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Close-limit approximation to neutron star collisions
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We develop a close-limit approximation to the head-on collision of two neutron stars similar to that used to
treat the merger of black hole binaries. This approximation can serve as a useful benchmark test for future fully
non-linear studies. For neutron star binaries, the close-limit approximation involves assuming that the merged
object can be approximated as a perturbed, stable neutron star during the ring-down phase of the coalescence.
We introduce a prescription for the construction of initial data sets, discuss the physical plausibility of the
various assumptions involved, and briefly investigate the character of the gravitational radiation produced
during the merger. The numerical results show that several of the merged object’s fluid pulsation modes are
excited to a significant level.@S0556-2821~99!06422-X#

PACS number~s!: 04.30.Nk, 04.25.Dm, 04.40.Nr
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I. INTRODUCTION

The inspiral and subsequent merger of compact binarie
one of the most promising sources of gravitational radiat
for the new generation of interferometric detectors@Laser
Interferometric Gravitational Wave Observatory~LIGO!,
VIRGO, GEO600, TAMA#. Once these instruments come o
line, we hope to learn much about physics in strong grav
tional fields and at super-nuclear densities. This is an ex
ing prospect, but we need reliable theoretical models of
relevant gravitational-wave signals to dig them out of wha
likely to be a significantly noisy data stream. Hence, a hu
effort is presently being made to model the late stages
binary inspiral, both for black holes and neutron stars.
the inspiral phase the post-Newtonian approximation sch
has been pushed to very high orders@1#, and the available
results are now at a rather satisfactory level of accuracy.
the final merger of the two binary companions, our und
standing is not yet at a comparable level. To complet
model the collision of two compact objects, one must res
to numerical relativity and fully non-linear simulations a
suming no symmetries. This provides a great computatio
challenge, and truly reliable results may not be available
several years.

In the last few years, our understanding of black h
collisions has improved considerably. An important reas
for the recent advances is the parallel development of
numerical approach and approximate methods. In fact,
so-called close-limit approximation, in which the late sta
of the merger is modeled by considering the two black ho
as a single perturbed one, is in remarkable agreement
0556-2821/99/60~10!/104021~9!/$15.00 60 1040
is
n

-
it-
e
s
e
of
r
e

or
-
y
rt

al
r

e
n
e
e

e
s
ith

the numerical simulations@2,3#. We thus have a powerfu
benchmark test for the fully numerical schemes, which giv
us some confidence in the physical picture that emerges
course, a considerable amount of work remains before
black-hole problem is studied in complete generality. Mo
importantly, the calculations must be generalized to inclu
rotational effects@4#.

Compared to the collision of two black holes, the mergi
of two neutron stars involves, in addition to geometrodyna
ics, a non-trivial amount of ‘‘dirty’’ physics associated wit
the stellar fluid and a strong magnetic field. In the init
stages of collision, a shock wave will be generated,
merged object will heat up dramatically, the electromagne
fields of the two stars will become intertwined, and a stro
burst of energy may result. Even though the details remai
be understood, the merger is believed to lead to most of
observed cosmological gamma-ray bursts@5#. From a gravi-
tational point of view, this is interesting since it means th
gamma ray bursts should be accompanied by a burs
gravitational radiation. Thus, there is a possibility that futu
gravitational-wave observations will help shed light on t
gamma-ray puzzle. Anyway, at the later stages of the mer
several avenues are open. If the merged object is too mas
to form a neutron star, it will collapse to form a black hol
But for an interesting range of masses, the collapse may
temporarily halted. A supermassive neutron star can be s
ported either by thermal pressure or by rotation@6,7#. In
these cases, the final collapse will occur only after the ob
either cools or spins down. The likely extreme rotation of t
merged object is relevant also for other reasons. A rap
©1999 The American Physical Society21-1
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rotating stellar object can be both dynamically and secula
unstable. In the first case, the star spins so fast that matt
ejected from the equator. Via the so-called bar-mode in
bility, the core will shed some of its mass and a sufficie
amount of angular momentum for it to become dynamica
stable@8#. Once sufficient angular momentum has been s
to bring the rotation rate of the merged object below
dynamical Kepler limit, secular instabilities may come in
play @9#. Based on recent results, we would expect the in
bility associated with the merged object’sr modes to spin the
core down to a period longer than 10 ms in a year or
@10–13#. The merged object should, in fact, evolve almo
exactly like a newly born neutron star, up to the event
collapse in the case of supermassive configurations. He
the formation of a massive neutron star via merger of t
less massive ones could be followed by a detectable@14,15#
gravitational wave signal due to ther modes.

