PHYSICAL REVIEW D, VOLUME 63, 064018

New approach to the evolution of neutron star oscillations

Johannes Ruoff
Institut fir Astronomie und Astrophysik, UniverditAubingen, D-72076 Thingen, Germany
(Received 24 March 2000; published 15 February 2001

We present a new derivation of the perturbation equations governing the oscillations of relativistic nonro-
tating neutron star models using the ADM formalism. This formulation has the advantage that it immediately
yields the evolution equations in a hyperbolic form, which is not the case for the Einstein field equations in
their original form. We show that the perturbation equations can always be written in terms of spacetime
variables only, regardless of any particular gauge. We demonstrate how to obtain the Regge-Wheeler gauge, by
choosing appropriate lapse and shift. In addition, not only the three-metric but also the extrinsic curvature of
the initial slice has to satisfy certain conditions in order to preserve the Regge-Wheeler gauge throughout the
evolution. We discuss various forms of the equations and show their relation to the formulation oétAdien
New results are presented for polytropic equations of state. An interesting phenomenon occurs in very compact
stars, where the first ringdown phase in the wave signal corresponds to the first quasinormal mode of an equal
mass black hole, rather than to one of the proper quasinormal modes of the stellar model. A somewhat heuristic
explanation to account for this phenomenon is given. For realistic equations of state, the numerical evolutions
exhibit an instability, which does not occur for polytropic equations of state. We show that this instability is
related to the behavior of the sound speed at the neutron drip point. As a remedy, we devise a transformation
of the radial coordinate inside the star, which removes this instability and yields stable evolutions for any
chosen numerical resolution.
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[. INTRODUCTION astrophysical events, such as the formation of the neutron
star after the collapse of a progenitor star at the end point of
The driving force behind the theoretical studies in gravi-nuclear burning. To that purpose, two ingredients are neces-
tational radiation is to predict and investigate the sources ofary. First, one has to have initial data that represent a real-
gravitational waves that will be observed by interferometricistic stage of the astrophysical system under consideration.
[GEO600, Laser Interferometric Gravitational Wave Obser-Second, one needs a numerical evolution code that can
vatory (LIGO), VIRGO, TAMA, Laser Interferometer Space evolve these initial data in a stable and accurate way.
Antenna (LISA)] and bar (ALLEGRO, AURIGA, It is only by fully nonlinear simulations that accurate
EXPLORER, NAUTILUS detectors. The goal of these stud- waveforms of oscillating neutron stars after core collapse or
ies is not limited to facilitating the detection of signals but binary merger can be obtained. Therefore it is a major goal
also to provide tools to extract as much information as posef several groups to push the further development of nonlin-
sible about the physical nature of the sources. Neutron staesar evolution codes. The biggest obstacle, however, which
have been pointed out as obvious source candidates, sinsgll prevents one from obtaining accurate results, is the enor-
one channel by which an oscillating neutron star loses energymous computational expenditure to solve the full set of
is via the emission of gravitational radiation. Einstein equations in 3D. Even modest resolutions easily
This radiation basically consists of a superposition of itsexceed the capabilities of the largest and fastest present day
characteristic oscillatory modes, which can be grouped int@omputers.
two families: (i) The fluid modeg1,2], which have a New- It is therefore crucial to have some alternative methods
tonian counterpart, but which through their coupling to thewhich require less computing power but still give valuable
spacetime are damped because they now can emit gravitphysical insight. One of them is perturbation theory. In the
tional wavesyii) the spacetime mod¢8—5], which have no  nonrotating case, as a result of the spherical background, one
Newtonian counterpart and which couple only weakly to thecan completely separate off the angular dependence, and the
fluid. (In the odd parity case, they do not couple to the fluidevolution problem boils down to the integration of 1D wave
at all) These modes usually are strongly damped; howevergquations. Slowly rotating stars can still be treated in 1D as
for ultrarelativistic stars, the spacetime curvature can be stong as the deformation due to rotation is negligible. But for
strong that it can trap impinging gravitational waves. Thoserapidly rotating neutron stars, the spherical symmetry is bro-
“trapped” modes[6,7] are quite long lived, since they only ken, and one can only separate off the azimuthal angular
leak out slowly from inside the gravitational potential well dependence. Hence the problem becomes 2D, which is nev-
created by the neutron star. For recent comprehensive rertheless still numerically tractable. The results from those
views on oscillation modes of neutron stars and black holedjnear evolutions are expected to give accurate waveforms in
see[8,9]. the range where the neutron star oscillates only weakly. Fur-
However, just knowing the different oscillation modes of thermore, they can be used as testbeds for the nonlinear cal-
a neutron star is not enough. To be able to detect and toulations. Indeed, recent results of nonlinear evolutions have
interpret a signal in a gravitational wave detector, it is crucialconfirmed the existence of the various modes predicted by
to have accurate templates of the waveforms that result frorfinear perturbation theor10].
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The evolution of polar perturbations of nonrotating starsfrom the behavior of the sound speed at the neutron drip
was first addressed by Allegt al. [11]. In their formulation  point, where the equation of state suddenly becomes very
they describe the oscillations with three coupled wave equasoft. This is accompanied by a sharp drop of the sound
tions, two for the metric perturbations in and outside the starspeed, which can give rise to a numerical instability if the
and one for the fluid inside the star. The evolution of variousspatial grid resolution is chosen too low. However, by in-
initial data have shown that generic initial data can indeecfreasing the resolution this instability will eventually vanish.
excite some of the stellar modes such asfthede, some In the nonrotating case, having to resort to higher resolutions
modes, and the first mode. does not present too great an obstacle, since the equations are

In this paper we rederive the perturbation equations using® Wave equations. However, this instability presumably
the (3+1) or Armowitt-Deser-MisnefADM) form [12] of also occurs for rotating stars, where the equations are 2D,

the Einstein equations. These equations are much bett@nd the required resolution in order to obtain stable evolu-
suited for the numerical initial value problem, since theylions might stretch the computing times to unacceptably

immediately yield a hyperbolic evolution system provided Iarge values. Therefore. we d_ew_se a coordlnate. transforma-
that a suitable gauge has been chosen, whereas the origiﬁkﬂ” of the ra}dlal coordinate |.nS|de the'star, which enables
field equations contain mixed time and space derivatives. [§taPle evolutions for any spatial resolution.
is only by the introduction of new variables that those equa-_ 1 he remainder of this paper is organized as follows: In
tions can be cast into a well suited form. The ADM formal- S€¢- I we derive the relevant equations. Section Il is de-
ism has already been addressed by Mondi&f14], where voted_to a discussion of the boundary con.d|_t|.ons. In Sec. _IV
it was used to derive a Hamiltonian gauge invariant formu-We briefly comment on the construct|on.of |n|t|al'data, and in
lation of the perturbation equations. Albeit preferable from aS€¢- V We present results for polytropic equations of state.
conceptual point of view, since they are independent of aml,:mally, in Sec. _\/I_we dlscyss the instability associated with
gauge, those equations do not prove particularly useful fof'€ use of realistic equations of state, and we present the
numerical evolutions. Our starting point therefore are theco_ordmate transfqrmatlon that removes it. Conclusions are
field equations written as a set of evolution equations for th&ri€fly presented in Sec. VII. _
metric and the extrinsic curvature of a three-dimensional We adopt the metric signature-(+++) and work in
spacelike hypersurface, together with the constraint equél€ometric units wittG=c=1. Spacetime and spatial indices
tions, which have to be satisfied at every instance of time. @ré denoted by Greek and Latin letters, respectively. Deriva-
As an immediate consequence of using the ADM formal-tives with respe_ct to the rad_lal _coordl_nateare sometlmes_
ism, it follows that it is always possible to eliminate the fluid denoted by a prime and derivatives with respect to the time
variables and thus to write down the evolution equations irffoordinatet by an overdot.
terms of metric quantities only. This has already been shown
by Chandrasekhar and Ferrfi5] for the diagonal gauge Il. DERIVATION OF THE PERTURBATION EQUATIONS
and by Ipser and PricEl6] for the Regge-Wheeler gauge.
However, from our formalism it is clear that this feature is
independent of the chosen gauge. The background geometry of a nonrotating, spherically
After having expanded the equations in spherical harmonsymmetric star is given by the line element
ics, we will choose the Regge-Wheeler gauge as the basis of
further investigations. As a result of the spherical harmonics,

the equations are independent of the azimuthal ondand . . .
N P IWherev and\ are functions of the radial coordinate We

can be divided into two uncoupled sets according to thei :

behavior under parity transformation. The polar or even parM0de!l the star as a perfect fluid whose energy-momentum
ity equations transform as<(1)', whereas the axial or odd '€NSOr has the form

parity equations as-{1)'". Our main focus will be the

. . - T,,=(p+ + , 2
polar perturbations; nevertheless, because of their simplicity, ur=(PF UL+ PGy @

we also present the axial equations in the ADM form. The,,iih p denoting the pressure, the energy density, and*

derivation of the polar equations is mUPh more in_"_‘)l"ed'the four-velocity of the fluid. In the fluid rest frame* has
because the “raw” forms lead to numerical instabilities atonly one nonvanishing componaut=e~*. Einstein’s equa-

the origin due to indefinite expressions, which is a well-, /\C '~ _g 1+ 204 the conservation equatio&”

. . . nv Mmv v
known consequence of using spherical 900rdmates. we ag, yield the following three independent structure equations
therefore forced to recast the polar equations into a form thaft .
. - or the four unknown\, », p, ande:
is well behaved at the origin.

