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We develop a close-limit approximation to the head-on collision of two neutron stars similar to that used to
treat the merger of black hole binaries. This approximation can serve as a useful benchmark test for future fully
non-linear studies. For neutron star binaries, the close-limit approximation involves assuming that the merged
object can be approximated as a perturbed, stable neutron star during the ring-down phase of the coalescence.
We introduce a prescription for the construction of initial data sets, discuss the physical plausibility of the
various assumptions involved, and briefly investigate the character of the gravitational radiation produced
during the merger. The numerical results show that several of the merged object’s fluid pulsation modes are
excited to a significant leve] S0556-282(199)06422-X]

PACS numbe(s): 04.30.Nk, 04.25.Dm, 04.40.Nr

[. INTRODUCTION the numerical simulation§2,3]. We thus have a powerful

The inspiral and subsequent merger of compact binaries isenchmark test for the fully numerical schemes, which gives
one of the most promising sources of gravitational radiatiorus some confidence in the physical picture that emerges. Of
for the new generation of interferometric detectksiser course, a considerable amount of work remains before the
Interferometric Gravitational Wave ObservatoiZIGO), black-hole problem is studied in complete generality. Most
VIRGO, GEO600, TAMA. Once these instruments come on importantly, the calculations must be generalized to include
line, we hope to learn much about physics in strong gravitarotational effectg4].
tional fields and at super-nuclear densities. This is an excit- Compared to the collision of two black holes, the merging
ing prospect, but we need reliable theoretical models of thef two neutron stars involves, in addition to geometrodynam-
relevant gravitational-wave signals to dig them out of what isics, a non-trivial amount of “dirty” physics associated with
likely to be a significantly noisy data stream. Hence, a hugehe stellar fluid and a strong magnetic field. In the initial
effort is presently being made to model the late stages oftages of collision, a shock wave will be generated, the
binary inspiral, both for black holes and neutron stars. Fomerged object will heat up dramatically, the electromagnetic
the inspiral phase the post-Newtonian approximation schemfelds of the two stars will become intertwined, and a strong
has been pushed to very high ord¢t3, and the available burst of energy may result. Even though the details remain to
results are now at a rather satisfactory level of accuracy. Fdre understood, the merger is believed to lead to most of the
the final merger of the two binary companions, our under-observed cosmological gamma-ray buf&k From a gravi-
standing is not yet at a comparable level. To completelytational point of view, this is interesting since it means that
model the collision of two compact objects, one must resorjamma ray bursts should be accompanied by a burst of
to numerical relativity and fully non-linear simulations as- gravitational radiation. Thus, there is a possibility that future
suming no symmetries. This provides a great computationajravitational-wave observations will help shed light on the
challenge, and truly reliable results may not be available fogamma-ray puzzle. Anyway, at the later stages of the merger,
several years. several avenues are open. If the merged object is too massive