Clearly, it is a very difficult task to model all the aspec
of the merger in general relativity. On the other hand,
payoff from detecting and understanding these event
enormous. Neutron star mergers provide unique laborato
for physics at an extreme level. Given an understanding
the single pieces of the merger puzzle, we can hope to
together an accurate picture of the entire event. This pa
presents a potentially useful approximation to the late sta
of binary neutron star mergers. Inspired by the success o
close-limit approximation for colliding black holes, we d
velop an analogous framework for the case of neutron st
Although the close-limit approach to compact object merg
is unlikely to be as successful in the case of neutron s
~see later discussion!, our hope is to gain a rough insight int
the character of the gravitational waves that emerge fr
these events. What is more important, the framework that
develop should serve as a useful benchmark test for fu
fully general relativistic hydrodynamical simulations.

In the close-limit approach, the late stages of bina
merger are studied by assuming that the initial configura
can be viewed as, in some sense small, perturbations o
final object. The background is either a known analytic o
simple numerical solution. For black hole binaries, the ba
ground is a Schwarzschild or Kerr spacetime, depending
whether the remnant is a slowly or a rapidly rotating bla
hole. For the situation considered in the present pa
head-on neutron star mergers, the background can be eit
black hole or a non-rotating relativistic star. The approxim
tion that we will develop is only relevant in the latter cas
The case when a black hole is formed requires a study
gravitational collapse and is beyond our present aims. O
may argue that the collision of two neutron stars should ty
cally lead to an object that is too massive to support its
against gravity, and which must therefore collapse to a bl
hole. If that were the case, we would be restricted to
presumably small subset of mergers that involve less m
sive neutron stars. However, as mentioned above, super
sive neutron stars can, at least temporarily, be supporte
both thermal pressure and rotation. Since the merged ob
is likely to heat up to temperatures beyond 1011 K and ought
to spin close to the Kepler limit due to conservation of a
gular momentum, these effects will be highly relevant. If t
10402
ly
is

a-
t
y
d

e

-

o
t
l
e,

o

e
is
es
of
ut
er
es
he

rs.
s
rs

m
e
re

y
n
he
a
-
n

r,
r a
-
.
of
e

i-
lf
k
e
s-
as-
by
ct

-

object is too massive to form a cold non-spinning neutr
star, collapse will inevitably follow either on the coolin
time scale~of the order of 10 s for cooling due to neutrin
emission! or the spin-down time scale~which depends en-
tirely on the mechanism due to which the merged obj
spins down!. Since both of these time scales are orders
magnitude longer than the dynamical time scale of
merged object~typically at the ms level!, we propose that the
immediate aftermath of a merger could be temporarily
proximated via a close-limit approach.

In the case of colliding black holes, recent studies sh
that the emerging gravitational waves are dominated by
quasinormal modes of the final black hole. Intuitively, w
expect a similar result for merging neutron stars. The mer
object will pulsate wildly. This then leads to a characteris
gravitational-wave signal containing several of the nonrad
modes of oscillation of the newly formed star. Provided th
these modes can be identified in the gravitational-wave d
their particulars can be used to put strong constraints on
mass and the radius, as well as the equation of state, o
star @16–18#. This is an interesting idea, but it requires th
the modes be excited to detectable levels. Previous sim
tions indicate only that the fluidf modes andp modes, as
well as the gravitational-wavew modes, are excited when
non-rotating star is perturbed generically@19,20#. With the
present close-limit approximation, one can obtain an ‘‘un
ased’’ probe, perhaps not strictly astrophysical, of the le
of excitation of these modes during the late stages of a n
tron star binary merger.

Time evolutions of black hole and neutron star perturb
tions have recently received considerable attention. For n
rotating black holes, the dynamics of perturbations can
investigated via the Zerilli equation@21#. Studies of such
problems have led to a much improved understanding of
dynamics of non-rotating black holes. A similar approa
has also been used for perturbed rotating black holes. Ro
ing black-hole perturbations have been studied in the t
domain by solving the Teukolsky equation@22#. For pertur-
bations of non-rotating neutron stars, there are many poss
formulations, even within a particular choice of gauge. T
results we present for the evolution of initial data appro
mating neutron star head-on mergers were obtained u
two independent codes based on perturbative varia
within the Regge-Wheeler gauge@19,20#.