A. Unperturbed stellar model

S5y = —e2dt2+ 2\ dr?+r2(d g2 +siPadg?), (1)

Having forged the equations into a form that yields stable 1— @2\
evolutions for polytropic equations of state, we face a new N = +4mre?te, (3a
instability close to the stellar surface when we try to switch 2r
to realistic equations of state. In this paper we use a quite -
recent equation of state, called MR®achleidt Potential A ,_e7-1 2\
. A ) . v'= +4mrep, (3b
[17]. Yet this instability is not a consequence of just this 2r
particular equation of state; it will occur for any realistic
equation of state. As we shall show, the instability results p'=—v'(pte). (30
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We will refer to those equations as Tolman-OppenheimerwhereCg is the sound speed inside the fluid.

Volkoff (TOV) equations, although they are usually written  The dynamic equations that govern the metric and extrin-
in terms of the gravitational mass functiom which is re-  sic curvature perturbationis;; andk;; read, after lineariza-
lated to\ through tion,

B 2m ahij = BX Ok vij + Yiid; B+ k01 B~ 2eki; , (10
e 2)\51— T (4)
dikij = — 3;9;a+TX dya+ ST ge”+ a[ R +4m(p

To fully determine this system of equations, an equation of
state must be supplemented. In this paper, we restrict our-
selves to barotropic equations of state, where the pressure is -1yl (1D

a function of the energy density alone:

—€)y;]+ e[ R +4m((p— e)h;;+ 5e(C2

Therein, thesT'* represent the perturbations of the spatial
p=p(e). (5  Christoffel symbold"kij ,
In particular, we will use either a polytropic equation of state 1
in form of A1 == ¥ (hyisj+ hiji—hij)

p=re" (6)

1
:Eykl(ﬁjth”?ihu_3|hij)_h|m7klrm (12

ij »
or a tabulated realistic zero-temperature equation of state. To
obtain the stellar model, we have to integrate the TOV equagn( SR;j the perturbations of the spatial Ricci tengyy,
tions (3) together with the equation of statg) from the

center up to the point where the presspreanishes. This OR;j =5Fkij;k— 5Fkik;j

then defines the surfadeof the star. From Birkhoff theorem B K K K m m ek

it follows that the exterior vacuum region of the star is de- = O = 301y = S U5+ ST T
scribed by the Schwarzschild metric with the mass parameter —sT ™ _srm k- (13)
MEm(R). mj ik ikt mj

We should note that the indices of perturbations are lowered
B. Perturbation equations or raised with the background three-metyi¢. In construct-
ing initial data, the perturbations must satisfy the linearized
version of Einstein’s constraint equations, namely,

Let us recall that the general line element, when written in i T
the ADM form, reads y16R;;—h"Rj=16m e, (14)

1. General form

. . . jk | | —
dS°=— (a?~ BBYdP+2B,dtdx + ydxidd, (7)Y Ok ki ik + k) = =8m(p+ €)ous. s
k . .
where a, B°, andy; are lapse function, shift vector, and grom the linearized energy-momentum conservation equa-
spatlal metric, respectwely. Comparing the ADM mei(® tions ST#”. =0, we can deduce equations of motion for the
with the background metri€l) reveals that the background fluid pertu'erationsée and du;, which complete the set of
shift ,8‘(‘0) vanishes and the background lapse function isdynamical equations. v

a)=¢€". In addition, the extrinsic curvature of constant However, we can as well dispense with the fluid equa-
slices vanishes, since the background metric is static. tions, since it is possible to eliminate the energy density per-
_ Leta andB; now be the perturbations of the lapse func-,rmation se from the evolution equatiofill) by virtue of

tion and the(covariani shift vector, and leh;; denote the he Hamiltonian constrairtL4). In this way we can obtain a
perturbatlons of Fhe spatial metric. The line e_Iement describggsistent system of evolution equations for the metric and
ing the perturbations to the background meicthen reads  exgrinsic curvature perturbations alone. The constraints then
can serve as a means to compute the matter perturbateons
and éu; . We should stress that the possibility to completely

The perturbations of the energy-momentum ter@pcan be describe the oscillations of neutron stars with spacetime vari-
written in terms ofde, op, and du,,, which are the(Eule- ables only is a general feature of the perturbation equations
1 1 # L

: : : and does not depend on any specific gauge choice.

rian) perturbations of the energy densi¢y pressurep, and :

(covarianj four-velocity u,, respectively. We assume the Bec?‘“.se of the spherical symmetry of the background, we
equation of statd5) to hold for both the unperturbed and can eliminate the angular dependence of the perturbation

perturbed configuration@sentropic perturbationstherefore equations by expanding them Into sphe_rlcal_tensor harmon-
the perturbationse and 5p are related through ics. Those tensor harmonics can be divided into two subsets

that behave differently under parity transformation. Under
d , space reflection theven parityor polar harmonics change
Sp= _pgez p_b‘ezcggey (9)  sign according to £ 1), whereas theodd parity or axial
de € harmonics transform like<€1)' **. Here,| is the number that

dstyy= —2e”adt?+2B,dtdX + h;;dx'dx!. )
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labels the multipole of the spherical harmoni¢s, . Because Without picking a specific gauge, the metric perturbations
of the spherical symmetry, the axial and polar equations aréan be expanded using the tensor harmonics given first by
decoupled and degenerate with respect to the azimuthal nuriRegge and Wheel€dr8] in the following way (symmetric

berm. components are denoted by an asterisk
0 |
=2 > €8, (169
=2 m=-I
0 |
A= 2 2 (S VTV, (16b)
- | eZA”SI?’mYlm \A/Im\I,Im_{_\”/IL‘m(DIm
hljzlzz2 mgl * Z(Tlm\l,lm +-|-Im(I)Im +Tlm Im) y (160)
|
where W 1/ 82 J . P §
9 9 |m_§ ?_Cotea_e_an 0_ Im
Im_|~ Y (17)
« 196" agp) "M
az
J =511+ +—|Yim, 22
q;'am:( sin” 10£ sing— )Y|m, (18 (2 ( ) 902 ™ (22)
and d d
. 0 le 076 —cotéo (;b |m. (23)
Im _

The notation has been chosen such that the coeffic?ants
Wi, Xim represent thescalar parts ofh,,,, namely,«, g,, andh,,

Y= : |(| +1)®Y%, (200 whereas thé/; stand for thevectorcomponentg,, 8, ,h,y,
Xim —SiPOW,,/ -
and h.,. Last, theT; represent thetensor components

o —sin 26X, Wi hgg,hyes, andhy,. Note that this expansion includes both
Xap=SiNo Wi X |’ (21 polar and axial harmonics. The latter are represente@ﬂy
" ' and Xaﬁ with respective coeff|C|entv2, V4, andT3. Simi-
with larly, the extrinsic curvature tenséy; will be expanded as

= 1 [eKMY, Kiymgp!m 4+ Rimg!m
kij=|22 sz—I * rz(klllmq,lan;ﬁl(gmq)%_'_wm Im) : (29
|

Here, K" andK " are the axial coefficients. sl - -

Last not least, we need the matter variables Ui=|:22 m:2—| i, UMW USO).
(26)

©
ZE z ImYl (25) The sum over the multipoles starts frdrs 2, since we are
m?

only interested in perturbations which are associated with the
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emission of gravitational radiation. Besides, the nonradiativextrinsic curvature perturbations. The vanishing of the coef-

multipoles| =0 andl =1 would have to be treated in a dif- ficient K, is a crucial feature of the Regge-Wheeler gauge
ferent way. and has to be imposed on the initial data. This is in contra-
Using the above expansions, we obtain 12 evolution equagiction with the statement of Anderssenal.[19], where the
tions for the coefficients of the three-methig and the ex-  authors claim that there are no constraints on the odd or even
trinsic curvaturek;; . However, it is clear that this set cannot parity nature of the extrinsic curvature. This is not true, since

be used for the evolution, for we have not specified anype yanishing ofk, mustbe ensured on the initial slice:
gauge yet. Within perturbation theory, picking a Specific ohenyise the evolutiomannotbe performed in the Regge-
gauge usually means to define a gauge vegtoand trans- Wheeler gauge. For data with nonvanishilﬁg we would

form the metric perturbations according to - e . )
have dT,/dt#0, which is incompatible with the Regge-
e I (270 Wheeler gauge, because it would lead to a nonvanishing

even if?l was initially set to zero. Therefore the initial data

Imna(I)iLsJ:n(?e:ﬁz,t ihsov\\,’veeveirc’:lzvtiéougnv tehﬁ Splrreltsintt)?f AIEeMCLOerf'ﬁ_presented in19] for two colliding neutron stars are not ad-
: ’ ’ pic gauge by p 9 equate for an evolution code which makes use of the Regge-
cients of lapsex and shiftg;, for which we do not have any

evolution equations. Yet this is not enough as we shall SeeWheeler gauge, since the coefficidqtin Egs. (82) of [19]

