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We develop a framework for constructing initial data sets for perturbations about spherically symmetric
matter distributions. This framework facilitates setting initial data representing sources of gravitational radia-
tion involving relativistic stars. The procedure is based on the Lichnerowicz-York conformal approach to solve
the constraints in Einstein’s equations. The correspondence of these initial data sets in terms of the standard
gauge perturbation variables in the Regge-Wheeler perturbation variables is established, and examples of initial
data sets of merging neutron stars under the close-limit approximation are presented.
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[. INTRODUCTION damental role if a connection with systems of astrophysical
relevance is to be made. Examples of perturbative studies
The early years of the next millennium will hopefully be where astrophysically consistent initial data is needed are the
remembered for the birth of gravitational-wave astronomy point-particle[3] and close-limit approximationgl] to black
With several large scale interferometéksser Interferomet- hole coalescences. For the close-limit approximation in par-
ric Gravitational Wave ObservatoryLIGO), VIRGO, ticular, this issue is crucial. The focus is then on the late
GEO600, TAMA] under construction, and the continued im- stage of the merger, when the binary system can be approxi-
provement of the technology for cryogenic resonant-massated as a single, perturbed black hole. In the case of per-
detectors (ALLEGRO, AURIGA, EXPLORER, NAUTI- turbations of relativistic stars, most of the studj&$ have
LUS), there are many reasons to be optimistic at the presemtot considered initial data with direct connection to a given
time. However, the interpretation of data from the new gen-astrophysical situation. In other words, the focus has so far
eration of detectors will heavily depend on accurate “tem-been on investigating how the star reacts to generic pertur-
plates” of gravitational waveforms. For a given astrophysi-bations.
cal source of gravitational radiation, construction of such The goal of this paper is to provide a mechanism for
templates involves fully non-linear or perturbative approxi-generating initial data for perturbations of a relativistic star.
mations to Einstein’s field equations. In both instances, th&his data should ideally represent astrophysical situations of
construction of appropriate initial data constitutes a fundatrelevance to gravitational-wave detectors. Inspired by the
mental issue. It is absolutely necessary that initial data repsuccess that the Lichnerowicz-York conformal approach has
resent a “realistic” stage of the astrophysical system undeenjoyed for solving Einstein’s constraints, we base our per-
consideration. turbative methodology on “linearizing the Lichnerowicz-
The early years of numerical relativity were in part char-York procedure.” By doing so, we take advantage of the
acterized by studies aimed at constructing initial data foprescription for knowing which pieces of information,
Einstein’s equations, namely data that satisfy the Hamilamong the metric and its “velocity,” are fixed by the con-
tonian and momentum constraints. Of particular interest wastraints and which are freely specifiable. Moreover, we in-
obtaining solutions to the constraints which represent blackerit the machinery used in the past for the construction of
hole binarieg[1]. These initial data studies highlighted the initial data sets representing binary systems. That is, the pro-
importance that the Lichnerowicz-York conformal approachcedure described in this paper provides a natural framework
[2] plays in facilitating solving the constraints. for obtaining initial data in connection with the close-limit
In the perturbative arena, initial data sets also play a funapproximation to neutron star mergd®. As with black
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hole binaries, the close-limit to neutron star collisions dealszpove, ﬁij is the 3-metric E‘W:@Mﬁﬁpﬁv) and Rij the

with the late stages of the merger, at the point in which thesxtrinsic curvature of the time-like hypersurfaces in the fo-

systems can be approximated as a single neutron Stgtion with R=RiK, andR the scalar curvature. Further-
“dressed” with perturbations. " g

It is perhaps relevant, before we present any detailed rgN0'€, Vi is the covariant derivative associated with the
sults, to digress on the perceived relevance of our study. Fir&-metrich;;, ando and |' are the energy and momentum
of all, it is important to realize that the initial data that we densities of the matter sources. Greek letters denote space-
construct may be rather different from a true dynamicallytime indexes and Latin letters spatial indices, and we use
perturbed neutron star in an astrophysical system. The maihits in whichG=c=1. Contrary to the common practice,
reason for this is the assumption of spatially conformally flatwe use “carets” to denote physical space since we will be
initial data in the Lichnerowicz-York approach. This as- mostly working in the conformal space.
sumption is not based on physical reasoning, but is used For a perfect fluid, the stress-energy tensor is given by
because of the simplifications it brings to the problem. In a A o
way, it corresponds to “minimizing” the gravitational-wave T,,=(p+pu,u,+pg,,, (3
content in the initial space-time. That this need not necessar-
ily be an appropriate assumption is obvious. However, thguherep andp are, respectively, the total mass-energy den-
true nature of the “initial” data for(say a strongly distorted  sjty and pressure of the fluid measure by an observer with
neutron star formed via gravitational collapse in a SUpemovﬂ-velocity (“. The energy and momentum densities appear-