Given a reliable numerical code to evolve perturbations
a single neutron star, the close-limit calculation only requi
the construction of initial data that in some sense appro
mates the late stage in the coalescence of the binary.
obvious fundamental difference between close-limit init
data sets for black hole collisions and those involving n
tron stars is the presence of a horizon. In fact, the succes
the close-limit approach for black holes may to a large ext
rest on the presence of the horizon. The reason is the foll
ing: The initial data for two colliding black holes correspon
to rather large perturbations only in the region inside
peak~roughly atr 53M ) of the curvature potential. In effect
the perturbative scheme is unlikely to be reliable in this
gion. However, the bulk of these perturbations never esc
to infinity. They are scattered by the effective potential a
1-2
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CLOSE-LIMIT APPROXIMATION TO NEUTRON STAR . . . PHYSICAL REVIEW D 60 104021
subsequently swallowed by the final black hole. Thus,
anticipated errors in the scheme have a minute effect on
gravitational radiation that reaches the far zone. Unfor
nately, the neutron star case is not masked in this way. S
one would typically only include dissipation due to gravit
tional radiation in the simplest models, all ‘‘errors’’ in ou
initial data must escape through this channel in the abse
of a central horizon. Consequently, the outcome of clo
limit neutron star collisions is likely to be rather sensitive
the particular structure of the initial data. It should also
pointed out that the fundamental qualitative difference
tween the two problems makes a direct comparison betw
the black hole case and that of neutron stars rather dubi

A more careful study of the black hole results sugge
that a close-limit approximation for neutron stars collisio
may not be a complete lost cause. In close-limit black-h
collisions, most of the energy radiated, if not all, comes fro
quadrupole (l 52) quasi-normal mode~QNM! ringing. The
only aspect that distinguishes the evolution of a given clo
limit, binary black hole initial data from any other data is th
fixed amplitude of the ringing. If we assume that a simi
situation arises for neutron stars, we should focus our at
tion on the mode ringing and ignore the initial burst of r
diation. This is natural since one would expect the init
burst to be strongly dependent on the characteristics of
initial data. In the case of stars, this strategy is associa
with an unfortunate sacrifice. The early parts of t
gravitational-wave signal from the merger may contain
rapidly dampedw modes@23,12#. In the proposed prescrip
tion, the inferred amplitude of these modes may well be
reliable. Actually, one would expect this to be the case
physical grounds. The problem of constructing ‘‘astrophy
cal’’ initial data in numerical relativity essentially boil
down to specifying the amount of gravitational waves in t
spacetime. In a neutron star spacetime, it would be nat
for the initial gravitational waves to escape via thew modes.
Hence, an uncertainty in the amplitude of these mode
expected, given our poor understanding of the relevant as
physical data. Taking the suggested attitude, we do not
pect to be able to assess the astrophysical relevance of tw
modes. Instead, we should view the neutron star close-l
initial data, and the associated results, as a constraint on
amplitude and ratios of excitations of the longer lived flu
pulsation modes, which, as with the black hole case, w
depend on the particular nature of the initial data.

II. CLOSE-LIMIT INITIAL DATA

A. Stellar models

A neutron star model in general relativity is obtained
solving the Tolman-Oppenheimer-Volkoff~TOV! system of
equations:

dm

dr
54 p r 2 r0 ~1!

dn

dr
5

e2l

r 2
~m14 p r 3 p0! ~2!
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dp0

dr
52~r01p0!

dn

dr
, ~3!

where the spacetime metric is given by

ds252e2n dt21e2l dr21r 2 du21r 2 sin2 u dw2. ~4!

Above,r0 andp0 are the density and pressure, respective
andm represents the mass inside radiusr. It is related to the
metric functionl by

e22l[12
2 m

r
. ~5!

All quantities are functions of the radial coordinater only.
The construction of initial data for the close-limit approx
mation involves two steps: First, one needs to solve the T
equations and obtain stellar models for both the collid
stars and the final configuration. The second step consis
a suitablesuperpositionof colliding stars followed by asub-
traction of the background star. This yields the perturbatio
which are then the focus of the evolution. With this in min
we have denoted background quantities of the star formed
the merger by the subscript 0 and perturbations of th
quantities by the subscript 1. The TOV solutions of the c
liding stars will be denoted by an asterisk(*). For simplic-
ity, we will only consider polytropic equations of statep0
5K r0

G, whereK and G are the adiabatic constant and i
dex, respectively. The adiabatic indexG is related to the
polytropic indexn by G5111/n. In the specific example
provided later we useG52 (n51).

