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We develop a framework for constructing initial data sets for perturbations about spherically symmetric
matter distributions. This framework facilitates setting initial data representing sources of gravitational radia-
tion involving relativistic stars. The procedure is based on the Lichnerowicz-York conformal approach to solve
the constraints in Einstein’s equations. The correspondence of these initial data sets in terms of the standard
gauge perturbation variables in the Regge-Wheeler perturbation variables is established, and examples of initial
data sets of merging neutron stars under the close-limit approximation are presented.
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I. INTRODUCTION

The early years of the next millennium will hopefully b
remembered for the birth of gravitational-wave astronom
With several large scale interferometers@Laser Interferomet-
ric Gravitational Wave Observatory~LIGO!, VIRGO,
GEO600, TAMA# under construction, and the continued im
provement of the technology for cryogenic resonant-m
detectors ~ALLEGRO, AURIGA, EXPLORER, NAUTI-
LUS!, there are many reasons to be optimistic at the pre
time. However, the interpretation of data from the new g
eration of detectors will heavily depend on accurate ‘‘te
plates’’ of gravitational waveforms. For a given astrophy
cal source of gravitational radiation, construction of su
templates involves fully non-linear or perturbative appro
mations to Einstein’s field equations. In both instances,
construction of appropriate initial data constitutes a fun
mental issue. It is absolutely necessary that initial data r
resent a ‘‘realistic’’ stage of the astrophysical system un
consideration.

The early years of numerical relativity were in part cha
acterized by studies aimed at constructing initial data
Einstein’s equations, namely data that satisfy the Ham
tonian and momentum constraints. Of particular interest w
obtaining solutions to the constraints which represent bl
hole binaries@1#. These initial data studies highlighted th
importance that the Lichnerowicz-York conformal approa
@2# plays in facilitating solving the constraints.

In the perturbative arena, initial data sets also play a f
0556-2821/99/60~12!/124004~11!/$15.00 60 1240
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damental role if a connection with systems of astrophys
relevance is to be made. Examples of perturbative stu
where astrophysically consistent initial data is needed are
point-particle@3# and close-limit approximations@4# to black
hole coalescences. For the close-limit approximation in p
ticular, this issue is crucial. The focus is then on the l
stage of the merger, when the binary system can be appr
mated as a single, perturbed black hole. In the case of
turbations of relativistic stars, most of the studies@5# have
not considered initial data with direct connection to a giv
astrophysical situation. In other words, the focus has so
been on investigating how the star reacts to generic per
bations.

The goal of this paper is to provide a mechanism
generating initial data for perturbations of a relativistic st
This data should ideally represent astrophysical situation
relevance to gravitational-wave detectors. Inspired by
success that the Lichnerowicz-York conformal approach
enjoyed for solving Einstein’s constraints, we base our p
turbative methodology on ‘‘linearizing the Lichnerowicz
York procedure.’’ By doing so, we take advantage of t
prescription for knowing which pieces of information
among the metric and its ‘‘velocity,’’ are fixed by the con
straints and which are freely specifiable. Moreover, we
herit the machinery used in the past for the construction
initial data sets representing binary systems. That is, the
cedure described in this paper provides a natural framew
for obtaining initial data in connection with the close-lim
approximation to neutron star mergers@6#. As with black
©1999 The American Physical Society04-1
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hole binaries, the close-limit to neutron star collisions de
with the late stages of the merger, at the point in which
systems can be approximated as a single neutron
‘‘dressed’’ with perturbations.

It is perhaps relevant, before we present any detailed
sults, to digress on the perceived relevance of our study. F
of all, it is important to realize that the initial data that w
construct may be rather different from a true dynamica
perturbed neutron star in an astrophysical system. The m
reason for this is the assumption of spatially conformally
initial data in the Lichnerowicz-York approach. This a
sumption is not based on physical reasoning, but is u
because of the simplifications it brings to the problem. In
way, it corresponds to ‘‘minimizing’’ the gravitational-wav
content in the initial space-time. That this need not neces
ily be an appropriate assumption is obvious. However,
true nature of the ‘‘initial’’ data for~say! a strongly distorted
neutron star formed via gravitational collapse in a supern
is largely unknown. Basically, the entire history of the sy
tem must be known if one is to be able to model the amo
of gravitational waves in the space-time correctly. This i
major problem, not only for the present investigation, but
any attempt to model astrophysical sources in general r
tivity. Since the standard approach in numerical relativity
to proceed via the Lichnerowicz-York procedure, we ha
chosen to do so in our consideration of the perturbation pr
lem. This means that our method is fully compatible wi
and complementary to, fully nonlinear evolutions. And th
is the arena where our results should prove useful. Firs
all, our framework can be used to create linearized ini
data that is comparable to fully nonlinear data used to st
single relativistic stars. This provides a powerful benchm
test for the nonlinear evolution codes. Secondly, one
extend our results to provide a translation of nonlinea
evolved data into a perturbative data set. In this way an e
lution can readily be extended by using perturbative eq
tions once the system settles down into the linear regi
Thirdly, using the perturbative approach we can easily cre
model initial data for many ‘‘astrophysical’’ situations. Th
example we have chosen for the present work is the clo
limit approximation to neutron star mergers. As is clear fro
the discussion in@6#, this approximation should not be ex
pected to fully represent true neutron star collisions si
several important pieces of relevant physics~like shocks! are
not included. However, given a method for generating clo
limit initial data we can probe the parameter space at co
paratively low computational cost.

