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Limits of applicability of the quasilinear approximation to the electrostatic
wave-plasma interaction

Georgios Zacharegkas,a) Heinz Isliker,b) and Loukas Vlahosc)

Aristotle University of Thessaloniki, 52124 Thessaloniki, Greece

(Received 3 July 2016; accepted 24 October 2016; published online 18 November 2016)

The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in

velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper

and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for

the amplitude of the waves above which the QLT breaks down, using a test particle code. The

evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current,

and the heating of the particles are investigated, for the interaction with small and large amplitude

electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.

[http://dx.doi.org/10.1063/1.4968216]

I. INTRODUCTION

The theory that describes the interaction between charged

particles with a spectrum of low-amplitude waves in plasmas,

is termed quasilinear theory (QLT) and has been widely stud-

ied and used in many applications. The theory for non-

relativistic particles has been analyzed by Kennel and

Englemann,1 and the one for relativistic particles by Lerche.2

Tao et al.3 tested the theory of Kennel and Englemann1

for parallel propagation of Whistler modes, using a relativis-

tic particle code, and found perfect agreement between the

theoretical and their numerical diffusion coefficients for low-

amplitude modes, that is, in the quasilinear regime, thus vali-

dating the theory.

Although QLT is really practical and relatively simple,

its downside lies in its limited applicability. The linearization

approach that QLT adopts can be applied only in low-

amplitude turbulence, where nonlinear wave-particle interac-

tions and nonlinear wave-wave couplings are negligible.

QLT can also be applied when a single wave is assumed.

The stochastic heating of ions by a single lower hybrid (LH)

wave, propagating almost purely perpendicularly to a uni-

form magnetic field, was studied by Karney,4 and the diffu-

sion coefficients in velocity space were derived. Karney5

proved that if the wave amplitude remains below a certain

threshold, the diffusion coefficient is similar to the one esti-

mated by Kennel and Englemann1 and the damping of the

wave is linear. Above this threshold though, for finite wave

amplitudes where nonlinear effects appear, stochasticity gov-

erns the phase-space, the resonances are broadened, and the

ions get directly heated by the wave, irrespective of how

close the frequency of the wave is to a cyclotron harmonic

(i.e., the resonance condition is not a necessary condition for

efficient particle heating). Detailed discussion on the nature

and physical interpretation of this behavior can be found in

several articles.6–8 Benkadda et al.9 studied the role of an

additional, second, obliquely propagating wave and found

that the particle motion in such cases is much more

complicated, and that the stochasticity threshold for the first

wave’s amplitude is reduced due to nonlinear modification

of the cyclotron resonances, caused by the presence of the

second wave.

The investigation of the validity of QLT for a continu-

ous spectrum of waves is a subject of interest as well, since

it is a more realistic case. Lange et al.10 showed that for

steep spectra, QLT is not able to predict a resonance (this

point was also discussed by Shalchi et al.11), since it mani-

fests an irregularity around the resonant point. This is a

known problem with QLT.12

Our analysis in this article is based on resonant wave-

particle interactions that lead to acceleration and heating of

the particles in the presence of electrostatic waves

(Langmuir waves (LW), Upper Hybrid (UH), and Lower

Hybrid (LH) waves). We focus on the theoretical description

of the case of non-relativistic particles, and by using the test

particle approach we estimate the validity of QLT by com-

paring the analytical and numerical diffusion coefficients

and velocity distribution functions of the particles. We begin

by setting the wave amplitude low enough for QLT to be

valid, and then gradually increase the amplitudes of the

waves and monitor the departure from the predictions of the

QLT. We start our analysis with the case of LW, which have

extensively been discussed in the literature,13 and we use

this study as a basis to test our numerical model and then

expand our study to the cases of UH and LH waves.

This paper is structured as follows. In Section II, a brief

general description of our model is presented. Sections III and

IV summarize the analytical and numerical results for the cases

of Langmuir, UH, and LH waves, respectively. We then dis-

cuss the results in Section V. Additionally, Appendix A gives

some details on the derivation of the UH and LH dispersion

relations, and Appendix B includes some calculations required

for deriving the diffusion coefficients in these two cases.

II. MODEL DESCRIPTION

A. Initial settings

We consider a non-relativistic and collisionless plasma

of temperature T and number density n0, with total plasma
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thermal energy W tot, with the plasma being either magne-

tized or unmagnetized. The electric field Eðx; tÞ is considered

to be a superposition of many electrostatic modes dEkðx; tÞ,
each having a random phase #k and energy density13–15

Wk tð Þ � jdEkj2

8p
¼ ak�5=3; (1)

that is, we assume that the wave energy density spectrum fol-

lows a Kolmogorov power-law. The normalization constant

a, is such that it satisfies the condition

W0 ¼
ðkmax

kmin

Wkðt ¼ 0Þdk � jWtot (2)

at initial time t¼ 0, where W0 is the total wave energy den-

sity, which is taken to be a fraction j of Wtot, and kmin, kmax

are the limits of the wave spectrum. The coefficient j is a

free parameter in our analysis.

