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Abstract. We present a new survey of the radial oscillation modes of neutron stars. This study complements and
corrects earlier studies of radial oscillations. We present an extensive list of frequencies for the most common
equations of state and some more recent ones. In order to check the accuracy, we use two different numerical
schemes which yield the same results. The stimulation for this work comes from the need of the groups that
evolve the full nonlinear Einstein equations to have reliable results from perturbation theory for comparison.
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1. Introduction

As they are the simplest oscillation modes of neutron
stars, radial modes have been the first under investigation,
more than 35 years ago (Chandrasekhar 1964a, 1964b).
More important, they can give information about the sta-
bility of the stellar model under consideration. Since ra-
dial oscillations do not couple to gravitational waves, the
appropriate equations are quite simple, and it is rela-
tively easy to numerically solve the eigenvalue problem
that leads to the discrete set of oscillation frequencies of a
neutron star. In the absence of any dissipative processes,
the oscillation spectrum of a stable stellar model forms
a complete set; it is therefore possible to describe any
arbitrary periodic radial motion of a neutron star as a
superposition of its various eigenmodes.

The radial modes of neutron stars have been thor-
oughly investigated by various authors mostly for zero
temperature equations of state (EOS) (e.g. Harrison
et al. 1965; Chanmugam 1977; Glass & Lindblom 1983;
Väth & Chanmugam 1992 and references therein). But
also protoneutron stars with a finite temperature EOS
(Gondek et al. 1997) and strange stars were studied
(Benvenuto & Horvath 1991; Väth & Chanmugam 1992;
Gondek & Zdunik 1999).
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The first exhaustive compilation of radial modes for
various zero temperature EOS was presented by Glass
& Lindblom 1983 (hereafter GL). However, as was later
pointed out by Väth & Chanmugam 1992 (hereafter
VC), their numerical values for the oscillation frequencies
seemed to be flawed although their equations were cor-
rect. VC computed the radial frequencies for 6 equations
of state of dense matter and corroborated their own results
using the argument (Harrison et al. 1965) that for the nu-
merical code to be correct, it must yield a zero-frequency
mode at exactly that central density for which the neu-
tron star reaches its maximal mass. This is the point where
the stellar model becomes unstable with respect to radial
collapse if the central density is further increased. Yet,
this is not the case for the results of GL, as was noticed
by VC. However, the above mentioned test can be used
only in the case when both in the stellar model and in
the perturbation equations the equilibrium adiabatic in-
dex is used. In general, different adiabatic indices can be
used depending on the physical conditions inside a star
(Gondek et al. 1997). For example, if the slowness of weak
interaction processes are taken into account, the regions of
configurations stable with respect to radial perturbations
extend beyond the central density of the star with the min-
imum mass (e.g. Chanmugam 1977) and of the star with
maximum mass (Gourgoulhon et al. 1995).

In this paper, we repeat the numerical calculation of
the radial oscillation modes of neutron stars for various
zero temperature equations of state using the equilib-
rium adiabatic index. To verify the results, we use two
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different formulations of the equations together with two
different numerical methods to solve the eigenvalue prob-
lem. We find that in all cases we obtain matching val-
ues for the eigenfrequencies. In addition we have verified
that the codes yield zero frequency modes not only at the
maxima but also at the minima of the mass curves.

We give corrected values for the equations of state used
by GL, and we add some new equations of state. It is not
clear to us what went wrong in their calculations, since
for certain EOS our values agree with theirs (EOS C, E,
O), for others they differ only slightly (EOS F, L, N), but
for some EOS the discrepancy is quite large (EOS A, B,
D, G, I).

Additionally we include six more recent equations of
state: two models of Glendenning (1985), one of the model
of Wiringa et al. (1988), the EOS MPA of Wu et al. (1991),
and two EOS of Akmal et al. (1998). Finally, we include
three more tables for polytropic equations of state with
different polytropic indices. The form we use is given by

p = κρ1+1/n . (1)

In particular, we present for the following values of κ and
n: (n = 1, κ = 100 km2), (n = 0.8, κ = 700 km2.5), (n =
0.5, κ = 2 105 km4).