II. LINEARIZATION OF THE LICHNEROWICZ-YORK
CONFORMAL APPROACH

Given a spacetime with 4-metricĝmn and a foliation of
this spacetime with Eulerian observers having a 4-velo
n̂m, the constraints in Einstein’s fields equations can be w
ten in a 311 @or Arnowitt-Deser-Misner~ADM !# form @7# as

R̂1K̂22K̂ i j K̂
i j 516pŝ ~Hamiltonian!, ~1!

¹̂ j~K̂ i j 2ĥi j K̂ !58p ĵ i ~momentum!. ~2!
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Above, ĥi j is the 3-metric (ĥmn5ĝmn1n̂mn̂n) and K̂ i j the
extrinsic curvature of the time-like hypersurfaces in the
liation, with K̂5ĥi j K̂ i j and R̂ the scalar curvature. Further

more, ¹̂ i is the covariant derivative associated with t
3-metric ĥi j , and ŝ and ĵ i are the energy and momentu
densities of the matter sources. Greek letters denote sp
time indexes and Latin letters spatial indices, and we
units in whichG5c51. Contrary to the common practice
we use ‘‘carets’’ to denote physical space since we will
mostly working in the conformal space.

For a perfect fluid, the stress-energy tensor is given b

T̂mn5~ r̂1 p̂!ûmûn1 p̂ĝmn , ~3!

wherer̂ and p̂ are, respectively, the total mass-energy de
sity and pressure of the fluid measure by an observer w
4-velocity ûm. The energy and momentum densities appe
ing in the constraints are obtained from

ŝ5T̂mnn̂mn̂n5~ r̂1 p̂!ĝ22 p̂ ~4!

ĵ m52T̂nan̂nĥam5~ r̂1 p̂!ĝĥmnûn , ~5!

whereĝ[2n̂mûm is the relativistic boost factor.
The fundamental virtue of the Lichnerowicz-York confo

mal approach@2# for solving the Hamiltonian and momen
tum constraints is that it provides a concrete recipe for s
gling out which four ‘‘pieces’’ among the twelve
components (ĥi j ,K̂ i j ) are to be solved from Eqs.~1! and~2!.
The starting point is the ansatz

ĥi j 5f4hi j , ~6!

where the conformal metrichi j is assumed to be known
Thus, for the metric, the piece that is fixed by the constra
~Hamiltonian! is the conformal factorf. The other three
quantities fixed by the constraints~momentum! involve the
extrinsic curvature. The idea here is to decompose the ex
sic curvature into its trace, tracefree-transverse and trace
longitudinal parts. To achieve this, the extrinsic curvature
first split into

K̂ i j 5Âi j 1
1

3
ĥi j K̂. ~7!

Before decomposing the tracefree partÂi j into its transverse
and longitudinal parts, the following conformal transform
tion is applied:

Âi j 5f210Ai j . ~8!

The exponent in the conformal transformation is motiva
by the fact that this transformation possesses the follow
property:

¹̂ j Â
i j 5f210¹ jA

i j , ~9!
4-2
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CONSTRUCTION OF INITIAL DATA FOR . . . PHYSICAL REVIEW D 60 124004
with ¹ i covariant differentiation associated with the bac
ground metrichi j . This property simplifies the conforma
transformation of the divergence of the extrinsic curvature
the momentum constraint~2!.

Since, as will become clear below, the trace of the ext
sic curvatureK̂ is not fixed by the constraints, no conform
transformation is imposed on the trace of the extrinsic c
vature (K̂5K). Once the conformal transformation is a
plied, the next step is to decomposeAi j into its transverse
and longitudinal parts: namely,

Ai j 5A
*
i j 1~ lW! i j , ~10!

where

~ lW! i j 52¹ ( iWj )2
2

3
hi j ¹kW

k, ~11!

¹ jA*
i j 50. ~12!

With the above conformal transformations and transve
longitudinal decompositions, the Hamiltonian and mome
tum constraints become

8¹ i¹ if2Rf1Ai j A
i j f272

2

3
K2f5116psf2350

~13!

¹ j¹ jW
i1

1

3
¹ i¹ jW

j1Ri
jW

j2
2

3
f6¹ iK28p j i50,

~14!

whereRi
j is the 3-Ricci tensor of the conformal space andR

its trace. In deriving Eqs.~13! and ~14!, the following con-
formal transformations for the energy and momentum de
ties were used:

ŝ5f28s ~15!

ĵ i5f210j i . ~16!

To summarize, the Hamiltonian constraint fixes the co
formal factorf and the momentum constraint determines
generatorWi of the longitudinal part of the conformal, trace
less part of the extrinsic curvature. The freely specifia
data in this coupled set of equations are the conformal me
hi j , the trace of the extrinsic curvatureK, the source func-
tions (s, j i), and the divergence free, traceless part of
extrinsic curvatureA

*
i j , which is hidden inAi j in Eq. ~13!.