is largely unknown. _Basma}lly, the entire history of the sys—-%ng in the constraints are obtained from
tem must be known if one is to be able to model the amoun

of gravitational waves in the space-time correctly. This is a

major problem, not only for the present investigation, but for

any attempt to model astrophysical sources in general rela- . R R
tivity. Since the standard approach in numerical relativity is jH==T, n"h*=(p+p)yh*'u,, 6)

to proceed via the Lichnerowicz-York procedure, we have

chosen to do so in our consideration of the perturbation probwhere y= — ﬁMQ# is the relativistic boost factor.

lem. This means that our method is fully compatible with, The fundamental virtue of the Lichnerowicz-York confor-
and complementary to, fully nonlinear evolutions. And thismal approacH2] for solving the Hamiltonian and momen-
is the arena where our results should prove useful. First ofum constraints is that it provides a concrete recipe for sin-
all, our framework can be used to create linearized initialgling out which four “pieces” among the twelve
d_ata that is c_or_nparable to fully n_onllnear data used to StUd)fomponentsfqij -Rij) are to be solved from Eqgél) and(2).
single relativistic stars. This provides a powerful benchmarkro starting point is the ansatz

test for the nonlinear evolution codes. Secondly, one can

extend our results to provide a translation of nonlinearly A = %h: 6)
evolved data into a perturbative data set. In this way an evo- g e

lution can readily be extended by using perturbative equas 1 e the conformal metrity; is assumed to be known.

tions once the system set_tles down into the Imear_ reglmeThus, for the metric, the piece that is fixed by the constraints
Thirdly, using the perturbative approach we can easily Creat‘(aHamiltoniar) is the conformal factoré. The other three

model initial data for many “astrophysical” situations. The - . . .
. guantities fixed by the constrainfeomentun involve the
example we have chosen for the present work is the close?

i s ) extrinsic curvature. The idea here is to decompose the extrin-
limit approximation to neutron star mergers. As is clear from_. o

. o ) o sic curvature into its trace, tracefree-transverse and tracefree-
the discussion if6], this approximation should not be ex-

o .~ _longitudinal parts. To achieve this, the extrinsic curvature is
pected to fully represent true neutron star collisions sinc

several important pieces of relevant phydidse shocks are first split into

not included. However, given a method for generating close- 1

limit initial data we can probe the parameter space at com- Kii=All + ZRiK. (7)
paratively low computational cost. 3

P T R= (D)7 @

Il. LINEARIZATION OF THE LICHNEROWICZ-YORK Before decomposing the tracefree paltinto its transverse
CONFORMAL APPROACH and longitudinal parts, the following conformal transforma-

R tion is applied:
Given a spacetime with 4-metrig,, and a foliation of
this spacetime with Eulerian observers having a 4-velocity All = ¢~ 10p11 (8)
n*, the constraints in Einstein’s fields equations can be writ-
ten in a 3+1 [or Arnowitt-Deser-MisnefADM)] form[7] as ~ The exponent in the conformal transformation is motivated
o R by the fact that this transformation possesses the following
R+K?-K;K'=1670 (Hamiltonian, (1)  property:

V,(RI—RTR)=8]" (momentun. 2 VAl = =107, Al 9
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with V; covariant differentiation associated with the back-
ground metrich;; . This property simplifies the conformal
transformation of the divergence of the extrinsic curvature in R 21)
the momentum constraitt®). =lo™a:

Since, as YVI|| become clear below, the trace of the extrinyyhere (0) labels background quantities and (1) first-order
sic curvatureK is not fixed by the constraints, no conformal perturbations. The corresponding decomposition of the con-
transformation is imposed on the trace of the extrinsic curformal space quantities yields

vature (K=K). Once the conformal transformation is ap-

(}:(}(0)"1' (}(l) (20)