Another interesting feature is the occurrence of
avoided mode crossings for realistic EOS. This phe-
nomenon has been thoroughly studied by Gondek &
Zdunik (1999) for a realistic nucleon EOS and an EOS rep-
resenting a strange star model. We find that it occurs for
all considered realistic EOS, for some it is quite strongly
pronounced, for others it is less obvious.

2. Equations and numerical methods

2.1. The radial perturbation equations

The static and spherically symmetric metric which de-
scribes an equilibrium stellar model is given by the
following line element:

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2) . (2)

Together with the energy-momentum tensor for a perfect
fluid

Tµν = (ρ+ p)uµuµ + p gµν , (3)

Einstein’s field equations yield three independent ordinary
differential equations for the four unknowns ν, µ, ρ, and p.
To complete the set of equations, an equation of state

p = p(ρ) (4)

must be supplemented. For a given central density, those
equations then yield a unique stellar model with radius R
and mass M . Usually one introduces the mass function m
via

e−2λ = 1− 2m(r)
r

(5)

in order to replace the metric function λ.

To obtain the equations that govern the radial oscilla-
tions, both fluid and spacetime variables are perturbed in
such a way that the spherical symmetry of the background
body is not violated. If we define as δr(r, t) the time de-
pendent radial displacement of a fluid element located at
the position r in the unperturbed model and assume a
harmonic time dependence

δr(r, t) = X(r)eiωt , (6)

we obtain the following equation describing the radial
oscillations

C2
sX
′′ +

(
(C2

s )′ − Z + 4πrγpe2λ − ν′
)
X ′

+
[
2(ν′)2+

2m
r3

e2λ−Z ′−4π(ρ+p)Zre2λ+ω2e2λ−2ν

]
X

= 0, (7)

where Cs is the sound speed, which is calculated from the
unperturbed background for a specific equation of state

C2
s =

dp
dρ

, (8)

and γ is the adiabatic index, which, for adiabatic oscilla-
tions, is related to the sound speed through

γ =
ρ+ p

p

dp
dρ
· (9)

Finally

Z(r) = C2
s

(
ν′ − 2

r

)
· (10)

The boundary condition at the center is that

δr(r = 0) = 0 , (11)

while at the surface, the Lagrangian variation of the
pressure should vanish, i.e.

∆p = 0 . (12)

This leads to the condition

γ p ζ(r)′ = 0 , where ζ = r2e−νX. (13)

Equation (7) together with the boundary conditions (11)
and (13) form a self-adjoint boundary value problem for
ω2.

As an alternative, the master Eq. (7) can be written in
the variable ζ to yield Eq. (26.6) of Misner et al. (1973),
which explicitly shows its self-adjoint nature:

0 =
d
dr

(
P

dζ
dr

)
+ (Q+ ω2W )ζ, (14)

with

r2W = (ρ+ p)e3λ+ν (15)

r2P = γp eλ+3ν (16)

r2Q = eλ+3ν(ρ+ p)
(

(ν′)2 + 4
ν′

r
− 8πe2λp

)
. (17)
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At the origin, we have ζ(r = 0) = 0, and at the surface,
the boundary condition is also given by Eq. (13).

Since in both the general relativistic and in Newtonian
theory, the oscillation problem is described by a Sturm-
Liouville boundary value problem, the mathematical fea-
tures that are known for the Newtonian problem (see
Ledoux & Walraven 1958) also apply to the general rela-
tivistic case, i.e. the frequency spectrum is discrete, there
are n nodes between the center and the surface of the
eigenfunction of the nth mode, and the eigenfunctions are
orthogonal.