To fully fix the gauge, we also have to impose certain conWhich corresponds to ouK,) does not vanish. We will

straints on the initial data. discuss the issue of constructing initial data in more detail in
The most common gauge is the Regge-Wheeler gaug%ec- V. )

[18], which can be obtained by setting a certain number of - Having S_W'tChed t? the Regge-Wheeler gauge, we are left

metric perturbation coefficients to zero. Translating this intowith evolution equations for the three metric variableg

the ADM formalism means to choose the shift and lapse inv,, andT,, and all the extrinsic curvature variablgs save

\Sﬁﬁh Ia way tha:] for |n||t|gl daf‘ﬁ‘ which obey the Regge-g, (in the more common notation of Regge and Wheeler
eeler gauge the evolution will preserve it. |[|18]’ it is 8,=H,, Va=h, and T,=K.) We now split the
Regge and Wheeler have chosen their gauge such that the " . . . : .

equations with respect to their behavior under parity trans-

; s \7/im  \yiIm  FIm TIm i
metric coefficientsVy", V5", Ti7, and T3" vanish. By  formation. Let us first focus our attention on the axial case.
choosing the shift and lapse &@om now on we omit the

indices| andm) 2. Axial perturbations

. 1. If in the expansiong16a and(24) we use new variables
S=- 553, (28)

Vu=e" My, (353
S,=2e'K,, (29)
. K3=287)‘K3, (35b)
V=0, (30
A . Ke=r2e'Kg, (350
V,=e'Ks, (31) ° ’

. . . . . we obtain the following set of evolution equations:
we obtain the following evolution equations for the coeffi- 9 q

TVA_ 2v-2n _6+(Vr_)\,__) K6—e2”K3 ,

J . ot or r
—V3=0, (32) (363
at
J. R Kg I(1+1)-2
St —2e'Ky, (33 T r—2V4, (36b)
i:I'3= 0. (39 (7_K6: (7_\/4 (360
at . ar

In addition the evolution equation for the extrinsic curvature . .

N N N and one constraint equation
componentK, depends only o, andVj. Thus, only for
initial data satisfying/s=T,=T;=0 and K,=0 do the evo- B
. ! A e Kz 2 I(1+1)—-2 R
lution equations guarantee the vanishing of those coefficients =+ FK3_ ———Kg= 16meN(p+e)us. (37)
r

throughout the whole evolution.
Hence, the Regge-Wheeler gauge does not only impose
constraints on the initial metric perturbations but also on theFrom the conservation la#T*”. =0, it follows that
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AUy e’
= =0 38  kij=—;
2\ 2\ J 2\ J
which means that axial gravitational waves do not couple to Ky —re Kzﬁ —re Kzﬁ
the stellar fluid. Of course, this does not mean that there  x ) Yim
cannot be any axial modes at all; in fact, there exists a whole * r“(Ks—2K3) 0
spectrum of axial spacetime modes, which is quite similar * 0 r2sirff(Ks—2K,)
the polar spectrunh20]. It is only the fluid modes that are
missing. (45)
The three evolution equation86) can be combined to The expansion of the matter variables reads
yield a single wave equation for the metric perturbation
or better for the variable p
Se= FY'”‘ , (46)
\2
Q=-", (39) e u, 4 p
5ui__T U=+ Uz, Uzo.,d) Yim- (47)

which completely describes the dynamical evolution of axial

perturbations: Of course, these expansions are to be understood as sums

over alll andm, analogous to the expansiofia and(24).
It is only through this particular choice of expansion coeffi-
#Q Q 6m 1(1+1) cients(e.g., ina, h,,, andkg,,) that we obtain a system of
Fra (9—2+e \aAm(p-et ———— : equations that can be numerically integrated in a quite
re r ; L . : i
(40) straightforward and—this is th_e main point—in a stabl_e way.
Another consequence of this decomposition is that it gives
some physical meaning to the metric perturbatiSrendT.
Herein,r, denotes the tortoise coordinate defined by From Eq.(44), we can see thaf represents the conformal
part of the spatial perturbatiom; , for if we setS=0, the
dr metric is conformally flat. Obvioush&itself then represents
=e’ M (41)  the deviation from conformal flatness.
Finally, we should note that this decomposition is quite
similar to the one used by Alleet al.[11]. Their variableg=
In the exterior, wherep and e vanish andm=M, Eq. (400  and Sy, are related to ours as follow&=T and Syjjen

r

reduces to the well-known Regge-Wheeler equalis]. = @?'s,
In order to avoid numerical problems at the origin, we
3. Polar perturbations have to replac&; by the following quantity:

For the polar case we have only two dynamical metric
perturbationsS; andT,, since the laps&; is proportional to r2K:=K,+2r
S;, and the only nonvanishing componeit of the shift is

proportional toK,. To obtain the relevant equations, we In this way, we obtain a system of five coupled evolution
again choose a somewhat different expansion. For the metriequations, which are of first order in time and second order

Mz vk
ar 2

—Ks. (48)

we use in space. There are two equations for the metric variaBles
andT and three more for the extrinsic curvature variaties
T K,, andKs:
az—ze F+rS)Y|m, (42 IS
E_K’ (499
Bi=(e*K,, 0, 0Ym, (43
(9K_ 21/*2)\ (928+ 5 ! )\! (98+ 4 ! 2_’_51},
i€ P (5v )or (V)45
eM—+rs| O 0
_ N e?r-1 I(1+1
hij = 0 T o | Ym (49 +3——2————e? ( - s
r r r
0 0 rsirfT
1 V’ ’ 1\ 2 o
o +4|—|—| +2|—| ——| Ty, (49b)
and for the extrinsic curvature rir r2
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aT d du; 14u 1
£ —Ks, (499 | LN WU il
a o P {ﬁr Far T\ 3V A AT
v\ [(1+1) |~
_ - 2\
Ks [T J <3r r e 2| T (PEO)
2@ (pf =\ ) —
ot ar? ar 2
W12 k- Sk 2k +rerk
v N e -1 I(1+1) For T2HMIK = ZK=5Ks [ HreKs,
+|—+3—+2 —e T
r r I,2 r2 (523)
+2(rv’ +1\' ~1)S| +8me?(1-C2) M 2% [y (1echy e (cy
. T 2p, o= Cs otV (1+CH+(CY)'Ip
(490 1 N 2a8+«9T+2 s 508
5P €)TE oy Tars), (52b
Ko 5 2>\( S v' ) ~
—==e?"" A r—+(2rv'+1)S+2—T|. (49 Ju 1
ot ar T2y ) r (499 [th: Cip— S(p+ €)(r?s+T). (529

We could easily convert this system into a first order systeniiere, we have defined;:=(p+¢)u;. By introducing the
both in time and space by adding another two evolutior€Nthalpy perturbation
equations for the first derivative8 and T'. However, the 2
form of the first four equation&493—(49d), which are inde- Hiz Cs
pendent ofK,, suggests to rather convert them into two p+e
coupled wave equations f@&andT:

P, (53

the fluid equations assume a more convenient form:

7S 7S S D IH_ o onm2| U1 L
_ a2v=2\ A Yt N2 Bt —=e"ACY —+(2v' =Ny,
P e [&r2+(5v A )(9I’+ 4(v') +5r +3r ot S| ar
N N v’ [(1+1) ( 1 )
e 1 I(1+1) 2\ ,
_ 2 +|——2——e?——ju,|—v'|u;——u
2 r2 e r2 )S r r r 2] 1 r 2
1 V’ ' 1\ 2 /V/ C2 (9K2 2 )\, K rZK 3K ,K
o F(T *2_) N T]’ (50) FOS| g HEAEMOK T G KT Ks kG,
r
(543
Ju; oH 1 S  IT
AT [ePT JT (v N eP-1 e 22 oS, (54b)
— =N — 4+ (V) =N)—+| —+3—+2 ot ar 2\ oIJr ar
at? ar? ar r r r?
I(1+1) Ma_y 1(28+T) (540
— — —(r . C)
—e? ———|T+2(rv'+r\'=1)S at 2
r

X 5 Interestingly, from Eqs(54b) and (540), it follows that the
+8me(1-Cj)p, (51)  coefficientsu; andu, are not independent of each other but
rather are related via

which are equivalent to Eq$14) and (15) of Allen et al. u,

[11]. As can be seen, the wave equation rEqg. (50) is u1=7+F(r), (59
totally decoupled from the fluid variable, which only

couples to the metric perturbatidnin Eq. (51). The equa- where F is a time-independent function, which has to be
tion for K, is only necessary in the interior region, where it fixed by the initial data. The above systéB®), too, can be
couples to the hydrodynamical equations, which follow fromcast into a second order wave equation For which is
energy-momentum conservatiaft*”. =0, and are given equivalent to Eq(16) of Allen et al.[11] (the different signs
by in the terms containing and T are correct
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(92H - (92H oH 20 _ (?Kz (?KS
?zez” ZA{Cgﬁ—F[Cg(ZV’—)\,)—V’]W 16me (P+e)u1—a—r—28—r+rK
I(1+1)
v’ N I(1+1 v N — ' r_@2N 7
+ Cg(—+4——e2"(—) A I 3v'+3\" —e . K,
r r r2
+2v'Ks, (599
Ve g 2?8 T °
pV(CT DI , Ky o,
16me " (p+e)u,=r ———rK+r(v'+ 1" )K,—2Ks.
7v N eM-1 o
TS - (59b)
S\2r r r2
Those constraint equations have to be solved in order to
! 1 ) obtain physically valid initial data. We postpone the discus-
—| 2+ ST SET) (56)  sion on how to construct initial data to Sec. IV.