N () 1
plied, the next step is to decomposg into its transverse hij =h{?+h{" (22)
and longitudinal parts: namely,
’ pareemeER: ¢=¢O+ oM (23
A=A+ (W)Y, (10) o N
where A',f =A',j (0)+A2(1) (24
i i ]
) - 5 k W'= W)+ Wy (25
W) =2Viw! — Qv WY 11
(W) 37 K (1D K=K©+K@ (26)
V,Al=0. (12) o= o0+ 51 27)
With the above conformal transformations and transverse- ji=jlo+j! (28)
longitudinal decompositions, the Hamiltonian and momen- 1@
tum constraints become where
Viv ij =7 2 245 -3_ ~ (0 4 0
8V'Vi¢—Rop+A;A" ¢ —§K ¢°+16map” °>=0 hi(j)=¢(0)hi(j) (29)
13
' i 1 [ j i \\/i 2 6yi ¥ ﬁi(il):¢?0)hi(il)+4¢?0)¢(l)hi(io) (30
VIV;W' + §V VW + R W — §¢> V'K—8j'=0,
(14) Alyy= b0y Al (31)
whereR'; is the 3-Ricci tensor of the conformal space &nd ~ o o
J ij — 4—10p0] __ -11 ij
its trace. In deriving Eqs(13) and (14), the following con- A= P0) Ay~ 1080y P1)A0) (32
formal transformations for the energy and momentum densi- .
ties were used: Ky=Ko) (33
o=¢ 8 (15) K=K (34)
j'=¢719". (16) T(0)= b0y (0) (35)
To summarize, the Hamiltonian constraint fixes the con- = 81— Bl iy (36)
formal factor¢ and the momentum constraint determines the W= 7OTL PO FWT0)
generatodV' of the longitudinal part of the conformal, trace- A 10
less part of the extrinsic curvature. The freely specifiable IORKZORIC! (37
data in this coupled set of equations are the conformal metric . 10 IRV
h;;, the trace of the extrinsic curvatukg the source func- 1(1)= %0y J (1)~ 1000y P (1)i (0) - (39

tions (o,j'), and the divergence free, traceless part of the .
extrinsic curvatured) , which is hidden inA;; in Eq. (13). Although all scalars, vectors and tensors are expanded in

Thus far, we have just reviewed the Lichnerowicz-York order of smallness, it is important to stress again that all but
treatment o'f the initial data problem. We now introduce our? andW! are freely specifiable, and this property is indepen-

fi ion. The initial datah( Al K o 5 dent of the order of the perturbation.
Irst assumption. € '”'F'a atah(; A", 19 ) are as- At this point we introduce ousecondassumption, which
sumed to be close to a given background: i.e.,

is that the perturbations of the conformal background vanish
on the initial data slice; that is{”=0. The primary motiva-

AN (0] [(1

hij = hi(i + hi(i ) (17 tion for this choice is the simplification of the coupled sys-
NIV tem of constraint equations. We shall later discuss the physi-

AT=A0)tAL (18) cal relevance, as well as the implications and restrictions,
o . that this assumption imposes on the class of initial data that
K=K+t K (19 one has access to with our procedure. Usiny=0, to-
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gether with the above perturbative expansions in the couple@he above stellar structure or Tolman-Oppenheimer-Volkoff

elliptic system(13) and(14), we obtain (TOV) system of equations must be supplemented with an
equation of state. For simplicity, we use the polytropic equa-
8YIV, 1)~ | R+ 7TAL AL 6 B+ 1—0K20 e tion of statep=«xp', wherex andT" are the adiabatic con-
! O 7@ T 3 0T stant and index, respectively. The adiabatic inHexs related

) to the polytropic indexh by I'=1+1/n. In the specific ex-
+48;-rg(0)¢(0ﬂ byt 2A0AL b0 ample provided later, we ude=2 (n=1). N
We now assume that the zero-order quantities
4 : o (P(0):P(0) .\, ) have been obtained from solving E¢42),
~ 3KoK@ P~ 1670 (1)b(0)=0 (39  (44) and (45). The next step is to solve for the first-order
perturbations from the linearized constraii8®) and (40).
_ 1 _ _ 2 To facilitate this task, it is convenient to perform a coordi-
VIV W)+ 3 V'V Wi+ Ry Wy — 2 60 VK (g nate transformation and bring the 3-metric(#1) into the
3 3 isotropic, conformally flat form

12 _ _
- §¢?0)¢(1)V'K(0)—8wi'(1)=0, (40 ds?= pg)(dr2+r2d 6+ r2sinf6de?), (46)

whereR, R;;, andV; refer to the background. In writing Egs. Where the conformal factor is given by
(39 and (40), we have used the fact that the zeroth-order

guantities satisfy the constraints. Notice that, as in the non- T\
linear case, the constraints remain coupled. b0)= r (47)
IIl. THE INITIAL DATA PROBLEM FOR RELATIVISTIC and the transformation of the radial-coordinate is obtained
STELLAR PERTURBATIONS from
We now focus on constructing initial data sets for which
the background is a static and spherically symmetric stellar dr r
~ ) . . —x = e)\ . (48)
model, with 4-metric given by dr ;