In the last few years, our understanding of black holeto form a neutron star, it will collapse to form a black hole.
collisions has improved considerably. An important reasorBut for an interesting range of masses, the collapse may be
for the recent advances is the parallel development of théemporarily halted. A supermassive neutron star can be sup-
numerical approach and approximate methods. In fact, thported either by thermal pressure or by rotati@?7]. In
so-called close-limit approximation, in which the late stagethese cases, the final collapse will occur only after the object
of the merger is modeled by considering the two black hole®ither cools or spins down. The likely extreme rotation of the
as a single perturbed one, is in remarkable agreement wittnerged object is relevant also for other reasons. A rapidly
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rotating stellar object can be both dynamically and secularlybject is too massive to form a cold non-spinning neutron
unstable. In the first case, the star spins so fast that matter sar, collapse will inevitably follow either on the cooling
ejected from the equator. Via the so-called bar-mode instatime scale(of the order of 10 s for cooling due to neutrino
bility, the core will shed some of its mass and a sufficientemission or the spin-down time scalévhich depends en-
amount of angular momentum for it to become dynamicallytirely on the mechanism due to which the merged object
stable[8]. Once sufficient angular momentum has been shedpins down. Since both of these time scales are orders of
to bring the rotation rate of the merged object below themagnitude longer than the dynamical time scale of the
dynamical Kepler limit, secular instabilities may come into merged objecttypically at the ms leve] we propose that the
play [9]. Based on recent results, we would expect the instatmmediate aftermath of a merger could be temporarily ap-
bility associated with the merged object’snodes to spin the proximated via a close-limit approach.
core down to a period longer than 10 ms in a year or so In the case of colliding black holes, recent studies show
[10-13. The merged object should, in fact, evolve almostthat the emerging gravitational waves are dominated by the
exactly like a newly born neutron star, up to the eventualquasinormal modes of the final black hole. Intuitively, we
collapse in the case of supermassive configurations. Hencexpect a similar result for merging neutron stars. The merged
the formation of a massive neutron star via merger of twoobject will pulsate wildly. This then leads to a characteristic
less massive ones could be followed by a detectgblely — gravitational-wave signal containing several of the nonradial
gravitational wave signal due to tliemodes. modes of oscillation of the newly formed star. Provided that
Clearly, it is a very difficult task to model all the aspects these modes can be identified in the gravitational-wave data,
of the merger in general relativity. On the other hand, thetheir particulars can be used to put strong constraints on the
payoff from detecting and understanding these events imass and the radius, as well as the equation of state, of the
enormous. Neutron star mergers provide unique laboratoriestar[16—18. This is an interesting idea, but it requires that
for physics at an extreme level. Given an understanding othe modes be excited to detectable levels. Previous simula-
the single pieces of the merger puzzle, we can hope to puions indicate only that the fluil modes andp modes, as
together an accurate picture of the entire event. This papevell as the gravitational-waver modes, are excited when a
presents a potentially useful approximation to the late stageson-rotating star is perturbed genericaly9,2q. With the
of binary neutron star mergers. Inspired by the success of theresent close-limit approximation, one can obtain an “unbi-
close-limit approximation for colliding black holes, we de- ased” probe, perhaps not strictly astrophysical, of the level
velop an analogous framework for the case of neutron staraf excitation of these modes during the late stages of a neu-
Although the close-limit approach to compact object mergergron star binary merger.
is unlikely to be as successful in the case of neutron stars Time evolutions of black hole and neutron star perturba-
(see later discussignour hope is to gain a rough insight into tions have recently received considerable attention. For non-
the character of the gravitational waves that emerge fromotating black holes, the dynamics of perturbations can be
these events. What is more important, the framework that wanvestigated via the Zerilli equatiof21]. Studies of such
develop should serve as a useful benchmark test for futurproblems have led to a much improved understanding of the
fully general relativistic hydrodynamical simulations. dynamics of non-rotating black holes. A similar approach
In the close-limit approach, the late stages of binaryhas also been used for perturbed rotating black holes. Rotat-
merger are studied by assuming that the initial configurationng black-hole perturbations have been studied in the time
can be viewed as, in some sense small, perturbations of ttdlbmain by solving the Teukolsky equatip®2]. For pertur-
final object. The background is either a known analytic or abations of non-rotating neutron stars, there are many possible
simple numerical solution. For black hole binaries, the backformulations, even within a particular choice of gauge. The
ground is a Schwarzschild or Kerr spacetime, depending oresults we present for the evolution of initial data approxi-
whether the remnant is a slowly or a rapidly rotating blackmating neutron star head-on mergers were obtained using
hole. For the situation considered in the present papetwo independent codes based on perturbative variables
head-on neutron star mergers, the background can be eithemdthin the Regge-Wheeler gaui&9,2q.
black hole or a non-rotating relativistic star. The approxima- Given a reliable numerical code to evolve perturbations of
tion that we will develop is only relevant in the latter case.a single neutron star, the close-limit calculation only requires
The case when a black hole is formed requires a study ahe construction of initial data that in some sense approxi-
gravitational collapse and is beyond our present aims. Onmates the late stage in the coalescence of the binary. An
may argue that the collision of two neutron stars should typi-obvious fundamental difference between close-limit initial
cally lead to an object that is too massive to support itseldata sets for black hole collisions and those involving neu-
against gravity, and which must therefore collapse to a blackron stars is the presence of a horizon. In fact, the success of
hole. If that were the case, we would be restricted to thehe close-limit approach for black holes may to a large extent
presumably small subset of mergers that involve less magest on the presence of the horizon. The reason is the follow-
sive neutron stars. However, as mentioned above, supermasg: The initial data for two colliding black holes correspond
sive neutron stars can, at least temporarily, be supported ktp rather large perturbations only in the region inside the
both thermal pressure and rotation. Since the merged objepeak(roughly atr =3M) of the curvature potential. In effect,
is likely to heat up to temperatures beyondK and ought the perturbative scheme is unlikely to be reliable in this re-
to spin close to the Kepler limit due to conservation of an-gion. However, the bulk of these perturbations never escape
gular momentum, these effects will be highly relevant. If theto infinity. They are scattered by the effective potential and
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subsequently swallowed by the final black hole. Thus, the dpo v