Since ω is real for ω2 > 0, the solution is purely oscil-
latory. However for ω2 < 0, the frequency ω is imaginary,
which corresponds to an exponentially growing solution.
This means that for negative values of ω2, we have un-
stable radial oscillations. For neutron stars, it is the fun-
damental mode ω0 which becomes imaginary at central
densities ρc larger than the critical density ρcrit for which
the total stellar mass M as a function of ρc is maximal.
In this case, the star will ultimately collapse to a black
hole. For ρc = ρcrit, the frequency of the fundamental
mode ω0 must vanish. The higher modes become unsta-
ble for higher densities than for maximum mass models.
For realistic equations of state, there are several regions in
the mass-central-density curve, which are unstable. On the
neutron star branch, there is another instability point on
the low density side, where the star can become unstable
with respect to explosion. This point limits the minimal
mass of a neutron star.

2.2. The numerical methods

Since the radial perturbation problem is an old one, vari-
ous methods have been used to estimate the radial mode
frequencies for a given equation of state. A numerical inte-
gration scheme, which is similar to what we will describe
here, has widely been used, while a Rayleigh-Ritz varia-
tional technique has also been used in the early times, see
Bardeen et al. (1966) for details.

Given the discrepancies existing in the literature,
we have derived the results via two different numerical
methods.

The first method is called in numerical analysis the
shooting method. In this case, one starts the integration
for a trial value of ω2 and a given set of initial values
of X(r = 0) and X ′(r = 0) which satisfy at the center
the boundary condition (11) and integrates towards the
surface. The discrete values of ω2 for which the boundary
condition (13) is satisfied are the eigenfrequencies of the
radial perturbations.

We will apply this method to Eq. (14), but we first
transform it into two first order differential equations. By
introducing

η = Pζ′, (18)

we obtain
dζ
dr

=
η

P
(19)

dη
dr

= −(ω2W +Q)ζ. (20)

Through Taylor expansion, we find that close to the origin
we have ζ(r) = ζ0 r

3 +O(r5) and η(r) = η0 +O(r2). From
Eq. (19) it then follows that the leading order coefficients
are related by 3ζ0 = η0/P (0). Choosing η0 = 1, we obtain
ζ0 = 1/(3P (0)), which gives us the initial values for the
integration.

The second method is based on finite differencing of the
radial perturbation Eq. (7) using second order accurate
schemes for the spatial derivatives. The coefficients of the
equation are calculated for a certain number of, say, N
grid points. In this way a matrix equation of the form

(A− ω2
nI)y = 0 , 0 ≤ n ≤ N (21)

is constructed. A is the tridiagonal matrix of the coeffi-
cients, I is the identity matrix, ω2

n is the squared frequency
of the nth mode, and y is the vector with the unknown
values of the eigenfunction of the specific mode at the N
grid points. The homogeneous linear Eq. (21) has a non-
trivial solution only if the determinant of the coefficient
matrix is equal to zero, i.e.

det |A− ω2
nI| = 0 . (22)

This means that ω2
n are the N eigenvalues of the N ×N -

matrix A. Their numerical evaluation has been achieved
using the routines F01AKF and F02APF of the Nag
library.

In this way one can calculate hundreds of radial eigen-
values for a specific stellar model in a single run. This
method is more time consuming, but one avoids to search
for each eigenvalue separately. In numerical analysis, this
method is referred to as Numerov method.

Using both methods, we have calculated for each stel-
lar model a large number of eigenvalues, though in the
tables of the Appendix, we list only the three lowest ones.
A further check of consistency is that for each EOS, the
maximum mass model must yield zero frequency for the
first mode. This is indeed the case as is it not for the
results of GL.