B. Initial perturbations and constraints

The construction of astrophysically relevant initial data
numerical relativity is an outstanding problem not only fro
the mathematical point of view. In the present context,
would like the data to represent the initial configuration f
the ring-down phase after a collision. Without the non-line
evolution that precedes the ring-down stage, the specifica
of initial data becomes a non-trivial ‘‘guess.’’ In the 311
formulation @24# of Einstein’s equations, initial data consi
of the spatial metricgi j , the extrinsic curvatureKi j and the
matter fields. These initial data containtoo much freedom.
Only 4 out of the 12 components in (gi j ,Ki j ) are fixed by
the constraints. The remaining pieces, including the ma
fields, are freely specifiable and single out the particular s
ation under consideration. Furthermore, it is usually not
vious which four components in (gi j ,Ki j ) should be ob-
tained from solving the constraints.

The standard procedure to separate the freely specifi
data from that fixed by constraints in numerical relativity
York’s conformal approach@25#. In addition, this method
provides a natural framework for ‘‘superposing’’ solution
This is a clear advantage given our present project. For
stance, given data (gi j ,Ki j ) for individual black holes, it is
possible to ‘‘add’’ these solutions and solve the constrai
to obtain self-consistent, fully non-linear, initial data@26#. A
similar procedure can be applied to neutron star binaries
1-3
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As mentioned in the previous section, our problem
volves constructing perturbative initial data. Once the ba
ground matter and spacetime are specified, there are two
eral avenues that one could follow to construct perturba
initial data. One of them, which should be used if the p
pose of applying the framework presented in this pape
comparisons or benchmark tests of non-linear simulatio
involves solving the fully non-linear constraints for the b
nary system and then subtracting the background to ob
the perturbations. The second approach consists, on the
hand, of finding solutions that satisfy the Hamiltonian a
momentum constraints to the order required by the pertu
tive expansion. Because of simplicity, we will use the lat
method, namely linearization of the constraints.

As with the non-linear case, close-limit initial data a
completely characterized, for both black holes and neut
stars, by the freely specifiable data~data not fixed by the
constraints! and boundary conditions. That is, both the fr
data and boundary conditions select from the class of s
tions of the constraints those dealing with the superposi
of colliding objects. In this paper, we focus the discussion
the simplest possible case: the close-limit head-on collisi
of neutron stars that are initially at rest. This means that
initial extrinsic curvature and matter current density van
to all orders. Therefore, the momentum constraints are id
tically satisfied, and one is only required to solve the Ham
tonian constraint. More general classes of neutron star in
data are discussed in@27#. For vanishing extrinsic curvature
the Hamiltonian constraint reads

R516p r, ~6!

whereR is the Ricci scalar constructed fromgi j andr is the
matter density.

Following York’s method, the spatial metricgi j and mat-
ter densityr are conformally transformed according to

gi j 5f4 ĝi j ~7!

r5f28 r̂, ~8!

where carets denote conformal quantities. With the ab
transformation, Eq.~6! takes the form

8 D̂f2R̂ f5216p r̂ f23, ~9!

whereD̂[¹̂ i¹̂
i and ¹̂ i denotes covariant differentiation a

sociated with the conformal metricĝi j .
We will assume at this point that metric perturbatio

only enter via the conformal factor. That is,

f5f01f1 ~10!

ĝi j 5ĝi j
0 . ~11!

However, it is important to realize that this is not a phy
cally motivated choice. The reason for choosing data that
spatially conformally flat~i.e. ĝi j

1 50) is by no means a nec
essary condition for our procedure to work. In fact, for ne
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tron stars the choiceĝi j
1 50 could lead to a suppression in th

excitation ofw modes@19#. Still, the calculations are simpli
fied considerably by this assumption, and it allows a be
comparison with the black hole binary case since the ini
data for multiple black holes are usually constructed ass
ing conformal flatness@28#. At the one level, the availability
of non-linear evolutions will remove this uncertainty sin
the free data can then be determined from the outcome
these evolutions. However, there will still be a correspond
choice to make in the specification of initial data for th
non-linear phase.

The conformal transformations~7! and ~8!, together with
the perturbative expansions~10! and ~11!, yield

gi j
0 5f0

4 ĝi j
0 ~12!

gi j
1 54f0

3 f1 ĝi j
0 ~13!

r05f0
28 r̂0 ~14!

r15f0
28 r̂128 f0

29f1 r̂0 . ~15!

With the above perturbative expansions, the Hamilton
constraint takes the form

8 D̂f12~R̂148p r̂0 f0
24!f15216p f0

23r̂1 . ~16!

In summary, given the background (f0 ,ĝi j
0 ,r̂0), close-

limit initial perturbations of head-on collisions of neutro
stars initially at rest consist of only two quantities: the pe
turbation of the conformal factor,f1, and the perturbation o
the conformal matter density,r̂1. In the following, we view
the density perturbationr̂1 as free data, withf1 obtained by
solving the linearized Hamiltonian constraint, Eq.~16!. Thus,
the density perturbationr̂1 fully characterizes the collision
and we turn now to its specification.