We assume that the particles have initially a velocity

distribution function which is of the form of an isotropic

Maxwellian,

f s v; t ¼ 0ð Þ � n0ffiffiffiffiffiffi
2p
p

uth;s

� �3
exp � v2

2u2
th;s

 !
; (3)

where uth;s � ðTs=msÞ1=2
is their thermal speed, and s ¼ e=i

denotes electrons/ions.

The wave-particle interaction modifies the initial velocity

distribution by absorbing energy from the waves. The QLT is

built on the assumption that we can split the distribution func-

tion into two parts, namely, the averaged slowly varying part

f s
0ðv; tÞ � hf sðx; v; tÞix, and the first order rapidly varying per-

turbation df sðx; v; tÞ � f sðx; v; tÞ � hf sðx; v; tÞix. In this con-

text then, one can derive the diffusion equation for f s
0 by

solving the set of equations consisting of the averaged and lin-

earized Vlasov equations, combined with the Maxwell equa-

tions. This diffusion equation can be written as

@f s
0 v; tð Þ
@t

¼ rv � DQL
s v; tð Þrvf s

0 v; tð Þ
h i

(4)

with the velocity diffusion tensor1

DQL
s v; tð Þ � i

e2

m2
s

ð
d3k

X1
n¼�1

ds
n;k

� ��
ds

n;k

rk � kkvk � nXs
; (5)

where the vector

ds
n;k � Es

n;k ê? 1�
kkvk
rk

� �
þ êk

kkv?
rk

	 

þ Ek
� �

k
Jn fs

k

� �
� êk 1� nXs

rk

� �
þ ê?

nXs

rk

vk
v?

	 

; (6)

with ê? � v?=jv?j and êk � êz, by assuming that the mag-

netic field points along the z-direction, and where rk ¼ xk

þ ick is the complex frequency of the waves. Here, Jnðfs
kÞ

are the Bessel functions of first kind, where fs
k � k?v?=Xs,

Xs is the gyrofrequency and the symbols k and ? denote the

direction parallel and perpendicular to the magnetic field,

respectively. Finally, also the definition

Es
n;k �

Ex kð Þ
2

eiwJnþ1 fs
k

� �
þ e�iwJn�1 fs

k

� �h i
þ i

Ey kð Þ
2

eiwJnþ1 fs
k

� �
� e�iwJn�1 fs

k

� �h i
(7)

is used, where w is the polar angle of k?.

In order to derive the diffusion rates for specific kinds of

waves, we must couple Eq. (4) with the linearized Poisson

equation,

i k � dEkðtÞ ¼ 4pe

ð
d3v ½df i

kðv; tÞ � df e
k ðv; tÞ�; (8)

from which the linear dispersion relation can be derived. The

df s
k that is needed can be expressed as1

df s
k ¼ �i

6eð Þ
ms

Ek

X1
n;m¼�1

nJn fs
k

� �
Jm fs

k

� �
fs

k

� ei m�nð Þ /�wð Þ

rk � nXs

@f s
0

@v?
; (9)

and the derivation of the dispersion relation then is straight-

forward (as briefly presented in Appendix A).

The QLT describes the slowly varying distribution func-

tion f s
0 , and in order to be valid, it needs to be ensured that f s

0

changes slowly enough, and more specifically its diffusive

relaxation time sR (defined below), must be clearly longer

than the wave-particle interaction time-scale16–18 jckj �1

(with ck the growth rate, see below), thus

sR � jckj �1: (10)

If that is the case, the space-averaged distribution function

changes slowly enough, so that particles, which gyrate

around the magnetic field and diffuse in velocity-space, do

not experience any changes of f s
0 on their characteristic gyro-

motion and wave-motion timescales.1,19 Then, any depen-

dence of f s
0 on the velocity polar angle / ¼ tan�1ðvy=vxÞ, is

weak and averages out over a complete rotation from 0 to

2p, and therefore, the diffusion process becomes two-dimen-

sional1 in the (v?; vk)-space.

In all the three normal modes (LW, UH, LH) that we

will study, we will derive the upper limit for the wave ampli-

tude for the QLT’s applicability, using condition (10).

When this condition is not satisfied, the rapid energy

exchange during the wave-particle interaction, and hence the

rapid distribution function modification, does not allow the

application of QLT’s equations in the form presented above.

In addition, for QLT to be applicable in each of these cases,

the Chirikov overlap criterion must be satisfied, so that the

particles do not get trapped inside enhanced electric field

structures, but travel relatively unhindered in velocity space.