anticipated errors in the scheme have a minute effect on the ar —(potPo) ar’ 3
gravitational radiation that reaches the far zone. Unfortu-

nately, the neutron star case is not masked in this way. SinGghere the spacetime metric is given by

one would typically only include dissipation due to gravita-

tional radiation in the simplest models, all “errors” in our d=—e? dt2+ e dr2+r2de?+r2sir? 0de?.  (4)
initial data must escape through this channel in the absence

the particular structure of the initial data. It should also bemetric function\ by

pointed out that the fundamental qualitative difference be-

tween the two problems makes a direct comparison between 2m

the black hole case and that of neutron stars rather dubious. e P=1- T 5
A more careful study of the black hole results suggests

that a close-limit approximation for neutron stars coII|S|onsAII quantities are functions of the radial coordinatenly.

may not be a complete lost cause. In close-limit blaCk'hmel'he construction of initial data for the close-limit approxi-

collisions, most of the energy radiated, if not qll, comes frommation involves two steps: First, one needs to solve the TOV
quadrupole (=2) quasi-normal modéQNM) ringing. The equations and obtain stellar models for both the colliding

?nl.)t/ ?)s_pect Efllatlglstllng_UI_f_h?Z t?e fevolutlon ?;‘]a %an.d%seétars and the final configuration. The second step consists of
Imit, binary black hol€ initial data from any other data IS the suitablesuperpositiorof colliding stars followed by aub-

f|?<ed .amp"F“de of the ringing. If we assume that a Slmllartraction of the background star. This yields the perturbations
situation arises for neutron stars, we should focus our attenyhich are then the focus of the evolution. With this in mind
t".)n. on the. mpde rmgmg.and ignore the initial burst qf "% \we have denoted background quantities of the star formed by
diation. This is natural since one would expect the |n|t|althe merger by the subscript O and perturbations of these

.bl.”.St to be strongly dependent on Fhe CharaCt?”St'Cs O.f th uantities by the subscript 1. The TOV solutions of the col-
initial data. In the case of stars, this strategy is associate

with an unfortunate sacrifice. The early parts of the ding stars will be denoted by an asterigk). For simplic-

gravitational-wave signal from the merger may contain the'ty’ we will only consider polytropic equations of stafs

. =K po', whereK andI" are the adiabatic constant and in-
rap|dly dgmped/v modgs[ZS,lZ. In the proposed prescrip dex, respectively. The adiabatic indéX is related to the
tion, the inferred amplitude of these modes may well be un- olytropic indexn by I'=1-+1/n. In the specific example

reliable. Actually, one would expect this to be the case oPoV _ -
physical grounds. The problem of constructing “astrophysi—prov'ded later we us&'=2 (n=1).

cal” initial data in numerical relativity essentially boils

down to specifying the amount of gravitational waves in the B. Initial perturbations and constraints

spacetime. In a neutron star spacetime, it would be natural The construction of astrophysically relevant initial data in
for the initial gravitational waves to escape via thenodes.  pymerical relativity is an outstanding problem not only from
Hence, an uncertainty in the amplitude of these modes ighe mathematical point of view. In the present context, we
expected, given our poor understanding of the relevant astreyoyd like the data to represent the initial configuration for
physical data. Taking the suggested attitude, we do not exhe ring-down phase after a collision. Without the non-linear
pect to be able to assess the astrophysical relevance of thegyolution that precedes the ring-down stage, the specification
modes. Instead, we should view the neutron star close-limigf initial data becomes a non-trivial “guess.” In thetdl
initial data, and the associated results, as a constraint on “TSrmuIation[24] of Einstein’s equations, initial data consist
amplitude and ratios of excitations of the longer lived fluid of the spatial metrig;; , the extrinsic curvatur&;; and the

pulsation modes, which, as with the black hole case, willmatter fields. These initial data contaimo much freedom

depend on the particular nature of the initial data. Only 4 out of the 12 components i K;;) are fixed by
the constraints. The remaining pieces, including the matter
Il. CLOSE-LIMIT INITIAL DATA fields, are freely specifiable and single out the particular situ-

ation under consideration. Furthermore, it is usually not ob-
vious which four components ing(;,K;;) should be ob-
A neutron star model in general relativity is obtained bytained from solving the constraints.
solving the Tolman-Oppenheimer-VolkaffOV) system of The standard procedure to separate the freely specifiable
equations: data from that fixed by constraints in numerical relativity is
York’s conformal approach25]. In addition, this method