With p being eliminated,S and T in the interior now
become independent variables, and the Hamiltonian con-
As already mentioned in Sec. [IB 1, we do not necessarilystraint(57) serves as a definition fgr. In the exterior, how-
need the fluid equations, for we can eliminate them by meansver, S and T are not independent but have to satisfy the
of the Hamiltonian constraint, which relates the fluid variableHamiltonian constraint witlp set to zero. Unfortunately, we
p to the two metric variableS andT: cannot use the Hamiltonian constraint to further eliminate
one of those variables, but it is possible to comifBend T

2T T oS to form a new variabl& [we use the definitioi20) of Allen

A _ - = etal. [11])]:
8metp (?rz-i-)\ ar“ar
1 z 2e 2rT' +e? M 2-1(1+1)|T-2 23}
=——|2r eM ——-2— -2r<S|,
+ 2—2r)\’+§e2”l(l+1) S Al(1+1) r
(60)
e 1 N’ [(1+1 -
—( ;3 e D)7 5 wih
r r
6M
A:|(|+l)_2+T. (61)
With p substituted by the Hamiltonian constraif®7), the
wave equation foff, Eq.(51), in the interior now reads Z then satisfies a single wave equation, the famous Zerilli
equation that was first derived in 1970 by Zerfl#1] in the
92T 2T 6S aT context of black hole oscillations:
v 2Ap2| T N
Pra Slorz or ar

P’z 9’z 0o n?(n+1)r3+3n2Mr2+9nM?r+9M?3
= ——2¢ 14

1 H2 ar? r3(nr+3Mm)?2
’ 2\ *
+|2rx —2—56 I(1+1)]S (62
eA_1 )\’ L (1+1) Here,_we use Qzl(.l +1)—2, andr, is again the tortoise
+ s T3 ——e?——|T coordinate defined in Ed41).
r r It is also possible to invert E¢60) and expresSandT in

T 4S 1 terms ofZ through
+e? 2y —4r—+| 2rv' + e (1+1) | S
ar ar 2 1 6M
T=re?"Z'+ —I(I+1)——e2”)Z, (633
, ~ 2 rA
v, et—1
+|—+ 5 T|. (58
r s=erzr 1 Ser|z e 2M 4
=e 2|t Re Elre (I1+1)
In the exterior, bottS and T propagate with the local speed 5
of light e”~*; in the interior, howeverT changes its charac- LM, &My (6M 2|7 63b)
ter and propagates with the local speed of soefid'C. rA r rA '

The last set of equations that is still missing are the mo-
mentum constraints, which link the velocity perturbations toLast, we should note that the radiated energy at infinity can
the extrinsic curvature variables: be computed fronj22]
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dE_ 1 (1+2)! .

9&
qt 6w 2 (1—2)1 | Ziml?. (64) —

T =€ PN e ). (67)
Since the Zerilli function contains the full polar gravitational After expansion in spherical harmonics, we finally obtain
wave information, it should be possible to recover the origi-

nal metric and extrinsic curvature variables from it. Fr 1 (t,R)=¢’
and T we have already given the relevant formulas in Egs. atPt

(63). SinceK=S andKs=T, they also can computed from

Egs. (63) with Z replaced byZ. In the exterior the momen-

tum constraintg59) can be combined to give an algebraic

relation forK,. Finally, the last remaining quantity, fol-

lows from Eq.(48). —H(t,R)=—v'
In the derivations of all the above equations we have Jt

made extensive use of the computer algebra program.e _ _ _ . )

V in order to avoid possible mistakes. Furthermore, we havdncidentally, this expression can be obtained directly from

checked that our equations and our numerical results agréB€ €volution equatio(643 just by settingCs to zero. In the
with those of Allenet al. [11], same manner, we can obtain the boundary condition for the

wave equatiori56). Also, Eq.(68) follows immediately from
Eq. (529, if one setp=€e=p’'=0.
For polytropic equations of state, it is alwaps- e=Cgq
There are three boundaries we have to take care of: the p’=0 at the surface of the star; hence the evolution equa-
origin, the surface, and the outer boundary of the numericdions (523 and (548 automatically lead to the right bound-
grid, which lies somewhere outside the star. ary conditions. For realistic equations of state, the sound
At the originr=0 we have to demand all variables to be speed at the surface should be that of iron, which is very
regular. From Taylor expansion around-0, we can infer small compared to the sound speed inside the core, where it
the analytic behavior of the various variables. Close to themight reach almost the speed of light for very relativistic
origin, SandT, for instance, are both proportional tb"*. stellar models. For practical purposes, in these cases we just
At the outer boundary, we impose the Sommerfeld boundmight as well seC4(r =R)=0. Of course, this analysis does
ary condition; i.e., we require the waves to be purely outgonot hold for constant density models, but those are not con-
ing. If computational time does not matter, we can even pusidered in this paper, anyway.
this boundary so far away that any contamination that enters Let us now turn to the junction conditions at the surface
the grid from there has not enough time to travel to theof the star. We will always assume thaandCg go to zero
region where we extract the signal. when approaching the stellar surface R. Following the
The third boundary is the surface of the starratR, line of reasoning of{11], we find thatS is at leastC?,
which is formally defined by the vanishing of the total pres-whereas the differentiability of depends on the value of
sureP. Since the perturbations will slightly deform the star, at the surface. For if we let the subscriptsandex represent
the perturbed surface will be displaced by an amdtmtith  the values for the interior and the exterior, respectively, we
respect to the unperturbed locationrat R. If the coordi- deduce from Eq(51) that for the second derivative of
nates of the unperturbed surface are denotegihythe van-  across the surface the following relation has to hold:
ishing of the total pressur at the displaced surface trans-
lates to P(t,xg+&)=0. From Taylor expansion to first
order we find that théEulerian pressure perturbatiofp at
the surface has to obey

(68)

uz
rK2+e2”2*(u1— —)

;
r=R

The equivalent equation for the quantiyas defined in Eq.
(53) reads

(69

uz
rK ,+ eZVZA( up— T)

r=R

IIl. BOUNDARY AND JUNCTION CONDITIONS

T;,n_Tgx: _87762)\p|r=R- (70

From condition(68), it follows that the values op at the

surface depend on the value of at this point. As already
Sp=—¢£€p'. (65)  discussed above, for polytropic equations of state, we have

p=e=p’'=0 at the surface. Howevet, does not necessar-

Unfortunately, this is not a very convenient boundary condidly vanish; instead we have the following relation:

tion, since we use neitheip nor the displacement vectgt

in our set of evolution equations. Therefore we must relate € (71)

this condition to the variables we use. We will try to find a I’

condition that gives us the time evolution &¢ at the stellar
surface. The first step is to use the relatide=p'/e’' sp,  Which shows that the behavior ef critically depends on the

which gives us value of the polytropic indeX’. We can distinguish three
different cases. Fof'<2, we havee’'—0; for I'=2, we
d L9, havee’—const; and fol">2, we havee’ — — .
556: T € Ef : (66) This is somewhat disturbing, since for the boundary con-

dition (68) this would mean thafp| —, unless the expres-
The time derivative of" can then be related to thecom-  sion in brackets vanishes. However, this is not automatically
ponent of the four-velocity, [23]: guaranteed. Interestingly, the boundary conditi68) for H
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is harmless for all values df, sincev’ is always bounded. some additional assumptions about the geometry of the ini-
But, of course, in Eq(51), we have to use, which we have tial slice.

to compute fromH using The simplest way is to choose time symmetric initial data,
since in this case the momentum constrai{p® can be sat-
dp| ! e2 T isfied trivially by setting all extrinsic curvature variables to
p=(p+ 6)(&) H~ P H. (72 zero, and we only have to solve the Hamiltonian constraint

(57). Of course, time symmetric data are somewhat unphysi-
cal, since they represent a stage of a physical system which
had an arbitrary amount of incoming radiation in the past.
Nevertheless, they can give valuable insight into the behav-
ior of the system under consideration.

Again, we obtain an infinite value whehi>2, unlessH
vanishes at the surface. However, as with E@B), the
boundary conditior{69) does not guarantee the vanishing of

H, e;l/en ifH is 'P't'au}' set tolgero. Havior ofis that in th In general, all conceivable initial data for neutron star
The reason for this peculiar behavior pfis that in the  osgjjiations fall into two basic categories or combinations
I'>2 case, the Eulerian description breaks down at the SUkereof. First, we can assume the star being initially unper-

face, which is a direct consequenceedtbecoming infinite.  y,rpeq. In the exterior vacuum region, we then can arbitrarily
In this case, a Lagrangian description of the fluid perturbay, eseripe some metric perturbations representing a gravita-
tions would be much more appropriate, since for any polyyiona| wave, which travels towards the star and eventually
tropic equation of state, the Lagrangian energy density pefaycites it to oscillations. The most convenient way to do so is
turbation always vanishes at the surface, because of thg prescribe the initial Zerilli functioZ and its time deriva-

vanishing of the Lagrangian pressure perturbation. Lo

What then happens to the Eulerian density perturbation{érlr:/.e Z,and to ﬁomp.“t.‘fﬁ ;I'dK anr?K5 through Eﬂs(63).' n h
By definition, the Eulerian density perturbatiofe is the Is way, we have initial data that automatically safisfy the
difference between the total energy density and the backc_onstramts wnhouF h{;\wr_lg fo solve any dlﬁerenugl equation.
ground densitye at the same locatiom, whereas the La- .. Th? o_ther possibility is to prescribe some flwd perturba-
grangian density perturbatiohe measures the density tions |nS|d¢ the star gnd then use the constraints to solve for
change in a fluid element that is displaced by some amour;tpe assqcated_ metric perturbgtlons. As 15 Well_kno_wn, the

i . . . distribution does not uniquely fix the metric, since we
&' It is through Taylor expansion to linear order that we matter quely T
. . . . can always superpose some additional gravitational waves. It
obtain thg connection between the Lagrangian and Eulerlalr% therefore not clear at all what would represent “true”
perturbations: physically realistic initial data.