— _ a2V 2+ 2\ "2_'_"2 2+"2- 2 ) )
ds’ evdt*+edri+ride*+risirode”,  (41) The static nature of the background spacetime and the gauge
where the metric coefficients and \ are functions of the choice of a vanishing shift vector implg(?=j(o=0 for
radial coordinate only. Einstein's equations for this back- this background spacetime. This leads to considerable sim-

ground reduce to solving three equations. The first equatio lifications in. the foIIowing, bl.ﬁ.t.he procedure we describe
or constructing perturbative initial data can easily be ex-

defines the mass inside radius tended to include also time-dependent, spherically symmetric
d background spacetimes.
_r:n:47r;2;)(0). (42) ~We introduce here outhird assumption, which is that

+1)=K)=0. The vanishing of the transverse-traceless
R part of the perturbation to the extrinsic curvature has direct
Heremis a function ofr that is related to the metric function implications to the gravitational radiation content of the ini-
\ by tial data. In a way this assumption can be viewed as “mini-
mizing” the amount of gravitational waves in the initial
2m spacetime. That this need not be a true representation of an
e "=l (43 astrophysical systenfand hence may not be desirabls
obvious, but in order to be able to assign this part of the free

Equation(42) is directly obtained from the Hamiltonian con- data physically correct values we need a detailed knowledge

straint. The second equation belongs to Einstein’s evolutio®f the past history of the system. Such information requires
equations and reads long term, nonlinear evolutions and is far beyond our present

capabilities. The present assumption is convenient in that it

dv e L simplifies the calculations considerably. Furthermore, we are
—= 7(m+ 47-rr3p(0)). (44) unlikely to overestimate the amount of gravitational radiation
dr r emerging from true physical systems if we base our esti-

mates on the present approach. The vanishing of the trace of
the extrinsic curvature to first order is less restrictive physi-
cally. It simply implies(using also the fact tha€ o,=0) that

the slicing of the perturbed spacetime is maximal to first
(45  order. With those further assumptions, the linearized con-
straints(39) and(40) decouple and take the form

Finally, conservation of momentum vyields the condition for
hydrostatic equilibrium:

db(o) ~ ~ dV
—_— == + —.
e (p(o) p(O))dr
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' -4 -3
VIVibu)=6m0 )by by~ 2md0yo)

vViv,.u=v V'

VIV V=8

(49
(50

(51)

where we have decomposed the VeME) in Eq. (40) fol-

lowing [8,9] as

1
W=V~ 3 V'U

(52

From now on, we will drop the label (1) i;'1"(1) and Wi(l)
since the zero-order values for these quantities vanish.

The set of equation@9)—(51) constitute a coupled set of 1
in the Wo=V,—~U (60)

elliptic equations in three dimensions, expressed e.g.,

coordinates I(,6,¢) of the background space. Due to the

PHYSICAL REVIEW D 60 124004

([

&= 0 rzsinaa"’Ylm 'r2sing 96Yim |-
Heree) an'de'2 are the basis vectors of even-parity perturba-
tions ande} is the basis for odd-parity perturbations. In the
above expressions and what follows, it is understood that the
radial functions are for a givenl m). These indices have
been suppressed for economy in notation. We note that in
terms of the radial functions, E¢52) reduces to

1d
W]_:Vl_ Z EU

4

spherically symmetric nature of the background, these linear- WazV
ized equations allow for a separation of variables. Specifi-

cally, we can apply a spherical harmonic decomposition of

form:

d)(r,0,¢) 2 D) (1Y im(6,¢)
0(1)(r.9,90):% a1y (NYim(0,9)
U(r,6,9)=2 U(N)Yin(6,¢)

Vi(r,ﬁ,go):% Vi(r)ey(0,e)

+1V,(r)ey(6,¢)
+rV4(r)es(6,¢)

Wi(r,ﬁ,go):% W, (r)ei(6,¢)

+TWo(r)eb(6,¢)
+rWs(r)es(6,¢)

j‘(r,e,¢>=% Ji(r)ey(6,9)
+13,(r)ey( 6, )
+1J3(r)ex(6,¢),

where

eJ.: (Ylm !O!O)

1

i_| o= -
& =| 059 Yim === 7 ¥im

(53

(59

(59

(56)

(57)

(58)

(59

After separation of variables, the system of equations
(49)—(51) is rewritten as a system of coupled radial elliptic
equations:

1d( ,d |(| 1)
_2d_< 2&%))

+670(0)b(0) | D(1)

=270 (61)
1d/.d I1+1) 1 d I(1+1)
|2 _ =— —(r? _
r2 dr(r drU> r2 v r2dr (rVy) r V2