3. Results

Although in principle we could compute the eigenfrequen-
cies up to arbitrary precision, this would make no sense,
since the overall accuracy of the frequencies is not limited
by the machine precision, but by the number of tabulated
values of the equation of state. For the construction of
the stellar background model, one therefore has to inter-
polate between the given points. As it turns out, different
interpolation scheme can yield different mode frequencies.
Even though the bulk parameters of the stellar models are
not very sensitive to the actual interpolation scheme, it is
the profile of the sound speed, or equivalently, the adi-
abatic index which enters into the oscillation equations,
and this quantity is highly sensitive to the interpolation
scheme, especially in the regions where the EOS changes
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quite abruptly, such as, for instance, at the neutron drip
point. Since this region lies in the low pressure regime
and is therefore located close to the surface of the neutron
star, it has a quite large influence on the modes because
their amplitudes peak at the surface. From trying different
interpolation schemes, such as linear logarithmic interpo-
lation or spline interpolation, we find that the frequencies
may vary up to about three per cent. We therefore tabu-
late our value with only two significant digits. Only for the
polytropic equations of state, we include three significant
digits, since in this case, the equation of state is analytic,
and we do not have to rely on interpolation.

VC have given tabulated values for EOS D and EOS
N. For EOS D, our results agree with theirs, however,
for EOS N we find a quite significant discrepancy for the
stellar parameters like mass and radius, especially in the
high density regime. For instance, for ρc = 2 1015 g/cm3,
they find a mass of M = 2.563 M�, whereas we obtain
M = 2.621 M�. Since also GL find the former value, it
seems that both GL and VC have used the tabulated ver-
sion of the EOS N provided by Lindblom & Detweiler
(1983). If we also use this table, we, again, agree with VC,
both in the stellar parameters and the radial oscillation
frequencies. However, we have access to a table with a
larger number of values (about twice a many in the den-
sity range from 1014 g/cm3 to 1016 g/cm3), which yields
the latter value. In Table A.10, we give the frequencies
obtained with the more refined EOS, which, especially for
the fundamental mode, are quite different from the val-
ues of VC. These discrepancies show very drastically that
the results are quite sensitive to the number of tabulated
values of a given EOS.

In Fig. 1, we show the five radial modes as a func-
tion of the central density for the quite recent EOS APR1
(Akmal et al. 1998). It is clearly discernible that the funda-
mental mode becomes unstable at central densities above
2.35 1015 g/cm3. The instability point corresponds to a
stellar model with the maximal allowed mass of 2.38 M�
and a radius of 10.77 km.

Another prominent feature is the occurrence of a se-
ries of avoided crossings between the various modes. This
peculiarity has been observed in previous calculations
(Gondek et al. 1997), and has been extensively discussed
by Gondek & Zdunik (1999). It should be noted that those
avoided crossings do not appear when a polytropic EOS
is used (in this case, one also does not have the second
instability point at the low density region), but it is a
characteristic of realistic equations of state.

The phenomenon of avoided crossings is also known to
appear for other types of oscillations. Depending on the
stellar models, there can be avoided crossings between g-
modes and p-modes. Furthermore, Anderson et al. (1996)
have reported it to occur between the f -mode and the
w-modes. Also in rotating stars a similar phenomenon
shows up for the quasi-radial modes when their oscilla-
tion frequencies are plotted as a function of the rotational
frequency (Clement 1986; Yoshida & Eriguchi 1999).
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Fig. 1. We show the first five radial modes as a function of the
central energy density. The frequency of the fundamental mode
goes to zero at a density of about 2.35 1015 g/cm3, which indi-
cates the onset of radial instability with respect to collapse to a
black hole. The arrows indicate the avoided crossings between
the different modes

All these cases have in common that there usually exist
two or more families of modes, which arise from different
physical origins. However, since they are described by a
common set of equations, a particular frequency can only
correspond to one single mode. Therefore, if the frequen-
cies of two modes belonging to different families start to
approach each other, they eventually have to repel each
other before they come too close. This goes along with the
modes exchanging their “family membership”.

The radial oscillation modes, too, can be divided
into two more or less independent families. According to
Gondek & Zdunik (1999), one family lives predominantly
in the high density core of the neutron star and the other
in the low density envelope. The two regions are divided
by a “wall” in the adiabatic index, which results from the
abrupt change in the stiffness of the matter at the neutron
drip point (cf. Fig. 2 of Gondek & Zdunik 1999). This wall
effect is present for any realistic EOS, since it is associ-
ated with the neutron drip point, which belongs to the
low pressure regime and is the same for all EOS.