Thus far, we have just reviewed the Lichnerowicz-Yo
treatment of the initial data problem. We now introduce o
first assumption. The initial data (ĥi j ,Âi j ,K̂,ŝ, ĵ i) are as-
sumed to be close to a given background: i.e.,

ĥi j 5ĥi j
(0)1ĥi j

(1) ~17!

Âi j 5Â(0)
i j 1Â(1)

i j ~18!

K̂5K̂ (0)1K̂ (1) ~19!
12400
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ŝ5ŝ (0)1ŝ (1) ~20!

ĵ i5 ĵ (0)
i 1 ĵ (1)

i , ~21!

where (0) labels background quantities and (1) first-or
perturbations. The corresponding decomposition of the c
formal space quantities yields

hi j 5hi j
(0)1hi j

(1) ~22!

f5f (0)1f (1) ~23!

A
*
i j 5A

* (0)
i j 1A

* (1)
i j ~24!

Wi5W(0)
i 1W(1)

i ~25!

K5K (0)1K (1) ~26!

s5s (0)1s (1) ~27!

j i5 j (0)
i 1 j (1)

i , ~28!

where

ĥi j
(0)5f (0)

4 hi j
(0) ~29!

ĥi j
(1)5f (0)

4 hi j
(1)14f (0)

3 f (1)hi j
(0) ~30!

Â(0)
i j 5f (0)

210A(0)
i j ~31!

Â(1)
i j 5f (0)

210A(1)
i j 210f (0)

211f (1)A(0)
i j ~32!

K̂ (0)5K (0) ~33!

K̂ (1)5K (1) ~34!

ŝ (0)5f (0)
28s (0) ~35!

ŝ (1)5f (0)
28s (1)28f (0)

29f (1)s (0) ~36!

ĵ (0)
i 5f (0)

210j (0)
i ~37!

ĵ (1)
i 5f (0)

210j (1)
i 210f (0)

211f (1) j (0)
i . ~38!

Although all scalars, vectors and tensors are expande
order of smallness, it is important to stress again that all
f andWi are freely specifiable, and this property is indepe
dent of the order of the perturbation.

At this point we introduce oursecondassumption, which
is that the perturbations of the conformal background van
on the initial data slice; that ishi j

(1)50. The primary motiva-
tion for this choice is the simplification of the coupled sy
tem of constraint equations. We shall later discuss the ph
cal relevance, as well as the implications and restrictio
that this assumption imposes on the class of initial data
one has access to with our procedure. Usinghi j

(1)50, to-
4-3
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gether with the above perturbative expansions in the cou
elliptic system~13! and ~14!, we obtain

8¹ j¹ jf (1)2FR17A(0)
i j Ai j

(0)f (0)
281

10

3
K (0)

2 f (0)
4

148ps (0)f (0)
24Gf (1)12Ai j

(0)A(1)
i j f (0)

27

2
4

3
K (0)K (1)f (0)

5 216ps (1)f (0)
2350 ~39!

¹ j¹ jW(1)
i 1

1

3
¹ i¹ jW(1)

j 1Ri
jW(1)

j 2
2

3
f (0)

6 ¹ iK (1)

2
12

3
f (0)

5 f (1)¹
iK (0)28p j (1)

i 50, ~40!

whereR, Ri j , and¹ i refer to the background. In writing Eqs
~39! and ~40!, we have used the fact that the zeroth-ord
quantities satisfy the constraints. Notice that, as in the n
linear case, the constraints remain coupled.

III. THE INITIAL DATA PROBLEM FOR RELATIVISTIC
STELLAR PERTURBATIONS

We now focus on constructing initial data sets for whi
the background is a static and spherically symmetric ste
model, with 4-metric given by

ds252e2ndt21e2ldr̂21 r̂ 2du21 r̂ 2 sin2udw2, ~41!

where the metric coefficientsn and l are functions of the
radial coordinater̂ only. Einstein’s equations for this back
ground reduce to solving three equations. The first equa
defines the mass inside radiusr̂ ;

dm

dr̂
54p r̂ 2r̂ (0) . ~42!

Herem is a function ofr̂ that is related to the metric functio
l by

e22l[12
2m

r̂
. ~43!

Equation~42! is directly obtained from the Hamiltonian con
straint. The second equation belongs to Einstein’s evolu
equations and reads

dn

dr̂
5

e2l

r̂ 2
~m14p r̂ 3p̂(0)!. ~44!

Finally, conservation of momentum yields the condition f
hydrostatic equilibrium:

dp̂(0)

dr̂
52~ r̂ (0)1 p̂(0)!

dn

dr̂
. ~45!
12400
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The above stellar structure or Tolman-Oppenheimer-Volk
~TOV! system of equations must be supplemented with
equation of state. For simplicity, we use the polytropic eq
tion of statep̂5kr̂G, wherek andG are the adiabatic con
stant and index, respectively. The adiabatic indexG is related
to the polytropic indexn by G5111/n. In the specific ex-
ample provided later, we useG52 (n51).

