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Random walk through fractal environments
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We analyze random walk through fractal environments, embedded in three-dimensional, permeable space.
Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical
distribution of the flight increments.e., of the displacements between two consecutive hittiilsganalytically
derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a
power-law in the case where the dimensip of the fractal is less than 2, there is though, always a finite rate
of unaffected escape. Random walks through fractal setsDyita2 can thus be considered as defective Levy
walks. The distribution of jump increments fBr->2 is decaying exponentially. The diffusive behavior of the
random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case
of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced
diffusion for Dp<2, the diffusion is dominated by the finite escape rate. Diffusiondpr-2 is normal for
large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated
by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results
are illustrated by Monte Carlo simulations.
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[. INTRODUCTION been shown that the unstable sites at temporal snapshots dur-
ing an avalanche in 3D form a fractal with dimension
We study the problem of particles performing a randomroughly 1.8. This can be expected to hold for all SOC mod-
walk through a fractal environment in three-dimensional€!s whose evolution rules are of the type of Ré{. Particles
(3D) embedding space. The particles travel freely in thgMoving in the model will thus undergo the type of diffusion
space not occupied by the fractal and are scattered off inty® analyze here.

. . . . Concrete examples of applications include the following:
random directions when they hit the fractal. We derive ana-(i) Solar flares hav% been s%%wn to be compatible with sgc

Iytlcally.the d|str|but.|onpr Qf the random walk increments as [5,4]. The unstable sites of the SOC model, which represent

a function of the dimensio of the fractal set, and we gsmgjl-scale current-dissipation regiofsee Ref[5]), cause

calculate the diffusivity analytically, using the formalism of the acceleration of particles, which perform thus a random

continuous time random wallCTRW; e.g., Ref[1]), which  walk of the type we analyze heréi) Though the question is

we generalize here in order to include the case of defectivstill under debate, there are indications that the Earth’s mag-

(not normalized to onedistributions of walk increments. netosphere exhibits structures compatible with S@Q.,

The random walk is finally illustrated by Monte Carlo simu- Ref. [6]). (ii) In inquiries on confined plasmas and the re-

lations. lated transport phenomena, evidence has been collected that
The physical applications for the theory developed herd€ confined plasma might be in the state of S@l@imed in

are to systems consisting of a large number of spatially disRe!- [7], doubted though in Ref8]). Moreover, it is known

tributed, localized scatterer@ccelerators whose support LHat particles in confined plasmas undergo anomalous diffu-
: . sion[9], a property which we will show also to hold often for
forms a fractal set, suspended in a permeable medium, and

which paricles move, wih their dynamics being govermedy o 7 e 0nd of systems we anayze hera s,
by collisions with the fractal. The particles move freely in pqre hotentially can be applied, is the random walk of cosmic
the system except when they hit a part of the fra@ascat-  aricles, which are scattered off the fractally distributed gal-
teren, where they undergo the respective interaction, aftebyies(e.g., Ref[10]).

which they leave the scattering center, possibly hit the fractal The investigation we present here is to be contrasted to
again, and hence forth, performing thus a random walk inwo related, though characteristically different kinds of stud-
between subsequent interactions. ies: (i) In Ref.[11], random walks and diffusioalong frac-

One application of the introduced theory is to particletals are investigated, where the particles are forced to move
transport in turbulent plasmas, whenever it can be assertetlong a fractal structure. The fractals investigated are con-
that the field inhomogeneities are distributed in a fractal waynected fractals or percolation backbones. These studies are
This is implicitly claimed there where turbulent plasmasmotivated by applications to the transport in porous media,
have successfully been modeled with self-organized criticaler along percolation networks, and it is established that the
ity (SOC; about SOC see R¢R]): In Ref.[3], it has recently  diffusion in these systems is often anomalous. Different to

these studies, our random walkers cross the permeable space

freely, they are not forced to follow the fractal structure, but
*Electronic address: isliker@helios.astro.auth.gr they just occasionally hit the fractalii) In Ref. [12], the
TElectronic address: vlahos@helios.astro.auth.gr random walk of sand grains in sandpil80C models is
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investigated, i.e., the direct transport of the unstable sites, N z e
which are found to undergo anomalous, enhanced diffusion. N @
In contrast to these studies, when applying our theory to
SOC models, we do not study the diffusion of the unstable
sites(the transport of sand graindut the diffusion of addi-
tional particles, foreign to the syste(tiey are not contained

in pure sandpile modelswhich interact with the unstable
sites, i.e., we freeze time in the avalanche model and let
particles interact with the spatially distributed unstable sites.
This is motivated through applications where the sand pile
does not model the evolution of real sand or rice piles, but
where it models ultimately the evolution of some kind of  FIG. 1. Sketch. The random walk in three-dimensional space we
forces in dilute medige.g., some kind of stress forces, or the analyze. A particle trajectory is indicated with an arrow. The small
magnetic or electric field in plasmiasn which the avalanche shaded regions are the elementary voluri€sthe fractal consists
model merely gives the locations of the instabilities whichof (see Sec. Il A

affect particles moving otherwise freely in the system. , N L . L
The fractal sets which constitute the environment we ana@Ur interest in this section is in the statistical distribution of

lyze arenatural fractals, which exhibit self-similar scaling € particles’ traveled distances in between two consecutive
behavior only in a finite range, and which are made up 01coII|S|ons with the fractal, i.e., of the random walk incre-
finite, three-dimensional elementary volumes, small in sizé"€nts- o

compared to the size of the fractal. According to Hé8], . If we pose the problem in th|s form, then the frac;tals fall
such environments could be termed three-dimensional, fradnto tWO»dIStInCt classes: Imagine a particle to be situated at
tal Lorentz gas. Actually, any fractal set encountered in na@ pointx; belonging toF, somewhere in the interior. The
ture is a natural fractal in the sense introduced here, from thearticle actually sees the projection of the fractal onto a large
classical example&he coast line of Britain, cloud surfaces, imaginary spheré aroundF and centered at;, exactly as
etc.; sed14]), to the localized scattering centers of the abovewe do see the stars projected onto the celestial sphere. This
mentioned applications mainly to plasma physics, which araphere is two dimensional, so thatDf-<2, the projection

yet small regions, with finite volumes. Fp of F onto S has dimensiorDp=Dg<2 (see, e.g., Ref.

In Sec. Il, we will specify the notion of natural fractals, [15]). This implies thatFp has zero measur@o volume.
introduce the way we model the fractal scaling behavior ofThe possible trajectories for the particle are the straight lines
natural fractals, derive analytically the probability distribu- 4riginating fromx; . The probability of such a trajectory to
tion of the random walk increments for random walks it “the fractalF at all is the area occupied byp on S,
through fractal environments, give the relations for the rat€jiiged by the area o8, thus, the probability to hit the frac-
of unaffected escape from the system, and derive approxiy is zero, the particle will almost never hit the fractal, it will
mate forms of the distribution of jump increments. In Sec.5imost surely escape from the system, and it does not make
lll, the theory of CTRW will be introduced and generalized sense to determine a distribution of random walk increments.
to include the case of defectivaot normalized to onedis- On the other hand, D=2, then the projection df onto
tributions of jump increments. The CTRW formalism will gp5¢ dimensiol =2, and the area occupied By on Sis
then be applied to determine analytically the diffusive behaV'positive (see, e.g., Ref15]). The probability of the particle
ior for random walks through fractal environments, and to;, hit the fractal, which is again the areafef on S, divided
calculate the expected number of collisions with the fractaby the area of, is finite, and it makes sense to determine a
(in Sec. IV for fractal dimensionBg<2, and in Sec. V for  istribution of walk incrementsfor an isotropic fractal, we
Dg>2). In Sec. VI, the analytical results will be compared gypect the probability to hit the fractal to be 1, but there may
to and illustrated by Monte Carlo simulations. The results arg)q 5 finite probability for a particle to escape unaffected,
summarized and discussed in Sec. VI, and conclusions agiinout hitting the fractal at all, depending on the degree of

drawn in Sec. VIIl. spatial anisotropy of the concrete fractal under consider-
ation).
Il. PROBABILITY DISTRIBUTION OF THE INCREMENTS This distinction holds for mathematical fractals, which per
OF A RANDOM WALK THROUGH A FRACTAL definition exhibit a scale-free scaling behavidself-
ENVIRONMENT similarity or—possibly statistical—self-affinityfrom their

usually finite size down to all scales. Our interest here is in
what we termnatural fractals: They are characterized by the
We assume a fractéf embedded in three-dimensional following propertiesy(i) They are sampled only with a finite
space R®) with a fractal dimensioD¢ (e.g., box counting number of points(ii) Their scaling behavior exhibits a lower
or correlation dimension We furthermore assume that there cutoff, i.e., irrespective of the numerical method used to de-
are particlegthe random walkepswhich travel freely in the termine their fractal dimension, there will be a lower limit of
empty (in the sense of not affecting the random walkers scaling for the estimator. Correspondingly, there is a finite
space, but are scattered into random directions off the point®iinimum separation distancé between the points of the
belonging to the fractaF. Figure 1 sketches the situation. fractal. This property is partly a consequence of property