In a model problem, Gondek & Zdunik (1999) have
decoupled both families, and in this case, both spectra
show real crossings, when plotted on top over each other.
When the coupling is brought back, the crossings vanish
and the usual avoided crossing picture reemerges.
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4. Summary

We have presented updated results for radial oscillations
of neutron stars using a quite exhaustive list of currently
available equations of state, including some very recent
ones. For most equations of state we significantly disagree
with the values given by Glass & Lindblom (1983). We
have obtained our results by means of two different nu-
merical methods, which agree up to arbitrary precision.

Furthermore, we have checked that our numerical
codes yield zero frequency modes located exactly at both
instability points, which are characterized by the local ex-
trema in the mass-density curve. Here, we also obtain full
agreement. The overall accuracy, however, is limited by
the number of tabulated points for a given equation of
state. Here, different numerical interpolation schemes may
yield variations in the frequencies up to about three per
cent.

Our results agree with the previous results of Väth
& Chanmugam (1992). However, we use a more complete
table for the EOS N (Serot 1979), which significantly al-
ters the values one obtains when the table provided by
Lindblom & Detweiler (1983) is used.

We have repeated the calculations for the equations
of state already used by GL, and we have corrected their
given values. In addition, we have included a large num-
ber of more recent equations of state. Since most of the
present non-linear evolution codes use polytropic equa-
tions of state, we also have tabulated the mode frequencies
for three different values of the polytropic index n.
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Appendix A: Results for various equations of state

This appendix provides the numerical data for the radial
mode frequencies of 17 realistic and 3 polytropic EOS. We
present the data in the form of one table for each EOS.
In each table we list the central density ρc, the radius R,
and the mass M of the stellar model, and the frequencies
νn = ωn/(2π) of the first three radial modes. We also
include one stellar model above the stability limit. For this
case, we give the e-folding time in ms for the fundamental
mode, which is marked by an asterisk.

Table A.1. Data for the EOS A (Pandharipande 1971)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

4.200 8.335 1.654 0.34* 7.55 11.91

4.100 8.373 1.654 0.28 7.58 11.95

3.980 8.419 1.654 0.66 7.63 12.00

3.000 8.874 1.621 1.97 7.98 12.33

2.344 9.256 1.536 2.62 8.29 12.27

1.995 9.479 1.447 2.94 8.46 11.88

1.698 9.667 1.329 3.23 8.57 11.31

1.259 9.890 1.050 3.67 8.04 10.67
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Table A.2. Data for the EOS B (Pandharipande 1971)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

6.100 7.024 1.413 0.32* 8.75 13.18
6.000 7.048 1.413 0.25 8.76 13.20
5.900 7.072 1.413 0.61 8.78 13.21
5.500 7.175 1.411 1.30 8.86 13.32
5.012 7.316 1.404 1.82 8.91 13.45
3.981 7.686 1.361 2.69 8.94 13.71
3.388 7.953 1.304 3.10 8.86 13.71
3.000 8.145 1.247 3.34 8.81 13.54
1.995 8.766 0.971 3.58 8.65 11.28

Table A.3. Data for the EOS C (Bethe & Johnson 1974,
model I)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

3.100 9.884 1.852 0.39* 6.23 9.55
3.000 9.952 1.852 0.30 6.23 9.54
2.800 10.095 1.850 0.79 6.25 9.54
2.500 10.326 1.840 1.24 6.28 9.54
1.995 10.779 1.790 1.80 6.34 9.60
1.778 11.010 1.746 2.02 6.34 9.58
1.413 11.443 1.619 2.36 6.33 9.47
1.122 11.834 1.436 2.56 6.25 9.23
1.000 12.018 1.323 2.59 6.13 8.90

Table A.4. Data for the EOS D (Bethe & Johnson 1974,
model V)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