In more specific terms, this condition can be expressed17 as

1=sb < 1=sac, where sb is the bounce time-scale of the par-

ticles in the field, and sac is the electric field’s autocorrela-

tion time-scale.
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B. Numerical model

In our numerical model, we use a large a number of test

particles, initially randomly distributed in space inside a

periodic and cubic box in the plasma, and obeying a

Maxwellian distribution function (3) in velocity-space. The

spectrum of waves used has k 2 ½kmin; kmax�, and in total it

initially carries the energy density W0.

A test particle evolves according to the Lorentz force,

dp=dt ¼ 6eðEþ b� BÞ, where b � v=c; v is the velocity

and p the momentum. With p ¼ cmsv, where the relativistic

factor is c � ð1� b2Þ�1=2
, we can write the equations of

motion in the following form:

db

dt
¼ 7

e

ccms
b � Eð Þb6

e

ccms
Eþ Xsb� êk (11)

in which Xs is the relativistic gyrofrequency, and where we

also used the relation dðc2cmsÞ=dt ¼ 6ev � E.20

Solving the equations of motion, the numerical diffusion

coefficient is calculated according to

D � lim
dt!0

hdv2i
2dt

; (12)

in which the average is taken over the particles, divided into

groups of similar initial velocities, and also dv ¼ vðtÞ
�vðt� dtÞ, with relatively small values for dt, as indicated

in the applications below.21

In the simulations we consider times such that jckjt	 1,

during which the energy loss of the waves is transferred to the

test particles. Specifically, in the case of Langmuir waves,

ck / ð@f=@vÞv’xe=k, and the formation of a plateau in the res-

onant region v ’ xk=k quickly leads ck to vanish. In the case

of UH waves, the magnetic field is taken to be strong so jckj is
small compared to jXej, and remains unchanged for the reso-

nance condition xk ’ jXej. The same is true in the case of LH

waves, but here the resonance condition is xk ’ Xi (see

Section IV, and Appendix A). Therefore, WkðtÞ ¼ Wkð0Þ
expð2cktÞ ’ Wkð0Þð1þ 2cktÞ ’ Wkð0Þ, hence the wave

energy changes only slightly during our simulations.

III. LANGMUIR WAVES

In this section, we perform a first check of the QLT pre-

diction about the maximum wave energy limit beyond which

it stops being valid for the LW. The theory is presented

briefly, since it is extensively analyzed in the literature (see

for example, Sagdeev and Galeev13), and it is then tested

using the analytical formulas and the numerical estimates.

A. Analytical predictions

In the absence of a magnetic field Xe ¼ 0, we can select

êz as the propagation direction for the waves. Then, for

Ek ¼ Ekêz, from Eq. (7) it is easy to show that En;k ¼ 0.

Taking first the purely parallel propagation limit k? ! 0þ

and then the zero-magnetic field limit Xe ! 0�, the Bessel

function in dn;k is replaced by unity for n¼ 0 in the sum of

Eq. (5), since Jnð0Þ ¼ dn0. Thus, the diffusion tensor in Eq.

(5) has only one non-zero component, the êzêz term, which

is simplified to

DQL vð Þ ¼ 8p2 e

me

� �2

�
ð

d3k P ckWk

xk � kvð Þ2 þ c2
k

þ pWkd xk � kvð Þ
" #

;

(13)

after dropping every unnecessary index, since the diffusion

is one-dimensional and only electrons are considered, and

where the symbol P denotes principal value. The imaginary

part of this sum does not contribute, since it vanishes in the

summation. Eq. (13) is the already known13 diffusion coeffi-

cient for Langmuir oscillations which takes into consider-

ation the resonant particles through the delta function

selection rule, as well as the non-resonant particles, which

form the bulk distribution, through the integral over the prin-

cipal value. Resonances involve particles with velocities

v ’ xk=k, which resonate with the corresponding waves.

Solving the linearized Vlasov equation for dfk and

substituting the solution into Eq. (8) (in which only the elec-

trons will appear due to the high frequency of the oscillations),

it can be shown that the real part of the resulting equation has

the solution x2
k ¼ x2

e ½1þ ð3=2ÞðkkeÞ2�, where ke is the elec-

tron Debye length, and which is expected since it expresses the

Langmuir wave dispersion relation. Concerning the imaginary

part ck of the frequency, we assume that jckj 	 xk, and from

the resulting imaginary part of Eq. (8), combined with the pre-

vious solution for xk, we get the solution for ck, which is

ck ’
p
2

xkx2
e

n0k2

@f0
@v

� �
v’xk=k

: (14)

For a Maxwellian initial distribution f0, the damping coeffi-

cient is ck / �exp½�2�1ðkkeÞ�2ðxk=xeÞ2�, so the damping is

weak if kke 	 1, in which case the expressions for the

two frequency parts simplify to xk ’ xe and ck ’ ðp=2Þ
ðx3

e=n0k2Þð@f0=@vÞv’xk=k.