A. Specification of the problem; natural fractals
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(i). (iii) The elements the natural fractals consists of are noll E). We will thus include in our treatment the case of what
mathematical points, line segments, or surface elements, bute termasymptotically largesystems, by which we mean
they represent finite, yet small three-dimensional elementargystems wheré is so large that the asymptotic, largde-
volumeséV, at most of radial sizéb/2. havior is practically reached, and we may lete in the
Properties(i) and (ii) characterize what one might call a respective relations. In Sec. Il D, the notion of asymptoti-
finite fractal. They imply thaF={x;}i-; ., i.e., Fis a cally large fractals will be given a more precise meaning.
- . . . LT Systems smaller than asymptotically large will be termed
finite collection of ng isolated points, withd the smallest fini icallv | £i i
distance between them. If we assume theFséb be con- Imt? systems. ﬁsymptclnltlca y argehsys_terlns ?re of interest in
) ) . . o applications above all to astrophysical plasma systems,
tained in a sphere with radids then F exhibits a fractal bp PRy P y

scaling behavior for scalasin the ranges<r<I. The prop- where fractals may indeed be very large.
erty (iii ) makes the fractal natural in the sense that the points
x; of F represent actually small three-dimensional volumes R
SV of radial sizes smaller tha#/2, with which a particle can Let us choose an arbitrary reference poindf the fractal,
interact through some forces, depending on the concretgéomewhere in the interidito neglect boundary effegtsLet
physical application. We assume correspondingly an interad?;(r) denote the number of points belonging to the fragtal
tion cross sectiorp?s with cross-sectional radiug to be  in the three-dimensional sphere arouxdwith radiusr (r
associated with every point belonging to the fractal. <I, with | the radial size of the fractalSinceF is a fractal
Since thesV are three-dimensional objects, we must re-with dimensionD¢, it is expected that

quire that the volumes$V should be smaller in radial size 0

(p) thané/2, i.e.,p<6/2: If p were larger thard/2, then the ni(r)=Air°s, (1)
fractal scaling of the natural fractal would break down al-

readygz\i/t t_he sg:a;lepz the h@arr;Eter oa;;heh_elﬁmentaryﬂ:/otl- definition of fractal dimension, which is a common, practical
umesoV, 1.€., belore reaching the scaie which means thal — yaoginiion of fractal dimension, see, e.g., Rdf]]. Equation

6 would have been inadequately determined and would hava) holds actually in the limitr—0, but in practice it is

to be .adtjkl;'Ste‘d' '\g%iovirb'ftt:e rad|pso1; the v?lumeslév known that the scaling behavior appears often already clearly
Were In he rangei2=p= o, then near elementary Volumes finiter, and the limitr — 0 is not feasible. It is also worth-

would overlap, and they would be taken for one elementaryovh“e noting that Eq(1) defines the local fractal dimension

volume. . -
(l) . . . .
In the frame of natural fractals, the random walk problemPF » Which may fluctuate with different reference poinfs

we pose takes a different shape: if the fractal were just finiteth® more, the less numerous the points of the fractal are. The
then all the particles would almost surely escape from théVverage of Eq(1) over the whole fractaF is yet well de-
system without colliding with the fractal, since the probabil- ined (or elseF would in practice not be called a fractaln

ity to hit a finite set of isolated points with a straight line OUr applications, we are mter_ested in statlstlcal_ results, aver-
trajectory is obviously zerfthe finite fractal in any case is a aged o:/er the entire fractal, i.e., over all possible reference
set of measurdvolume zerd|. Yet, since the fractals we pointsx;, so that in the following we use a single scaling
analyze are natural, the isolated points of the fractal represehghavior:
finite three-dimensional volumes with a corresponding finite n(r)=ArPr @
cross section, so that there is a finite probability for a particle

to collide with these elementary volumes, and it makes sensgverywhere, which corresponds to the average of the local
to determine the corresponding distribution of walk incre-n;(r) [Eq. (1)] overi. The constanA is determined as fol-

ments. _ . lows: With every poinb?i of the fractal is associated a scale
A clarification is to be made concerning the scattering g

. ; X ., the distance to the nearest neighbor, at which the local
process: The scattering of the particles off the points of th%caling behaviorn,(r) breaks down[n,(5)=1, so that
fractal (the elementary volumgsds not scattering off hard N , o nT
spheres. We consider the elementary volumes as regions inf(") = (r/8))~F %i') which determines the constaAf in Eq.
which particles can penetrate, they will though be affected by1), Aj=(1/8)PF. The scales introduced in Sec. Il A,
some forces inside these regions. This is realistic since owhere the scaling breaks totally down, is understood as the
main application is to plasma physics, where the elementargninimum of all thed;, §:=min|[&]. For the average(r) of
volumes are typically regions where an electric field residesEq. (2), we have to use an average scéle at which the

Last, we note that the radial sizef the entire fractal is of scaling breaks down on the averdge., n(5,)=1]. In the
course finite in any reasonable physical application. Theexamples of fractals we will introduce below, we find the
derivations we will give in the following are consequently distributions of thes; to be very asymmetric: they show a
made for the case of finite fractalk<{«), it will though turn  clear peak, but exhibit a tail which extends to la@gje Fig-
out thatl appears just as an arbitrary exterior parameter andre 2 shows a typical example of a histogram of thdor
therewith is allowed to take arbitrarily large valu€Secs. the setF; which will be introduced below in Sec. VI A 1.
[I1C1 and Il C2. It will furthermore turn out that several This particlular shape of the distribution of tl#& has as a
characteristics of the problem we analyze assume finiteonsequence that the arithmetic mean value of&his not
asymptotic values it becomes very larg¢Secs. || D and representative of an average scale, it overestimates it. We,

B. The fractal scaling behavior

with A; a constanfEq. (1) is based on thanass-scaling
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In order for this to hold, the different points of the fractal

o
——T
— ]

I

tions. In the direction perpendicular to the radiushis is

|
=
%ﬂ . { ] guaranteed by the fact thak 6/2, half the smallest separa-
- o1or { 7 tion distance of the points of the fractal, withthe cross-
g I ] sectional radius. In the radial direction, it is also guaranteed,
= r } ]r 1 as long as we leAr = 6/2, so that also in radial direction we
> 0.5 ’} I I i can be sure that no point is hidden by the cross-sectional
5 ! i1 1 . surface of another point in front of it.
§ I i1 . ] Assume now that a particle has started frﬁrrand has
o P 1 traveled freely a distance into a random direction. The
& 000 . e ] probability g,Ar to hit the fractal in the spherical shell be-
1 2 3 4 5 tweenr andr + Ar is the ratio of the total cross section of the
6, [arbitrary units] shell (the occupied argadivided by the area of the shell,
. . . q,Ar =s(r)Ar/4q-rr2, or with some rearrangements,
FIG. 2. Histogram of the nearest neighbor distanéefor the
setF; (Dg=1.8,1=50, §=0.5, see Sec. VIA 1 and Tablg | 2 De_3
S
g Ar=——5|+— Ar. )
therefore, define, asthe most probable valuef the distri- 4éf Ox
bution of the d,, determining it by a histogram of thé .
The fractal scaling behavior thus takes the form Our scope is to derive the probabilipyAr for a particle
to travel freely a distance and then to hit the fractal in the
Dr spherical shell betweenandr +Ar, starting from an arbi-
n(r)=(g) (3 trary point of F. To derive this probability, we divide the
interval [ 6,r ], which the particle travels freely, into a large
with d<r=l. number of small intervals of sizér: [rq,r5], [r2,r3], ...,

Since the radial size of the the fractalljst follows that  [r,_1,r,], withry=46, r,=r, andr;,;—r;=ér for alli (the
n(l) is the total number of pointsg of the fractal, or, with interval[0,5] is free of points off, and thus has not to be

should not overlap or cover each other with their cross sec-

Eq. (3), taken into account, since there are no points of the fractal

5 closer thand). The probability not to hit the fractal in the
. :(|_> F @ intervals[r;,ri. 4] is 1—q, or, so that the probability not to
Fle) hit the fractal in all the small intervals up @ and to hit it

) o finally in the interval[r,r +Ar] is
This relation is actually analogous to the case of nonfractal

sets. If we sample, for instance, a three-dimensional cube of p,Ar=(1—q, 8r)(1—q, or)---
side-lengthl with a resolutions, , then we would obviously . 2
find (1/6,)2 points. Equation4) holds of course only for X (1—q, 715r)qrAr, (8)

points in the interior of the fractal, towards the edge it is
biased by edge effects.

or
C. Analytical derivation of the probability distribution p, n—1
of the random walk increments H (1_Qri5r)QrAf for n=2
From Eq.(3), it follows that the number of pointsi(r) Ar PrAr=y 1=t ©)
of the fractal in a spherical shell around an interior point qr,Ar for n=1.
with inner radiusr and radial thicknessAr is m(r)Ar o
=(d/dr)n(r)Ar, or By defining
De( r \PF? n—-1
m(r)Ar=z(a) Ar. ) W:L[l (1-qy,dr), (10
With every point of the natural fractal is associated a cross- b .
sectionp?sr, within which an approaching particle gets into Pr can be rewritten as
contact(interact$ with a point (elementary volumeof the _
fractal (see Sec. Il A The entire shell thus has a total cross Are m-qAr - for n=2 11
sections(r)Ar=m(r)Arp?m, i.e., Prar= qr,Ar  forn=1.
De [ r \Prt . -
s(r)Ar=p27r—,(—) Ar. (6) We have to evaluate the produst in the limit n—c,
Oy '\ Oy where the small intervals get infinitesimal. First, we note that
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n-1

1 (1-a70n)

n—-1

=21 In(1-q or). (12)

In(r,)= In(

dr, is always positive and bounded b>D,£p2/4§i)(5/

8,)PF 3, sinced<r=I, and since the exponent is negative

(Dg—3<0). The termq; or gets thus arbitrarily small for
n—oo, since this implies thadr—0 [ or is something like
(r—98)/n, or, independent of, (I—8)/n], and we may thus
use the approximation In{dx)~x, for x<1. Equation(12)
thus becomes

n—1

In(7r, )~ 211 _qri5r7

(13

PHYSICAL REVIEW E67, 026413 (2003
Equations(11), (7), and(17) yield

Dsz r

(DE=2)4 . _ _ _
P, Ar—exr{ 455F n5

D 2 r Dg—-3
FP (_) Ar,
453\ 5,

(18

which can be further rearranged to become

Ox
B

5, Ar

(19

_ Dgp?
p(DF—Z)Ar: FP(

~(Dpp?45) |
r 46\3: (

)DFs(Dszmai)

and is thus a pure power law. Again, as in the cBgse* 2
[Eg. (16)], the radial sizd of the fractal appears just as an
upper limit for the allowed values of

which for 6r — 0 may be considered as a standard expression

for the Riemann integral of-q,, with limits § andr,

|n(7Tr)=Lr—CIrrdf', (14

where due to the limit the approximation has become exac

1. The case R#2

Inserting forg, from Eq.(7) into Eq.(14), and solving for
., one finds that in the cader+2,

7T£DF#2): exr{

The probabilityp,Ar=,q,Ar [Eq. (11)] for a particle to
start from a point of the fractal, to travel freely a distamce
and then to hit the fractal in a layer of depir is thus, by
inserting Eqs(7) and(15), and by rearranging,

DFp2 (rDF—Z_ 5DF_2)
45°F De—2

| s

( r \DE=2 [ §\Dg-2
5_) B 5_)
pEDF#Z)Ar —ex Dsz * *2
4(2—Dg) 52
D.p2/ r \DF3
X 4;’; (5—) Ar, (16)
*

*

whered<r=l|.