We now assume that the zero-order quantit
( r̂ (0) ,p̂(0) ,l,n) have been obtained from solving Eqs.~42!,
~44! and ~45!. The next step is to solve for the first-orde
perturbations from the linearized constraints~39! and ~40!.
To facilitate this task, it is convenient to perform a coord
nate transformation and bring the 3-metric in~41! into the
isotropic, conformally flat form

ds25f (0)
4 ~dr21r 2du21r 2 sin2udw2!, ~46!

where the conformal factor is given by

f (0)5S r̂

r
D 1/2

~47!

and the transformation of the radial-coordinate is obtain
from

dr

dr̂
5el

r

r̂
. ~48!

The static nature of the background spacetime and the ga
choice of a vanishing shift vector implyKi j

(0)5 j (0)
i 50 for

this background spacetime. This leads to considerable s
plifications in the following, but the procedure we descri
for constructing perturbative initial data can easily be e
tended to include also time-dependent, spherically symme
background spacetimes.

We introduce here ourthird assumption, which is tha
A

* (1)
i j 5K (1)50. The vanishing of the transverse-tracele

part of the perturbation to the extrinsic curvature has dir
implications to the gravitational radiation content of the in
tial data. In a way this assumption can be viewed as ‘‘mi
mizing’’ the amount of gravitational waves in the initia
spacetime. That this need not be a true representation o
astrophysical system~and hence may not be desirable! is
obvious, but in order to be able to assign this part of the f
data physically correct values we need a detailed knowle
of the past history of the system. Such information requi
long term, nonlinear evolutions and is far beyond our pres
capabilities. The present assumption is convenient in tha
simplifies the calculations considerably. Furthermore, we
unlikely to overestimate the amount of gravitational radiati
emerging from true physical systems if we base our e
mates on the present approach. The vanishing of the trac
the extrinsic curvature to first order is less restrictive phy
cally. It simply implies~using also the fact thatK (0)50) that
the slicing of the perturbed spacetime is maximal to fi
order. With those further assumptions, the linearized c
straints~39! and ~40! decouple and take the form
4-4
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¹ j¹ jf (1)56ps (0)f (0)
24f (1)22pf (0)

23s (1) ~49!

¹ i¹ iU5¹ iV
i ~50!

¹ j¹ jV
i58p j (1)

i ~51!

where we have decomposed the vectorW(1)
i in Eq. ~40! fol-

lowing @8,9# as

W(1)
i 5Vi2

1

4
¹ iU. ~52!

From now on, we will drop the label (1) inj (1)
i and W(1)

i

since the zero-order values for these quantities vanish.
The set of equations~49!–~51! constitute a coupled set o

elliptic equations in three dimensions, expressed e.g., in
coordinates (r ,u,w) of the background space. Due to th
spherically symmetric nature of the background, these line
ized equations allow for a separation of variables. Spec
cally, we can apply a spherical harmonic decomposition
form:

f (1)~r ,u,w!5(
lm

f (1)~r !Ylm~u,w! ~53!

s (1)~r ,u,w!5(
lm

s (1)~r !Ylm~u,w! ~54!

U~r ,u,w!5(
lm

U~r !Ylm~u,w! ~55!

Vi~r ,u,w!5(
lm

V1~r !e1
i ~u,w!

1rV2~r !e2
i ~u,w!

1rV3~r !e3
i ~u,w! ~56!

Wi~r ,u,w!5(
lm

W1~r !e1
i ~u,w!

1rW2~r !e2
i ~u,w!

1rW3~r !e3
i ~u,w! ~57!

j i~r ,u,w!5(
lm

J1~r !e1
i ~u,w!

1rJ2~r !e2
i ~u,w!

1rJ3~r !e3
i ~u,w!, ~58!

where

e1
i 5~Ylm ,0,0!

e2
i 5S 0,

1

r 2
]uYlm ,

1

r 2 sin2u
]wYlmD ~59!
12400
e

r-
-
f

e3
i 5S 0,2

1

r 2 sinu
]wYlm ,

1

r 2 sinu
]uYlmD .

Heree1
i ande2

i are the basis vectors of even-parity perturb
tions ande3

i is the basis for odd-parity perturbations. In th
above expressions and what follows, it is understood that
radial functions are for a given (l ,m). These indices have
been suppressed for economy in notation. We note tha
terms of the radial functions, Eq.~52! reduces to

W15V12
1

4

d

dr
U

W25V22
1

4
U ~60!

W35V3 .

After separation of variables, the system of equatio
~49!–~51! is rewritten as a system of coupled radial ellipt
equations:

1

r 2

d

dr S r 2
d

dr
f (1)D2F l ~ l 11!

r 2
16ps (0)f (0)

24Gf (1)

522pf (0)
23s (1) ~61!

1

r 2

d

dr S r 2
d

dr
U D2

l ~ l 11!

r 2
U5

1

r 2

d

dr
~r 2V1!2

l ~ l 11!

r
V2

~62!

1

r 2

d

dr S r 2
d

dr
V1D2

@ l ~ l 11!12#

r 2
V112

l ~ l 11!

r 2
V258pJ1

~63!