In the steady state limit, @f ðv; t!1Þ=@t ¼ 0, and in

the resonance region the diffusion equation, Eq. (4), implies

that

Wk t!1ð Þ
v

	 

@f0 v; t!1ð Þ

@v

� �




v’xk=k

¼ 0 (15)

will hold. If we assume that the waves initially contain

enough energy to fuel the whole energy exchange process

(which is true in our case), then the only possible result of

Eq. (15) is the modification of the resonant distribution part

f r
0, as ½@f r

0ðv; t!1Þ=@v�v’xk=k ¼ 0, that is, a plateau will be

formed and the resonant part of the distribution stops evolv-

ing. The plateau can easily be calculated as the mean value

of f0 in the resonant region in the time-asymptotic limit, and

it is13

�f
r

0 t!1ð Þ ¼ 1

vmax � vmin

ðvmax

vmin

f v; t!1ð Þdv; (16)
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where �f
r
0ðt!1Þ is the value of the distribution at the pla-

teau. The non-resonant distribution part f nr
0 , on the other

hand, remains relatively unchanged, with a small increase in

temperature.13

For a wave-spectrum of width Dðxk=kÞ, we can derive

an approximate expression for the relaxation time sR

¼ ½Dðxk=kÞ�2=DQL of the particle diffusion as

sR ’
n0mek D xe=kð Þ½ �3

2px2
eW0

: (17)

It then follows that in order for condition (10) to hold, j
must be in the range indicated by

j	 jQL
LM �

n0mex2
e D xe=kð Þ½ �3

4
ffiffiffiffiffiffi
2p
p

k2u3
th;eWtot

exp � 1

2

xe

kuth;e

� �2
" #

(18)

(as an order of magnitude approximation), where the notation

jQL
LM is used to denote the upper limit of the range of j values

for which QLT is valid, according to the analytical results.

For a more accurate approximation of the upper limit for

QLT’s validity, we need to study the problem numerically.

B. Numerical results

The parameters used for our numerical calculations are

the total number of test-particles Np ¼ 2� 104, the density

n0ðcm�3Þ ¼ 109; the temperature T(eV)¼ 100, and the wave

phase velocity range vmin=uth ¼ 2; umax=uth ¼ 4. The initial

velocity distribution of the test particles is a Maxwellian, as

in Eq. (3), and in space the particles are randomly distributed

in a box of linear size 2� 105ke. We consider a spectrum of

100 waves, each assumed to have a random phase in ½0; 2p�,
and their amplitudes follow the power-law of Eq. (1).

Fig. 1 shows the evolution of the energy of six, out of a

total Np, randomly selected particles. For the case in Fig.

1(a) where the waves carry energy equal to 0.01% of the

total plasma thermal energy, the energy of the particles

evolves in a stochastic, random walk like manner. If the

wave energy increases to 10% of the total plasma thermal

energy, as in Fig. 1(b), the evolution is still random walk

like, although the particles experience abrupt energy jumps

over short times, in some cases, 2�3 orders of magnitude

larger than their initial energy, Also note the much more

extended dynamical range in Fig. 1(b) compared to Fig. 1(a).

The random walk character of the evolution is visible on

time-scales large enough so that the particles have entered

the diffusive regime, and we find that the time needed for the

particles to travel several tens of a typical wavelength is sev-

eral hundreds of the plasma period. The diffusive time scale

is also illustrated by the mean square displacements (MSD)

in velocity and in position space, as also shown in Fig. 1. In

the case of low energy waves, the MSD in velocity and posi-

tion space is proportional to time, which implies that the dif-

fusion is normal in both spaces and the random walk is of

classical nature (Figs. 1(c) and 1(e)), whereas for the waves

with larger energy content the diffusion process has become

anomalous, namely, super-diffusive in velocity space (Fig.

1(d)) and sub-diffusive in position space (Fig. 1(f)), which

can clearly be attributed to nonlinear effects.

The evolution of the particle velocity distribution func-

tion due to wave-particle interactions, for various values of

j, is shown in Fig. 2. According to Eq. (15), we expect that

the initial Maxwellian velocity distribution will evolve to

form a plateau inside the resonance region, while practically

no change will be observed in the non-resonant part of

it, provided that the wave energy is restricted by log j
	 �2:3 ¼ log jQL

LM, according to condition (18). As seen in

Fig. 2(a), for the range of wave energies with log j < �3:5
the velocity distribution’s evolution is predicted accurately

by QLT. Above this threshold the plateau is broadened and

the non-resonant part of the distribution is also modified, as

Fig. 2(b) demonstrates, in which, cases of waves carrying

energy up to 10% of the total plasma thermal energy are

shown. The distribution in these cases is strongly modified

and QLT fails to describe this modification.

Fig. 3(a) shows the comparison between the theoretical

prediction of the velocity diffusion coefficients for resonant

particles and the diffusivities that were obtained numerically.