A quite common procedure is to construct conformally
flat initial data[24]. In our case, this amounts to setting
S(t=0)=Sy=0 in the Hamiltonian constrairis7) and solv-

But of course for thd'>2 case this expression is ill defined ing for T, for a given initial fluid perturbatiomp,. Interest-

at the surface, since the second term diverges. It is then clegigly, the initial data thus obtained do not excite any of the
that the Eulerian perturbatiofe has to become infinite, too, spacetime modes to a significant extent, whereas initial data
in order to compensate for the blowup &f and to yield a  with the same fluid perturbatiop,, but with T;=0 andS,
vanishing Lagrangian perturbatiae. #0, can show large-mode excitations. In Fig. 1, we com-

The whole discussion seems somewhat irrelevant, sincgare the wave signals of these two cases for time symmetric
we have seen that the equations can be written in terms @iitial data. In the case where we s8§=0, there is no
metric quantities only. However, we have to compute they-mode signal at all, and the waveform consists of pure fluid
second derivative of, which, as can be seen from EGO),  oscillations. In the other case, we can see a burst of gravita-
depends orp. In theI'>2 case, we therefore must have ational radiation, which quickly damps away through the first
blowup of T” at the surface. Of course, this is very trouble-w mode. The final fluid ringing then coincides with ti$g
some for the numerical discretization, and evenlfer2, we =0 case.
still have a discontinuity inr”, which can spoil the second This shows that the presencewimodes is not a generic
order convergence of the numerical discretization scheme. feature of neutron star oscillations. They are only excited by

The numerical evolutions indeed confirm the above analya special subset of initial data. The open question now is
sis. By computingp with the aid of the Hamiltonian con- whether or not they will show up in a real wave signal.
straint (57), we find that for polytropic stellar models with Andersson and Kokkotd®5] have shown that by extracting
I'>2, p tends to blow up at the stellar surface. Fox2, we  the frequencies and damping times of flreode and the first
have p=0 at the surface, whereas fér=2, we obtain a w mode in a gravitational wave signal, one can obtain im-

Ae=0e+ €. (73

finite value[22]. portant information such as mass and radius of the neutron
star. These data, in turn, can then be used to restrict the
IV. CONSTRUCTING INITIAL DATA possible equations of state. Of course, this method stands and

falls with the presence of th& modes in the wave signal.
To obtain physically valid initial data, we have to solve But as we have seen, it could well be thatmodes do not
the constraint equation&7) and (59). As is well known, play a significant role at all. In a subsequent pg2&], we
there is no unique way to do so, for those equations ar&ill investigate the excitations of neutron star oscillations by
underdetermined, and therefore one always has to makmeans of particle scattering, which will show that the
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0.3

If the extrinsic curvature is first decomposed into spheri-
cal harmonics, this procedure still works. For the polar part,
we then have four components and two constraint equations;
i.e., only two components can be freely specified. Here, too,
by assuming TK=A[""=0, we can write the remaining
longitudinal part in terms of a vector potential with two polar
components. Solving the constraint equations with nonvan-
ishing sourceg; will yield nonzero values for those compo-
nent, and therefore all four polar components of the extrinsic
curvature will in general have nonzero values, either.

But this is contradiction with the Regge-Wheeler gauge,

which requires the componeKt, to vanish. This could only
be accomplished by setting one component of the vector po-
00 01 02 T 03 04 05 06 o7 o8 09 1o tential to zero. However, this is not possible, since both com-
#in ms ponents are already fixed by the constraint equations and in
general, nonvanishing.

signal coming from initial data withT;=0 (solid line shows a ~

L2 ; Regge-Wheeler gauge, we have to hKvye=0, and therefore
t tational burst followed b d down, ’ ' .
strong gravitational wave burst followed byvamode ringdown we cannot have both K—0 and AT —0. By choosing

whereas the signal coming from data wg=0 (dashed lingdoes ij
not show anyw modes at all but rather consists of pure fluid ring- 17 K=0, we already have used up all degrees of freedom to
ing. Both signals coincide after the mode has damped away. fix the extrinsic curvature components, since we have to set
K,=0, too.
modes can only be excited by extremely relativistic particles.
Lgt us now focus on initial data which are not time sym- V. NUMERICAL RESULTS FOR POLYTROPIC
metric. In this case, we also have to solv_e_ the momentum EQUATIONS OF STATE
constraints. Here, too, we have some additional freedom in
specifying the extrinsic curvature. For instance we can A. Some general remarks

choose TK=0, which is equivalent to setting Our actual goal was, by using the ADM formalism, to
obtain the evolution equations in a hyperbolic first order
K,=4K,—2Ks5, (74)  form. However, as a result of numerical problems at the ori-
gin, we were forced to modify those equations in such a way
or, equivalently, because of E(8), that the resulting se€#9) is more or less equivalent to the set
of wave equations for the variabl& T, andH. Thus, from
9K the computational point of view, there is no point in sticking
r2K=2r—2+2(r)\’+2)K2—3K5. (75)  to the first order system, since the wave equations can be
ar numerically integrated in a much faster way. Also, we will
not explicitly integrate the fluid equations, since we can
We then can substitut& in Eq. (59) and obtain thus two eliminate p in Eq. (51) by means of the Hamiltonian con-
coupled differential equations for the remaining unknownsstraint (57).
K, and Ks. For given fluid perturbationsi, and u,, the For the numerical evolution, we therefore use E@G®)
momentum constraints yield a unique solution. and(598) in the interior, whereas in the exterior we use Egs.
Before presenting the numerical results, we would like to(50) and(51) with p set to zero. Of course, in the exterior we
comment on the applicability of the Lichnerowicz-York ap- could try to switch fromSandT to the Zerilli functionZ. We
proach[27] for the construction of initial data for neutron thus would have to integrate only one wave equation, and
star perturbations, which was used ir9]. Stated in a some- from the resulting waveforms, we could easily read off the
what crude way, this method consists in decomposing the sigmitted gravitational energy, since the radiation power is
degrees of freedortDOF) of the extrinsic curvature into its proportional to the square i

trace TIK (1 DOF), a transverse trace free pakf’" (2 Unfortunately, this causes numerical problems, because at
DOF), and a trace free longitudinal pak;'"(3 DOP). Since  the seam, we would have to compueand its derivatives
the momentum constraints consist only of three equationfom SandT and vice versa. However, in order to obtain a
with three source functiong;, which describe the matter correct value of, it is crucial thatSandT satisfy the Hamil-
distribution, only 3 DOF are fixed, whereas the remainingtonian constraint. On the other hanfl,and T satisfy the
ones are freely specifiable. The simplest way is to sé€ Tr Hamiltonian constraint by construction, at least up to dis-
=Aj""=0; i.e., the extrinsic curvature is purely longitudi- cretization errors, when directly computed frafnthrough

nal. It can thus be written in terms of a vector potential withEgs.(63). At the seam somewhere outside the star, where we
three independent components, for which the momenturswitch fromSandT to Z, we will always have some viola-
constraints provide a unique solution once the soujcaad  tion of the Hamiltonian constraint, thus the computed Zerilli
appropriate boundary conditions have been specified. function Z will not be quite correct. If we then go back and

0.2

064018-11



JOHANNES RUOFF PHYSICAL REVIEW D 63 064018

computeSandT from the just obtained value &, they will TABLE |I. List of the polytropic stellar models used and their
differ significantly from their original values, since now they physical parameters.

suddenly satisfy the Hamiltonian constraint. This mismatch-=
ing at the seam gives rise to additional reflections, which
rapidly amplify inside the star and cause the numerical code

Polytropic stellar modelsI{=2,x= 100 knt)
Model eo[g/cmd] M[Mg] R[km] M/R

to crash after a few dynamical time scales. 1 1.0x 105 0.802 10.81 0.109
There is another point we would like to mention. When 2 5.0x 105 1.348 7.787 0.256
evolved with the Zerilli equation, the amplitude of an outgo- 3 5.0x 106 1.031 4.992 0.305

ing wave remains constant for largeThe same is true fds,
however, the amplitude of grows linearly withr. When
computingZ from S and T by means of formuld60), this ~ whereAr is the grid spacing in the coordinate anc the
growth has to cancel, which is indeed the case whandT  largest propagation speed, because the presence of the diver-
exactly satisfy the Hamiltonian constraint. If n@will also ~ gentl(l+1)/r? terms causes the scheme to become unstable
start to grow for larger. But this is what happens, since at the origin. Only by decreasingt can stability be rein-
numerically S and T do not satisfy the Hamiltonian con- forced. However, for large values bfAt has to be so small
straint. It is predominantly the high frequency componentghat it prevents one from obtaining numerical results within a
that get amplified the most strongly. Unfortunately, this can'é@sonable time frame. .

