusion coefficient approaches zero asymptotically for
the relativistic particles and the acceleration is mainly due to
the systematic acceleration term ( F'). Based on these assump-
tions, the stationary solution of Equation (3) simply is n
(W) ~ WX, where k = 1 + fyec/tese. The index k approaches 2
(which is close to the observed value for the CR) only if
tice & tose. In most recent theoretical studies of the second-
order Fermi acceleration, the escape time (which is so crucial
for the estimate of k) is difficult to estimate quantitatively.

We will expand the initial Fermi model in this article by
replacing the scatterers by randomly distributed UCSs, which
represents the environment present in turbulent reconnection in
a fragmented large-scale system. In several recent articles, the
3D evolution and the fragmented UCSs have been analyzed
(see Dahlin et al. 2015; Guo et al. 2015), using particle-in-cell
numerical codes, and it has been found that the curvature drift
competes with the electric field in the efficiency of particle
acceleration inside the UCSs. It will be a natural continuation
of the work presented here to study also the curvature drift
case, here we focus on the acceleration by the electric fields.
The particle dynamics inside the UCSs is complex since
internally the UCSs are also fragmented, and the particles that
interact with the fragments of the UCSs can lose and gain
energy on the microscopic level of description. Yet, on average
and over the entire simulation domain, the particles gain energy
systematically before exiting the UCSs; see Figure 6(c) of Guo
et al. (2015) and the related discussion. The energy gain is a
weak function of energy in the case of electric field acceleration
and proportional to the energy in the case of curvature drift. In
this Letter, we estimate the macroscopic energy gain by the
simple formula

FW, 1) = < , )

AW = |q|Eess Lesr, (6)
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where E.if = |—V X B| /c = (V/c) 6B is the measure of the
effective electric field of the UCSs, and 6B is the fluctuating
magnetic field encountered by the particle, which is of a
stochastic nature, as related to the stochastic fluctuations
induced by reconnection. g is the characteristic length of the
interaction of the particle with the UCSs and should be
proportional to E.g, since small E.¢ will be related to small-
scale UCSs. The scenario of the method used here is: particles
approach the scatterers with an initial energy W, and depart
with an energy W = Wy + AW, where AW on the macro-
scopic level always is positive and follows the statistical
properties of the fluctuations 0B.

3. A FERMI LATTICE GAS MODEL FOR
TURBULENT RECONNECTION

We constructed a 2D grid (N x N), with linear size L. Each
grid point is set as either active or inactive, i.e., scatterer or not.
Only a small fraction R (1%—15%) of the grid points are
active. The mean free path of the particles moving inside the
grid with minimum distance £ = L/(N — 1) is A\ = ¢/R.
When a particle encounters an active grid point it is renewing
its energy state depending on the physical characteristic of the
scatterer (magnetic cloud or UCS).

At time t = 0 all particles are located at random positions on
the grid. The injected distribution n(W, t = 0) is Maxwellian
with temperature 7. The initial direction of motion of every
particle is selected randomly. The particles’ individual time ¢; is
also adjusted between scatterings as 1=t + At,
At = [l;/u;, with u; the particle velocity and /; the distance
the particle travels between scatterings. The particles move in a
random direction after interaction with the scatterers, being
always confined to follow the grid lines. It is to note that the
consequent large angle scattering takes place in position space,
and not in velocity space, the large angle scattering is unrelated
with the particle energy, and its role is to implement a spatial
random walk process on a grid that basically is influencing only
the timing of the energization process. We mainly consider
electrons and will just briefly comment on the energization
of ions.