For the cases of waves with log j < �3:5 the diffusion coef-

ficients are in good agreement, thus QLT provides accurate

results. For log j � � 3:5 an increasing disagreement starts

to appear, and the QLT overestimates the diffusion rates in

the resonant velocity range. In these cases, the wave ampli-

tudes are too high to satisfy QLT’s prerequisites, the interac-

tion is fully nonlinear and stochasticity comes into play in

the non-resonant part of the phase space, so particles from

the bulk of the velocity distribution diffuse very efficiently

to very high velocities. This also leads to the flattening of the

velocity distribution well outside the resonant part, which is

very obvious in Fig. 2(b).

In Fig. 3(b), the total electric current, J, as induced by

the wave-particle interaction, which breaks the isotropy of

the initial Maxwellian, is shown as a function of j. J
increases with increasing j, until it starts to saturate above

log j 
 �2. From then on, electrons with negative velocities

are also noticeably accelerated, as can also be seen in Fig. 2,

hence the saturation of J.

Overall, we find that if log j �� 4, QLT can be safely

used as a valid description. The breaking point of the theory

appears to be in the range of log j 2 ½�4;�3:5�, thus it is

clearly 1.5 orders of magnitude lower than the theoretical

limit jQL
LM in Eq. (18).

IV. UPPER HYBRID AND LOWER HYBRID WAVES

Now we study the quasilinear theory’s applicability for

the case of purely perpendicularly propagating UH and LH

waves. In this case, the turbulence is also electrostatic, and

the resonances occur only in the perpendicular plane. These

resonances result in the heating of the particles in v?, while

in vk no significant energy gain is observed.

A. Analytic predictions

As shown in Appendix A, by making some assumptions,

one can express the dispersion relations as xk ’ jXsj, and

ck ’ �ðp=4Þðx4
s=jXsj3Þ, where s ¼ e=i for UH/LH waves.
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FIG. 2. (a) For values of j < 10�3:5, the numerical results are consistent with QLT, since the plateau (black solid line) is predicted by Eq. (16) accurately. (b)

The initial distribution (black dotted line), for cases of j > 10�3:5, is modified beyond QLT’s predictions. The vertical black dashed lines mark the minimum

and maximum phase velocities of the excited waves.

FIG. 1. The evolution over time of the energy of six randomly selected particles, normalized by their initial energy ((a) and (b)), the mean square displacement

in velocity space ((c) and (d)), and the mean square displacement in position space ((e) and (f)), for j ¼ 10�4, where QLT is expected to work (left column),

and for j ¼ 10�1, where QLT is expected to be invalid (right column).
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Specifically, we have assumed small enough wave-numbers,

and a strong magnetic field. Using the simplified expressions,

it is easy to derive some important analytical results about

the wave-particle interactions.

More specifically, since the turbulence is electrostatic,

with Ek ¼ Ekk=k? � Ekêx, from Eq. (7) one concludes that

Es
n;k ¼ nEkJnðfs

kÞ=fs
k, where fs

k � k?v?=Xs, and hence from

Eq. (6) it follows that the vector

ds
n;k ¼

nJn fs
k

� �
fs

k

Ekê?: (19)

Thus, Eq. (5) for the diffusion coefficients becomes

DQL
?s ’

px2
s

2n0msjXsj

ð
d3kWk; (20)

as shown in Appendix B, and which is just the purely per-

pendicular component and the only non-zero part of Eq. (5).

Resonances are purely in the perpendicular plane, and par-

ticles will be in gyro-resonance as long as the resonance con-

dition xk ¼ nXs is satisfied, where n is an integer. Also, we

make sure that we select a strong enough magnetic field,

such that the only resonance we observe is the jnj ¼ 1 in

both cases.

Once again, the validity of quasilinear theory requires

that the damping timescale jckj �1 is much shorter than the

averaged distribution’s relaxation time sR, as expressed by

the condition in Eq. (10), which here takes the form

j	 jQL
s �

n0msx2
s D jXsj=k?ð Þ½ �2

2X2
s Wtot

; (21)

where s¼ e corresponds to the UH case and we denote the

upper limit for QLT’s validity according to the theory with

jQL
UH, while the corresponding notation for the case of LH

waves, with s¼ i, is jQL
LH. If this limit is satisfied, quasilinear

theory is expected to be applicable, and the distribution func-

tion is expected to show heating. Also, in case of applicability,

quasilinear theory can make an estimate of the temperature.

Specifically, by applying the transformation @t0=@t ¼ 2DQL
?s ,

we find as solution, a Maxwellian with temperature

DTQL
s ’ px2

s Wtot

n0jXsj
jQL

s t; (22)

and QLT is valid if DTQL
s =ms 	 u2

th;s.

B. Numerical results

The parameters used in the simulations of the LH and

UH wave cases are summarized in Table I. The kinetic ener-

gies of individual test particles and the average energy

behave in a similar fashion as in the LW case (see Fig. 1).