Notably, the radial siz¢ of the fractal does not appear in
the relation forp, : | determines only the upper cutoff pf,
it does not influence its shape. The slzs thus an exterior

parameter of the problem we study and can take any valu

betweens and infinity, without leading to any contradiction:
as shown in Appendix A, the normalization pf never ex-
ceeds 1, whatever the value lo.

2. The case R=2

In the caseD=2 we find from Eq.(7) and Eq.(14)

_ Dep? 1
(DE=2) _ _Yrp T
m, —ex;{ 2507 In5 . (17
*

D. The rate for unaffected escape

a, as defined in Eq(10) is the probability not to hit the
fractal at all in[ §,r] [see the explanation before E§)], so
that 7,|,_, is obviously the probabilityv.. not to hit the
ractal at all, but to move unaffected by the fractal to the

dge of the system and to finally escape. From (&§) we
find that forDg+# 2, after slightly rearranging,

| \De-2 5 \De2
o[z~ 3]
FP 5, 5,

vesd DE#2)=exp

4(2—Dg) 8?2 ’
(20)
and in the cas®=2, from Eq.(17),
_ _ D|:p2 I
Vvesd DE=2)=ex —K’?Fm 3 . (21

Equations(20) and (21) imply that, depending mainly on
the values oD, |, 4, 8, , andp, there possibly is a finite
rate for unaffected escape, i.e., a finite fraction of the par-
ticles does not see the fractal and moves through the system
without collisions until it finally leaves. Actually, fofinite
systems (<«), there isin any casea finite rate of unaf-
fected escape, which is the larger, the smaller the system size
(1, the cross-sectional radiys and the fractal dimension
Dg are. For very large systems though,s. settles to an
asymptotic value, which corresponds to the lowest possible
escape rate for givep andDg. As explained in Sec. Il A,
we will in the following call systemasymptotically largein
contrast tofinite systems if they are so large thateg. has
Sractically settled to its asymptotic value, and we will deter-
mine v in their case by lettindg— oo,

For asymptotically largesystems (—«), we have the
following cases, depending on the valueld :

(i) In the caseD>2, we find from Eq.(20)

Vesd Dp>2]| —0)=0, (22
so that all particles will collide with the asymptotically large
fractal.

(i) In the caseDg=2, Eq.(21) yields
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1.0T [
[ M= f{sprdr (26)
0.8 B
i is the normalization ofp,. The cases of finite escape rate
0.6 (for asymptotically large I(=«) as well for finite system
g size correspond thus to the cases whereg 1, i.e., to the
. 04l cases wher@, is defective
0ol E. Approximate forms of p,
i 1 To determine possible approximate or asymptotic forms
0.0[ , , , ] of p, , we consider the logarithmic derivative pf[Eq. (16)]
0.0 0.5 1.0 15 2.0 for D #2,
’ dinp”*"?  pgp?/ r |DF 2

FIG. 3. The escape rate,s. vs the fractal dimensio®, for ai =- 152 \5—
0<Dg<2 and assuming asymptotically large systems ¢; see nr * \ U
Sec. II D.

+(Dg-3). (27

The termDg—3 stems from the power-law factor, and the
correcting term from the exponential factor in Ed6). For
De<2, the logarithmic slope asymptotically reachBs
— 3 for larger, being slightly distorted for smal, at most
and again all particles collide with the asymptotically largepy the amount D p2/452)(5/8,)PF 2 (for the smallest,

VeS({DFZZ!I‘}OO):OI (23)

fractal. i.e., r=40). Hence, forDg<2, p, can be considered as an

(iii) For Dg<2, we have from Eq(20) approximate power-law with inde¥d—3, whose exact

form is found from Eq(16) on replacing in the exponential
;{ Dep? S5 \Pr2 by its maximum possible valule
Vesd DE<2| — ) =ex ——2<—) ,
4(2—Dg) o Oy | \De-2 5 \DF-2
(24) Dep? (5—) —<5—)
pEPF=2Ar —ex - x

which is strictly smaller than {note that the argument of the ' 4(2-Dg) &,
exponential function is in any case negative and fipit® D.p2/ r |DF3
that there is a finite fractiom,s. of particles which move w—FP <_) AT (28)
through the system without having any encounter along their 45,3c Oy

path with the asymptotically large fractal, until they escape.

In Fig. 3, the rate of unaffected escapg,.is plotted It follows that forD<2 the second momentgi(%p,dr) are
againstDy for Dp<2, assuming asymptotically large sys- infinite (the moments are dominated by the asymptotic, large
tems (—x): the escape rate is high, and only whBp r regime, so that the random walks in the cades<2 are
approaches quite close 2, the escape rate drops to low vapproximate realizations ofevy flights for large r, the
ues. (@Pr=2) are of the same form as the Levy distributions,

It is to note that the particles which escape unaffected deamely, power laws with index between3 and —1 (see,
not leave the system instantaneously, they remain in the SYg.g., Ref.[16]), and it is actually the large regime which
tem and move on a straight line path with their individual cayses the second moments to diverge and the random walk
finite velocity, without ever colliding again with the fractal, statistics not to obey the central limit theorem. A character-
until they reach the edge of the system and leave. In othegtic difference to the Levy distributions is though that the

words, the paths the escaping particles follow never and nodistributionspﬁa:DFQ) are in any case defective, associated

where intersect the fractal. In the case of asymptotically Iarggv ith a finite escape ratéSec. Il D).

fractals, the time elapsing until an escaping particle reaches o . . :
the edge of the system may of course be considerable arbd ForD>2, the logarithmic slope in E427) is dominated

much larger than the time for which the particles are tracked. y the f'TSt term_on. the rlght-hand suﬂms), which Increases
In Appendix A, Eqs.(20) and (21) will be derived in an in magnitude with increasing so thatp, is decaying expo-

alternative way, and it will be shown that the possibly finite gfgtf'iililéfc:n?rt%g’c\gng:: 'Onr]]glifs rtzr?zjg:r? stzflgsngrrgorgveer:t:,e d
rate of unaffected escape is related to the fact thas not ' P 9 9

necessarily normalized to one, it actually holds that by the central I_|m|t_ theorem. . .
The casdD =2 is a pure power law without any approxi-

mation[Eqg. (19)], the second moment is obviously infinite,
Vesc= 1~ i, (25 and the random walk is an approximate realization of a Levy
flight, as are the cas&:-< 2, defective though in the case of
where finite systemgsee Sec. II
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[1l. CONTINUOUS TIME RANDOM WALK, This equation states that the probability to be at a turning
GENERALIZED TO THE CASE OF DEFECTIVE point I at timet equals the probability to be at the turning
DISTRIBUTIONS: THEORY R : . -, . .
point r—r’ at timet—7, and to jumpr’ during time 7,

In order to determine the diffusive behavior of particles namely onto the turning poimtexactly at timet. The second
analytically, we follow the formalism of continuous time ran- term on the rhs explicitly takes the initial condition into ac-
dom walk(CTRW; see Refl1]) in the version of the velocity count, assuming that all the random walkers start at the point
model(see Refs[17,18). In Ehis approach, it is assumed that ' — 4t timet=0. In between turning points, the random
each spatial walk incrementis performed in finite timer, walker is moving with constant velocity on a straight line
wherer (=|r|) andr are related through the velocityof the  segment. The probabilit(r,t) to be atr at timet is deter-
walker, which we assume to be arbitrary and constant. If wenined as
would not take into account the time spent in the jumps, then

the mean square displacement we calculate below would be - s, [t > -,

infinite in the cases whei2<2, since the second moments P(r,t)—f dr” [ drQ(r=r"t=n)®(r",7), (32)
of p, are infinite(Sec. Il B, so that actually only the formal-

ism of CTRW makes sense. whered(r, 7) is the probability to travel a distancein time

The connection between travel timespent in a jump and 7, while making a jump of any length betweeﬁ|F| andes,

spatial incremenf is expressed by the joint probability den- j.e., while either being on the way to the next turning point,
sity (r,7) to perform an unhindered walk-incrementin ~ or while moving unaffected on a path leading to escape,
time 7, which, in its simplest form, is . . R
O(r,7)=:DO(r,7)+dE(r,7)
Y(r,7)=p(r)8(1=r|/v), (29

1 , Vesc
where thes function just expresses the fact that a walk in- 47Tr2f|;,|>;|dr Prt 2
crement r takes time r=|r|/v to be performed[d(r _
—|r|/v) is actually the conditional probability for the time With pr from Egs.(16), (19) or (28), and where on the rhs we
spent in jump to equat, given that the jump length ig]].  identify the first term as the collisional terdh(©(r,7) and
The spatial parp(r) of Eq. (29) is the probability to make a the second term as the escape tab?(r, 7). The appear-

. - o ance of the escape term is a consequence of the possible
jumpr, and itis given througip, [Eqs.(16), (19) or (28)] as defectiveness op, , if p, is normalized to oneg=1) then

) R D this term disappears/{s;c=1—u=0, see Sec. |l D It takes
p(N=p(|r])=—s. (300 into account the particles which have started from a turning
4art point and are moving unaffected until they escape, not col-
. . . . . liding anymore with the fractal on their path. Equati(38)
gi\lrgﬁig:]atﬁf ilss :ﬁjsp{ﬁgarg::rtyi;(;llun:gbzg;.sttagqet'néo t"?my ¢ holds in the rangeS<r=<w®. In the range &r<y, all the
DO . 9 ) P ity dis ”. ution o particles move unhindered, either they are on a unaffected
p(r), integrated over all directiong, = [p(r)do, with do escape path or they are on the way to their next turning point,
=r?sin gdrddd¢ the usual surface element in spherical coor-gince there are no points of the fractal closer thasee Sec.

