COMPUTATIONAL FLUID DYNAMICS

NIKOLAOS STERGIOULAS

DEPARTMENT OF PHYSICS
ARISTOTLE UNIVERSITY OF THESSALONIKI

Overview of Thermodynamics (I)

Heat capacities:

$$
C_{v}=\left(\frac{\Delta Q}{\Delta T}\right)_{V} \quad C_{p}=\left(\frac{\Delta Q}{\Delta T}\right)_{p}
$$

(heat is not a state variable).
Internal Energy: Every equilibrium state is characterized by an internal energy $U=U(V, S)$, which is a state variable.
Given an amount of heat ΔQ and work done W, the change in internal energy is $\Delta U=\Delta Q+W$.
$1^{\text {st }}$ Law:
For infinitesimal changes between equilibrium states:

$$
d U=\bar{d} Q+d W=\bar{d} Q-p d V
$$

Thermally ideal gas: $\quad U=U(T) \quad$ e.g. $U=\frac{3}{2} n \mathcal{R} T \quad$ (monatomic gas)

$$
\begin{aligned}
p V & =n \mathcal{R} T \\
S & =S_{0}+C_{V} \ln T+\mathcal{R} \ln V
\end{aligned}
$$

where $n=$ amount of substance (number of moles)
$\mathcal{R}=$ universal gas constant $=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Overview of Thermodynamics (II)

Entropy:

$$
d S=\frac{\bar{d} Q}{T} \quad \Rightarrow \quad d U=T d S-p d V
$$

Enthalpy:

$$
H=U+p V \quad \Rightarrow \quad d H=T d S+V d p
$$

Helmholtz free energy:

$$
F=U-T S \quad \Rightarrow \quad d F=-S d T-p d V
$$

Overview of Thermodynamics (III)

Formulation in terms of intensive variables:

$$
\begin{aligned}
v & =\frac{V}{m}=\frac{1}{\rho} & & \text { specific volume } \\
e & =\frac{U}{m} & & \text { specific internal energy } \\
s & =\frac{S}{m} & & \text { specific entropy } \\
h & =\frac{H}{m}=e+p v & & \text { specific enthalpy } \\
f & =\frac{F}{m}=e-T s & & \text { specific free energy } \\
c_{v} & =\frac{C_{V}}{m} & & \text { specific heat (at constant specific volume) } \\
c_{p} & =\frac{C_{p}}{m} & & \text { specific heat (at constant pressure) }
\end{aligned}
$$

where m is the mass of the fluid or gas.

Overview of Thermodynamics (IV)

Thermodynamic relations:

$$
\begin{aligned}
d e & =T d s-p d v \\
d h & =T d s+v d p \\
d f & =-s d T-p d v
\end{aligned}
$$

from which one can compute, e.g.

$$
\begin{aligned}
T & =\left(\frac{\partial e}{\partial s}\right)_{v} \\
c_{p} & =\left(\frac{\partial h}{\partial T}\right)_{p}
\end{aligned}
$$

3 fundamental variables are needed, e.g.

$$
\begin{aligned}
& p, v, T \\
& p, v, e \\
& p, v, s \\
& e, v, s
\end{aligned}
$$

etc.

Overview of Thermodynamics (V)

Difference of specific heats:

$$
c_{p}-c_{v}=R
$$

where

$$
\begin{aligned}
R & =\frac{\mathcal{R}}{w} \\
w & =\frac{m}{n}=\text { mean molecular weight }
\end{aligned}
$$

Thermally ideal gas EOS:
Equation of state: $\quad p v=R T \Rightarrow e=e(T)$

$$
\begin{aligned}
& c_{p}=c_{p}(T) \\
& c_{v}=c_{v}(T)
\end{aligned}
$$

Define

$$
\gamma=\gamma(T)=\frac{c_{p}}{c_{v}} \quad \text { (ratio of specific heats) }
$$

Then

$$
\begin{aligned}
c_{p} & =\frac{\gamma R}{\gamma-1} \\
c_{v} & =\frac{R}{\gamma-1}
\end{aligned}
$$

Overview of Thermodynamics (V)

Calorically ideal gas EOS:
For monatomic gases, we can assume that

$$
\begin{aligned}
c_{v} & =\text { const. }, \quad c_{p}=\text { const } \\
\Rightarrow \gamma & =\text { const } \\
e & =c_{v} T
\end{aligned}
$$

Then, the equation of state becomes:

$$
p=(\gamma-1) \rho e
$$

For polyatomic gases, c_{v} etc. depend on T .

Covolume EOS:

At large densities, the volume occupied by molecules is no longer negligible and there is a reduction in the volume available for molecular motion. Then:

$$
p(v-b)=R T \quad \text { and } \quad p=\frac{(\gamma-1) \rho e}{1-b \rho}
$$

where $b=$ covolume $\left(\mathrm{m}^{3} \mathrm{~g}^{-1}\right)$.

Overview of Thermodynamics (V)

Speed of sound:

$$
\begin{aligned}
& p=p(\rho, s) \quad \Rightarrow \quad v_{s}=\sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}} \\
& p=p(\rho, e) \quad \Rightarrow \quad v_{s}=\sqrt{\frac{p}{\rho^{2}} \frac{\partial p}{\partial e}+\frac{\partial p}{\partial \rho}}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& p v=R T \Rightarrow v_{s}=\sqrt{\gamma(T) R T}=\sqrt{\frac{\gamma(T) p}{\rho}} \\
& p=(\gamma-1) \rho e \Rightarrow v_{s}=\sqrt{\frac{\gamma p}{\rho}} \\
& p=\frac{(\gamma-1) \rho e}{1-b \rho} \Rightarrow v_{s}=\sqrt{\frac{\gamma p}{(1-b \rho) \rho}}
\end{aligned}
$$