C. Close-limit superposition of stellar models

The key contribution of the present work is to provide
recipe for obtaining the density perturbationr̂1 from a suit-
able superposition of isolated neutron stars. Of course,
realistic astrophysical situation, the starting configuration
the ring-down phase is not a superposition of isolated n
tron stars since effects, such as those from tidal forces,
an important role. To represent a ‘‘reasonable’’ close-lim
approximation, a superposition procedure must be such
the perturbations vanish as the separation between the
vanishes. In order to superpose two neutron stars and s
Eq. ~16!, it is convenient to perform a coordinate transfo
mation that brings the 3-metric~4! into the isotropic, confor-
mally flat form

ds25f0
4~dr̂21 r̂ 2 du21 r̂ 2sin2u dw2!. ~17!

This is accomplished by setting the conformal factor to
1-4
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f05S r

r̂
D 1/2

, ~18!

and transforming the radial coordinate according to

dr̂

dr
5el

r̂

r
. ~19!

With the metric given by Eq.~17!, Eq. ~16! can be trivially
rewritten as a radial elliptic equation

1

r̂ 2

d

dr̂
S r̂ 2

d

dr̂
f1D 2F l ~ l 11!

r̂ 2
16 p r̂0 f0

24Gf1

522p f0
23 r̂1 , ~20!

where we have used a standard decomposition in sphe
harmonics:

r̂~ r̂ ,u,w!5 r̂0~ r̂ !1(
lm

r̂1~ r̂ ! Ylm~u,w! ~21!

f~ r̂ ,u,w!5f0~ r̂ !1(
lm

f1~ r̂ ! Ylm~u,w!. ~22!

To proceed, we need to provide a superposition proced
from which r̂1 can be obtained. To do this, we make t
following observation: All of the black-hole close-limit ini
tial data sets considered so far have had not only the ap
priate zero-separation limit but also the correct infini
separation limit. That is, as the separation of the black ho
increases, the initial data converge to that of two isola
holes. A similar behavior is in principle desirable for neutr
stars. However, the situation for neutron stars is more c
plicated because there are no simple relations between m
radius and density as for black holes. Hence, we are force
use a somewhatad hocprescription. We neglect tidal defor
mations, etc., and use the following superposition of den
profiles of isolated neutron stars:

r̂~ r̂ i !5 r̂* ~ r̂ i2 ĵ i !1 r̂* ~ r̂ i1 ĵ i !

2@ r̂* ~ r̂ i2 ĵ i ! r̂* ~ r̂ i1 ĵ i !#1/2. ~23!

Herer̂* represents the conformally transformed density p
file of the individual colliding neutron stars displaced a d
tanceĵ i in conformal space. For simplicity we are assumi
identical colliding stars. It is straightforward to verify tha
the superposition of densities~23! satisfies both the zero
separation and infinite-separation limits.

Assuming a small displacement, i.e. imposing the clo
limit condition, we find that

r̂* ~ r̂ i6 ĵ i !5 r̂* ~ r̂ i !6 ĵ j ¹̂ j r̂* ~ r̂ i !1
1

2
ĵ j ĵk ¹̂ j ¹̂k r̂* ~ r̂ i !.

~24!

Thus
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r̂5 r̂* 1
1

2
~ ĵ i ¹̂ i r̂* !21

1

2
ĵ i ĵ j ¹̂ i ¹̂ j r̂* , ~25!

so the conformal density perturbation is given by

r̂15 r̂2 r̂05 r̂* 2 r̂01
1

2
~ ĵ i ¹̂ i r̂* !21

1

2
ĵ i ĵ j ¹̂ i ¹̂ j r̂* .

~26!

We choose coordinates such that the centers of the collid
stars lie on thez axis, so the off-set vectorĵ i is given by

ĵ i5 ĵS cosu,2
1

r̂
sinu, 0D . ~27!

Substitution of Eq.~27! into Eq. ~26! yields

r̂1~ r̂ , u, w!5 r̂* ~ r̂ !2 r̂0~ r̂ !1
1

2
ĵ2 Fcos2 u S d

dr̂
r̂* ~ r̂ !D 2

1cos2 u
d2

dr̂2
r̂* ~ r̂ !1sin2 u

1

r̂

d

dr̂
r̂* ~ r̂ !G .

~28!

Making use ofA4 p Y0051 and 4
15A5 p Y201

1
3 5cos2 u, Eq.