(62
1d/.d [1(1+1)+2] |(| 1)
ﬁa(fz—er)——rz Vl+ V2—8’7T 1

(63)

1d(,d I(1+1) 2
— T V2 - 2+ _2Vl:87TJ2 (64)
r

(rzivs) I(Iﬂ)vg—sma (65)
r

Equations(61)—(65) fully characterize, for eachl{m)
harmonic, initial datd ¢4),U, V] to first perturbative order,
once the background conformal factf, and densityo g,
as well as the fluid perturbations;y and J; are specified.
Outside the sources, the solutions to the above equations are
U=ur? V;=v,r° V,=v,r¢ andVg=vsrd with u, v,, vy,
and v, constants. In order to have regular solutions ffor
—oo, one needa=d=—(1+1), b=c=—I andv;=1v,,
where we assume thbe1. As we shall later see, the corre-
sponding interior solutions for head-on and inspiral close-
limit collisions exhibit the same scaling; that ; =1V, as
well as J;=1J,. With this assumption, the system of EQs.
(62)—(65) reduces to
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1 d d I(1+1) d (1-1) the correspondence between our variables and the standard
_2d_( 2d_ )— 5 :avl_ ; V; (66) Regge-Wheeler variables. This is relevant since the Regge-
r Wheeler notationand the associated gayge customarily

used in perturbative evolutions for spherical stellar models

ii i I(I—l)V 8md 67) [5]. To this end, consider a spatial tensby such that
2dr|’ dr 178 Oy 4 77 i ;
r r? T”(r 0,¢) =Tij(r) +Ti”(r,6,¢). The perturbations of this
tensor can be decomposed as
1d d I(1+1)
_Zd_ aV3 - r2 V3:87TJ3. (68)

T =ty (Nl +rt(r) 2 +r2t(n)f]

IV. CORRESPONDENCE WITH REGGE-WHEELER

2 4 5
VARIABLES +12,(0) i+ (1) £+ (1) ]

° (69

Before we proceed to present examples of initial data sets
constructed using the above approach, we want to establiskhere

0
0], (70
0

symm 0 0 (71)

0 Yim 0 , (72
0 0 sirfeY,

o O

symm  (d5+sin6cosfd,)Ym

~Sng Y \m SiNGI,Y
symm 0 0 ' (74)

symm 0 0
0 0 0
sing| 1
2 \sirfg
0 symm —sin#(dyd,—cotdd,)Ym

———(dyd,—cotd) Yy — LT cothd,— Y|m . (75

siné

0 0 0
f4 = ( INYim (349, —COtOIL)Yim (73
( 0

Above, i, f7, f3, andf} represent the even-parity tensor o i .
spherical harmonics antqg- and f; the odd-parity counter- hf ):% e Ha(N)fj +h1" (D ff +12K(Df]
parts.
Using the Regge-Wheeler notation, the perturbations of Ap o odd, 5 <5
the spatial metricin physical spaceread +2G (D) f +h2™(Dff +hy(D (76)

124004-6



CONSTRUCTION OF INITIAL DATA FCR . .. PHYSICAL REVIEW D 60 124004

whereK must not be confused with the trace of the extrinsic

curvature. From the previous section, we have that the spatial ks=r 5y Wa—Ws

metric can be constructed from

. . kg=—2rWs. (84)

hij=h{+h{D= g% = (d(o)+ b2y *hY ° _ _3 _ _ _ o
40 3 ) Before proceeding, it is appropriate to discuss the implica-
= dohij’ T4 b0y )hi (77 tions of the assumptions we imposed for the presence of

even and odd parity perturbations in the initial data.
Consider first the perturbations of the 3-metric: The as-

sumption of vanishing perturbations of the conformal

3-metric implies[as seen from Eq(79)], that h9¢9=heven

where ¢(o)=(F/r)1’2, ﬁi(f):diag(e2kj2,f2 sir?6), and b) =h2=G=Q. This means that all _oqq parity perturbation_s of