Random “scattering” by magnetic clouds—We start our
analysis using the standard stochastic Fermi accelerator,
Equation (1), in order to validate our method for the estimate
of the transport coefficients and the solution of the Fokker—
Planck equation, since this accelerator has been already
discussed in the literature using many different approaches.
The parameters used in this article are related to the plasma
parameters in the low solar corona. We choose the strength of
the magnetic field to be B = 100 G, the density of the plasma
ng = 10° cm™3, and the ambient temperature around 10eV.
The Alfvén speed is Vy ~ 7 x 108 cm s~!, so V, is compar-
able with the thermal speed of the electrons. The energy
increment is (AW /W) ~ (Va/c)?> =~ 5 x 107*, and the length
of the simulation box is 10'® cm. We consider an open grid, so
particles escape from the accelerator when they reach any
boundary of the grid, at #; = #.,;. We assume in this setup that
only R = 10% of the 601 x 601 grid points are active.

The temporal evolution of the mean kinetic energy of the
particles and the kinetic energy evolution of typical particles
are shown in Figure 1(a). The motion of the particles is typical
for a stochastic system with random-walk-like gain and loss of
energy before exiting the simulation box. The mean energy
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Figure 1. (a) Mean energy increase as a function of time and the energy evolution of typical particles. (b) The escape time distribution of particles. (c) The energy
diffusion and convection coefficients as functions of the kinetic energy. (d) Energy distribution at # = 0 and ¢ = 15 s for particles remaining inside the box, together

with the solution of the FP equation at final time.

increases exponentially (after a brief initial period of a few
seconds), as is expected from the analysis presented by Fermi
(see Equation (2)). The mean free path is given as
Ase = £/R ~ 1.67 x 10® cm, and, using the analytical expres-
sion derived by Fermi, we find f5, = (3)\506)/(4V/§) ~ 8s.
We can also estimate the acceleration time from our simulation
(see Figure 1(a)), by fitting the asymptotic exponential form to
the mean kinetic energy, as predicted by Equation (2), which
yields ty,,, = 10s, a value close to the analytically deter-
mined one. Figure 1(b) presents the escape time, which is
different for each particle, and we use the median value (=8 s)
as an estimate of a characteristic escape time. In Figure 1(d),
we show the energy distribution function of the particles
remaining inside the box after 15s. The distribution is a
synthesis of a hot plasma and a power-law tail, which is
extended to 100 MeV, with slope k = 2.3. If we use the
estimates of ,.. and 7., reported, we can estimate the index of
the power-law tail k = 1 + t,.o/%esc = 2.3. Therefore, the slope
of the accelerated particles agrees with the estimates provided
by the theory of the stochastic Fermi process.

In Figure 1(c), the diffusion and convection coefficients at
t = 155, as functions of the energy, are presented. The estimate
of the coefficients is based on Equations (4) and (5), with At
small, whereto we monitor the energy of the particles at a
number of regularly spaced monitoring times #™, k = 0, 1, ...,

K, with K typically chosen as 200, and we use t = t,(ff)l,
At = 1§ — 1@ in the estimates. Also, in order to account for
the conditional averaging in Equations (4) and (5), we divide
the energies W (t{"); of the particles into a number of
logarithmically equi-spaced bins and perform the requested
averages separately for the particles in each bin. As Figure 1(c)
shows, both transport coefficients exhibit a power-law shape,
with indexes ap = 1.57 and ar = 0.70, for energies above
1keV, F(W) =AW D(W) = BW'5. These estimates
clearly depart from the assumptions made initially by Fermi.
In order to verify the estimates of the transport coefficients,
we insert them in the form of the fit into the FP equation
(Equation (3)) and solve the FP equation numerically
(including the escape term, and with Q = 0). For the
integration of the FP equation on the semi-infinite energy
interval [0, co), we use the pseudospectral method, based on
the expansion in terms of rational Chebyshev polynomials in
energy space, combined with the implicit backward Euler
method for the time stepping (see, e.g., Boyd 2001). The
resulting energy distribution at final time is also shown in
Figure 1(d), and it turns out to coincide very well with the
distribution from the particle simulation in the intermediate
energy range that corresponds to the heating of the population,
the power-law tail though cannot be reproduced by the FP
solution. The differences below energies of about 10 eV are of
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Figure 2. (a) The mean energy increase as a function of time and the energy evolution of some typical particles are shown. (b) The escape time distribution of
particles. (c) The energy convection coefficient as a function of the kinetic energy at ¢t = 1 s. (d) Initial and asymptotic (here, r = 1 s) kinetic energy distribution.

less importance and can most likely be attributed to the fact that
for simplicity we just assumed the transport coefficients to be
constant at low energies.