1

r 2

d

dr S r 2
d

dr
V2D2

l ~ l 11!

r 2
V21

2

r 2
V158pJ2 ~64!

1

r 2

d

dr S r 2
d

dr
V3D2

l ~ l 11!

r 2
V358pJ3 . ~65!

Equations~61!–~65! fully characterize, for each (l ,m)
harmonic, initial data@f (1) ,U,Vi # to first perturbative order,
once the background conformal factorf (0) and densitys (0)
as well as the fluid perturbationss (1) and Ji are specified.
Outside the sources, the solutions to the above equation
U5ura, V15v1r b, V25v2r c, andV35v3r d with u, v1 , v2,
and v3 constants. In order to have regular solutions forr
→`, one needsa5d52( l 11), b5c52 l and v15 lv2,
where we assume thatl>1. As we shall later see, the corre
sponding interior solutions for head-on and inspiral clo
limit collisions exhibit the same scaling; that is,V15 lV2 as
well as J15 lJ2. With this assumption, the system of Eq
~62!–~65! reduces to
4-5
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1

r 2

d

dr S r 2
d

dr
U D2

l ~ l 11!

r 2
U5

d

dr
V12

~ l 21!

r
V1 ~66!

1

r 2

d

dr S r 2
d

dr
V1D2

l ~ l 21!

r 2
V158pJ1 ~67!

1

r 2

d

dr S r 2
d

dr
V3D2

l ~ l 11!

r 2
V358pJ3 . ~68!

IV. CORRESPONDENCE WITH REGGE-WHEELER
VARIABLES

Before we proceed to present examples of initial data
constructed using the above approach, we want to esta
or

o

12400
ts
ish

the correspondence between our variables and the stan
Regge-Wheeler variables. This is relevant since the Reg
Wheeler notation~and the associated gauge! is customarily
used in perturbative evolutions for spherical stellar mod
@5#. To this end, consider a spatial tensorTi j such that

Ti j ( r̂ ,u,w)5Ti j
(0)( r̂ )1Ti j

(1)( r̂ ,u,w). The perturbations of this
tensor can be decomposed as

Ti j
(1)5t1~ r̂ ! f i j

1 1 r̂ t2~ r̂ ! f i j
2 1 r̂ 2t3~ r̂ ! f i j

3

1 r̂ 2t4~ r̂ ! f i j
4 1t5~ r̂ ! f i j

5 1 t̂6~ r̂ ! f i j
6 , ~69!

where
f i j
1 5S Ylm 0 0

0 0 0

0 0 0
D , ~70!

f i j
2 5S 0 ]uYlm ]wYlm

symm 0 0

symm 0 0
D , ~71!

f i j
3 5S 0 0 0

0 Ylm 0

0 0 sin2uYlm

D , ~72!

f i j
4 5S 0 0 0

0 ]u
2Ylm ~]u]w2cotu]w!Ylm

0 symm ~]w
21sinu cosu]u!Ylm

D ~73!

f i j
5 5S 0 2

1

sinu
]wYlm sinu]uYlm

symm 0 0

symm 0 0

D , ~74!

f i j
6 5S 0 0 0

0
1

sinu
~]u]w2cotu! Ylm

sinu

2 S 1

sin2u
]w

21cotu]u2]u
2D Ylm

0 symm 2sinu~]u]w2cotu]w!Ylm

D . ~75!
Above, f i j
1 , f i j

2 , f i j
3 , and f i j

4 represent the even-parity tens
spherical harmonics andf i j

5 and f i j
6 the odd-parity counter-

parts.
Using the Regge-Wheeler notation, the perturbations

the spatial metric~in physical space! read

f

ĥi j
(1)5(

lm
e2l H2~ r̂ ! f i j

1 1h1
even~ r̂ ! f i j

2 1 r̂ 2K~ r̂ ! f i j
3

1 r̂ 2G~ r̂ ! f i j
4 1h1

odd~ r̂ ! f i j
5 1h2~ r̂ ! f i j

6 , ~76!
4-6
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whereK must not be confused with the trace of the extrin
curvature. From the previous section, we have that the sp
metric can be constructed from

ĥi j 5ĥi j
(0)1ĥi j

(1)5f4hi j 5~f (0)1f (1)!
4hi j

(0)

5f (0)
4 hi j

(0)14f (0)
3 f (1)hi j

(0) ~77!

5ĥi j
(0)14

f (1)

f (0)
ĥi j

(0) , ~78!

where f (0)5( r̂ /r )1/2, ĥi j
(0)5diag(e2l, r̂ 2, r̂ 2 sin2u), and f (1)

5( lmf (1)(r )Ylm with f (1)(r ) a solution of the radial equa
tion ~61!. Thus, our approach to construct initial data yiel
spatial metric perturbations of the form

ĥi j
(1)5(

lm
4f (1)~r !S r̂

r
D 1/2

~e2l f i j
1 1 r̂ 2f i j

3 !. ~79!

Comparison of the metric perturbations~79! with ~76! shows
that our procedure for constructing initial data yields in ter
of the Regge-Wheeler notationh1

odd5h1
even5h25G50 and

H25K54f (1)~r !S r̂

r
D 1/2

. ~80!