=3 mé)(r) Yim With ¢(1)(r) a solution of the radial equa- the 3-metric must vanish on the initial surface. At first sight

tion (61). Thus, our approach to construct initial data yieldsthis may seem strange, but it should be realized that it does
spatial metric perturbations of the form not exclude the presence of odd-parity perturbations. Such

perturbations may enter via the Regge-Wheeler varihple
A r\ 12 A which is a part of the freely specifiable data. Similarly for
hi(jl)=z 4¢(1)(r)<—) (ezxfilj +r2fﬁ). (79  even-parity perturbations, the Regge-Wheeler quantiigs
Im r and H, are not part of the constraints and can be chosen

i i i ) freely. A choice of these three variables correspond to choos-
Comparison of the metric perturbatiof9) with (76) shows 4 4 gjicing for the spacetime, i.e., specifying the lapse and

that our procedure for constructing initial data yields in termsiya shift vector. Specifically, Regge-Wheeler gauge corre-
of the Regge-Wheeler notatidr{'’= hf'*"=h,=G=0 and sponds toh®®"=G=h,=0 above, as well as perturbed

lapse

~\ 172
;
H2=K=4¢(1)(r)(F) : (80 Sa=e?"Hy, (85

=ﬁi<j0>+4%ﬁ§jo>, 79
(0)

Consider now the extrinsic curvature. As mentioned before‘:jmd shift vector

the extrinsic cqrvature vapishes t.o z.ero-(.)rder. In addition, we 5B = Hlei1+ hoei3. (86)
made the choice of having vanishing first-order tréGe,

and transverse-traceless pakt§,,. Thus, the extrinsic cur- Furthermore, it should be pointed out that there are no con-
vature is completely determined by the vecWt and the straints on the odd or even parity nature of the extrinsic

conformal factor of the background spagg,, from curvature initial data. This follows immediately from Eq.
A (82) since the coefficientk; throughkg are in general non-
Kij = ¢(‘0§(IW)” . (81)  vanishing. As a consequence, even if the initial 3-metric has

vanishing odd-parity perturbations, the time evolution will in
In terms of tensor spherical harmonics, the extrinsic curvageneral include such perturbations.
ture reads
V. SAMPLE INITIAL DATA SETS:

s r 1 2 2 3 COLLIDING NEUTRON STARS
Kij=> | = |[ka(1)ff+rko(r) 2 +r2kg(r) 3 _ S
Im A\ r We will now apply the method for constructing initial
data, that was presented in Sec. lll, to a case of potential
astrophysical relevance. We consider collisions of neutron
stars under the close-limit approximation. The philosophy
behind this approximation has been extensively discussed by
5 d A_Ilen et al.[6], and we will not repeat the details here. Let us
klz_[zr_wl+|(|+l)wz_zwl} simply stress that the chosen approach to the problem is
3r dr natural from a computational view, but does not account for
some relevant pieces of physidiike internal shocks
Hence, the corresponding initial data will certainly not be a
full description of an astrophysical merger of neutron stars.
However, there is no reason why one should not be able to
2 d infer some of the true physical information regarding, for
k3=3—r[—me1+W1+|(| +1)W2} (83)  example, the pulsations of a merged object from evolutions
based on our perturbative initial data. Of course, the most
important use of our data sets, and the corresponding evolu-
K —EW tions, will be as benchmark tests for fully nonlinear evolu-
AT T2 tion codes.

+ 12k (1) +ks(r) 5 +ke(r) 31, (82)

where

1] d
k2=F r EWZ—FW]._WZ
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The previous study of the neutron star close-limit approxi- jiirky :ji* (rk+ &9 _ji* (rk— gy, (92
mation was specialized to the case of head-on collisiéhs
Here, we present a general discussion of neutron-star clos@mich obviously has the appropriate zero-separation limit,
limit initial data, and give explicit results for both boosted namelyji(rk)—0 as&'—0. Once again, we apply the close-

head-on and inspiralling collisions. limit condition and approximate
As stated at the end of Sec. Ill, initial data are obtained by
solving the system of equation$1)—(65). The input for , , _ ) 1 ,
these equations are the background conformal fagt@s (M 89 =J () £ 8V L (r) + S E €MV Vinj ().
and densityo oy and, in addition, the fluid perturbatioms, (93)

and J;. For close-limit collisions, one specifies the back-

ground from the outcome of the collisions. The fluid pertur-Therefore,

bationso ;) andJ;, on the other hand, are obtained by “sub-

tracting” the background from a suitable superposition of jl=2£vj . (94)
stars that represent the initial configuration. A suitable way o

of relating the two initial stars to the final configuration was Notice that Eq.(94) directly gives the momentum density

presented ir6], and we refer the reader to that paper forpertyrhation because, by construction, the background is
further details. static.