The analytical expectation for the upper limit of wave

energy for QLT’s applicability in relation (21) suggests that

it must hold that log j	 �2:8 ¼ log jQL
UH for the case of UH

waves, and log j	 �1:3 ¼ log jQL
LH for the case of LH

waves, by using the parameters in Table I. If j is in the range

suggested by these conditions, the velocity distribution func-

tion of the test particles is expected to show heating in the

way predicted by Eq. (22), and the diffusion coefficients can

be approximated by Eq. (20).

In Fig. 4(a), the evolution of the perpendicular electron

velocity distribution function f ðv?Þ is shown for the case of

UH waves. The heating of test-particles for log j ¼ �3:5 is

consistent with QLT’s prediction (Eq. (22)). If the wave

energy is increased above this value, QLT underestimates

FIG. 3. (a) Resonant test particle velocity diffusion coefficients according to Eq. (12), with dt ’ 30x�1
e , normalized by the analytical expectation of the QLT.

(b) Total electric current J in the plasma, induced by the wave-particle interaction, in units of �euth;e.

TABLE I. Simulation parameters for the case of upper hybrid and lower

hybrid waves.

Upper hybrid Lower hybrid

Parameter Value Parameter Value

Np
a 2� 104 Np 2� 104

Nk
a 100 Nk 100

n0ðcm�3Þ 109 n0ðcm�3Þ 109

TðeVÞ 100 TðeVÞa 100

uth;eðcÞ 1:4� 10�2 uth;iðcÞ 3:3� 10�4

uminðuth;eÞb 3.4 uminðuth;iÞ 2.5

umaxðuth;eÞb 4.0 umaxðuth;iÞ 3.0

B0ðGÞ 500 B0ðkGÞ 7

aTotal number of particles and total number of exited waves.
bMinimum and maximum phase velocities of the wave spectrum.
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the heating, and for log j � �3, the theory is not valid. Also,

the results of the comparison between the numerical and ana-

lytical diffusion coefficients, shown in Fig. 5(a), confirm this

limit, as j increases, an increasing disagreement between the

numerical and theoretical results appears, and QLT underes-

timates the diffusion coefficients for j � 10�3. Furthermore,

in Fig. 5(b) the temperatures of the final distributions com-

pared to Eq. (22) are shown. As can be seen, the results for

the temperature indicate the same limit for j, QLT underesti-

mates the final temperature for j � 10�3. Overall, the results

suggest the wave energy range of log j�� 3:5 for QLT’s

applicability in the UH case, and that in the interval log j 2
½�3:5;�3� the first signs of QLT’s invalidity can be found.

Thus, the maximum value of j for QLT’s validity is less

than an order of magnitude lower than the theoretical jQL
UH.

The final perpendicular velocity distributions of the

ions, after their interaction with an excited spectrum of LH

waves, for various j values, is shown in Fig. 4(b). In this

case, the theoretical heating (Eq. (22)) is consistent with the

numerical results for log j �� 3, and fails to describe the

numerical results for larger values of the wave energy, by

underestimating the final temperature. This also is obvious

from Fig. 5(a), in which one can see that the analytical

diffusion coefficients are systematically lower than the corre-

sponding numerical ones if log j > �3. That there is also

underestimation of the heating by QLT can be seen in Fig.

5(b), from which the same limit for j can be inferred. Thus,

in the LH case, the upper limit for QLT’s validity can be

estimated to lie in log j 2 ½�3;�2:5�, hence it is more than

an order of magnitude lower than the theoretical jQL
LH.

V. SUMMARY

In this article, we explored the limitations of the QLT

for the interaction of electrostatic waves (LW, UH, LH) with

the plasma. We used a spectrum of waves with energy

W0 ¼ jWtot, where Wtot is the total thermal energy of the

plasma, and a test particle numerical code to analyze and

search for the transition from the QLT to the non-linear evo-

lution of the test-particles.

Our main results are the following:

1. For the LW case, using the basic criterion for the validity

of the quasilinear approximation, that is, the relaxation

time of the particle evolution should be much shorter than

the damping time of the waves, we estimated the maxi-

mum wave energy (jQL) below which, the QLT is valid.

FIG. 4. (a) Evolution of the perpendicular electron velocity distribution function in the interaction with an excited spectrum of upper hybrid waves, for various

j values. The final results correspond to t ¼ 2500jXej �1. (b) Evolution of the perpendicular ion velocity distribution function in the interaction with an excited

spectrum of lower hybrid waves, for various j values. The final results correspond to t ¼ 400X�1
i .