A. Stellar models

d_m_4 ;2 2 provides a natural framework for “superposing” solutions.

dr 7' po This is a clear advantage given our present project. For in-
stance, given datag(j ,K;;) for individual black holes, it is

dy e possible to “add” these solutions and solve the constraints

—=——(m+4mr3py) (2)  toobtain self-consistent, fully non-linear, initial da@26]. A
dr 2 similar procedure can be applied to neutron star binaries.
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As mentioned in the previous section, our problem in-tron stars the choicg];=0 could lead to a suppression in the
volves constructing perturbative initial data. Once the backexcitation ofw modes19]. Still, the calculations are simpli-
ground matter and spacetime are specified, there are two gefied considerably by this assumption, and it allows a better
eral avenues that one could follow to construct perturbativgomparison with the black hole binary case since the initial
initial data. One of them, which should be used if the pur-qata for multiple black holes are usually constructed assum-
pose of applying the framework presented in this paper isng conformal flatnes28]. At the one level, the availability
comparisons or benchmark tests of non-linear simulationssf non-linear evolutions will remove this uncertainty since
involves solving the fully non-linear constraints for the bi- the free data can then be determined from the outcome of
nary system and then subtracting the background to obtaifhese evolutions. However, there will still be a corresponding
the perturbations. The second approach consists, on the othgioice to make in the specification of initial data for the
hand, of finding solutions that satisfy the Hamiltonian andnon-jinear phase.
momentum constraints to the order required by the perturba- The conformal transformation@) and (8), together with
tive expansion. Because of simplicity, we will use the latterthe perturbative expansioris0) and(11), yield
method, namely linearization of the constraints.

As with the non-linear case, close-limit initial data are
completely characterized, for both black holes and neutron
stars, by the freely specifiable dafdata not fixed by the R
constrainty and boundary conditions. That is, both the free gilj =4q§8 b1 gﬂ (13
data and boundary conditions select from the class of solu-
tions of the constraints those dealing with the superposition
of colliding objects. In this paper, we focus the discussion on
the simplest possible case: the close-limit head-on collisions . .
of neutron stars that are initially at rest. This means that the p1=cb5° p1—8 by "1 po. (15
initial extrinsic curvature and matter current density vanish
to all orders. Therefore, the momentum constraints are iden#ith the above perturbative expansions, the Hamiltonian
tically satisfied, and one is only required to solve the Hamil-constraint takes the form
tonian constraint. More general classes of neutron star initial
data are discussed j@7]. For vanishing extrinsic curvature, 8A ¢ —(R+487pgdy*)pr=—167 ¢ 3p1. (16)
the Hamiltonian constraint reads

a7 = ¢5 1) (12)

po= o po (14

R=167p, 6) In summary, given the backgrounds{,g; ,po), close-
limit initial perturbations of head-on collisions of neutron
whereR is the Ricci scalar constructed frogy andp is the  stars initially at rest consist of only two quantities: the per-
matter density. turbation of the conformal factot),, and the perturbation of
Following York’s method, the spatial metrgg; and mat-  the conformal matter density,. In the following, we view

ter densityp are conformally transformed according to the density perturbatiofal as free data, withp, obtained by
solving the linearized Hamiltonian constraint, E§6). Thus,

=d*0. N
9ij =49y ™ the density perturbatiop, fully characterizes the collision,
g~ and we turn now to its specification.

p=¢ "p, 8
where carets denote conformal quantities. With the above C. Close-limit superposition of stellar models
transformation, Eq(6) takes the form The key contribution of the present work is to provide a

N A N recipe for obtaining the density perturbatipp from a suit-
8Ap—Rp=—16mp 3, ) P 9 P Pi

able superposition of isolated neutron stars. Of course, in a
realistic astrophysical situation, the starting configuration of