~28! can be rewritten as

r̂1~ r̂ , u, w!5(
lm

r̂1~ r̂ ! Ylm~u, w! ~29!

5A4 pF r̂* ~ r̂ !2 r̂0~ r̂ !1
1

2
ĵ2 H d2

dr̂2
r̂* ~ r̂ !

1S d

dr̂
r̂* ~ r̂ !D 2

2
4

r̂

d

dr̂
r̂* ~ r̂ !J GY00~u, w!

1
2

15
A5 p ĵ2 F d2

dr̂2
r̂* ~ r̂ !1S d

dr̂
r̂* ~ r̂ !D 2

2
1

r̂

d

dr̂
r̂* ~ r̂ !GY20~u, w!. ~30!

From the above results, we deduce that the confor
density perturbationr̂1 has two contributions. One is
monopole part (m50, l 50),

r̂15A4 pF r̂* 2 r̂01
1

2
ĵ2 H d2

dr̂2
r̂* 1S d

dr̂
r̂* D 2

2
4

r̂

d

dr̂
r̂* J G .

~31!

Since a monopole perturbation does not lead to gravitatio
radiation, we will not consider this contribution further. Th
second part is a quadrupole (m50, l 52) perturbation given
by the last term in Eq.~30!:
1-5
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r̂15
2

15
A5 p ĵ2 F d2

dr̂2
r̂* 1S d

dr̂
r̂* D 2

2
1

r̂

d

dr̂
r̂* G . ~32!

This is the dominant radiative source which should be u
in Eq. ~20! to construct initial data. Notice that thel 52
perturbation~32! has the correct limitr̂1→0 when ĵ→0
independent of the stellar model used forr̂* . On the other
hand, for the monopole perturbation~31! to vanish in the
limit ĵ→0 we must haver̂* → r̂0.

D. Defining background and colliding stellar models

As we already discussed in the Introduction, the final s
lar object that is formed by merger will be rather differe
from the initial stars. It will certainly be hotter and mo
likely spinning more rapidly since the angular momentum
the inspiral orbit must be conserved. In the case we cons
here, that of a head-on collision of two non-rotating neutr
stars, we obviously need not worry about rotational effe
But we still need to estimate the changes in the equatio
state as the stellar material heats up during the merger. T
this, we must speculate what the outcome of the collis
may be, and specify a relation between the final backgro
spacetime includingr̂0 and the density distributionr̂* of the
individual initial stars.

A word of caution is needed at this point. Although it
certainly possible that the coalescence of two neutron s
could yield a single, hot neutron star, it is very unlikely f
that process to proceed by an overlap of the original neu
stars, taken to be static polytropes. Here is where the m
severe limitation of our work resides. Nonetheless, we exp
that the rough properties of the mode ringing will be ca
tured by our study.

In order to have the correct zero- and infinite-separat
limits, we must consider the relation between the masse
the colliding stars and the mass of the background sta
simplifying and to some extent reasonable condition is
assume that the mass lost during the collision is not sign
cant, so the total mass is approximately conserved. Spe
cally, this implies that the total mass computed, in the phy
cal space, from the background densityr0 and the total mass
obtained from the superposition of densitiesr* in Eq. ~23!
are roughly the same. As we shall see, in the close-li
approximation, this condition implies that properties of t
colliding stellar models~for example, the radius of the star!
depend on the separation.

TOV solutions for polytropic equations of state are p
rametrized by the central densityrc , adiabatic constantK
and adiabatic indexG. We assume that the collision does n
modify the adiabatic index~and setG52 for all models!.
This assumption is consistent with available numerical
sults @29#. Therefore, the models used to specifyr* differ
only in central density and adiabatic constant. We want th
parameters to reflect changes in the equation of state a
temperature increases, in such a way that we retain the fi
much hotter, star at zero separation. Our method for c
structing polytropic equations of state for the initial stars~in
terms of rc and K) in relation to that of the final star is
10402
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inspired by the recent arguments of Shapiro@6# for head-on
collisions of neutron stars from rest at infinity.

The starting point is to notice that TOV solutions exhib
the following scalings:

M ~rc!5M̃ ~ r̃c! Kn/2 ~33!