= 8(1—|r|/v)

(33

dinates, so thap,=4mr2p(|r]) in the case wher@(r) is Il A), so that forr<s,
isotropic)
The formalism to determine the diffusive behavior in the - )7 - 1
frame of CTRW for given jump- and flight-time distributions O (r,7)=:0(r,7)=6(7— |r|/v)4m2. (34

is presented, e.g., in Refll7,18. We have though to gen-
eralize this formalism in order to make it possible to treat the

case of possibly defective jump distributions. With the description ofb(r,7), it is now clear that Eq.

(32) expresses the fact that a particldijseither at a turning
point (r'=0, 7=0), or(ii) has started from a turning point
(atr—r’, t—7) and is now traveling towards its next turning
epoint, not yet having reached it, though;>0, F’iO) and
passes by the the pointat timet, or (iii) the particle has
started from a turning poirfatr—r’, t—7) and moves un-
affected on an escape path%0, r' #0), passing by the the
pointf at timet.

Equation (32) is an integral equation foP(r,t), with

- :f 3 ,ft > -, - Y(r,7) given, together with the auxiliary integral equation
Q(r,t) dir’ [ drQ(r—r',t—7)(r’, 1)+ 8(1)(r). - . . .

0 for Q(r,t) [Eq. (31)]. As pointed out in Sec. Il A, in every

(31 reasonable application the system is finite, i.e., the fractal is

A. The propagator

The basic quantity to be derived in order to determine th
diffusive behavior is the so-called propagaﬂé(F,t), the

probability density for a particle to be at positif)rat timet.
Thereto, we first have to determine the probability distribu-

tion Q(F,t) of the turning pointqthe points where the ran-
dom walker changes directiprfor which holds
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of finite size (<«), and the particles definitely leave the e.g., in Ref.[16]; we have to clarify, though, whether the
region occupied by the fractal when they have reached eelation in Ref.[16] is applicable to the cases of defective

distance from the origin equal to the radial size of the fractaljump distributions.

This implies that the spatial integrals in Eq81) and (32)
are actually over a finite randequal to the linear size of the

We determine first the distribution of travel timegt),
i.e., the distribution of the times spent in a single jump, as

fracta), and somewhat involved methods have to be used tghe marginal distribution ofs(r,t) [Eq. (29)]

solve the integral equatiorisee, e.g., Ref17] for a study of

these combined integral equations for a finite system in one-

dimensional space and in the nondefective adere, we

simplify the problem by assuming that the fractal is very

large, so that assuming an infinite system s$igkould give a

good impression of the diffusive behavior. The finite system

size acts merely as an upper cutoff for the possible range of

values of the distances from the origin that particles trave
Since we again let—, as in Sec. Il, we can formally

o(7):= f y(r,m)d°, (38)
Concerning the normalization @f(7), we note that
° | etmar= [ “pr=p 39

identify the very large systems we have in mind here with(see Appendix B § the normalization ofp(7) is thus iden-
the asymptotically large systems introduced in Sec. Il. Fotjcal to the normalization of, , which we defined to bg in

asymptotically large systems now{ ), the combined in-
tegral Egs.(32) and (31) are most easily solved by Fourier

transforming in spacef@l?) and Laplace transforming in

time (t—s), applying the respective Laplace and Fourier

convolution theoremssee, e.g., Ref.19]), which yields

~ d(K,s)

Ks)=—"
P(k.s) 1—-(K,s)

(35

Equation(35) is formally identical to the nondefective case
(see Ref.[18]); we note that® is defined in a different,
generalized way.

B. The diffusive behavior

The mean square displacement

(r2(0) = f r2P(7 b der (36)
can straightforwardly be shown to be equal to
-, 2 -
<r2(t)>=—@P(k,t)lﬁzo (37)

(by inserting the definition of Fourier transfoynilo calcu-
late (r?(t)) through Eqs.(35) and (37) analytically in the
Secs. IV and V, we will make the following assumptiofis:
s<1 (since we are interested in the casetefx), (i) |K|

<1 (corresponding to asymptotically large systeis,»),

and (iii) |k|<s [since, according to Eq37), we will at the
end setk=0].

C. The expected number of jumps in a given time interval

Since the escape rate can be finite, it will be interesting t

Eq. (26). The distribution of travel timeg(7) is thus defec-
tive (u<<1) in the cases where the distribution of jump in-
crements, is defective.

The probability ¢,(t) for the nth jump to take place at
time t is recursively determined by

t
(Pn(t):fO(P(T)‘Pn—l(t_T)dTa (40

i.e., if the (n—1)th jump took place at timé— r and was
followed by a jump of durationr, then thenth jump takes
place at timet. Laplace transforming yieldse,(S)
=¢(S)¢,-1(8) (through the Laplace convolution theorem
and if we iterate, we are led to
en(S)=(9)". (41
The probability propN(t) =n] that the number of jumps

N(t) made in the time intervdlO,t] equals a given number
is given as

t
prot[N(t)=n]=focpn(t’)E(t—t’)dt’ (42)

with E(t—t") the probability to make a jump of duration at
leastt—t’. Equation(42) states that thath jump took place
at timet’, and the subsequent jump took longer thart’,
so that there was no subsequent jump completeldin].

2 (t) is determined as

E(t)= ft T o(Dd T+ vese, (43)

where the first term on the rhs is the probability that a par-
ticle makes a jump of duratiohor longer, and the second

term is the probability that a particle moves unaffected on a
cpath leading to escape, having thus an infinite travel time.

know how many times a particle collides on the average with!/SiNd = /o ¢(t) dt [see Eq(39)], we can write Eq(43) as

the fractal before it escapes. We determine thus in this se
tion a relation for the expected number of jumpgt)) in a
given time interval Ot]. This relation is in principle given,

¢ t o t o
E(t):M_J @(t)dH'Vesc:l_f e(t)dt, (44)
0 0
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where we have used the fact that- v..=1 [Eq. (25)]. The p,=C rPF 3 (51
Laplace transform of Eq44) is

_ 1 where C summarizes the constant prefactors in E2g).
E(s)=g[1-e(s)] (45 Equation(51) implies through Eqs(29) and(30) for the joint
probability distribution of jump increments and travel times
and Laplace-transforming equati¢#?) yields

ProN(s) =n]=@n(S)E(s)=@(s)"E(s),  (46) ,/,(F,T)=4£rDF*55(T—|F|/U)_ (52
a

where we have inserted also Eg1), and on replacingg (s)

by Eq. (45), we find . . .
By assuming that the system is asymptotically large (

1 —), so that formalism developed in Secs. Ill A and 11l B
profN(s)=n]=¢(s)" [1-¢(s)]. (47)  can be applied, the diffusive behavior is determined through
Egs.(35) and(37). We need thus the Fourier-Laplace trans-
The expected number of jumghl(t)) in the time interval ~ forms of #(r 1) [Eq. (52)] and®(r,t) [Egs.(33) and (34)].
[0,t] follows from the definition of expectation value: The way we calculate the Fourier and Laplace transforms,
also in the subsequent sections, with the conditm®4 and

_ - B k<s (see Sec. lll Bis described in Appendix B:
<N(t)>—n§=:0 nprolfN(t)=nJ, (48) The Fourier-Laplace transform af(r,t) [Eq. (52)] for
De>1is
which in Laplace space becomes, when also inserting Eq.

(47), ” <\ (DE>1 De—2 2-D
P(k,s)PF= D~ 1 — CoPF 2T (Dp—1)s? PF

oo 1 o
(N(9))= X nprotfN(s)=n]=Z[1-¢(9)] 2, ne(s)".

1
- ngCUDFF(DF)stF (53
(49

The sum can be evaluated by using the relatiBifs,nx" 4 forDe<1 it is
=x(d/dx)Z,_x" and =,_x"=1/(1-x), which finally
yields L

¢(s) Y(k,8)OF D~ p—(T)s— =k?CuPFT(Dp)s™OF (54)
s[1-¢(s)]’

It thus turned out that the expression fM(s)) in the ~ With I'(-) Euler'sT" function, u the normalization op, [Eq.
defective case is identical to the relation for the case wher&26)], and(T) the expectation value of the time spent in a
¢(t) is normalized to onésee, e.g., Ref16]). The essential  Single jump, defined in Eq64) below.
modification in the derivation for the defective case was the ®(r,7) [Egs. (33) and (34)] consists of three parts:
addition of the termveg.in Eq. (43). i ®©)(r,7) is determined through Eqé51) and (33) as

Contrary to the relations which determit(t)) [mainly
Eqg. (35)], the formula for(N(s)) [Eq. (50)] is valid also in
the case of finite system$<{«): The Laplace convolution dO(F,7)= c rDF—45(T_|r"|/v) (55)
theorem we used to solve the integral equati@® and(42) ' 4m(2—Dg) ’
is applicable to convolutions over finite intervals, contrary to
the Fourier convolution theorem used in Sec. Il A, which
demands infinite integration intervals in order to be appli-

(N(s))= (50

whose Fourier-Laplace transform for>1 is (see Appen-

cable; see, e.g., Ref19]. dix B)
De—1 _
IV. APPLICATION OF THE CTRW FORMALISM B (K, 5)Oe>1 Cv"F I'(Dg—1) ol-Dr
TO THE CASE Dp<2 , 2-D;
A. Diffusion for D<2 ZCUDF+1F(D,:+1) -
We analyze the diffusive behavior for the cade<2, - 6(2— D) S '

where it had been shown in Sec. Il E that the random walk is
of the type of defective Levy flights. We will use the (56)
asymptotic power-law forrpfa'DFQ) for p, [Eq. (28)], writ-
ing for conciseness and forDg<1 it becomes
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CpPF-1 Dg-1
(Z_DF)(]-_DF)( )
De—1
_ Cu®r r(DF)Sl_DF
2_D|:
,CoPF T (De+1) b1
6(2—D¢g) '

)

®©)(k,s)Pr<~ e
v

(57)

The Fourier-Laplace transform ob®)(r,7) [Eq. (33)] is
given as(see Appendix B

2 Vescvsr(3) 53

DO (K,5)=ves@'(1)s -k 5

(58)

Last, the Fourier-Laplace transform d#9)(r,7) [Eq.
(34)] is (see Appendix B

DO (k,s)=a”—as (59)

with al”, al® finite constants.