A=V Vi va i i iati - ; . o X
whereA=V;V' andV; denotes covariant differentiation as- ring-down phase is not a superposition of isolated neu-

sociated with the conformal metrg;; . tron stars since effects, such as those from tidal forces, play
We will assume at this point that metric perturbationsan important role. To represent a “reasonable” close-limit
only enter via the conformal factor. That is, approximation, a superposition procedure must be such that
the perturbations vanish as the separation between the stars
¢=dbot ¢1 (100 vanishes. In order to superpose two neutron stars and solve
o Eqg. (16), it is convenient to perform a coordinate transfor-
gij =gi°j . (1)  mation that brings the 3-metri@) into the isotropic, confor-

mally flat form
However, it is important to realize that this is not a physi- o A
cally motivated choice. The reason for choosing data that are ds?= ¢g(dre+r2de?+rsirf 6 dg?). (17)
spatially conformally flafi.e. (jﬁ =0) is by no means a nec-
essary condition for our procedure to work. In fact, for neu-This is accomplished by setting the conformal factor to
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12 1. 1. .~
r A~ A A A AiaiaA A A
bo= ?> , (18) P:P*+§(§'Vip*)z+§§' &ViVjp,, (29
and transforming the radial coordinate according to so the conformal density perturbation is given by
di T = Po=pe—pot 2 (BT p) 2B BV
a:eF_ (19 P1= P~ P00~ Px~ Po 2 i Px 2 i VijiPx -

(26)

With the metric given by Eq(17), Eq. (16) can be trivially _ o
rewritten as a radial elliptic equation We choose coordinates such that the centers of the colliding

stars lie on the axis, so the off-set vectd§ is given by

1d(.,d I(1+1) -,
Sl d—A¢1 —| == t67mpod |1 L 1
rear r r &=¢| cosh,— =sind, 0]. (27)
- r
=—2m ¢y pa, (20
where we have used a standard decomposition in sphericglubsmmIon of Eq(27) into Eq. (26) yields
harmonics: 2
A N T d. .
. o o p1(r, 0, @) =px (1) =po(r)+ & COSzH(EP;:("))
p(1,0,0)=po(1) + 2 pa(F) Yin(6,¢) (2D
d>. . 1d. .
+cog 6'ﬁp*(r)+sin2 Grd—Ap*(r)].
$(1.0,0)=bo(1)+ 2 ¢1(1) Yin(6,9). (22 ' rar

(28)

To proceed, we need to provide a superposition procedurfg/Iaking use ofVA 7 Yoo=1 and4 5 7 Y ot L = cof 6, Eq.
from which p, can be obtained. To do this, we make the 2g) can be rewritten as n : '

following observation: All of the black-hole close-limit ini-

tial data sets considered so far have had not only the appro- _ L
priate zero-separation limit but also the correct infinite-p.(r, 6, @)= p1(1) Yim(6, @) (29
separation limit. That is, as the separation of the black holes m
increases, the initial data converge to that of two isolated

holes. A similar behavior is in principle desirable for neutron

stars. However, the situation for neutron stars is more com- =am
plicated because there are no simple relations between mass,

P DU N« S
p*(r)—po(r)+5§ @p*(r)

radius and density as for black holes. Hence, we are forced to d. . \? ad. .
use a somewhatd hocprescription. We neglect tidal defor- +| —=p ()| —=—==p (1) | Yoo 0, ©)
mations, etc., and use the following superposition of density dr rdr
profiles of isolated neutron stars: 2 2
2 BE| e, (4| (‘))
PR A A oA A A oA - m > r iy r
DT =P (1= B) oy (121 15 a0 i
~[pu ("= &) (' + ]2 (23 1d. .
: ’ = P Yal 6, 0). (30)

Herep, represents the conformally transformed density pro-
file of the individual colliding neutron stars displaced a dis-  Erom the above results, we deduce that the conformal
tance&' in conformal space. For simplicity we are assumingdensity perturbationf;l has two contributions. One is a
identical colliding stars. It is straightforward to verify that monopole partifi=0,1=0)
the superposition of densitig®3) satisfies both the zero- ' '
separation and infinite-separation limits.