Let us first consider the perturbation to the background
density. Neglecting complicating factors, such as the effects
from tidal deformations, we approximate the total density of
the binary system with the following superposition of density  For simplicity, we assume that the collision takes place

A. Head-on collision initial data

profiles of isolated neutron staf§]: along thez-axis. Therefore,
a(t) =0y (r'= &)+ o, (r'+¢) ¢=¢7 (95
_[U*(ri_gi)o-*(ri_’_gi)]llzv (87) jL:_J*Zi, (96)

where o, is the conformally transformed density profile of
the colliding neutron stars in isolation located a disténin
conformal space. This functional for(87) for the total den-
;ity i's chosen sjnce 'it Igads to th(=T correct zero—separgtion and - ( cos, — Esine,o) (97)
infinite-separation limits. That is, for zero-separation r

—o,, and for large separationso(r')—o, (r'—¢")

+ 0, (r'+ £). We now introduce the close-limit approxima- is a unit vector along the axis.

tion, £ <1, and write Substitution of(95) into (90) yields

where

o (1= =0, (r"=¢&Vio, (r')+ Eglgjvivjo'*(rl)-
(88)

1 2
o= 0kt 5§

d 2
cosza(ma*)

2
Therefore, Eq(87) takes the form +cos°-0d_g +sin202 EU
dr2 * rdro*)
1, , 1

= \4mY

1, d d 2
O'*_O'(O)+6§ FU*—F a(f*
Given this total energy, the density perturbation is obtained

from 2d 2 d? d 2
e = 2| — —
L L +r dro'*] +15 5’7TY20§ dr20*+ dr(T*)
0'(1)20'_0'(0)20'*_0'(0)+ §(§'Vi0'*)2+ §§I§]V|V]O'*90 1 d
(90 A’ | (98)

Similarly, the momentum density is given by the superposi-
tion of momentum densities of boosted isolated stars: It is clear from(98) that the conformal density perturbation

) ) _ has a monopole contributiorm=0, |=0). Since our main

Jr =L (r* &9 +jL(rk=g. (91)  interest is associated with the gravitational waves generated

during the merger, we will ignore this contribution; it obvi-
In this case, there is no need for a counterpart of the last tergusly does not lead to any gravitational waves. The remain-
in (87). For both, head-on and inspiral collisiorjs,=—j ing part is the radiative quadrupolen&0, | =2) perturba-
=j,; thus, tion:
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d2
WU*-I—

d 2 1d o 1 sing 108
a(,*) — T g0 | (99) x'= sm(;l(:os<p,rcosb?cos<p,—rsim9 (106

2
0'(1):1_5\/5’7sz

This initial data set is discussed in considerable detdi6]n , | _
Let us now consider the momentum density perturbation. y'=|sing Sing,-Ccosy sing, -~ (107
Substitution of(96) into (94) yields
jl=—2&4V.(3,7) are unit vectors along thg-axis andy-axis, respectively.
_ _' Substitution of(104) and (105 into (90) yields
=—2¢£2'2V,J,
d 1 1, d )2
=263 ( coso, — —sing cosﬁ,O) T(1)T 0%~ 0" 552 S'“2000§¢[ (EU* )
4 —.d d? ., 1d
——5\/;553*(\(00,0,0) +FU*] +(COSZHCOSZQD+SIn2<p)FaU*
8 d 2
_ 2 - z 1 .| d?
fol57gen | Yo f o] 200 B Yod 7, oo gsz{w*
As expected and in agreement with the density perturbation, 5
we again have a monopole momentum density perturbation n EU n E ia
that we shall ignore. Comparing the quadrupole terms in dr * rdr’*
(100 with (58), we havel;=0 and
+ \/; Yoot \|TReY )
8 d ~\VE'2 TERE€Y22
J;=23,=— —\5mE—J, . (101) 5 15
15 dr
) d? d 2 1d
From Egs.(4) and (5) and the conformal transformations x & a2 @) Trar (108
(15 and(16), the expressions far, andJ, in Egs.(99) and r

(101) are given hy
As with the head-on collisions, we concentrate on the radia-
O, =Py ¢?0) (102  tive quadrupole =2, 1 =2) term, so the density perturba-
tion o4y source of Eq(61) is given by

3= (Px +PLIVE0). (103
27 | d? d 2 1d
with v the magnitude of the collision velocity. In writing the o)~ Ef ﬁ(f* + ar% T rar|
above expressions, we used that to zero-otder0 and y (109

=1+0(u?). Notice that the conformal factor in connection

with the background starp o), was the one used in Eqs. Notice that the only difference betweéh09) and the corre-
(102) and (103 to transform the physical TOV solutions of sponding source term in the head-on collision case, i.e., Eq.
the colliding stars since it is the background star that progg), is a numerical factor.