Inserting #(k,s) [Egs. (53) and (54)] and ®(Kk,s)
=P (Kk,s)+DE(k,s)+PO(K,s) [Egs. (56), (57), (58),
and (59)] into Eq. (35), differentiatingP(k,s) according to
Eq. (37), setting thereaftek zero, we find, neglecting the

constants, keeping only the leading termsiior s— 0, and
noting thatu#1,

N 1
(rz(s))~? for 0<Dg<2. (60)

The D¢ dependencéthrough ¢(k,s) and ®(k,s)] has dis-

appeared in the limis—0, the behavior is actually domi-

nated by theD -independent escape tedr®(k,s).
Since EQ.(60) holds only fors—0, the direct Laplace

back transformation is not defined, and we have to use the

Tauberian theoremésee, e.g., Ref20]), which yield fort
large

(ré(t))~t? for 0<Dg<2. (61)

PHYSICAL REVIEW E 67, 026413 (2003

(N(t))

FIG. 4. The expected number of collisiogdl(t)) vs fractal
dimensionDg, for 0<Dg<2, assuming asymptotically large sys-
tems (—«) and large timegsee Sec. IV B

ForDg<1, the Laplace transform ai(t) is (see Appen-
dix B5)
e(s)=u—(T)s, (63)

with u the normalization ofp(7) [see Eq(39)], and where
(T) is the expectation value of the the time spent in a jump,

(T)=J To(T)d7. (64)

Slv

For Dg>1, the Laplace transform af(t) becomes
¢(s)~u—CvPF ?I'(Dg—1)s* PF, (65)

the second term diverges fe— 0, implying that the ex-
pected flight timg(T) is infinite (see Appendix B

Inserting into Eq.(50), we find, when keeping only the
leading terms irs and noting thaju# 1,

1
<N(s)>~ﬁg for 0<Dp<2. (66)

As in the case ofr?(s)) [Eq. (60)], (N(s)) is independent
of Dg, due to the fact that the normalizatipn<1, i.e., the
finite rate of unaffected escapgs.[=1— u, see Eq(25)]

The diffusion is thus in any case anomalous, namely engominates the behavior. From E@6), the Tauberian theo-

hanced of the superdiffusive ballistic type.

B. Dg<2: The expected number of collisions

Since the escape rate,.; is in any case finite folDg
<2 (Sec. Il D, it is of interest to know how many times a
particle collides on the average with the fractal before it es

rems yield for the back transform
o
<N(t)>"’m5(t) for 0<Dg<2. (67)

The expected number of jumps is therewith constant, it does

capes. Thereto, we determine the expected number of jumf®t increase with time anymore for large enough times. In

(N(t)) performed by a particle in the time intervDt].
According to Sec. lll C, we first have to determigd 7),
which through Eqgs(38) and Eq.(52) we find to be

o(7)=CpPr=27PF 3 (62

for 7= 6/v (the minimum jump length i, see Sec. Il A

Fig. 4, we show(N(t)) as a function of the dimensioD
(Dg<2) for asymptotically large systems$-{~) and large
times such thatN(t)) has settled to its expected value. Ob-
viously, particles do very inefficiently interact with fractals
of dimension below 2, they almost do not see the fractals,
and only if the dimension approaches quite close the value 2,
collisions with the fractal become numerous and important.
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For finite systems, the escape ratg.is still larger(see Sec. (I)(O)(r"’t) [Eq. (34)] is independent oD, so that its
I D), and collisions with the fractal get even more rare. Laplace-Fourier transform is given by E@9).

Having determined y(k,s) and ®(Kk,s)=d©(k,s)
+®O)(k,s), we can turn to the determination ¢f?(s))
through EQq.(37). For the asymptotically large systembk (
A. Diffusion for Dg>2 —), which we consider here, it holdg=1, so that the
leading term in Eq(37) for s—0 is

V. APPLICATION OF THE CTRW FORMALISM
TO THE CASE Dg>2

For D>2, p, cannot be approximated by a power law
(see Sec. Il E we have to keep the full form gb, in Eq. 1
(16), and the random walk is governed by the central limit (ri(s))~—, (73)
theorem, since all the moments pf are finite. We thus s
expect diffusion to be normal, a theoretical expectation we

have to confirm in the following. and the Tauberian theorems yield the back transform
We assume the system to be asymptotically large ( -
— ), so that we can apply the formalism of Secs. Ill A and (re(m)~t (74)

Il B, and moreover it follows thates=0 andu=1 (see ¢, large times, i.e., diffusion is normal, as it is expected

Sec. Il D. In order to determinér?(t)) through Eq(37), we  from the central limit theorem.
have first to determine the joint distribution for walk incre-

ments and flight times(r,t) [Eq. (29)], and the distribution B. D>2: the expected number of collisions

®(r,t) to make a jump of at least length[Egs. (33) and According to Eq.(38) and Eq.(68), the distributione( 7)
(34)]. For convenience, we writg, [Eq. (16)] in the form of times spent in a jump is

p,=Cexd — BrPr2]rPr=3 (68 o(7)=CoPF2exy] — BuPF 272 ~2]:P¢=3 (75

where all the constants in E¢16) are incorporated in the anq for its Laplace transform we firidee Appendix B 5
constantsC and B in an obvious manner. Equatiorni§8),

(29), and(30) imply that o(s)~u—s(T), (76)

C whereu is the normalization ofp(7) [see Eq(39)], and(T
Y(rt)= ypeio s i BroF 2IrPFT55(t—rlv). (69  the expected time spent in a single jufitefined as in< E>q.
(64)].

To determine(N(s)) through Eq.(50), we discern be-
tween asymptotically large and finite systems: For asymp-
totically large systemsl(~x), we haver,;=0 andu=1

- 1 (see Sec. Il D and, keeping only the leading terms fer
lﬂ(kys)m,u—<T>S—gk202(<T2>—<T3>S). (70 -0, Eq.(50) yields

The Fourier-Laplace transform aﬁ(F ,t) is found to be(see
Appendix B

whereu is the normalization op, and, since we assume the (N(S))~ —

system to be asymptotically largé—¢ ), we haveu=1 ) s

(Sec. I D. The(T") < are constants, whose exact values

are not relevant for our purposes, héﬂmy are actually the so that by the Tauberian theorems the back transform is

moments of the distributiow(7) which is introduced below t

in Sec. V B, see Appendix B (N(t))~ . (79)
The collisional pard©)(r,t) of ®(r,t) is given through (m)

Egs.(33) and (68),

1
2’

: 0
<

For large times, the number of jumps is just the time divided
by the expected time a walker spends in a single jump. This
exd — BrPF2]r ~28(t—r/v). is a consequence of the central limit theorem.
4mwp(D—2) In the case of finite systems, the escape rate is finite,
(71) ves>0, so thatu# 1 (Sec. Il D), and the leading term for
s—0 in Eq.(50) is

dO(r,t)=

Fourier-Laplace transforming(©)(k,s) yields (see Appen-

dix B) u 1

<N(S) "“rg (79)

®O(K,5)~by — shy— k2(bs—shy), (72) K
By using the Tauberian theorems, we find

with the b;<<e constants.

The escape terd (®)(r ,t) of &(r,t) [Eq.(33)] is zero for (N(

asymptotically large systenisincevqs=0). 0~ o), (80

1 M
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S,(x):=ax+(0,0,1-a)7,
Si(x):=ax+(1—-a,1-a,0)7,

Sg(X):=ax+(1—a,0,1-a), (81)

(N())

S;(x):=ax+(0,1-a,1—a)",

Sg(X):=ax+(1l—a,l—-a,l-a)T,

‘ ‘ where 0<a<0.5 is a free parameter. The set invariant under
109 18 1012 these contractions is a fractaee, e.g., Ref.15]). To gen-
/6 erate the fractal sets in practice, a random pirih the unit
cube is chosen and iterated with the maps of (B8d)), choos-
ing at random one of the eight contractions at a time:nite

FIG. 5. The expected number of collisiofiN(t)) [Eq. (80)] vs
the scaling rangé/ 6 of fractals for large times, and for the cases N - )
De=2.1 (solid), Dg=2.3 (dotted, De=2.5 (short dash Dp=2.7  iterate x™ is xX(V=§; (S, (---(S,(S,(x)))---)), with
(dash-dox, andDg=2.9 (long dash; see Sec. V B. the indicesi; random integer numbers between 1 and 8.

After a transient phase of say 1000 iterations, the iterates
the expected number of collisions is constant for large timesgy(1001) 4(1002) 5(1003) 1 gre indistinguishably close to the
there is a finitex.-dependent, average number of collisions, ynderlying mathematical fractal, randomly distributed across
after which a particle does not interact with the fractal any-it. After their generation, the sets are shifted to have their

more and moves unaffected until it escapes. center at the origin, and they are multiplied by a prescribed
Figure 5 showgN(t)) for finite systemgEq. (80)] as a  radial sizel, so that they are contained in a sphere of radius

function of /6, the scaling range of the fractgle in EQ. | ground the origin.