Assuming a small displacement, i.e. imposing the close—;,lz N
limit condition, we find that

SEPY . dA)Z 4.d.
Px —Po 2 dfr\_zp* d'r\_p* Fdfl;p*
(32)

D A N
P (M=) =p, (M= Vjp, (1) +5¢ &V Vip, (). Since a monopole perturbation does not lead to gravitational
(24)  radiation, we will not consider this contribution further. The
second part is a quadrupoleE& 0,1 =2) perturbation given
Thus by the last term in Eq(30):
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inspired by the recent arguments of Shagéd for head-on
. (320 collisions of neutron stars from rest at infinity.
The starting point is to notice that TOV solutions exhibit

. : - _ the following scalings:
This is the dominant radiative source which should be used

“ 2 “
—_ — 2
P1 15\/5775

@ [d.  1d.
ar?* ™ T a

in Eq. (20) to construct initial data. IA\lotice that tti(,tZ M(pe)=M(pc) K"2 (33
perturbation(32) has the correct limitp;—0 when ¢—0
independent of the stellar model used fgr. On the other R(pc)=R(pe) K™? (34)
hand, for the monopole perturbatid81) to vanish in the
limit £&—0 we must have, — pg. pe=pc K", (35)

with M andR the total mass and radius of the star. Above,
tildes denote dimensionless quantities. To use these relations
As we already discussed in the Introduction, the final stelin the close-limit approach, we recall that we want our
lar object that is formed by merger will be rather different scheme to be valid in two limits: It should lead to the ex-
from the initial stars. It will certainly be hotter and most pected results both in the limit of zero and infinite separation.
likely spinning more rapidly since the angular momentum ofTo achieve this we assume that the mass and radius of the

the inspiral orbit must be conserved. In the case we considefpliiding stars(index *) are related to the background star
here, that of a head-on collision of two non-rotating neutroniindex 0 by

stars, we obviously need not worry about rotational effects.

D. Defining background and colliding stellar models

But we still need to estimate the changes in the equation of 2—7

state as the stellar material heats up during the merger. To do Me=Mo| — (36)
this, we must speculate what the outcome of the collision

may be, and specify a relation between the final background 2— 17

spacetime including, and the density distributiop, of the R, =Ro ( 5 ) : (37)

individual initial stars.

A word of caution is needed at this pOint. Although itis Wheren is a monotonic function of the Separatiérin phys|_
certainly possible that the coalescence of two neutron staigg| space and represents the “overlap” of the two stars.
could yield a single, hot neutron star, it is very unlikely for quite naturally, ranges from 0 to 1 withy(¢—0)=0 and
that process to proceed by an overlap of the original neutron,(¢_,«)=1. This construction ensures that our approxima-
stars, taken to be static polytropes. Here is where the mogipn satisfies the desired limits. However, we have as yet no
severe limitation of our work resides. Nonetheless, we expeghformation about the function; for intermediate separa-
that the rough properties of the mode ringing will be cap-tions. Such information could be obtained from fully numeri-
tured by our study. cal studies of merging stars. In the present study we make a

_ In order to have the correct zero- and infinite-separatiotyatyral, albeit quite arbitrary, choice. We assume that in the
limits, we must consider the relation between the masses GQfjpse-limit regime the overlap function is linear in the sepa-

the colliding stars and the mass of the background star. Agtion of the colliding stars and use
simplifying and to some extent reasonable condition is to
assume that the mass lost during the collision is not signifi- &
cant, so the total mass is approximately conserved. Specifi- n(&)=¢7 (38)
cally, this implies that the total mass computed, in the physi- 0
cal space, from the background dengifyand the total mass  gypstitution of Eqs(36) and (37) into Egs.(33) and (34),
obtained from the superposition of densitigs in Eq. (23)  respectively, now yields
are roughly the same. As we shall see, in the close-limit
approximation, this condition implies that properties of the 2— 7\ "1 Ky ™2
colliding stellar modelgfor example, the radius of the stars _* = :(—) (—) . (39
depend on the separation. Mo 2 Ky

TOV solutions for polytropic equations of state are pa-
rametrized by the central densipy, adiabatic constanK
and adiabatic indek. We assume that the collision does not
modify the adiabatic indexand setl’=2 for all models.
This assumption is consistent with available numerical re- R
sults [29]. Therefore, the models used to specify differ
only in central density and adiabatic constant. We want thesgince the ratidl/R is a monotonic function op., Eq.(40)
parameters to reflect changes in the equation of state as thgs|qs
temperature increases, in such a way that we retain the final,
much hotter, star at zero separation. Our method for con-
structing polytropic equations of state for the initial stérs
terms of p, and K) in relation to that of the final star is