FIG. 5. (a) Test electron and ion velocity diffusion coefficients, using the definition in Eq. (12), with dt ’ 200jXej �1 and dt ’ 32X�1
i for the UH and LH

waves, respectively, normalized by the analytically expected value, and for varying j. (b) Comparison between the temperature of the final distribution as pre-

dicted by Eq. (21) and the numerical results, for the cases of Upper Hybrid and Lower Hybrid waves, and for varying j.
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2. We estimated the diffusion coefficients analytically and

numerically and demonstrated that when j > jQL then

D > DQL: Also, the current drive of the electrons induced

by the waves increases drastically in the range where the

QLT breaks down.

3. We repeated the above analysis for UH and LH waves,

and we determined the limit jQL below which the numeri-

cal and analytical results agree. We estimated diffusion

coefficients and the rate of heating of the electrons and

ions in the presence of low and strong amplitude UH and

LH waves, respectively.

It would be useful to repeat our calculation with the use

of Particle in Cell (PIC) simulations and for applications more

closely related with specific laboratory and space plasma

settings.
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APPENDIX A: DISPERSION RELATIONS FOR UPPER
HYBRID AND LOWER HYBRID WAVES

In order to calculate the dispersion relations of UH and

LH waves, we insert the solutions for df s
k , expressed as in

(9), into Poisson’s equation (8), assuming that the zeroth

order density of ions and electrons are equal n0;i ¼ n0;e, and

we consider purely perpendicular propagation of dEk, so that

k ¼ k?ê?, which gives

ik?dEk ¼ �i
X
s¼i;e

4pe2

ms

X1
n;m¼�1

dEk

ð1
0

v?dv?
n

xk � nXs

� �

�
Jm fs

k

� �
Jn fs

k

� �
fs

k

ð2p

0

d/ ei m�nð Þ/ @

@v?

ð1
�1

dvk f s
0 vð Þ;

(A1)

where fs
k � k?v?=Xs.

We then insert the Maxwellian distribution (3) into Eq.

(A1), and using the integral identities22

ð2p

0

eiðm�nÞ/d/ ¼ 2pdnm;

ð1
�1

e�x2

dx ¼
ffiffiffi
p
p

;

ð1
0

xe�p2x2

JnðaxÞJnðbxÞdx ¼ 1

2p2
exp � a2 þ b2

4p2

 !
In

ab

2p2

� �
;

we end up with the relation

1�
X
s¼i;e

x2
s

Xs

e�ns
k

ns
k

X1
n¼�1

nIn ns
k

� �

� P 1

xk � nXs
� i

p
jXsj

d n� xk

Xs

� �" #
¼ 0; (A2)

where InðzÞ � i�nJnðizÞ are the modified Bessel functions of

first kind, and ns
k � ðk?uth;s=XsÞ2. The symbol P denotes the

principal value.

The principal value in the summation in Eq. (A2) can be

written as

X1
n¼�1

nIn ns
k

� �
xk � nXs

¼
X1

n¼�1

n xk þ nXsð ÞIn ns
k

� �
x2

k � n2X2
s

¼ 1

2
ns

kXs

X1
n¼�1

n� 1ð ÞIn�1

x2
k � n2X2

s

þ� nþ 1ð ÞInþ1

x2
k � n2X2

s

"

þ In�1 þ Inþ1

x2
k � n2X2

s

#
� 1

2
ns

kXs S1 þ S2 þ S3ð Þ

(A3)

after using the Bessel functions recurrence relation InðzÞ
¼ðz=2nÞ½In�1ðzÞ� Inþ1ðzÞ� and the property I�nðzÞ¼ InðzÞ. For

convenience, we analyze each summation in (A3) separately.

• For the first one, we have

S1 ¼
X1

n¼�1

nIn

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

¼ �
X

n¼�1;0

nþ 2ð ÞInþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

þ
X1
n¼1

nIn � nþ 2ð ÞInþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

: (A4)

• The second one becomes

S2 ¼
X1

n¼�1

� nþ 2ð ÞInþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

¼ � 2I2

x2
k � X2

s

� I1

x2
k

þ
X1
n¼1

nIn � nþ 2ð ÞInþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

¼ S1: (A5)

• For the third one, and with the aid of the relation

X1
n¼�1

In71

x2
k � n2X2

s

¼
X1

n¼�1

In

x2
k � X2

s

� �
� n n62ð ÞX2

s

;

we get

S3 ¼
X1

n¼�1

In þ Inþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

¼ I0 þ I2

x2
k � X2

s

þ
X

n¼�1;0

In þ Inþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

þ 2
X1
n¼1

In þ Inþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

¼ 2
I0 þ I2

x2
k � X2

s

þ I1

x2
k

 !
þ
X1
n¼1

In þ Inþ2

x2
k � X2

s

� �
� n nþ 2ð ÞX2

s

" #
:

(A6)

After plugging (A3)–(A6) into (A2), we end up with the

relation

112119-8 Zacharegkas, Isliker, and Vlahos Phys. Plasmas 23, 112119 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  94.68.200.249 On: Fri, 18 Nov

2016 19:57:07



1�
X
s¼i;e

x2
s e�ns

k
I0 � I2

x2
k � X2

s

þ
X1
n¼1

nþ 1ð Þ In � Inþ2ð Þ
x2

k � nþ 1ð Þ2X2
s

" #( )

¼ �ip
X
s¼i;e

x2
s

Xs

e�ns
k

ns
k

X1
n¼�1

nInd xk � nXsð Þ: (A7)

The above relation can be significantly simplified if

we consider that xs=jXsj 	 1 and also that ns
k ¼ ðk?ksÞ2

ðxs=XsÞ2 	 1, where ks ¼ uth;s=xs is the Debye length.