Varying the density of the scatterers in a parametric study in
the range 0.01 < R < 0.2 and keeping the characteristic length
of the acceleration volume constant, we find that the main
characteristics of the distribution remain the same but the
heating and the slope of the accelerated particles vary.

The ions in the asymptotic stage do not appear to have
significant differences from the evolution of the electrons. We
can then conclude that stochastic Fermi processes can heat and
accelerate both ions and electrons in the solar corona, yet on
different timescales.

A model for turbulent reconnection—We now use the lattice
gas model to estimate the heating and acceleration of particles
inside a large-scale turbulent reconnection environment, where
a fragmented distribution of UCSs is present. The setup is
R = 0.1, N=0601, V = V,, and the simulation box has length
10%cm and is open. The energy change of a particle that
encounters a UCS is now given by Equation (6), and we
assume that 6B takes random values following a power-law
distribution with index 5/3 (Kolmogorov spectrum), and
6B € [107° G, 100 G]. We also assume the effective length
legt to be a linear function of E.y, lef = aEer + b, and by
restricting the size of fler to L € [103 cm, 10° cm], we
determine the constants a, b. Combining all the above we find
that the effective electric filed lies approximately in
E4 € [1077Ep, Ep], where Ep is the Dreicer field,
Ep ~ 1.6 - 1077 statV /cm.

We initiate the simulation with a Maxwellian distribution
with temperature 10eV. Figure 2(a) shows the mean energy
and the energy of some typical particles as a function of time,
up to final time or until they escape from the simulation box.
The rate at which the particles on the average gain energy is
exponential, so In (W) =~ t/t,., and we estimate the asymptotic
value of the acceleration time to be ~0.3s.

The acceleration is systematic and the particles feel a rapid
increase of their energy any time they cross a UCS with
variable strength of the effective electric field (see the similar
behavior observed in Dahlin et al. 2015; Guo et al. 2015). The
energy distribution reaches an asymptotic state (see
Figure 2(d)) in a fraction of a second. It is obvious that
particles are very efficiently accelerated inside the turbulent
reconnecting volume and form a power-law tail with
index ~1.7.

Figure 2(b) presents the escape time, which is different for
each particle, and we use the median value (=0.5s) as an
estimate of a characteristic escape time. If we use the estimates
of 1,.c and f., reported, we can estimate the index of the power-
law tail k = 1 + ty¢/tesc &= 1.6, which is close to the slope of
the distribution of the accelerated particles in the simulation.

In Figure 2(c), the convection coefficient F at r = 1s is
presented as function of the energy, and it exhibits a power-law
shape, with index ap = 0.76 for energies above 100eV, an
index close to the one found above in Fermi’s original scenario.
For the diffusion coefficient, the estimate D based on
Equation (4) yields a power law, applying through the finite
time correction of Ragwitz & Kantz  (2001),
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Dyye = D — 0.5AtF?, we find that Dy, ~ 0; the energization
process is purely convective in nature, the non-zero D is an
artifact resulting from the finite time contribution of F to D (we
just note that in the Fermi case the finite time correction was
negligible).