R~rc!5R̃~ r̃c! Kn/2 ~34!

rc5 r̃c K2n, ~35!

with M and R the total mass and radius of the star. Abov
tildes denote dimensionless quantities. To use these rela
in the close-limit approach, we recall that we want o
scheme to be valid in two limits: It should lead to the e
pected results both in the limit of zero and infinite separati
To achieve this we assume that the mass and radius o
colliding stars~index *) are related to the background st
~index 0! by

M* 5M0 S 22h

2 D ~36!

R* 5R0 S 22h

2 D , ~37!

whereh is a monotonic function of the separationj in physi-
cal space and represents the ‘‘overlap’’ of the two sta
Quite naturally,h ranges from 0 to 1 withh(j→0)50 and
h(j→`)51. This construction ensures that our approxim
tion satisfies the desired limits. However, we have as yet
information about the functionh for intermediate separa
tions. Such information could be obtained from fully nume
cal studies of merging stars. In the present study we mak
natural, albeit quite arbitrary, choice. We assume that in
close-limit regime the overlap function is linear in the sep
ration of the colliding stars and use

h~j!5
j

R0
. ~38!

Substitution of Eqs.~36! and ~37! into Eqs. ~33! and ~34!,
respectively, now yields

M̃*
M̃0

5
R̃*
R̃0

5S 22h

2 D 21S K0

K*
D n/2

. ~39!

Equation~39! implies

M̃*
R̃*

5
M̃0

R̃0

. ~40!

Since the ratioM̃ /R̃ is a monotonic function ofr̃c , Eq. ~40!
yields

M̃*
M̃0

5
R̃*
R̃0

51. ~41!
1-6
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Hence, from Eqs.~39!, ~41! and~35!, one obtains the follow-
ing relationships between adiabatic constants and ce
densities:

K* 5K0 S 22h

2 D 2/n

~42!

rc* 5rc
0 S 22h

2 D 22

. ~43!

In the limit h→1, these scalings reduce to the case of t
polytropic stars colliding head-on from rest at infinity@6#.
Here, we will use Eqs.~42! and~43! to relate the polytropic
equations of state for the initial and the final stars, also
intermediate separations.

It is important to point out that, if the amount of mass lo
during the collision is not negligible, conservation of mass
not given byM052 M* . As is clear from Eq.~36!, conser-
vation of mass would be given byM052 M* only in the
case of infinite separation. For the situation we consid
conservation of mass is demonstrated by comparing the m
M0 computed fromr0 to that fromr in Eq. ~23!. It is the
mass obtained from the superposition rule~23! that takes
correctly into account the double counting in the overlap
the density profiles of the colliding stars.

III. NUMERICAL RESULTS

Our numerical procedure to construct initial data cons
of first solving, using a fourth-order Runge-Kutta integrat
the TOV equations~1!–~3! for the background and colliding
stars, together with the coordinate transformation~19!. These
solutions are then conformally transformed and used to c
puter̂1. Finally, Eq.~20! is solved for the perturbation of th
conformal factorf1 as a boundary value problem using
standard tridiagonal solver@30#. The boundary conditions fo
f1 in Eq. ~20! are regularity at the axis,f1u r̂ 5050, and
asymptotic flatness at infinity, (d/dr̂)f1u r̂ 5`50.

The main aim of the present paper was to provide a p
scription for close-limit initial data in the case of neutro
stars. But even though we will not discuss a large sampl
numerical evolutions here, it is clearly appropriate to illu
trate typical results obtained for the proposed neutron
close-limit approximation. We have used two independ
numerical codes@19,20# to evolve the relevant perturbatio
quantities from the initial data obtained in the previous s
tions. These evolution codes have been well tested, and
have verified that they lead to identical results in the pres
case.

Figures 1–3 show typical initial data and gravitation
waves resulting from the close-limit approximation. Th
particular case pertains to a final stellar configuration w
rc

052.6931015g/cm3 and K05100 km2. For these param
eters, the mass and radius of the background star areM0
51.24M ( andR059.0 km, respectively. The initial collid-
ing stars, which are displaced a distance 0.1R0 from the cen-
ter of mass, follow fromrc* 52.9831015g/cm3 and K*
590.25 km2 and haveM* 51.17M ( and R0* 58.58 km.
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Figure 1 shows the perturbed conformal factorf1 and den-
sity r1. On the other hand, Fig. 2 shows clearly that t
character of the emerging gravitational waves is exactly w
one would expect: A sharp initial burst followed by slow
damped oscillations. The long-lived oscillations are asso
ated with the various fluid pulsation modes of the final co
figuration. That this is the case is clear from Fig. 3, where
show the Fourier transform of the waveform in Fig. 2.