(80) is an implicit function ofl and 5, see Eq.(26)], for Since we want to model the case of natural fractals, which

different dimension® . The number of collisions increases show a lower cutoff of the scaling behavior at some sdle
of course with the scaling range of the fractal. For fractalgsee Sec. I A we must force the scaling behavior of the
small in size, Say/5: 100, collisions with the fractals be- fractals we construct to break down at the scéle- in the

come important for dimensior3¢ above roughly 2.3. way we construct the fractals, it would by chance always be
possible that two pointg(19°%1) andx(109-1) are closer to
VI. MONTE CARLO SIMULATIONS each other tha@d. To achieve this, the fractals we finally use
To illustrate and verify the results of the previous sec-&r€ defined as the subsef = {x(1090"1) x(1000+12),
tions, we perform a number of Monte Carlo simulations ofx(109%+1s) = x(1000Ha v of all the iterates above the
random walks through fractal environments. 1000th, (Ii;<i,<iz<---<i,), such that |)Z(1000+ik)
f

A. Particle simulations: Testing p,

In order to test the relations we found for, we generate )
a number of fractals of different, prescribed dimensions, and 4o}
we determine numerically the distribution of random walk
increments. 20

1. Generation of test fractals o
~

The fractals we use in our simulations are generalized,
three-dimensional versions of the “middle {Ra)th”
Cantor sef{the middle part of length (% 2a) is omitted.
They are constructed with the method of iterated function
schemegsee, e.g., Refl15]), i.e., with the use of the fol- oS
lowing eight contractive maps in the three-dimensional unit
cube[0,1]X[0,1]X[0,1]:

-2

[N

Sy(x):=ax, o -
FIG. 6. Projective view of the fractal sét; (dimensionDg

=1.8; fine dot we use in the Monte Carlo simulatioiisee Sec.

VI A 1 and Table | for its detailed propertiesOver-plotted are the

. . edges of a cube for better visualization. The spatial Cartesian coor-
Sy(x):==ax+(0,1-a,0)", dinatesx, y, andz are in arbitrary units.

S,(X):=ax+(1-a,0,0)7,
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TABLE I. For the set$,, F,, F3, F,, the parametea, the theoretically expected dimensidn, the
most probable nearest-neighbor distarde, the numerically estimated correlation dimensiobBg), the

power-law indexy of p, from the simulations, the analytically predicted vatyef this index Eq.(28) (an

eindicates in both cases that the distribution is of exponential $heefractiony,s of particles which do
not hit the fractal and escape unaffected, and the theoretical predigtiphEgs. (20) and (21)] are listed.

Fractal

set Ne a De Oy D¢ Ay Y ;/esc Vesc
Fiq 100 0.125 1 1.41 1.1 —-2.16+0.07 —-2.0 0.98 0.98
F, 1000 0.25 1.5 1.25 1.6 —1.60£0.04 -1.5 0.95 0.96
Fj 3981 0.31498 1.8 0.74 1.8 —1.21+0.02 -1.2 0.87 0.82
F4 10000 0.35355 2 1.06 2.0 —1.06£0.02 -1.0 0.79 0.85
Fs 100 000 0.43528 2.5 0.58 2.5 e e 0.22 0.02

—x(1000t1)| = 5 for all k, I. In practice, we just skip iterates 2. The particle simulation

which are closer tha@ to at least one of the previous iter- A number of particles, is chosen, and for each particle
ates.(It is to note that this forcing of a smallest interpoint we choose a random poip& of the fractal and a random
distance is not needed in the case of natural fractals, whergpatial direction as initial conditions. We let each particle
the elementary volumes they consist of cover any pointgnove into the random direction and monitor at what distance
which lie too close. Stated differently, the sets we generat@ passes by another point of the fractal within a distapce
arefinite fractals, whose properties we have to adjust in ordethe cross-sectional radius, for the first time. The distances the

them to be good models foratural fractals; see Sec. Il A paricles travel are collected, and their histograyris con-

. The theoretically expected dimensibn of the fractals is gty cted. Figure 8 shows the histograms for the BetsF»,
given as Fs, F4, Fs, using a cross-sectional radiys= 6/2=0.25,
together with plots of the analytically derived expressions for
p,, Egs.(16) and (19), and of the approximate form Eqgs.
= (82) (28) of p, in the caseDg<2. Table | lists the power-law

Ina exponentdin the case of power lawsThe coincidence be-
tween theory and simulation is very satisfying, the theory
describes not just the functional form correctly, but also the
position of the simulated histograms relative to thaxis,
which means their normalization and therewith the escape
rate. The escape rates from theory and simulations are also
listed in Table I: the values are in reasonable agreement.

In 3
D

for 0<a<0.5 (@a>0.5 impliesDg=3, and the sets are not
fractals; see, e.g., Ref15]).

We generate the five seks;, F,, F3, F4, Fs listed in
Table | for different parameterssuch that the corresponding

dimensionsDg are 1, 1.5, 1.8, 2, 2.5, respectively. We set 1 i estigate the influence of boundary effects, we re-

6=0.5 (smallest scaleand | =50 (radial size, so that the . 5a4 the simulation for the S8, with the starting points
fractal scaling behavior extends over two orders of magni-

de. Th ber of poi f the f is should in ori of the particles now restricted to the interior of the fractal.
tl.’ e.T € humber o pointse: of the fractals s ould n prin- Fig. 9 shows the result: the boundary effects are obviously
ciple be given by Eq(4), but §, can be determined onlg

posteriori after the fractals have been generated. Instead of

iterating the generation procedure of the fractals in some way 10000.0 '
to achieveng according to Eq(4), we determineng as 000.0L ]
|\ PF 100.0F 4
T 10.0¢ 3
since most easily and straightforwarddy |, andDg can be 10k 3

prescribed to the generation of the fractals. E

Figure 6 shows the sdt;. We confirmed the fractal di- 0.1k ]
mension of the sets by estimating their correlation dimen- —— ‘ : :

sions(Fig. 7, Table ). Table | also lists the most probable ! - [arbigroary units] 100
nearest-neighbor distane®, (determined in the histograms
of all the smallest interpoint distances, as described and il- FIG. 7. Correlation dimension of the &t (see Table)t Plot-

lustrated in Sec. Il B which is needed as a parameter in theted is the correlation integral(r) vs the radiug (solid), together
analytical relations we have derived fpy. with a power-law fit(dashed
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FIG. 8. The probability distributions of the random walk increments as given through the Monte Carlo simulatio# (with error
barg, and as given by the analytical formdlggs.(16) and(19); dashed, for the set¥, (a), F, (b), F5 (c), F, (d), F5 (e). For the cases
F., F,, andF3, also the approximate power-law expressiongpr Eq. (28), is shown(dotted.

minor, the coincidence between simulation and theory is noflight increments, [Eq. (16), (19), or (28)] to determine the
altered. jump increments. The directions of the jumps are random.
For a given dimensio® g, we determine first the prob-
B. Particle simulations: Testing the diffusive behavior ability v.s. to move unaffected by the fractal foreveEg.

In a second Monte Carlo simulation, we intend to confirm(20 or (21]. All the particles start at time=0 at the origin.
the theoretically derived results on the diffusive behavior. weAt the start as well as after every “collision” with the fractal
do not use numerically generated fractals, since they ar@hich in this simulation are mere turning poihtshe par-
bound to have relatively small size, the relations though wdicles have a probability.s.to move for ever unaffected by
want to verify are derived for asymptotically large systemsthe fractal on a straight line path, or else, with probability
(I—0°). Thus, we directly use the probability distribution of 1— vesc, they perform a jump of length randomly distributed
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FIG. 9. Same as Fig. 8, i.e., simulated, theoretical, and approxi- ) .
mate random walk increment distributions, for the Bgtwith D¢ FIG. 11. The mean square displaceméri(t)) vs timet for

=1.8. The starting points of the particles are though restricted tPr=1.5(solid), and a power-law fitdashed, completely coinciding
the interior of the fractal. with solid).

VIl. SUMMARY AND DISCUSSION
according top, [Eqg. (16), (19), or (28)] into a random direc-
tion and “collide” again with the fractalactually they just
arrive at their new turning pointThe results are shown in ~ We have analytically derived the distribution of jump in-
Figs. 10—12 for the caséB-=0.5, Dr=1.5, andD=2.5,  crements for random walk through fractal environments, as
respectively, together with power-law fits. The diffusion is well as .th'e corresponding .diffusive behavior. We discern be-
ballistic in the case®¢<2 (the index of the power-law fits Ween finite and asymptotically large systems, the latter be-
is 2), and normal foD¢>2 (the index of the power-law fit ing so large that the escape raig . has practically settled to

at large times is 1), which confirms our analytical results'™ asymptot_lc VaIL.'e' .
[Egs.(61) and (74)] Fractal dimension R<2. The main results are as fol-

- - . lows:
The cas_eQDF—O.S andDge=1.5 _show a very unambigu (i) The distribution of walk increments can be considered
ous behavior, as a result of the high rate for unaffected es-

. . . 0 be a power-law with indeo—3.
cape, which causes most particles not to collide anymor

th the f | already aft ¢ lisi ; ft € (i) There is always a finite rate of unaffected escape,
with the ractal already after very few collisions, 1.e., alter \ich js ysually considerably large, even for asymptotically

relatively short time. FoD=2.5, diffusion becomes nor- large systems; the distribution of jump increments is thus
mal only for large times, for small and intermediate timesgefective.

diffusion is enhanced: the index of the power-law fit at small  jij) the diffusion is ballistic.