3.370 9.360 1.651 0.71* 6.99 10.27
3.300 9.403 1.651 0.30 6.99 10.27
3.000 9.598 1.648 0.84 6.96 10.32
2.512 9.944 1.631 1.36 6.81 10.46
1.778 10.447 1.547 2.43 6.71 9.88
1.413 10.678 1.424 2.96 7.25 10.37
1.122 10.965 1.186 3.09 6.93 9.71

Table A.5. Data for the EOS E (Moszkowski 1974)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

3.000 9.061 1.726 1.78 7.62 11.56
2.818 9.171 1.711 1.98 7.68 11.60
2.239 9.562 1.624 2.58 7.84 11.65
1.778 9.915 1.474 3.02 7.90 11.44
1.585 10.068 1.376 3.18 7.86 11.19
1.259 10.314 1.144 3.39 7.59 10.36

Table A.6. Data for the EOS F (Arponen 1972)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

5.200 7.881 1.463 0.40* 7.40 11.88
5.100 7.922 1.463 0.20 7.41 11.86
5.012 7.961 1.463 0.46 7.42 11.83
4.500 8.204 1.459 1.09 7.48 11.66
3.981 8.490 1.449 1.42 7.54 11.49
3.162 9.088 1.412 1.63 7.40 11.15
2.239 9.923 1.333 1.84 6.76 10.23
1.585 10.465 1.222 2.36 6.62 9.74
1.122 10.889 1.032 2.75 6.57 9.03

Table A.7. Data for the EOS G (Canuto & Chitre 1974))

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

6.300 6.945 1.357 0.70* 8.77 13.54
6.200 6.970 1.357 0.48 8.77 13.54
6.100 6.996 1.357 0.72 8.77 13.54
5.800 7.075 1.356 1.18 8.79 13.53
5.500 7.159 1.353 1.53 8.81 13.52
5.000 7.308 1.344 2.00 8.87 13.51
4.503 7.472 1.327 2.40 8.95 13.53
3.498 7.899 1.253 2.98 8.97 13.61
2.631 8.399 1.114 3.25 8.48 12.54
2.376 8.557 1.057 3.35 8.34 11.86

Table A.8. Data for the EOS I (Cohen et al. 1970)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.100 11.795 2.446 0.33* 5.27 8.15
2.000 11.900 2.447 0.24 5.32 8.23
1.800 12.161 2.441 0.84 5.40 8.29
1.585 12.470 2.418 1.22 5.50 8.41
1.259 13.025 2.324 1.69 5.60 8.52
1.000 13.499 2.154 2.05 5.74 8.61
0.794 13.883 1.883 2.31 5.77 8.51
0.631 14.127 1.561 2.46 5.67 7.95

Table A.9. Data for the EOS L (Pandharipande et al. 1976)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

1.500 13.618 2.662 0.68* 4.66 7.39
1.400 13.747 2.660 0.56 4.70 7.47
1.259 13.936 2.649 0.97 4.79 7.58
1.150 14.087 2.630 1.25 4.92 7.69
1.000 14.299 2.579 1.59 5.21 8.05
0.794 14.681 2.391 2.03 5.66 8.35
0.631 14.989 2.044 2.27 5.71 8.20
0.600 15.025 1.959 2.32 5.69 8.15
0.500 15.056 1.636 2.53 5.58 7.52
0.398 14.889 1.214 2.77 5.47 6.09
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Table A.10. Data for the EOS N (Serot 1979)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

1.700 12.740 2.634 0.47* 5.10 7.97
1.600 12.852 2.633 0.49 5.19 8.09
1.400 13.107 2.619 1.03 5.36 8.30
1.200 13.385 2.575 1.47 5.62 8.57
1.000 13.686 2.468 1.90 5.90 8.88
0.800 13.951 2.233 2.39 6.27 9.19
0.600 13.980 1.729 2.96 6.61 8.79
0.500 13.757 1.313 3.20 6.38 7.56
0.400 13.349 0.836 3.26 5.02 5.68