lead to quite rough waveforms f& while those forSand T We. theref_ore propose a different way that allows stable
look perfectly smooth. By increasing the resolution, this am_evolutlpns withAt close toAtm.az( for all values ofl. Instead
plification will decrease, but the resolution has to be quite®’ Naving the boundary conditions located exactly a0,

high in order to obtain accurate results. we move itn grid points to the right; i.e., at,=nAr, we

The most practical way to obtain a quite reliable Zerilli imposeS(r,) =T(rn) =0. The actual value ai depends ot

function, therefore, is not to completely switch to the Zerilli in the followmg simple yvaynzl—l. . .
function in the exterior region, but to additionally evolde The numerical experiments and a detailed stability analy-

: ; sis[22] have shown that with this little trick, we can indeed
together withSandT. That is, close to the surface of the star obtain stable and second order convergent evolutions for ar-
we construce fr°_”? Sand_T by means of formuld60) and bitrary values ofl with a Courant number of about 0.9.
then use the Zerilli equatiof62) to independently evolv&
parallel toSandT. Of course, this amounts to the additional
computational expenditure of evolving an extra wave equa-
tion, but we get rewarded by obtaining much more accurate Results concerning the evolution of various initial data
results. have already been presented iri]. Since the authors only

To discretize the wave equations, we use the explicit secocused on a single polytropic stellar model with a central
ond order leap frog scheme. If the equations are correctlgensity of e,=3X10°g/cn?, we would like to consider
implemented, the numerical violation of the constraintsthree more models, one being less relativistic and the others
should converge to zero in second order. By monitoring thébeing more relativistic. The physical parameters of the mod-
Hamiltonian constraint in the exterior, this is indeed what weels are given in Table I. All results presented are Ifer2.
find. Of course, as mentioned above, for polytropes With Results for more stellar models and for other valuebazn
=2, the stellar surface can reduce the convergence down tee found in[22].
first order. As initial data, we choose a narrow time symmetric gravi-

We should make one final note concerning the numericadational wave pulse, centered igf=80 km, where we pre-
treatment of the origim=0. It is well known that in radial scribeT to have a Gaussian shape, and use the Hamiltonian
coordinates, the equations usually show a singular behaviaonstraint to comput8& The numerical resolution is 500 grid
close to the origin. Moreover, Taylor expansion around thepoints inside the star. The resulting waveforms for the dif-
origin shows that the equations admit two kinds of solutionsferent models are shown in Fig. 2. Using a logarithmic scale,
aregular and a divergent one. On physical grounds, one uswe plot the modulus of the Zerilli function, extracted rat
ally rejects the divergent solution. For the evolution, it is =100 km.
crucial that the numerical scheme preserve the regularity The three waveforms clearly have quite different features.
condition and suppress the divergent solution. For the least relativistic model (upper pane| there is no

We have chosen dynamical variables such that the onlw-mode signal at all, and the falloff, which immediately fol-
singular terms are the ones proportionall¢b+1)/r?. The lows the reflected wave pulse at abdut0.6 ms, shows
regularity condition requires all the perturbation variables tomore a tail-like behavior. At=1.1 ms it merges into the
vanish at the origin; however, even fb&2 the equations fluid ringing, which is dominated by themode. This is a
cannot be numerically evolved with a time step sideclose  somewhat unexpected result, since a direct mode calculation
to the maximal allowed time step si2d,,,,, which follows  reveals that for this model there do existmodes, which

B. Results

from the Courant-Friedrichs-LeW{CFL) condition should show up in the waveform. However, even the first
mode has a quite large imaginary paa = 0.305+0.24i),
At :ﬂ (76) which results from the model being less compact. Thus, the
max- ¢’ w modes get buried in the tail-like falloff. The more compact
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FIG. 3. Power spectra for model 3 witk-2. In the upper panel,
10-4F the Fourier transform is taken for an early starting tirie 0.9 m9

and shows the presence of the weakly damped trapped modes. In
the lower panel, the Fourier transform is taken at a much later time,
lo=8r i where most of the trapped modes have damped away ang the
modes prevail. Still, the first two trapped modes are clearly visible.
10~ 7

P — 0 15 20 24 the two ringdown phases, i.e., at first themodes and then

tinms the fluid modes. Instead, the signal consists of a mixture of
) _ N ) ~ both the trapped and the fluid modes. Nevertheless, the
FIG. 2. Time evolution of the Zerilli function for the three dif- trapped modes dominate in early times, which can be seen

ferent polytropic stellar models M1, M2, and M3 with=2. The o the Fourier transform in the upper panel of Fig. 3. In
numerical resolution is 500 grid points inside the star. In the Ieas{he lower panel, we have taken the Fourier transform at
relativistic model(model 1, upper panglthere are nov modes much later times, where the most strongly damped trapped
observable. For model @niddle pane), both thew and the fluid modes have dam'ped away and the fluid modes prevail. Stil
modes are excited. Model Bwer panel, which is the most com- Gthe first two trapped modes are present in the spectrur‘.n ’

pact, exhibits two ringdowns, one ranging from 0.6 to 0.9 ms an H th is still feat tin th
corresponding to the first black hole quasinormal mode and the. owever, there 1S stll one teature present in the wave

“proper” ringdown starting at about 1.0 ms and consisting of the 5|g_na| for model_ 3, which was also present in previous evo-
various trapped and fluid modes. lutions of the axial modes for very compact stars, but which

apparently has not been noticed bef¢see, e.g., Fig. 4 of

and therefore more relativistic the stellar model is, the les$28] and Fig. 5 of{ 8]).
damped are thev modes, and they should eventually domi- If, in the wave signal, we determine the frequency and
nate over the tail-like falloff. damping time of the very first ringdowfirom t~0.5 ms to

This is the case for model @niddle panel, which is quite  aboutt~0.9 m9, we find that they do not match to any of
close to the stability limit. Here, instead of the tail-like fall- the quasinormal modes associated with this particular stellar
off, we now can see the ringdown of the filstmode (@ model. Instead, they are almost identical with the complex
=0.256+0.085i). Still, it is much more strongly damped frequency of the first quasinormal mode of an equal mass
than the fluid modes, which therefore dominate the late timdlack hole. How is that?
part. For black hole spacetimes, the quasinormal modes are

Model 3 (lower panel, which is unstable with respect to derived from the Regge-Wheeler potential in the axial case
radial oscillations, is compact enough to allow the existencend the Zerilli potential in the polar case. Both potentials
of trapped modes. Because of their comparatively wealexhibit a maximum at about=3M. For ordinary neutron
damping, we cannot have a clear cut discrimination betweentars the surface lies usually at a radius larger thsf 3
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W7 T 1 T T T T T spectrum in Fig. 3. If we had included the first ringdown, this
09l : spectrum would have sat on top of a large broad pefade
less compact stars the local light speed inside the star is
higher, and therefore the wave packet gets reflected much
earlier, making the black-hole-like ringdown phase much
. shorter. We should mention that this ringdown phenomenon
] for very compact stars is much more pronounced for larger
values ofl [22].

Of course, we gave a somewhat crude and heuristic ex-
planation of this ringdown phenomenon; we therefore post-
. pone a more detailed study to a future paj29].
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VI. GETTING INTO TROUBLE: USING REALISTIC
9 EQUATIONS OF STATE

0.0

So far we have used polytropic equations of state, which
FIG. 4. Profile of the sound sped; inside the neutron star  gre quite decent approximations to realistic equations of state
model using EOS MPA and a section near the surfadet). Atthe a5 far as the bulk features of neutron stars such as mass and
neutron drip point around~8.06 km, the sound speed exhibits a \4jys are concerned. However, it is in particular the fluid
local minimum. oscillations that are very sensitive to local changes in the
equation of state, which are due to the different behavior of
therefore these peaks do not exist for those stars. Howevethe neutron star matter under varying pressure. It is therefore
for ultracompact stars these peaks can lie outside. Any axidinportant to use realistic equations of state that take into
or polar incoming gravitational wave packet has to cross theccount the underlying microphysics which determines the
corresponding peak before penetrating the neutron stastate of the matter as a function of pressure and temperature.
While trying to cross this peak, a large fraction of the wave Realistic equations of state cannot be given in analytic
will be scattered off, which in the black hole spacetime givesterms over the whole pressure range inside the neutron star,
rise to the quasinormal ringdown, but since the situation ishence they usually exist in tabulated form only. To solve the
now almost identical for the neutron star spacetime, this asfOV equations in this case, one has to interpolate between
sociated ringdown will have black hole characteristics. the given values in order to obtain the stellar model with
Since inside the star, the local speed of light # is  continuous functions of radius In the following, we will
largely reduced, it takes a while for the remaining wavemake use of an equation of state called the MRBA], which
packet to be reflected, and this is gives rise to the strongields a maximal mass model of 1/86,. The nonradial
increase in the signal at about 0.9 ms. Here, the trapped oscillations modes for various stellar models have been com-
wave packet finally finds its way out again, and it is only piled in [30].
from thereon that the wave signal consists of the proper fluid If we try to repeat the evolution of the same initial data,
and spacetime mode§lt is also from this time when we but now for a realistic stellar model with, salj,=200 grid
have taken the Fourier transformation to obtain the uppepoints inside the star, we will find, after a few oscillations, an
exponentially growing mode that immediately swamps the
10 e e et el e e e et whole evolution. It is clear that this has to be a numerical