A. Summary of the results

times in Fig. 12 is 1.8. Fractal dimension @>2. The main results are as fol-
lows:
(i) The distribution of walk increments is exponentially
decaying.
1030 : T T T T T T 106 E
= n25F ] _ i ]
5 oo ] 5 f ]
i? 10 . o 107 ¢ 3
~ C © F ]
15} 5 i ]
E 1077 3 5 107 E
[ . = E E
S ok S Sf ]
S ] = 107 1
= - Nad i ]
105 F . * 1olb .
100 ; I I L L L L ] 10O I L | N .
109 10° 10* 10% 108 1019 101% 1014 1 10 100 1000 10000
t [arbitrary units] t [arbitrary units]
FIG. 10. The mean square displacemérf(t)) vs timet for FIG. 12. The mean square displacemérfi(t)) vs timet for
Dg=0.5(solid), and a power-law fitdashed, completely coinciding Dg=2.5 (solid), and two power-law fitgboth dasheq one in the
with solid). range kt=<20, and the other in the range 880<10 000.
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(i) For asymptotically large systems, the escape rate is For dimension® above 3, the fractals become efficient

zero; it becomes positive for finite systems. scatterers, they even force normal diffusion, though only for
(iii) The diffusion is normal for large times and large sys-large times. In the regime of short and intermediate times,
tems. diffusion is clearly different from normal, namely, enhanced

(iv) Even for asymptotically large systems, there is a tran{see Fig. 12 The distribution of jump increments, is of
sient phase at small and intermediate times where diffusiopower-law shape with an exponential turnoyé&ug. (16)],
is enhanced. and it seems that for intermediate timése., small jump
All these results have been verified with Monte Carloincrementsthe power-law part op, is essential for the dif-
simulations. The theory we introduced predicts in particulaifusive behavior, whereas in the large time regime the expo-
in a satisfying way the escape rate and the point where thgential roll-over starts to dominate.
distribution of jump increments turns over to exponential in ~ The analytical treatment of the diffusivity we presented is
the casesD¢>2—both these features depend very sensivalid only for infinitely large systems. For finite systerps,
tively on the parameters of the model, as arguments of ex$ defective also in the cas&>2, there is a finite rate of
ponential functions. unaf_fected escapsee Sec. Il D, which must be exp.ec.te_d to
The caseDe=2 is an exact power law, and the escapemodlfy the results we found here fdd>2 and infinite

rate is zero for asymptotically large systems. We did not tre ystems, abov.e' all in the case of relatively small systems.
the diffusive behavior of this boundary case. or large but finite systems, our results concerning diffusion

can be expected to remain basically valid. The analytical
study of finite size effects on diffusion we leave for a future
study, it needs different mathematical methods than those

The parameters which describe the problem of randonapplied here. o . .
walks through fractal environments are the smallest distance It is worth noting that the distinctly different behavior of
5 between points of the fractal, the scalg where the scal- fandom walk through fractal environments we found for the

ing of the fractal breaks down on the average, the radial siz62s€s Wher®¢ is above or below 2 reflects the property of
| of the fractal, the dimensioB¢ of the fractal, the cross- mathematicafractals mentioned in Sec. Il A: scattering off

mathematical fractals with dimension below 2 is practically
inexistent, with dimension above 2 it gets though very effi-
cient.

The cross-sectional radiys we used in the simulations
was the maximal allowed valup= 6/2 (see Sec. Il A De-
pending on the concrete applicatignmight be smaller than

: 6/2, which would imply that in the cases where the escape
than 1/2(see Sec. Il A Notably, the scaling rangéd, does rate is finite, it will increase, and the behavior of the system

not influence the functional form gf,. The velocityv is will be even more dominated by the escape rate.

assumed to be constant and plays just a minor role in our . X AP
setu The scattering process is strongly simplified in that we
P . . assume that the velocity is conserved in magnitude in colli-
The random walk in the cas@&s-<2 is of the Levy type ; ith the f | d del th .
(Sec. Il B. The distribution of jump incremenis, is though sions with the fractal, we do not model the energetic aspects
defeétive .i e., not normalized to one, which implies a ﬁniteOf the random walk at this stage.
P ' P We made the assumption that there are no correlations

trg,:ii;ﬂ; U|Z?J:C;§2tgsrf§m§§ﬁ}!:e?' iﬁ?;zcﬁvfgr;o:;iﬁggabeetween the incidence direction and the escape direction for
with fractals with dime,nsion below 2, they almost do not particles interacting with a poirielementary volumpeof the

“see” the fractals and are almost not hindered on their pathfractal, or more precise: if there are correlations between the

in their maioritv thev move unaffected on a straight line athIncidence and escape direction, then only the elementary vol-
jority they I ) 9 PaM me should be in charge of this correlation, it should not be
already after very few collisions with the fractal. Conse-

e 2 e ) : caused by the overall structure of the fractal, so that seen

b Tacson s aor s s o the Vew pain of e faca,ncidenc and escape o

7 ) .2 rections appear to be random. In plasmas, though the situa-
majority of the particles move freely accordingrte vt, SO tion might be more complex, there may be a background
that the square displacement from the origin becomfes magnetic field which guides the particles, and the electric
~t2. Diffusion is thus governed by the finite escape rate. field residing in the scattering centers may be correlated in

From the form ofp, in the caseD-<2 [Eq. (28)], it  direction with the magnetic field.
follows thatp, is the steeper, the low& ¢ is, which implies We assumed open boundaries; particles leave the system
that for the thinner fractaléhose with the lower dimension once they have reached the edge of the systems. In realistic
long jumps are less likely—this seems paradoxical. Theplasma applications, there may well be an efficient mecha-
paradox is resolved, though, when taking the escape rate intasm of reinjection, i.e., the particles are mirrored back into
account: The loweDg is, the more particles move unaf- the system: In space plasmas, magnetic mirroring at converg-
fected on straight line paths for ever, so that actually longng magnetic field topologies is a well known effect, and in
jumps—including the infinite jumps along unaffected confined plasmas with toroidal topology, particles must be
paths—are more likely the lowd is. expected to reenter the fract@alrbuleny region since they

B. Discussion

sectional radiug of the points(elementary volumesof the
fractal, and the velocity of the random walkers. The results
(jump distributionp, , escape rate.s) do not depend on the
absolute spatial scales, but just on the relative sddl&s
(the extent of the scaling of the frackad/ 5, (which is close
to 1, see Sec. Il B andp/é, , which is in any case smaller
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are forced to follow the closed, torus-shaped magnetic fieldthen to collide with the fractalsee Sec. Il § f'ﬁprdr is the
Some of the histograms, of jump increments from the probability to hit the fractal at all for a particle which has

simulations show a more or less strong oscillation superimstarted from a point of the fractal. The rate of unaffected

posed onto the power-law behavisee Figs. 8 and)9as do  escape is therefore alternatively given as

the estimates of the correlation integfake Fig. 7. These

oscillations are actually caused acunarity, i.e., the prop- —1_ f‘ d Al

erty of a fractal to have systematically interwoven empty Vesc™ 5pf r (AL)

regions (Mandelbrot in Ref.[14] discusses in detail this

property of fractals In Ref. [21], it was shown that the g that, with the definition ofc in Eq. (26), we haveves.

scaling behavion(r)erPF for fractals(see Sec. Il Bshould — — 1—pu, and Eq.(25) follows.
actually be replaced by The jump distributiorp, can be integrated analytically: in
n(r)rOf(Int/P) (84) the caseD# 2, the indefinite integral op, [Eq. (16)] is
. . - . . r \Pr=2 S5 \Pr2
with f being an unknown periodic function of period 1. The Dep? (_) _(_)
periodP and the amplitude of the superimposed oscillations r dr' = — Ox O
cannot be knowra priori, they are an inherent property of rdr=—exp 4(2—Dg) 62
the concrete fractal under scrutiny. We decided not to include *
this effect in the theory. It contains several parameters which +const, (A2)

are not easily estimated from a fractal, and in many fractals
(admittedly though not in gl the amplitude of the oscilla- so that we find
tion is relatively small, the oscillation is often rather like a

“higher order correction,” and it is a reasonably good ap- [ 1\PF2 [ 8)\PF2
proach to neglect the effect—as Fig. 8 shows, our theory | Dep Z - 5_*
catches quite well the basic features of the fractals. ,u=f p, dr’'=1—exp >
S5 4(2_ DF) 5*
VIIl. CONCLUSION (A3)

The theory presented here has potential applications tBquation(A3) together with Eq(25) confirms Eq.(20). The
permeable media, such as plasngstellar atmospheres, the confirmation of Eq(21) is completely analogous.
magnetosphere, confined plasiasith fractally distributed Equation(A3) implies thatu<1 for any choice of the
inhomogeneitiesturbulencé which affect particle motion. It parameterss, J, , andl (with <4, <I, see Sec. Il A the
connects the respective fractal structures to random walk#)terpretation ofp, as a probability distribution is thus con-
and, eventually, to anomalous diffusion. sistent. In particular, from EqA3) follows u<1 for D¢

What we presented here is the basic analysis of randont2, and p, is always defective. FoDg>2, we find u
walk through fractal environments. A next step will be to <1, wherex=1 only if |=%. The possibly finite escape
extend the theory by including the random walk in velocity rate (vesc0) discussed in Sec. Il D is thus related to the
space, which the particles perform in parallel to the randonfact that u<1, the probability distributionp, is possibly
walk in direct space. The velocity of the random walkers will defective, not necessarily normalized to 1.
no more be constant, but it will change at the collisions with
the fractal on the base of a stochastic model for the fieldhppENDIX B: FOURIER AND LAPLACE TRANSFORMING
inhomogeneitiegelectric fields in the case of plasmashis THE PROBABILITY DISTRIBUTIONS
will allow us to study particle acceleration in turbulent media
through the general approach of random walks and stochastic The distributionsy(r,t), ®©(r,t), and®©(r,t) are all
processes. of the same functional form, so that their Fourier-Laplace

transforms are analogous. We demonstrate the way we cal-
ACKNOWLEDGMENTS culate these Fourier-Laplace transforms on the example of

Performed for the Association Euratom/Hellenic Republicthe general functioy(r,t), which is of the form

and supported in part by the Fusion Programme of Euratom

and the General Secretariat of Research and Technology of x(r,)=x(r)é(t=rlv), (B1)
Greece. - - -
as arey(r,t), ®©O(r,t), and ®©O(r,t), with s<r=<oo,
APPENDIX A: ALTERNATIVE DERIVATION slv<t<o, and where r:=|r|. Also the distribution
OF THE ESCAPE RATE ®O)(r 1) is of the form Eq.(B1), and basically the expres-

In this appendix, we confirm Eq$20) and (21) for the ~ Sions we derive foy(r.t) are also valid fodO(r 1), with
escape rate,..in an alternative way, which reveals the con- Some modifications though, sinde!®)(r,t) has a finite sup-
nection of v to the normalization. of p, [Eq. (26)]: port (O<r < ). The treatment o ©)(r t) will be presented

Sincep, is the probability to travel freely a distanceand  in Appendix B 4.
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1. The Fourier transforms X(F,t)