Consider now the extrinsic curvature. As mentioned befo
the extrinsic curvature vanishes to zero-order. In addition,
made the choice of having vanishing first-order traceK (1)

and transverse-traceless partsA
* (1)
i j . Thus, the extrinsic cur-

vature is completely determined by the vectorWi and the
conformal factor of the background spacef (0) from

K̂ i j 5f (0)
22~ lW! i j . ~81!

In terms of tensor spherical harmonics, the extrinsic cur
ture reads

K̂ i j 5(
lm

S r

r̂
D @k1~r ! f i j

1 1rk2~r ! f i j
2 1r 2k3~r ! f i j

3

1r 2k4~r ! f i j
4 1k5~r ! f i j

5 1k6~r ! f i j
6 #, ~82!

where

k15
2

3r F2r
d

dr
W11 l ~ l 11!W222 W1G

k25
1

r F r
d

dr
W21W12W2G

k35
2

3r F2r
d

dr
W11W11 l ~ l 11!W2G ~83!

k45
2

r
W2
12400
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k55r
d

dr
W32W3

k6522rW3 . ~84!

Before proceeding, it is appropriate to discuss the impli
tions of the assumptions we imposed for the presence
even and odd parity perturbations in the initial data.

Consider first the perturbations of the 3-metric: The
sumption of vanishing perturbations of the conform
3-metric implies@as seen from Eq.~79!#, that h1

odd5h1
even

5h25G50. This means that all odd parity perturbations
the 3-metric must vanish on the initial surface. At first sig
this may seem strange, but it should be realized that it d
not exclude the presence of odd-parity perturbations. S
perturbations may enter via the Regge-Wheeler variableh0,
which is a part of the freely specifiable data. Similarly f
even-parity perturbations, the Regge-Wheeler quantitiesH0
and H1 are not part of the constraints and can be cho
freely. A choice of these three variables correspond to cho
ing a slicing for the spacetime, i.e., specifying the lapse a
the shift vector. Specifically, Regge-Wheeler gauge co
sponds toh1

even5G5h250 above, as well as perturbe
lapse

da5e2nH0 , ~85!

and shift vector

db i5H1e1
i 1h0e3

i . ~86!

Furthermore, it should be pointed out that there are no c
straints on the odd or even parity nature of the extrin
curvature initial data. This follows immediately from Eq
~82! since the coefficientsk1 throughk6 are in general non-
vanishing. As a consequence, even if the initial 3-metric
vanishing odd-parity perturbations, the time evolution will
general include such perturbations.

V. SAMPLE INITIAL DATA SETS:
COLLIDING NEUTRON STARS

We will now apply the method for constructing initia
data, that was presented in Sec. III, to a case of poten
astrophysical relevance. We consider collisions of neut
stars under the close-limit approximation. The philosop
behind this approximation has been extensively discusse
Allen et al. @6#, and we will not repeat the details here. Let
simply stress that the chosen approach to the problem
natural from a computational view, but does not account
some relevant pieces of physics~like internal shocks!.
Hence, the corresponding initial data will certainly not be
full description of an astrophysical merger of neutron sta
However, there is no reason why one should not be abl
infer some of the true physical information regarding, f
example, the pulsations of a merged object from evolutio
based on our perturbative initial data. Of course, the m
important use of our data sets, and the corresponding ev
tions, will be as benchmark tests for fully nonlinear evol
tion codes.
4-7
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The previous study of the neutron star close-limit appro
mation was specialized to the case of head-on collisions@6#.
Here, we present a general discussion of neutron-star cl
limit initial data, and give explicit results for both booste
head-on and inspiralling collisions.

As stated at the end of Sec. III, initial data are obtained
solving the system of equations~61!–~65!. The input for
these equations are the background conformal factorf (0)
and densitys (0) and, in addition, the fluid perturbationss (1)
and Ji . For close-limit collisions, one specifies the bac
ground from the outcome of the collisions. The fluid pertu
bationss (1) andJi , on the other hand, are obtained by ‘‘su
tracting’’ the background from a suitable superposition
stars that represent the initial configuration. A suitable w
of relating the two initial stars to the final configuration w
presented in@6#, and we refer the reader to that paper f
further details.

Let us first consider the perturbation to the backgrou
density. Neglecting complicating factors, such as the effe
from tidal deformations, we approximate the total density
the binary system with the following superposition of dens
profiles of isolated neutron stars@6#:

s~r i !5s* ~r i2j i !1s* ~r i1j i !

2@s* ~r i2j i !s* ~r i1j i !#1/2, ~87!

wheres* is the conformally transformed density profile
the colliding neutron stars in isolation located a distantj i in
conformal space. This functional form~87! for the total den-
sity is chosen since it leads to the correct zero-separation
infinite-separation limits. That is, for zero-separations
→s* , and for large separationss(r i)→s* (r i2j i)
1s* (r i1j i). We now introduce the close-limit approxima
tion, j i!1, and write

s* ~r i6j i !5s* ~r i !6j i¹ is* ~r i !1
1

2
j ij j¹ i¹ js* ~r i !.