Table A.11. Data for the EOS O (Bowers et al. 1975)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.100 11.502 2.379 0.55* 5.56 8.64
2.000 11.587 2.378 0.53 5.63 8.72
1.800 11.765 2.370 1.05 5.80 8.99
1.600 11.974 2.346 1.43 5.94 9.23
1.400 12.201 2.296 1.81 6.14 9.51
1.200 12.442 2.199 2.18 6.38 9.93
1.000 12.672 2.019 2.56 6.75 10.21
0.800 12.832 1.682 2.86 7.09 9.43
0.600 12.760 1.173 3.09 6.58 7.92

Table A.12. Data for the EOS G240 (Glendenning 1985)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.600 10.850 1.553 0.66* 5.39 8.59
2.500 10.928 1.553 0.33 5.40 8.58
2.200 11.209 1.549 0.77 5.42 8.48
1.800 11.647 1.529 1.11 5.43 8.37
1.400 12.200 1.481 1.37 5.34 8.10
1.000 12.798 1.374 1.70 5.28 7.98
0.800 13.110 1.267 1.91 5.17 7.96
0.600 13.351 1.095 2.27 5.27 6.86
0.400 13.482 0.711 2.36 4.54 5.23

Table A.13. Data for the EOS G300 (Glendenning 1985)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.200 11.687 1.788 0.33* 5.02 8.06
2.100 11.762 1.788 0.12 5.08 8.10
2.000 11.842 1.787 0.51 5.15 8.15
1.800 12.027 1.782 0.86 5.25 8.23
1.400 12.542 1.742 1.28 5.37 8.22
1.000 13.182 1.624 1.66 5.36 7.99
0.800 13.482 1.506 1.92 5.42 8.12
0.600 13.718 1.286 2.27 5.33 7.50
0.500 13.733 1.119 2.54 5.61 6.60
0.400 13.630 0.825 2.58 5.04 5.59

Table A.14. Data for the EOS WFF (Wiringa et al. 1988)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

3.200 9.510 1.840 0.47* 6.66 10.38
3.100 9.558 1.840 0.42 6.70 10.44
3.000 9.612 1.840 0.69 6.73 10.45
2.800 9.729 1.836 1.08 6.80 10.49
2.600 9.850 1.828 1.38 6.90 10.55
2.000 10.278 1.759 2.13 7.20 10.89
1.800 10.441 1.710 2.37 7.30 10.99
1.400 10.774 1.538 2.87 7.47 11.12
1.200 10.925 1.389 3.12 7.52 10.78
1.000 11.038 1.178 3.34 7.54 9.42
0.900 11.075 1.044 3.41 7.46 8.51
0.800 11.104 0.889 3.42 6.99 7.68

Table A.15. Data for the EOS MPA (Wu et al. 1991)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

4.800 7.899 1.560 0.39* 7.82 11.96
4.700 7.930 1.560 0.37 7.85 11.99
4.600 7.963 1.559 0.67 7.87 12.02
4.500 7.996 1.559 0.87 7.90 12.06
4.400 8.030 1.558 1.04 7.92 12.10
4.200 8.104 1.556 1.31 7.96 12.14
4.000 8.186 1.551 1.55 7.99 12.16
3.500 8.407 1.531 2.07 8.08 12.26
3.000 8.669 1.489 2.51 8.13 12.24
2.500 8.973 1.410 2.90 8.16 12.10
2.000 9.328 1.269 3.19 8.08 11.61
1.500 9.747 1.033 3.29 7.58 10.48
1.200 10.031 0.844 3.27 6.95 9.00
1.000 10.251 0.698 3.22 6.36 7.47

Table A.16. Data for the EOS APR1 (Akmal et al. 1998)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.400 10.746 2.379 0.40* 6.01 9.14
2.300 10.822 2.379 0.47 6.08 9.21
2.200 10.904 2.377 0.80 6.16 9.29
2.100 10.990 2.373 1.04 6.24 9.37
2.000 11.080 2.366 1.25 6.32 9.45
1.800 11.277 2.340 1.64 6.50 9.62
1.500 11.611 2.250 2.19 6.76 9.89
1.200 11.966 2.040 2.75 6.96 10.16
1.000 12.171 1.774 3.10 6.94 10.27
0.800 12.294 1.365 3.28 6.75 8.82
0.700 12.336 1.109 3.21 6.53 7.39
0.600 12.435 0.841 2.95 5.52 6.37