21

2| @

Equation(39) implies

21

*

(40

O;Uz|o§z

*

1
*

(41)

2
o
Il
l
(gul| >(_IJ
I
'—\
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Hence, from Eqs(39), (41) and(35), one obtains the follow- . ]
6x10° |

ing relationships between adiabatic constants and centr:
densities:
2—p\2n 4x10° |
Ke =Ko 2 (42 e
R 5
(27 Y \T_zx1o_
Pc = Pc 2 : (43 e .
0

In the limit »—1, these scalings reduce to the case of twc
polytropic stars colliding head-on from rest at infinit§]. . r r '
Here, we will use Eqsi42) and(43) to relate the polytropic 0 5 10 15 20
equations of state for the initial and the final stars, also fo 0.04 1
intermediate separations.

It is important to point out that, if the amount of mass lost
during the collision is not negligible, conservation of mass is
not given byMy=2 M, . As is clear from Eq(36), conser-
vation of mass would be given byl,=2M_ only in the
case of infinite separation. For the situation we consider
conservation of mass is demonstrated by comparing the ma
Mo computed frompg to that fromp in Eqg. (23). It is the
mass obtained from the superposition rgs8) that takes
correctly into account the double counting in the overlap of
the density profiles of the colliding stars.

0.03 1

0.02

¢

0.01

0.00

IIl. NUMERICAL RESULTS r (km)
Our numerical procedure to construct initial data consists giG. 1. perturbations of the conformal facioy and densityp,
of first solving, using a fourth-order Runge-Kutta integrator, for a close-limit collision of equal-mass stars with conformal sepa-
the TOV equationgl)—(3) for the background and colliding  ration ¢=0.1R,. The TOV parameters for the background and col-
stars, together with the coordinate transformatit®). These  liding stars arep?=2.69x 10'°g/cn? andK,=100 kn?. For these
solutions are then conformally transformed and used to comparameters, the mass and radius of the background staMgre
putep,. Finally, Eq.(20) is solved for the perturbation of the =1.24M¢ andR,=9.0 km, respectively. The initial colliding stars,
conformal factor¢p; as a boundary value problem using a Which are displaced a distance Belfrom the center of mass, fol-
standard tridiagonal solvg80]. The boundary conditions for 10w from p¢=2.98x10"g/cn? and K, =90.25knf and have
$, in Eq. (20) are regularity at the axisp,|;_o=0, and Ms=117Mo andR; =8.58 km.

asymptotic flatness at infinityd(dr) ¢[;—.=0. Figure 1 shows the perturbed conformal faciiar and den-
The main aim of the present paper was to provide & presjty ,,. On the other hand, Fig. 2 shows clearly that the
scription for close-limit |n|t|a! data in the case of neutron character of the emerging gravitational waves is exactly what
stars. But even though we will not discuss a large sample ohne would expect: A sharp initial burst followed by slowly
numerical evolutions here, it is clearly appropriate to illus-gamped oscillations. The long-lived oscillations are associ-
trate typical results obtained for the proposed neutron stagted with the various fluid pulsation modes of the final con-
close-limit approximation. We have used two independentigyration. That this is the case is clear from Fig. 3, where we
numerical code$19,2( to evolve the relevant perturbation gnow the Fourier transform of the waveform in Fig. 2.
quantities from the initial data obtained in the previous sec- Regarding the short-liveds modes from our sample evo-
tions. These evolution codes have been well tested, and Wgtion, while these modes are clearly present in the early part
have verified that they lead to identical results in the presents the signal if we graph the variabt® (a combination of
case. o o metric variables as defined by Allest al. [19] that allows
Figures 1-3 show typical initial data and gravitationalthe perturbation equations to be written in a simple form
waves resulting from the close-limit approximation. This tney are basically absent in the corresponding Zerilli func-
particular case pertains to a final stellar configuration withijon 7 Since the Zerilli functiorZ is a reliable measure of
pe=2.69<10"*g/cn?® and Ko=100kn?. For these param- the emerging gravitational waves, we conclude that within
eters, the mass and radius of the background staiVye the assumptions and limitations of our framework the outgo-

=1.24M s and Ry=9.0 km, respectively. The initial collid-
ing stars, which are displaced a distanceRg.from the cen-
ter of mass, follow fromp} =2.98x10g/cn? and K,
=90.25kn? and haveM, =1.17M, and R, =8.58 km.