' I I I ' ' ' instability, since the frequency anetfolding time of this
or T i growing mode strongly depend on the chosen resolution. In
8- L7 1 fact, by further increasing the resolution, the growing mode
7L j_/_f _____ i starts to weaken and eventually vanishes completely. This
oL 7 | happens at abolN =500 grid points inside the star, depend-
" A ing on the stellar model under consideration. Hence, we have
k‘; 5r ,,/// 1 this strange fact that for low resolutions the numerical evo-
4l ’,",/ €0 = 2x10% g/em® 4 lution tends to be unstable, whereas for resolutions high
N 0 = 3x10% g/emt - — - | enough, the evolution is stable. We should stress that this
i1 happens only with the use of realistic equations of state
2r 4 €0 = 1x10% g/cm---o-oo- 7 (EOS. It does not happen for polytropic stellar models, even
1-,,'"’ g if the resolution is extremely low.
N A T T Further investigations show that the origin of this insta-
0 5 10 15 20 % 30 35 40 bility comes from the region close to the surface, where the
@ in km sound speed has a sharp drop. In Fig. 4 we show the profile

FIG. 5. Ther coordinate as a function of thecoordinate for ~ Of the sound spee@= ydp/de for a stellar model using
three different stellar models. An equidistant discretizationcér- ~ EOS MPA with a central density ofy=4x10" g/cn®. It
responds to a increasingly finer resolutiorrias the stellar surface can be clearly seen that e#=8.06 km, there is a local mini-
is approached. mum of the sound speed, where it drops dowrCte=0.02.
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For largerr we can see a series of much smaller dips, whichin regions where the sound speed assumes small values. A
is an artifact of the numerical spline interpolation betweensimple relation between the grid spacings andAr that has

the tabulated points. But the dip a#~8.06 km is physical the desired property is

and is related to the neutron drip point, where the equation of

state suddenly becomes very soft. Since this occurs still in Ar(r)=Cq(r)Ax. (77)

the low pressure regime, the dip is present for any realisti
equation of state.

It is indeed this dip in the sound speed that is responsibl
for the numerical instability, for if we remove it “by hand,”
we obtain a stable evolution. Moreover, the occurrence of th
instability is independent of the actual formulation of the
equations, since the terms that are responsible are the sa
in each case. But what are the “bad” terms? By simply
crossing out individual terms, we find that the culprits are
those terms in the fluid equatids2a), (54a, (56), or (58) =
which are not multiplied byC2. These are the terms which dr Cy(r)
remain when the sound speed goes to zero; i.e., these consti-
tute the boundary condition®8) and (69). Without these
terms, the evolution would be stable for any resolution. ,

The next question is then whether this instability is just a _ J' dr

S . . X(r)= . (79
feature of our finite differencing scheme and does not appear 0C4(r")
for a different scheme. It turned out that the instability does
indeed occur for all discretization schemes we have tried: th@s a consequence, the derivatives transform as
central difference scheme for the wave equations, a central
difference scheme on staggered grids, and the two-step Lax- d d
Wendroff scheme both for the first order system of equa- ax_Csar (80)
tions. Of course, these are only explicit schemes, and we do
not know whether switching to implicit schemes could be agpg

?An equidistant discretization with a constant grid spadng
g\/ould correspond to a coarse gridrifor large values o€,
which becomes finer and finer as the sound spégdie-
greases.

From the relation(77), we can immediately deduce the
,Iﬁ)ém of our new coordinatg as a function of. By replacing
the A’s by differentials we obtain

(78

remedy.

However, in all the above cases, the instability eventually d2 d2 d
vanishes when the resolution is increased above a certain —=C2—+C.C.—. (81)
threshold. For the central difference schemes, this threshold dx? dr? dr

is at aboutN=500 grid points, depending on the stellar ) ) )
model, whereas for the Lax-Wendroff scheme, the required™om the last relation, we see that the thus-defined coordi-
minimum reso'ution in Order to overcome the |nstab|||ty can nate transformation will transform the wave equat|0n in such

even exceedN=10000 grid points inside the star, which is @ way that the propagation speed with respect taxtbeor-
clearly unacceptable. dinate will be unity throughout the whole stellar interior.

A more elaborate analysis of the nature of the instability Of course, we have to use relati6g) with some caution,
can be found if22]. There it is shown on the basis of a for if C;=0, this transformation becomes singular. And this
simplified toy equation that the resolution needed in order tdS What happens at the stellar surface. If, for instance, the
overcome the instability strongly depends on the locatiorProfile of the sound speed is given in the fok@=Cq(1
and depth of the dip in the sound speed. The closer to the I/R), where we haveC (R)=0, we can find an analytic
surface and the deeper the dip, the higher the required resgXpression fox:
lution. Since this resolution is only needed in a very tiny
region close to the surface, it would be enough to just refine X(r)=— Elog( 1— L) 82)
the grid in this region and use a coarser grid outside. This Co R/’
could be accomplished, for instance, by a fixed mesh refine-
ment, since this region is determined by the profile of thewhich tells us that at the surface= R we obtainx(R) =«. In
sound speed, which does not change throughout the evolthis case, the coordinate transformation seems to be quite
tion. However, we then would have to deal with the transi-useless, since numerically we cannot deal with a grid that
tion from the coarse grid to the fine grid and vice versaextends up to infinity. We would have to truncate it some-
which might be troublesome. Another drawback is that forwhere. But from a numerical point of view, this is not that
each different stellar model, we would need a different gridbad, since going to infinity in thg coordinate would corre-
refinement, and it would be a matter of trial and error to findspond to an infinitely fine resolution in thecoordinate at the
the appropriate refinements for a stable evolution. stellar surface. But this is numerically impossible as well, so

Yet there is a better way out. We can try to find a newtruncating thex coordinate at some point means to define a
radial coordinatex, which is related to the actual radial co- maximal resolution inr at the surface. However, this case
ordinater in such a way that an equidistant gridxrwould  usually does not happen. In all cases considex¢R) has
correspond to a grid im that becomes automatically denser always a finite value.
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It should be noted that the above transformation is of the
same kind as the definition of the tortoise coordingtein
Eqg. (41), which also leads to wave equations with unity
propagation speed throughout the whole domain. Thus, we!®”
may callx a hydrodynamical tortoise coordinate. 10-2
Figure 5 shows the coordinate as a function of the 10-3
coordinate for three different stellar models. From the

—4

curves, it is clear that an equidistant grid spacingiwill 10_5
result in an equivalent spacing inthat gets very dense to- 10 W B Y error of HC
wards the surface of the star, which means that this part getst0™ [ #fisd bl J/ T
highly resolved. And this is exactly what we need in order to 10-7iif tHi T8 I\ r“_;mli Bt i 'l i ‘ W‘ Mo
overcome the instability and to obtain a decent accuracy. 1g-sf} i ! f ! ,,

To obtain the background data on therid, we have to 10- ,, F# b i 5' 1 } ;
solve the TOV equation@) with respect tox. Since we also 03 04 05 0% 07 08 09 1o 11 12 1[3 14 15

needr as a function ok, we simultaneously solve E¢798),
too. The transformed set of equations then reads

d)\_c 1—e?
&_ s

t in ms

FIG. 6. It is shown, using a realistic EOS, the evolution of the
2 metric variableT together with the error in the Hamiltonian con-
or tamreTe|, (833 straint (HC) for the three different resolutions dfi=200, N
=400, andN=2800 grid points inside the star. The graphs Tor
dv g2\ practically coincide for the different resolutions. In doubling the
—= CS( +4wre2>‘p>, (83b) resolution, the error should decrease by a factor of 4, which is
dx 2r compensated by multiplying the error by a factor of 4 o400
and by a factor of 16 foN=2800. It is clearly discernible that the
(830 magnitudes of the scaled errors remain constant, which shows the
second order convergence of our new numerical scheme. In addi-
tion the errors do not grow with time, which shows the stability.

dp dv N
ax &(p €),

dr

ax_ Cs. (83d tion (80) can make sense if we note thatGE=0 then any
derivative with respect t@ has to vanish. This is in particu-
Of course, this transformation is only defined in the stellanar true forH itself. Thus, at the stellar surface=R, where

interior for the fluid equations, for it is only there that the the sound speedC, vanishes we impose the following
propagation speed is the speed of sotaghrt from the fac-  poundary condition foH:

tor e’ ). If we still wanted to use Eq(58), wherein the

interior T plays the role of the fluid, we would have to switch IH
from the x grid in the interior to ther grid in the exterior, X =0. (85
which is somewhat inconvenient. It is therefore much more Xl xr)

natural to explicitly include the fluid equatidb6), which is
defined in the interior only. Thence, it is only E&6) which  This corresponds to reflection at a loose end onxtigeid.