Regarding the short-livedw modes from our sample evo
lution, while these modes are clearly present in the early p
of the signal if we graph the variableS ~a combination of
metric variables as defined by Allenet al. @19# that allows
the perturbation equations to be written in a simple form!,
they are basically absent in the corresponding Zerilli fun
tion Z. Since the Zerilli functionZ is a reliable measure o
the emerging gravitational waves, we conclude that wit
the assumptions and limitations of our framework the out
ing radiation carries insignificant influence from thew
modes. There is a strong indication, however, that the wo
ing assumption of conformally flat initial data suppresses
w modes in a crucial way. Hence, we should also keep

FIG. 1. Perturbations of the conformal factorf1 and densityr1

for a close-limit collision of equal-mass stars with conformal se
ration j50.1R0. The TOV parameters for the background and c
liding stars arerc

052.6931015 g/cm3 andK05100 km2. For these
parameters, the mass and radius of the background star areM0

51.24M ( andR059.0 km, respectively. The initial colliding stars
which are displaced a distance 0.1R0 from the center of mass, fol-
low from rc* 52.9831015 g/cm3 and K* 590.25 km2 and have
M* 51.17M ( andR0* 58.58 km.
1-7
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mind the potential astrophysical relevance ofw modes in
more realistic situations.

We can, on the other hand, meaningfully discuss
longer lived fluid modes. The various peaks in the spectr
shown in Fig. 3 correspond directly to the fluid pulsati
modes of the final configuration, the lowest frequency mo
being the fundamentalf mode and the next one being the fir
of the pressurep modes. This is interesting further eviden
that these modes will be clearly excited whenever a neu
star is dynamically perturbed, which is highly relevant co
sidering the recently devised method for inferring stellar
rameters from detected gravitational waves carrying
mode signature@17,18#. However, one must still prove tha
these modes carry sufficient energy to be observable by
new generation of gravitational wave detectors. To inve
gate this issue, one should study a larger sample of cl
limit evolutions and perhaps also attempt a comparison to
black-hole case. Work along these lines is currently
progress, and we hope to report on it soon.

IV. FINAL COMMENTS

We have developed a framework for modeling merg
neutron stars using perturbation theory. Specifically, we h
devised approximate initial data for the very late stages

FIG. 2. Snapshots of various functions illustrating for the ev
lution of the initial data shown in Fig. 1. We show the functionS
defined as in@19#, the Zerilli function and the perturbed conform
factor T54rf1 /f0.
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binary merger, when the two merged stars can be consid
as a final configuration plus perturbations. This ‘‘clos
limit’’ approximation is analogous to the one that has pr
vided surprisingly accurate results in the case of collid
black holes. However, as we have discussed in some deta
is not straightforward to devise a similar approximation
the case of neutron stars. Our chosen scheme respects
of the required physical constraints. It has the correct lim
at infinite and zero separation of the two stars. Furtherm
we have tried to model the changes in the equation of s
brought about by the merger in a simple, but seemingly
propriate@6#, way. Still, it must be remembered that this
just a first step and that one could potentially refine the clo
limit idea considerably.

Even though it is clear that the close-limit approach
neutron star collisions has severe limitations~it will certainly
never completely replace fully non-linear general relativis
hydrodynamics simulations!, we believe it can prove to be o
considerable use. On a technical level, it should be ra
straightforward to use our initial data sets, combined with
perturbation evolutions, as benchmark tests for fully no
linear evolutions in numerical relativity taking account of th

-
FIG. 3. The Fourier transform of the waveforms for the functi

S and the Zerilli functionZ shown in Fig. 2. The two sharp peak
correspond to the lowest frequency fluid pulsation modes of
final configuration. The first peak belongs to the fundamentaf
mode while the next one is the first of the pressurep modes. It is
notable thatw modes seem to be present inS but not in Z. This
effect is further discussed in the main text.
1-8
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detailed fluid dynamics. This would in fact be a very use
test for a non-linear simulation since it would ascertain t
the detailed dynamics associated with the star’s various
sation modes could be resolved. Also, one could clearly
the perturbation equations to evolve any neutron star pro
at the late stages, thus saving valuable computing time.
thermore, it seems possible that we can learn some degr
physics from our results. Evolutions from all the close-lim
data sets that we have so far constructed show that the
pulsation modes of the final star are excited to a signific
level. As far as the potential excitation of the gravitationaw
modes is concerned, our present understanding is far f
satisfactory, but as we have pointed out, an investigation
this issue likely requires a true understanding of ‘‘astrophy
cal’’ initial data and a relaxation of the standard assumpt
of conformal flatness.

In conclusion, it is worth pointing out that our close-lim
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framework can be extended to more general situations. In
present study we chose to restrict ourselves to the hea
collision of two stars that are initially at rest. These assum
tions can conveniently be relaxed to allow the stars to h
initial momentum. A generalization to the physically re
evant case of slow rotation also seems possible. Work
these directions is in progress.
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