~88!

Therefore, Eq.~87! takes the form

s5s* 1
1

2
~j i¹ is* !21

1

2
j ij j¹ i¹ js* . ~89!

Given this total energy, the density perturbation is obtain
from

s (1)5s2s (0)5s* 2s (0)1
1

2
~j i¹ is* !21

1

2
j ij j¹ i¹ js* .

~90!

Similarly, the momentum density is given by the superpo
tion of momentum densities of boosted isolated stars:

j i~r k!5 j 1
i ~r k1jk!1 j 2

i ~r k2jk!. ~91!

In this case, there is no need for a counterpart of the last t
in ~87!. For both, head-on and inspiral collisions,j 1

i 52 j 2
i

5 j i ; thus,

*
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j i~r k!5 j
*
i ~r k1jk!2 j

*
i ~r k2jk!, ~92!

which obviously has the appropriate zero-separation lim
namelyj i(r k)→0 asj i→0. Once again, we apply the close
limit condition and approximate

j
*
i ~r k6jk!5 j

*
i ~r k!6j j¹ j j

*
i ~r k!1

1

2
j ljm¹ l¹mj

*
i ~r k!.

~93!

Therefore,

j i52j j¹ j j *
i . ~94!

Notice that Eq.~94! directly gives the momentum densit
perturbation because, by construction, the background
static.

A. Head-on collision initial data

For simplicity, we assume that the collision takes pla
along thez-axis. Therefore,

j i5jzi ~95!

j
*
i 52J* zi , ~96!

where

zi5S cosu,2
1

r
sinu,0D ~97!

is a unit vector along thez axis.
Substitution of~95! into ~90! yields

s (1)5s* 2s (0)1
1

2
j2Fcos2uS d

dr
s* D 2

1cos2u
d2

dr2
s* 1sin2u

1

r

d

dr
s* G .

5A4pY00Fs* 2s (0)1
1

6
j2H d2

dr2
s* 1S d

dr
s* D 2

1
2

r

d

dr
s* J G1

2

15
A5pY20j

2F d2

dr2
s* 1S d

dr
s* D 2

2
1

r

d

dr
s* G . ~98!

It is clear from~98! that the conformal density perturbatio
has a monopole contribution (m50, l 50). Since our main
interest is associated with the gravitational waves gener
during the merger, we will ignore this contribution; it obv
ously does not lead to any gravitational waves. The rema
ing part is the radiative quadrupole (m50, l 52) perturba-
tion:
4-8
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s (1)5
2

15
A5pj2F d2

dr2
s* 1S d

dr
s* D 2

2
1

r

d

dr
s* G . ~99!

This initial data set is discussed in considerable detail in@6#.
Let us now consider the momentum density perturbati

Substitution of~96! into ~94! yields

j i522jzj¹ j~J* zi !

522jzizj¹ j J*

522j
d

dr
J* S cos2u,2

1

r
sinu cosu,0D

52
4

3
Apj

d

dr
J* ~Y00,0,0!

2
8

15
A5pj

d

dr
J* S Y20,

2

r
]uY20,0D . ~100!

As expected and in agreement with the density perturbat
we again have a monopole momentum density perturba
that we shall ignore. Comparing the quadrupole terms
~100! with ~58!, we haveJ350 and

J152J252
8

15
A5pj

d

dr
J* . ~101!

From Eqs.~4! and ~5! and the conformal transformation
~15! and~16!, the expressions fors* andJ* in Eqs.~99! and
~101! are given by

s* 5 r̂* f (0)
8 ~102!

J* 5~ r̂* 1 p̂* !vf (0)
10 , ~103!

with v the magnitude of the collision velocity. In writing th
above expressions, we used that to zero-orderûi50 and ĝ

511O(û2). Notice that the conformal factor in connectio
with the background star,f (0) , was the one used in Eqs
~102! and ~103! to transform the physical TOV solutions o
the colliding stars since it is the background star that p
vides the conformal space where our calculations are
formed. It is also important to notice that, once the ba
ground and colliding neutron stars models have b
completely determined, there are only two parameters
characterize the initial data: the separationj and the velocity
v.

B. Inspiral collision initial data

For this case, we assume that the initial configuration
such that the neutron stars are along thex-axis and their
momentum pointing along they-axis. Then

j i5jxi ~104!

j
*
i 5J* yi , ~105!

where
12400
.

n,
n

n

-
r-
-
n
at

is

xi5S sinu cosw,
1

r
cosu cosw,2

sinw

r sinu D ~106!

yi5S sinu sinw,
1

r
cosu sinw,

cosw

r sinu D ~107!

are unit vectors along thex-axis andy-axis, respectively.
Substitution of~104! and ~105! into ~90! yields

s (1)5s* 2s (0)1
1

2
j2Fsin2u cos2wH S d

dr
s* D 2

1
d2

dr2
s* J 1~cos2u cos2w1sin2w!

1

r

d

dr
s* G

5A4pY00Fs* 2s (0)1
1

6
j2H d2

dr2
s*

1S d

dr
s* D 2

1
2

r

d

dr
s* J G

1S 2Ap

5
Y201A2p

15
ReY22D

3j2F d2

dr2
s* 1S d

dr
s* D 2

2
1

r

d

dr
s* G . ~108!