572 K. D. Kokkotas and J. Ruoff: Radial oscillations of relativistic stars

Table A.17. Data for the EOS APR2 (Akmal et al. 1998)

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

2.800 9.998 2.201 0.39* 6.43 9.71
2.700 10.059 2.201 0.45 6.50 9.79
2.600 10.122 2.199 0.77 6.57 9.88
2.500 10.193 2.197 1.01 6.63 9.92
2.400 10.269 2.192 1.21 6.69 9.98
2.200 10.428 2.176 1.58 6.83 10.08
2.000 10.598 2.148 1.92 6.98 10.22
1.800 10.789 2.098 2.25 7.12 10.35
1.400 11.203 1.890 2.89 7.26 10.54
1.000 11.572 1.410 3.37 7.01 10.07
0.800 11.737 1.032 3.25 6.59 7.58
0.700 11.884 0.826 3.01 5.88 6.54
0.600 12.189 0.632 2.63 4.50 5.76

Table A.18. Data for the polytropic EOS with n = 1 and
κ = 100 km2

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

5.700 7.518 1.351 0.618* 7.582 11.569
5.650 7.535 1.351 0.180 7.576 11.556
5.600 7.554 1.351 0.358 7.569 11.542
5.500 7.590 1.351 0.569 7.557 11.520
5.300 7.667 1.350 0.838 7.524 11.457
5.000 7.787 1.348 1.129 7.475 11.365
4.000 8.256 1.326 1.755 7.244 10.950
3.000 8.862 1.266 2.141 6.871 10.319
2.000 9.673 1.126 2.323 6.237 9.295
1.500 10.19 0.998 2.302 5.737 8.513
1.000 10.81 0.802 2.150 5.007 7.394

Table A.19. Data for the polytropic EOS with n = 0.8 and
κ = 700 km2.5

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

4.800 7.832 1.609 0.630* 7.601 11.626
4.750 7.853 1.609 0.281 7.602 11.624
4.700 7.874 1.609 0.459 7.604 11.623
4.600 7.917 1.609 0.690 7.606 11.618
4.500 7.961 1.608 0.862 7.608 11.612
4.300 8.053 1.606 1.132 7.609 11.596
4.000 8.199 1.600 1.455 7.610 11.573
3.500 8.470 1.579 1.868 7.577 11.477
3.000 8.778 1.539 2.199 7.501 11.314
2.500 9.126 1.468 2.464 7.361 11.051
2.000 9.509 1.351 2.656 7.121 10.636
1.500 9.908 1.161 2.741 6.711 9.969
1.000 10.251 0.865 2.649 5.998 8.856

Table A.20. Data for the polytropic EOS with n = 0.5 and
κ = 2 105 km4

ρc 1015 R M ν0 ν1 ν2

g/cm3 km M� kHz kHz kHz

3.500 8.604 2.120 0.322* 7.308 11.220
3.450 8.629 2.120 0.244 7.344 11.268
3.400 8.655 2.120 0.620 7.402 11.347
3.300 8.708 2.120 0.848 7.452 11.412
3.200 8.763 2.118 1.140 7.548 11.542
3.000 8.881 2.111 1.519 7.698 11.740
2.600 9.140 2.075 2.151 8.005 12.139
2.200 9.419 1.988 2.716 8.305 12.516
1.800 9.672 1.809 3.235 8.555 12.804
1.400 9.784 1.484 3.665 8.651 12.850
1.200 9.713 1.252 3.792 8.551 12.653
1.000 9.491 0.977 3.870 8.369 12.334
0.800 9.045 0.678 3.810 7.962 11.690