vides the conformal space where our calculations are per- For the momentum density perturbation, substitution of
formed. It is also important to notice that, once the back-(105) into (94) yields

ground and colliding neutron stars models have been

completely determined, there are only two parameters tha |0V (J. V) = 28ViXI T ]

characterize the initial data: the separatioand the velocity } XV (I, y) =28y XV},
V. d o 1. . 1
=2§EJ* smzQSIn(pCOSp,FSInﬁcOS%In(pCOS(p,FCOSz(p

B. Inspiral collision initial data
For this case, we assume that the initial configuration is — _ dm. d 0 OL %
. , =341 0,00—=—74Y10
such that the neutron stars are along #axis and their 3 ~dr t sing
momentum pointing along thgaxis. Then

Y 1(9Y ! a,Y
227r 4 22,rsin20 @22

i=d.Y, (105 (110

_ _ T d
£= gx (104 4N 5ty JxIm

where Comparing(110) with (58), we deduce for the quadrupole
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FIG. 2. Conformal perturbatiogh;y and harmonic components
W, and W, of the vectorW' from the solution to the linearized
constraints for the close-limit collision of neutron stars correspond-
ing to the perturbations in Fig. 1.

FIG. 1. Densityo(;) and momentum density; perturbations
[see Egs(99) and (101 in the texi for the close-limit, boosted,
head-on collision of neutron stars with initial separatign
=0.1R(p) and velocityv=0.1c. The corresponding perturbations
for the inspiral case differ from these quantities by constant numeri-
cal factors. The TOV parameters for the background and collidingThe TOV parameters for the background and colliding stars
stars arep?)=2.69x 10'° g/cn® and «(g)= 100 knf. For these pa-  are p©=2.69x 10° g/cn? and K(0y=100 kn?. For these
rameters, the mass and radius of the background staMgég  parameters, the mass and radius of the background star are
:1.24MQ and R(Q):9.O km, _respectively. The initial colliding M(o)=1.24M@ and R(0)=9.0 km, respectively. The initial
ftﬁ‘rs’ V‘;h'Ch are d'gfg;ii%g dI/Str?;qugk;m tgg g:”lfé ofvr\??hss, colliding stars, which are displaced a distanceRy.from the
ollow from p¥=2. cnt an =90. . Wi * _ 5
these paramgtcers, the coIIidg:ng stars ha:/e a mass and radius %?g(geéSOLrrrn?a?/iitLOtILc:aV\slgrS;?acr;eztﬁ?tﬁglcc?lllic drirrigagt(Z\rKs*have

— * 5 - . . Ll
M, =1.17M¢ andR; =8.58 km, respectively. a mass and radius dfl, =1.1™M and R} =8.58 km, re-

o _ spectively. Figure 2 shows the solutions to the conformal
term (m=2,1=2) J;=0 and perturbationg;y and the harmonic componenté; andW,
[see Eq(60) of the vecto'W' for the close-limit collision of

27 d neutron stars corresponding to the perturbations in Hig. 1
J1=23,=4 1—555‘1* . (111

The dipole term h=0,1=1) does not contribute to the VI. CONCLUDING REMARKS

emerging gravitational radiation and can be ignored. Once In this paper, we have presented a framework for con-
again, the momentum density perturbation for the inspiraktructing initial data relevant for perturbative studies of neu-
case only differs from the head-on case by a numerical factron stars. Our approach was to ‘“linearize” the
tor. The only non-trivial differences in the initial data will Lichnerowicz-York standard procedure for the initial-value
then arise from the&/,,,’s since in one casm=0 (head-on problem in general relativity, and it facilitatéto a certain
and for the othem=2 (inspiral). The quantitiesr, andJ, exten) setting astrophysical initial data for perturbation evo-
in (109 and (111) are obtained as in the head-on collision lutions, cf.[5]. It is straightforward to compare our method
case, namely from Eq$102 and (103 respectively. (as well as the resultgo the fully nonlinear one, which is
Figure 1 shows profiles of the density perturbatieyy  important since a main motivation for perturbation studies is
and the momentum density perturbatidp for the close- to provide benchmark tests for nonlinear numerical relativ-
limit, boosted, head-on collision. Recall that for inspiral andity.
head-on collisions);=2J, and J;=0. The perturbations As examples of interesting initial data that can be con-
o1y and J; were calculated from neutron stars with initial structed from our equations, we constructed data for merging
separatiorf=0.1R o and velocityv = 0.1c. The correspond- neutron stars in the close-limit approximation. The simplest
ing perturbations for the inspiral case only differ from the case of these data sets, that describe head-on collision of two
perturbations shown in Fig. 1 by a constant numerical factomitially static stars, has already been extensively discussed
[compare Egs(99) and (101) with Egs. (109 and (111)]. in [6]. No studies of the more general data with initial mo-
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