ing radiation carries insignificant influence from thve

modes. There is a strong indication, however, that the work-
ing assumption of conformally flat initial data suppresses the
w modes in a crucial way. Hence, we should also keep in
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FIG. 2. Snapshots of various functions illustrating for the evo- . .
lution of the initial data shown in Fig. 1. We show the functisn FIG. 3. The Fourier transform of the waveforms for the function

defined as if19], the Zerilli function and the perturbed conformal Sand the Zerilli functionZ shown in Flg..2. The t‘.NO sharp peaks
factor T=4r ¢, / by, correspond to the lowest frequency fluid pulsation modes of the

final configuration. The first peak belongs to the fundameftal

. . ) . mode while the next one is the first of the presspm@odes. It is
mind the potential astrophysical relevance wefmodes in  potaple thaw modes seem to be presentbut not inZ. This

more realistic situations. effect is further discussed in the main text.

We can, on the other hand, meaningfully discuss the
longer lived fluid modes. The various peaks in the spectrunpinary merger, when the two merged stars can be considered
shown in Fig. 3 correspond directly to the fluid pulsationas a final configuration plus perturbations. This “close-
modes of the final configuration, the lowest frequency modejmit” approximation is analogous to the one that has pro-
being the fundament&imode and the next one being the first yided surprisingly accurate results in the case of colliding
of the pressur@ modes. This is interesting further evidence pjack holes. However, as we have discussed in some detail, it
that these modes will be clearly excited whenever a neutrof not straightforward to devise a similar approximation in
star is dynamically perturbed, which is highly relevant con-the case of neutron stars. Our chosen scheme respects some
sidering the recently devised method for inferring stellar paf the required physical constraints. It has the correct limits
rameters from detected gravitational waves carrying they infinite and zero separation of the two stars. Furthermore,
mode signatur¢17,18. However, one must still prove that \ye have tried to model the changes in the equation of state
these modes carry sufficient energy to be observable by tr&'ought about by the merger in a Simp'e, but Seeming'y ap-
new generation of gravitational wave detectors. To investipropriate[6], way. Still, it must be remembered that this is
gate this issue, one should study a larger sample of closgyst a first step and that one could potentially refine the close-
limit evolutions and perhaps also attempt a comparison to thgmit idea considerably.

black-hole case. Work along these lines is currently in  Even though it is clear that the close-limit approach to

progress, and we hope to report on it soon. neutron star collisions has severe limitatigisvill certainly
never completely replace fully non-linear general relativistic
IV. FINAL COMMENTS hydrodynamics simulationswe believe it can prove to be of

considerable use. On a technical level, it should be rather

We have developed a framework for modeling mergingstraightforward to use our initial data sets, combined with the
neutron stars using perturbation theory. Specifically, we haveerturbation evolutions, as benchmark tests for fully non-
devised approximate initial data for the very late stages ofinear evolutions in numerical relativity taking account of the
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detailed fluid dynamics. This would in fact be a very usefulframework can be extended to more general situations. In the
test for a non-linear simulation since it would ascertain thapresent study we chose to restrict ourselves to the head-on
the detailed dynamics associated with the star’s various pukollision of two stars that are initially at rest. These assump-
sation modes could be resolved. Also, one could clearly usgons can conveniently be relaxed to allow the stars to have
the perturbation equations to evolve any neutron star processitial momentum. A generalization to the physically rel-
at the late stages, thus saving valuable computing time. Fuevant case of slow rotation also seems possible. Work in
thermore, it seems possible that we can learn some degree thfese directions is in progress.
physics from our results. Evolutions from all the close-limit
data sets that we have so far constructed show that the fluid
pulsation modes of the final star are excited to a significant
level. As far as the potential excitation of the gravitatiowal This work was partially supported by NATO grants
modes is concerned, our present understanding is far fro@RG960260 and CRG971092, as well as NSF grants
satisfactory, but as we have pointed out, an investigation oPHY9357219, PHY9407194, PHY9423950, and
this issue likely requires a true understanding of “astrophysiPHY9800973. J.P. also acknowledges support from the
cal” initial data and a relaxation of the standard assumptiorPennsylvania State University, the Eberly Family Research
of conformal flatness. Fund at Penn State, and the John S. Guggenheim Founda-
In conclusion, it is worth pointing out that our close-limit tion.
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