Then we can approximate22

In ns
k

� �



ns
k=2

� �n

C nþ 1ð Þ ; for ns
k 	 1;

and every In>0 is much smaller than I0. Hence, the term in

the summation on the l.h.s. of Eq. (A7) that is in square

brackets vanishes when compared to the term to its left, and

therefore, can be neglected. Also, since the following rela-

tion holds true22

1 ¼ e�ns
k

X1
n¼�1

Inðns
kÞ ’ e�ns

k I0ðns
kÞ; for ns

k 	 1;

we can make the approximation

e�ns
k I0 � I2ð Þ

x2
k � X2

s

’ e�ns
k I0

x2
k � X2

s

’ 1

x2
k � X2

s

: (A8)

Finally, to find the solution for xk, we equate the real

part of (A7) to zero, after taking (A8) into account, which

yields the dispersion relation

1� x2
e

x2
k � X2

e

� x2
i

x2
k � X2

i

¼ 0: (A9)

For the case of UH waves, in which the ion contribution

is neglected, Eq. (A9) gives the solution xk ¼ jXej½1
þðxe=XeÞ2�1=2 ’ jXej, under the condition xe 	 jXej,
which we also assume. We then insert the imaginary part of

rk, namely, ck, and express the l.h.s. of (A7) as

1� x2
e

x2
k � X2

e

’ �i
2xkck

x2
e

; (A10)

while, after keeping only the electron terms on the r.h.s. of

the same equation, we get

ck ’ �
px4

e

jXej3
e�ne

k

ne
k

X1
n¼1

nIn ne
k

� �
d n� xk

jXej

� �
: (A11)

Since xk ’ jXej we have jnj ¼ 1, and if we use the relation

e�ne
k

X1
n¼1

nIn ne
k

� �
ne

k

’ ne
k

� ��1 � 1

h i
ne

k=2
� �

’ 1

2
; for ne

k 	 1;

we obtain the further simplified relation

ck ’ �
p
4

x4
e

jXej3
: (A12)

For the case of LH waves, we search for solutions to Eq.

(A9) with Xi�xk 	 jXej, and we find

x2
k ’ X2

i þ
x2

i

1þ xe=Xeð Þ2
’ X2

i ; (A13)

if xi 	 Xi, and in the same way as in the UH case, for the

imaginary part we find the solution

ck ’ �
p
4

x4
i

X3
i

; (A14)

since the electron contribution on the r.h.s. of Eq. (A7) van-

ishes due to the condition xe 	 jXej, which also holds in

this case.

APPENDIX B: DIFFUSION COEFFICIENT FOR UPPER
HYBRID AND LOWER HYBRID WAVES

Starting with Eq. (6), the vector ds
n;k is easily reduced to

the expression (19), where the recurrence relation Jn�1ðzÞ
þ Jnþ1ðzÞ ¼ ð2n=zÞJnðzÞ has been taken into account and we

defined fs
k � k?v?=Xs. Then, the only non-zero component

of the diffusion tensor (5) is the ê?ê?-term, which becomes

DQL
?s ’

8pe2

m2
e

X1
n¼�1

ð
d3k

iWkJ2
n fs

k

� �
xk � nXsð Þ þ ick

n

fs
k

� �2

¼ 8pe2

m2
e

ð
d3kWk

X1
n¼�1

n2
Jn fs

k

� �
fs

k

" #2

� P i xk � nXsð Þ þ ck

xk � nXsð Þ2 þ c2
k

þ pd xk � nXsð Þ
" #

: (B1)

The wave frequency is a harmonic of the gyrofrequency,

as the resonance condition requires, and in the limit

xk ! nXs, Eq. (B1) is simplified to

DQL
?s ’

2px2
s

n0ms

X1
n¼�1

n2 �
ð

d3kWk

Jn fs
k

� �
fs

k

" #2

d xk � nXsð Þ:

(B2)

Thus, since in both applications, to UH and LH waves,

respectively, the resonance includes only jnj ¼ 1, by using

the approximation23

J1 fs
k

� �
fs

k

’ 0:500� 0:562 fs
k=3

� �2 þ � � � ’ 1

2
; for jfs

kj 	 1;

we can further simplify the diffusion coefficients in Eq. (B2)

to the ones in Eq. (20).
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