The Fourier transform of(r,t) in spherical coordinates
(r,0,¢) is defined as

X(E,t)zf d3r y(r,t)ek T (B2)

=f r2sin d¢d adrx(r) S(t—rlv)ek (B3)
=J%rzdrx(r)a(t—r/v)fwdesinae“'FJzwddb,
5 0 0
(B4)

where we have explicitly introduced the lower linditfor the
r integral, below Whickp((F,t) is zero. For the integral, we
can assume without loss of generality théz, so thatk-r

=krcosé, where k:=|k|. Substituting furthermorex
:=C0s#6, the ¢ integral becomes

i H ikr cos6 _ ! 'erzi i
do singe dxé sin(kr), (B5)
0 -1 kr

so that

sinkr
k

X(E,t)=4wf:rdrx(r)5(t—r/u) (B6)

The 6 function in Eq.(B6) implies firstr =vt, secondt

= §lv (sincer = §), and third that the entire expression must

be multiplied byv (as a substitutiom — {:=t—r/v would
bring forth), so thatX(IZ,t) becomes

sinkvt
k

x(k,t)=4mv2ty(vt) (B7)

with t= 6/v. Assumingkvt<1 (see Sec. lll B, we approxi-
mate sirkvt~kvt—3(kot)®, which yields

_ 4
X(k,t)~4wv3t2)((vt)—szv5t4x(vt). (B8)

For conciseness, it is useful to introduce the marginal

probability distributioni (t) of X(F,t), integrated over space,

)\(t)::JX(F,t)d3r (B9)
=fX(r)é(t—r/v)rzsinadrd¢d0 (B10)
=4wf x(r)8(t—rlv)radr, (B11)

where in Eq(B10) we used spherical coordinates, and in Eq.

(B11) we exploited the spherical symmetry. Tihimtegration
of the § function impliesr =vt and an overall multiplication
by v, so that finally

PHYSICAL REVIEW E 67, 026413 (2003
Nt =47mv3t%x(vt) (B12

with t=8/v. With the aid of\(t), x(k,t) [Eq. (B7)] can
now be written as

. sinkvt
x(kty=v HtIN(1) ” (B13)
and the approximate forfiEq. (B8)] writes
_ 1
x(K,t)=~\(t)— gk%ztz)\(t). (B14)

2. The Laplace transform of y(K,t)

Through Eq.(B14), the Laplace transform of(k,t), de-
fined as

Y(Kos)= f;dtx(ﬁ,t)e-st (B15)

reduces for smalk to the Laplace transforms of(t) and
t2\ (1),

R w 1 o
X(k,s)mJ’ dt)\(t)e’St——kszJ dtt®A(t)e St
Slv 6 Slv
(B16)

a. The Laplace transform ofA(t)

Assumings<1, we approximate the Laplace transform

N(s) of A (1),

)\(s)=f N(t)es'dt, (B17)
Slv
by expanding\ (s) arounds=0 according to
d
N(S)=N(8)|s=0t Sz MS)|s=0 (B19)
so that from Eq(B17)
A(s ~Jm A(t)e stdt|g . —sfm th(t)e St
(s) o (1) |s 0 ST (t) |s o (B19
=BO(s)|s_q—SBY(S)]s .0, (B20)

where for convenience we have introduced the functions

B()(s) = f (e Stdt (B21)
Slv

with the integer parameter=0,1,2,3, etc.

b. The Laplace transform of 4\ (t)
Analogously to the case ok(t), we determine the

Laplace transform of?\ (t),
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L[tzx(t)](s):f; t’\(t)e S'dt, (B22)
by approximating in the way of EqB18),
L[tz)\(t)](s)%j;tz)\(t)e’“dﬂs_,o
—Sf;te’)\(t)efstdﬂs_,o (B23)
=BA(s))s.0-sBY(s)|s.0,  (B29)

where we have again identified the functi®{&(s) [see Eq.
B21)].
Inserting Eqs{(B20) and (B24) into Eq. (B16) yields for

x(K,9),
N 1)2
x(k,8)=BO(s)[5 0= 5BV(5)[s 0~ k*F [BP(9)]s0
—sB3(s)|s 0l (B25)
The problem of Laplace transforming(k,t) is thus reduced
to evaluating the functionsB((s) for s—0 and n
=0,1,2,3.

3. Evaluating the functions B{"(s) for s—0
The functionB("(s) ats=0,
BOSsmo= [ MOat=(T), (829
Slv

is thenth moment T"), of A(t). In particularB)(s)|s—g is
the normalizatiorw, of A(t), and we note that

BO)(s)|q_o= J;Mt)dt (B27)
:f x(r,H)d3rdt (B29)
ZJ:X(F)é(t—r/u)d%dt (B29)
- f:x(adar (B30
_ J xedr=puy. (B3

where in Eq.(B28) we basically repeated the definition of represents«p(r B,
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l11]. The normalizations ok (t), x(r,t), x(r), and x, are
thus identical and are represented dy. In the case where
x(r,7) represents)(r,t), N(t) corresponds tep(t), and u,
is calledu, see Sec. Il D.

If all the momentg T"), are finite up ton=3, Eq.(B20)
can be written

N(S)=y—S(T)y (832

and if A(t) is normalized to one, then we have furthermore
mr=1. [The first momentT), of \(t) in the case where
x(r,t) representsy(r,t) corresponds to the expected time
spent in a single jump incremehWith finite second and
third moments, Eq(B24) becomes

LIt (D) ](8)~(T2), —s(T3), .

EquationdB32) and(B33) are formal in the sense that the
momentsu, , (T),, (T?),, and(T%), do not necessarily
exist, they may be infinite. To determine the expressions
B("(s) for s—0 and the moments of(t), if they exist, we
have to specify the different cases whigl(lF,t) and \ (t)
represent.

(B33

a. The case R>2

For De>2, x(r,t) representss(r,t) or ®©)(r,t). Using
the relation Eq(B12), we find from Eq.(69) in the case of
%(r,t) that

M (t)=CoPF~Zex — B(vt)PF2]tPF 2 (B34)
and in the case ob©)(r,t) from Eq.(71) that
Cuv
(@) 1\ _ . D.—2
A (t) —B(D_Z)exr[ Bwt)’F°].  (B3YH
In both cases, A(t) is of the form A(t)

~exf — Bt)PF?]tY, with « a corresponding constant, so
that the expressionB("(s)|s ., [see Eq.B21)] turn to in-
tegrals of the form

BM(s)[s .o~ f t"eexd — B(vt)PF2le”Sdt|s .
Slv

(B36)

The exponential guarantees that the integrals are finite, for
s—0 andn=0,1,2,3, Egs(B32) and (B33) are thus valid,
and y(k,s) is determined through EqB25).

b. The case R<2

For Dg<2, the moments of(t) can be infinite.X(F,t)
®©(r t), and ®E(r,t). Through Eq.

\(t) [Eq.(B9)], in Eq.(B29) we inserted the generic form of (B12), the corresponding functiong(t) are given fory(r,t)

X(r,t) [Eqg. (B1)], in Eq.(B30) we did ther integration, and
in Eqg. (B31) we introducedy,, the marginal spatial prob-

ability distribution of y(r), integrated over solid angle,
::fX(F)dcr [in analogy to howp;, is related tqa(F), see Sec.

from Eqg.(52) as
N(t)=CypPr2tPe—3 (B37)

for ®©)(rt) from Eq. (55) as
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©©) CpPF 1t - for n+a>—-1.
A (= 2-D¢ tF (B38) EquationgB41) and(B45) determineX(Iz,s) through Eq.
(B25).

and for®(©)(rt) from Eq. (33 as
4. The Fourier-Laplace transform of ®©(r t)

Nty =y 0. (B39) )
(D= vese The distributiond®(©)(r t) has the same functional form

In all casesh(t) i(S)Of a pure power-law form\ (t)~t%, and  asy(r,t) [Eq. (B1)], just that its support is finite. It can thus
H W — . -

the expressionB™™(s)[s_.o [n=0,1,2,3; see EqB2D)]tum  pe reated analogous dr,t), and its Fourier-Laplace trans-

to integrals of the form form is given by Eq.(B25) on replacing the functions

- B(M(s) by the functionsB(s),
BM(S)|s .o~ L/ tteeSdt|, . (B40)

— Slv
B (s)= J t"\(t)eS'dt. (B46)
If n+a<—1, then the integrals are finite fer=0 and just 0
equal thenth moment, . TR ¥ () N
The marginal probability distribution (*")(t) is given
°° O)r 1) i

(n) _ N+ as_ /TN through Eqs(B12) and(34) [note that®'*'(r,t) is the same
B™(s)[s=0 L/vt dt~(T". B4D ¢ De>2 andDg<2],
Forn+a=—1, B"(s)|_, is infinite, and we determine ANy =y, (B47)

the exact divergence behavior by the substitutierny :=st, i .
with 0<t<é/v (from O0<r<J§). The expressions

w0 B(M = i
B(n)(5)|sﬂo~J' ttaesigy g (B42) B"(s)|s_0 (n=0,1,2,3) to be determined take the form
Slv Sl »
- Y\t dy BO(s)[5-.0~ fo t"e”*dtls .o, (B48)
= f (g) e‘y? (B43)
sdlv s—0 which are obviously finite fon=0,1,2,3, the cases needed to
L determine®(9)(k,s) through Eq.(B25).
= NtaeTVdy|s . (B44
ghtatl . Ofsslvy Vswo.  (B44 5. The Laplace transform of ¢(7)

The Laplace transform op(7) (Secs. IVB and V B is
given by Eq.(B20). In the caseD>2, the function\(t) is
given by Eq.(B34), with the expression8("(s) for s—0
evaluated according to EB36). In the cas® <2, A\ (1) is
given by Eq.(B37), and again Eq(B20) yields the Laplace
T(n+a+1) (B45)  transform ofe(t), by using Egs(B41) or (B45) to deter-

The integral in Eq(B44) is finite and approacheS(n+ «
+1) fors—0 as long an+a>—1, wherel'(-) is Euler’s
I' function, so that

B(n)(5)|sHo~

ghtatl mine B("(s) for s—0.
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