Using F and Dy in the numerical solution of the FP
equation, we find only heating, on timescales though of the
order of tens of seconds, much larger than the time of 1s
considered here. This result is in accordance with and a
generalization of the result in Guo et al. (2014, 2015), who also
find only heating when analytically solving the FP equation
(for D=0 and F ~ W in their case). On the other hand, the
asymptotic distribution can be calculated from Equation (3)
(assuming On/dt = 0) as n ~ W7 The reason for the
discrepancy between the FP solution and the asymptotic
solution must be attributed to the fact that the asymptotic
solution, determined as a stationary solution, cannot be reached
with the initial condition being a Maxwellian (in analogy to the
case in Guo et al. 2014 with F ~ W).

Concerning the difference between the FP solution and the
lattice model, we find that the sample of energy differences
W:(t + At) — Wi (¢) in Equation (5) (with i the particle index),
on which the estimate of F'is based, actually follows a power-
law distribution, and, as a consequence, the particles
occasionally perform very large jumps in energy space (Levy
flights), as illustrated in Figure 2(a), in contrast to the second-
order Fermi process (see Figure 1(a)). The fact that the energy
increments have a power-law distribution with the specific
index has several consequences. (1) The estimate of F as a
mean value theoretically is finite, yet it is very noisy. (2) Both
the mean (or the median, as used here) are not representative of
a scale-free power-law distribution. (3) The variance of the
distribution of energy increments tends to infinity. After all, in
the case at hand, the applicability of the classical random walk
theory (classical Langevin and FP equation) breaks down, as it
is manifested in the inability of the FP equation to reproduce
the test particles’ energy distribution, and in the practical
difficulties of the expressions for F' and D in Equations (5) and
(4) to yield meaningful transport coefficients. Thus, modeling
tools like the fractional FP equation become appropriate here.
Similar cases of Levy flights have been observed by Arzner &
Vlahos (2004) and Bian & Browning (2008), without further
analyzing the consequences for the transport coefficients and
the FP equation.

We also have explored the role of collisions, and they are
important for impulsive energization longer than the collision
time of the system, though they play a crucial role only for the
bulk of the energized plasma and just slightly modify the slope
of the tail.

4. SUMMARY AND DISCUSSION

Turbulent reconnection is a new type of accelerator that can
be modeled with the use of tools borrowed from Fermi-type
accelerators, namely, by replacing the “magnetic clouds” with a
new type of “scatterers,” the UCSs. This generalization can
handle large-scale astrophysical systems composed from local
accelerators like current sheets appearing randomly in recon-
necting turbulence. We developed a 2D lattice gas model where
a number of active points act as “scatterers” in order to model
the new accelerator. Our main contribution in this article is the
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estimate of the transport coefficients from the particle dynamics
and their use in solving the FP equation. Our main results from
this study are as follows. (a) Stochastic Fermi accelerators can
reproduce a well-known energy distribution in laboratory and
astrophysical plasmas, where heating of the bulk and accelera-
tion of the runaway tail co-exist. The density of the scatterers
plays a crucial role in controlling the heating and the
acceleration of particles. (b) The transport coefficients show a
general power-law scaling with energy. (c) The replacement of
the scatterers with UCSs has several effects on the energization
of the particles. (i) The acceleration time is an order of
magnitude faster than in the stochastic Fermi process. (ii)
Estimating the transport coefficients from the dynamic particle
orbits, we have shown that the final energy distribution cannot
be a solution of the FP equation since the orbits of the energetic
particles in energy space depart radically from Brownian
motion, showing characteristics of Levy flights. (iii) The
asymptotic distribution of the accelerated particles is similar to
the ones obtained in different simulations (see Arzner & Vlahos
2004; Dmitruk et al. 2004; Drake et al. 2006, 2013; Onofri
et al. 2006; Dahlin et al. 2015), where turbulent reconnection is
established.

We can conclude that the stochastic Fermi acceleration and
turbulent reconnection processes can play a crucial role in
many astrophysical plasmas and their role depends strongly on
their physical properties, such as the nature of the scatterers
(e.g., large-amplitude Alfvén waves or UCSs), their spatio-
temporal statistical properties (e.g., their spatial density), and
the time evolution of the driver of the explosions.
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