will be transformed according to the transformatitf8), Since we only transform the fluid equation and not the
whereas we keep the wave equationsS@ndT as they are equations for the metric perturbatiosand T, we have to
given in Egs.(50) and (51). simultaneously use two different grids: thegrid in the in-

The transformed fluid part of the fluid equatiG6) reads terior for the fluid variableH and ther grid both in the
interior and exterior for the metric variablésand T. Be-

PH 2A|(92H

—— =g v _2

Csx

((2 x) JH cause of the coupling, at each time step we have to interpo-
Vit Ny — =5 — —=—
CS

ox late H from thex grid onto ther grid in order to update Eq.
(51), and, vice versa, bot8 andT from ther grid onto thex

C

» N I(1+1) grid in order to update Eq56). This can easily be accom-
+]C = +4-2-ce? . plished by using spline interpolation.
r r r In Fig. 6 we demonstrate the convergence of this new
method using a stellar model based on the realistic EOS
A x MPA. For initial data similar to the ones used for Fig. 2, we
H (84) ) . .
rCs rC plot the evolution of a Gaussian wave packet together with

the evaluation of the Hamiltonian constraint for three differ-
Here, the subscript denotes a derivative with respectxo  ent spatial resolutions. By doubling the resolution, the error
The last missing thing is the transformation of the boundaryin the Hamiltonian constraint should decrease by a factor of
condition (69). Unfortunately, we cannot transform E@9) 4, if the scheme is of second order. Conversely, the magni-
in a straightforward way, since at the surface i€is=0, and  tude of the error should remain roughly constant, if for each
therefore the transformation of the derivativd/dr  doubling of the resolution the error is multiplied by a factor
=C, 'd/dx is not defined. However, the inverse transforma-of 4. This has been done in Fig. 6, and one can clearly see
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FIG. 7. Comparison of the power spectrum obtained from an
evolution with a resolution o, =50 grid points on the grid with
the spectra obtained from evolutions with different resolutions on g i
ther grid. Even for only 50 grid points in, the peaks are closer to

the true values than for 200 grid pointsnn 1 ]
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that the magnitudes of the thus-rescaled errors remain con-  ° 5 10 5 2 % %
stant for the different resolutions. Furthermore, the scheme is Frequency in kHz

stable since the error does not grow with time. . FIG. 8. Upper panel: power spectrum of the evolution of a sharp
The fluid modes have their largest amplitude in the regionytia) fluid pulse withS,=0 on thex grid. Now modes are present,

close to the surface. To obtain the correct mode frequenciasyt dozens op modes are excited. In the lower panel, we include

in the power spectrum, it is important to have high resolutionthe modes computed by explicit mode calculation. Note that in

close to the surface of the star, and this is what is accomeontrast to polytropic equations of state, the modes do not lie at

plished by our new coordinate. In Fig. 7, we show the equidistant locations.

power spectra of waveforms obtained from runs with differ-

ent resolutions. As initial data, we chose a narrow fluid dethe direct mode calculation is much more involved and time
flection at the center of the star together Wik 0. In this  consuming than the evolution with a subsequent Fourier
case, we suppressed awymode contribution. transformation. Even with 1000 grid points inside the star, it
It is apparent that even for the quite moderate resolutionls a matter of minutes to obtain an accurate fluid mode spec-
of 50 grid points on the grid inside the star we obtain very trum for stellar models with realistic equations of state. Of
accurate frequencies for the first couple of fluid modes. Orzourse, with this method one can only obtain the real parts of
ther grid, however, a resolution of 200 grid points is still not the frequencies; the imaginary parts are too small to be de-
enough to obtain the same accuracy, and the peaks of thermined.
higher p modes in the spectrum are still quite far off their
true values. Of course, these results were obtained with a
polytropic equation of state, since otherwise we would not
have been able to perform the evolution on thgrid at all, In this paper, we have derived, using the ADM formalism,
because of the occurring instability. the perturbation equations for nonrotating, spherically sym-
Finally, we want to demonstrate the effectiveness of oumetric neutron star models with barotropic equations of state.
coordinate transformation by evolving an initial perturbationWe have shown how to choose shift and lapse and the initial
for the MPA equation of state. We choose the central energgata on the three-dimensional initial slice in order to obtain
density to be X 10 g/cn?, yielding a stellar mass dfl  the Regge-Wheeler gauge. We pointed out that not only
=1.4M. The resolution isSN=200 grid points, which, some of the metric components but also one of the extrinsic
again, would be too low to yield a stable evolution using thecurvature components has to vanish in order to preserve the
r coordinate. Here we do not have any problems; the evoluRegge-Wheeler gauge throughout the evolution.
tion is stable forany chosen resolution. In Fig. 8, we show  Unfortunately, the equations that directly come out after
the power spectrum of the evolution of a sharp initial peak inthe expansion in spherical tensor harmonics are not suited for
the fluid perturbatiorH, which leads to the excitation of a the numerical treatment due to problems at the origin. We
multitude of fluid modes. In the interval up to 100 kHz, we therefore had to introduce different variables that remove the
can find 37 modes. The direct calculation of the first couplesingular structure of the “raw” equations. Since the final
of modes with an eigenvalue code shows perfect agreemergystem of equations in those variables is nothing else but a
which is demonstrated in the lower panel of Fig. 8. Actually, system of coupled wave equations written in first order form,

VII. CONCLUSIONS
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it is therefore much more convenient to use instead the sedip point is located in the low pressure regime, it is a feature
ond order wave equations for the numerical evolution. Thosef any realistic equation of state, and therefore the instability
wave equations have already been previously derived bghould occur for all of them. The quite peculiar fact about
Allen et al.[11] in a different way. Still, our formulation is this instability is that it disappears when the resolution is
quite useful because it facilitates the construction of initialincreased above a certain threshold. This threshold depends
data in terms of metric and extrinsic curvature perturbationson the depth of the dip of the sound speed and is the higher
Moreover, by introducing the ADM formalism for the the deeper the dip is. It seems that this instability is present
derivation of the evolution equations of nonrotating neutronfor any explicit numerical discretization scheme; however,
stars, we have performed the first step towards the mucthe minimum resolution that is needed in order to suppress it
more involved task of deriving the evolution equations forcan vary drastically for different schemes. Indeed, when us-
rotating neutron stars. Here, the linearization of the originaing the two-step Lax-Wendroff scheme for the equations
Einstein equations yields quite obscure perturbation equawritten as a first order system, we were confronted with an
tions, which first have to be cast into a suitable hyperbolicalmost unsurmountable resolution threshold needed for
form before trying to discretize them on a numerical grid.stable evolution.
With the ADM equations this is a much more straightfor-  This instability does not depend on the actual formulation
ward procedure. of the equations and is present for any of the given formula-
We have presented results for different stellar modelgions of this paper. In fact, it is not only a peculiar problem
with polytropic equations of state. For the least relativisticof the nonradial perturbation equations, the same instability
model, the wave signal did not show awymodes, although also occurs in the radial ca22], the reason being that the
mode calculations show that they do exist. But they are satructure of the fluid equations is the same in both cases.
strongly damped that the tail-like falloff wins over thve As a remedy, we introduced the coordinate transformation
modes. Only for more compact stellar models are whe (78), which leads to a wave equation for the fluid with unity
modes less strongly damped, and they can show up in theropagation speed throughout the whole star. It is now pos-
waveforms. However, even for very relativistic neutron starsible to evolve oscillations of realistic stellar models for any
models,w modes are not necessarily part of the waveform. Inresolution. As a further benefit, the evolution of the fluid on
fact, their occurrence strongly depends on the choice of inithex grid is, for a given number of grid points inside the star,
tial data. For initial data representing a gravitational wavemuch more accurate than the corresponding evolution on the
pulse that will hit the stany modes in general will be part of r grid with the same number of grid points. This is because
the spectrum; however, for initial fluid perturbations, thethe x coordinate resolves the region close to the stellar sur-
choice of conformally flat initial datagy=0) can totally face much better than the ordinarcoordinate.
suppress the presence wf modes, whereas setting,=0 This coordinate transformation could also prove useful for
andS,# 0, which can be regarded in some sense as a maxfast rotating neutron stars, since the evolution equations of
mal deviation from conformal flatness, shows strengnode  the fluid will certainly have the same structure that leads to
excitation. the numerical instability in the nonrotating case. Since the
For very compact stars, we found that the complex fre<otating case is a 2D problem, resorting to higher resolutions
qguency of the very first ringdown phase does not corresponthay become impossible, and therefore our coordinate trans-
to any of the proper quasinormal modes of the stellar modeformation could do the job. Maybe this transformation could
Instead, the frequency is almost identical with the first qua-even be of avail in nonlinear evolutions, although it is not
sinormal frequency of a black hole with the same mass. W¢hat straightforward to implement, since there is no fixed
explained this phenomenon by observing that those parts dfackground model with a static profile of the sound speed. A
the potential, which are responsible for the first scattering opossibility is to view Eq(78) as a dynamic coordinate con-
the impinging wave packet, lie outside the star and therefordition that depends on the actual profile of the sound speed at
are the same as for a black hole. Only when the part of thevery instance of time.
wave packet that could penetrate the neutron star is reflected,
the_ proper ringdown with the trapped and fluiq modgs starts. ACKNOWLEDGMENTS
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