As with the head-on collisions, we concentrate on the rad
tive quadrupole (m52, l 52) term, so the density perturba
tion s (1) source of Eq.~61! is given by

s (1)5A2p

15
j2F d2

dr2
s* 1S d

dr
s* D 2

2
1

r

d

dr
s* G .

~109!

Notice that the only difference between~109! and the corre-
sponding source term in the head-on collision case, i.e.,
~99!, is a numerical factor.

For the momentum density perturbation, substitution
~105! into ~94! yields

j i52jxj¹ j~J* yi !52jyixj¹ j J*

52j
d

dr
J* S sin2usinwcosw,

1

r
sinucosusinwcosw,

1

r
cos2w D

52A4p

3
j

d

dr
J* S 0,0,

1

r sinu
]uY10D

14A2p

15
j

d

dr
J* ImS Y22,

1

r
]uY22,

1

r sin2u
]wY22D .

~110!

Comparing~110! with ~58!, we deduce for the quadrupol
4-9
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term (m52, l 52) J350 and

J152J254A2p

15
j

d

dr
J* . ~111!

The dipole term (m50, l 51) does not contribute to th
emerging gravitational radiation and can be ignored. O
again, the momentum density perturbation for the insp
case only differs from the head-on case by a numerical
tor. The only non-trivial differences in the initial data wi
then arise from theYlm’s since in one casem50 ~head-on!
and for the otherm52 ~inspiral!. The quantitiess* andJ*
in ~109! and ~111! are obtained as in the head-on collisio
case, namely from Eqs.~102! and ~103! respectively.

Figure 1 shows profiles of the density perturbations (1)
and the momentum density perturbationJ1 for the close-
limit, boosted, head-on collision. Recall that for inspiral a
head-on collisionsJ152J2 and J350. The perturbations
s (1) and J1 were calculated from neutron stars with initi
separationj50.1R(0) and velocityv50.1c. The correspond-
ing perturbations for the inspiral case only differ from t
perturbations shown in Fig. 1 by a constant numerical fac
@compare Eqs.~99! and ~101! with Eqs. ~109! and ~111!#.

FIG. 1. Densitys (1) and momentum densityJ1 perturbations
@see Eqs.~99! and ~101! in the text# for the close-limit, boosted
head-on collision of neutron stars with initial separationj
50.1R(0) and velocityv50.1c. The corresponding perturbation
for the inspiral case differ from these quantities by constant num
cal factors. The TOV parameters for the background and collid
stars arerc

(0)52.6931015 g/cm3 andk (0)5100 km2. For these pa-
rameters, the mass and radius of the background star areM (0)

51.24M ( and R(0)59.0 km, respectively. The initial colliding
stars, which are displaced a distance 0.1R0 from the center of mass
follow from rc* 52.9831015 g/cm3 and K* 590.25 km2. With
these parameters, the colliding stars have a mass and radiu
M* 51.17M ( andR0* 58.58 km, respectively.
12400
e
l

c-

r

The TOV parameters for the background and colliding st
are rc

(0)52.6931015 g/cm3 and k (0)5100 km2. For these
parameters, the mass and radius of the background sta
M (0)51.24M ( and R(0)59.0 km, respectively. The initia
colliding stars, which are displaced a distance 0.1R0 from the
center of mass, follow fromrc* 52.9831015 g/cm3 and K*
590.25 km2. With these parameters, the colliding stars ha
a mass and radius ofM* 51.17M ( and R0* 58.58 km, re-
spectively. Figure 2 shows the solutions to the conform
perturbationf (1) and the harmonic componentsW1 andW2
@see Eq.~60! of the vectorWi for the close-limit collision of
neutron stars corresponding to the perturbations in Fig. 1#.

VI. CONCLUDING REMARKS

In this paper, we have presented a framework for c
structing initial data relevant for perturbative studies of ne
tron stars. Our approach was to ‘‘linearize’’ th
Lichnerowicz-York standard procedure for the initial-valu
problem in general relativity, and it facilitates~to a certain
extent! setting astrophysical initial data for perturbation ev
lutions, cf. @5#. It is straightforward to compare our metho
~as well as the results! to the fully nonlinear one, which is
important since a main motivation for perturbation studies
to provide benchmark tests for nonlinear numerical rela
ity.

As examples of interesting initial data that can be co
structed from our equations, we constructed data for merg
neutron stars in the close-limit approximation. The simpl
case of these data sets, that describe head-on collision of
initially static stars, has already been extensively discus
in @6#. No studies of the more general data with initial m

i-
g

of

FIG. 2. Conformal perturbationf (1) and harmonic component
W1 and W2 of the vectorWi from the solution to the linearized
constraints for the close-limit collision of neutron stars correspo
ing to the perturbations in Fig. 1.
4-10
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mentum and for inspiralling collisions have yet been p
formed. Such simulations should obviously be carried o
and we hope to be able to discuss the relevant results, as
as possible extensions of the framework developed in
paper to, for example, rotating configurations, in the n
future.
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