
PHYSICAL REVIEW D, VOLUME 63, 064018
New approach to the evolution of neutron star oscillations
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~Received 24 March 2000; published 15 February 2001!

We present a new derivation of the perturbation equations governing the oscillations of relativistic nonro-
tating neutron star models using the ADM formalism. This formulation has the advantage that it immediately
yields the evolution equations in a hyperbolic form, which is not the case for the Einstein field equations in
their original form. We show that the perturbation equations can always be written in terms of spacetime
variables only, regardless of any particular gauge. We demonstrate how to obtain the Regge-Wheeler gauge, by
choosing appropriate lapse and shift. In addition, not only the three-metric but also the extrinsic curvature of
the initial slice has to satisfy certain conditions in order to preserve the Regge-Wheeler gauge throughout the
evolution. We discuss various forms of the equations and show their relation to the formulation of Allenet al.
New results are presented for polytropic equations of state. An interesting phenomenon occurs in very compact
stars, where the first ringdown phase in the wave signal corresponds to the first quasinormal mode of an equal
mass black hole, rather than to one of the proper quasinormal modes of the stellar model. A somewhat heuristic
explanation to account for this phenomenon is given. For realistic equations of state, the numerical evolutions
exhibit an instability, which does not occur for polytropic equations of state. We show that this instability is
related to the behavior of the sound speed at the neutron drip point. As a remedy, we devise a transformation
of the radial coordinater inside the star, which removes this instability and yields stable evolutions for any
chosen numerical resolution.

DOI: 10.1103/PhysRevD.63.064018 PACS number~s!: 04.25.Dm, 04.25.Nx, 04.40.Dg
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I. INTRODUCTION

The driving force behind the theoretical studies in gra
tational radiation is to predict and investigate the source
gravitational waves that will be observed by interferomet
@GEO600, Laser Interferometric Gravitational Wave Obs
vatory ~LIGO!, VIRGO, TAMA, Laser Interferometer Spac
Antenna ~LISA!# and bar ~ALLEGRO, AURIGA,
EXPLORER, NAUTILUS! detectors. The goal of these stu
ies is not limited to facilitating the detection of signals b
also to provide tools to extract as much information as p
sible about the physical nature of the sources. Neutron s
have been pointed out as obvious source candidates, s
one channel by which an oscillating neutron star loses ene
is via the emission of gravitational radiation.

This radiation basically consists of a superposition of
characteristic oscillatory modes, which can be grouped
two families: ~i! The fluid modes@1,2#, which have a New-
tonian counterpart, but which through their coupling to t
spacetime are damped because they now can emit gra
tional waves;~ii ! the spacetime modes@3–5#, which have no
Newtonian counterpart and which couple only weakly to
fluid. ~In the odd parity case, they do not couple to the flu
at all.! These modes usually are strongly damped; howe
for ultrarelativistic stars, the spacetime curvature can be
strong that it can trap impinging gravitational waves. Tho
‘‘trapped’’ modes@6,7# are quite long lived, since they onl
leak out slowly from inside the gravitational potential we
created by the neutron star. For recent comprehensive
views on oscillation modes of neutron stars and black ho
see@8,9#.

However, just knowing the different oscillation modes
a neutron star is not enough. To be able to detect an
interpret a signal in a gravitational wave detector, it is cruc
to have accurate templates of the waveforms that result f
0556-2821/2001/63~6!/064018~19!/$15.00 63 0640
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astrophysical events, such as the formation of the neu
star after the collapse of a progenitor star at the end poin
nuclear burning. To that purpose, two ingredients are ne
sary. First, one has to have initial data that represent a r
istic stage of the astrophysical system under considerat
Second, one needs a numerical evolution code that
evolve these initial data in a stable and accurate way.

It is only by fully nonlinear simulations that accura
waveforms of oscillating neutron stars after core collapse
binary merger can be obtained. Therefore it is a major g
of several groups to push the further development of non
ear evolution codes. The biggest obstacle, however, wh
still prevents one from obtaining accurate results, is the en
mous computational expenditure to solve the full set
Einstein equations in 3D. Even modest resolutions ea
exceed the capabilities of the largest and fastest present
computers.

It is therefore crucial to have some alternative metho
which require less computing power but still give valuab
physical insight. One of them is perturbation theory. In t
nonrotating case, as a result of the spherical background,
can completely separate off the angular dependence, an
evolution problem boils down to the integration of 1D wa
equations. Slowly rotating stars can still be treated in 1D
long as the deformation due to rotation is negligible. But
rapidly rotating neutron stars, the spherical symmetry is b
ken, and one can only separate off the azimuthal ang
dependence. Hence the problem becomes 2D, which is
ertheless still numerically tractable. The results from tho
linear evolutions are expected to give accurate waveform
the range where the neutron star oscillates only weakly. F
thermore, they can be used as testbeds for the nonlinear
culations. Indeed, recent results of nonlinear evolutions h
confirmed the existence of the various modes predicted
linear perturbation theory@10#.
©2001 The American Physical Society18-1
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JOHANNES RUOFF PHYSICAL REVIEW D 63 064018
The evolution of polar perturbations of nonrotating sta
was first addressed by Allenet al. @11#. In their formulation
they describe the oscillations with three coupled wave eq
tions, two for the metric perturbations in and outside the s
and one for the fluid inside the star. The evolution of vario
initial data have shown that generic initial data can inde
excite some of the stellar modes such as thef mode, somep
modes, and the firstw mode.

In this paper we rederive the perturbation equations us
the ~311! or Arnowitt-Deser-Misner~ADM ! form @12# of
the Einstein equations. These equations are much b
suited for the numerical initial value problem, since th
immediately yield a hyperbolic evolution system provid
that a suitable gauge has been chosen, whereas the or
field equations contain mixed time and space derivatives
is only by the introduction of new variables that those eq
tions can be cast into a well suited form. The ADM forma
ism has already been addressed by Moncrief@13,14#, where
it was used to derive a Hamiltonian gauge invariant form
lation of the perturbation equations. Albeit preferable from
conceptual point of view, since they are independent of
gauge, those equations do not prove particularly useful
numerical evolutions. Our starting point therefore are
field equations written as a set of evolution equations for
metric and the extrinsic curvature of a three-dimensio
spacelike hypersurface, together with the constraint eq
tions, which have to be satisfied at every instance of tim

As an immediate consequence of using the ADM form
ism, it follows that it is always possible to eliminate the flu
variables and thus to write down the evolution equations
terms of metric quantities only. This has already been sho
by Chandrasekhar and Ferrari@15# for the diagonal gauge
and by Ipser and Price@16# for the Regge-Wheeler gauge
However, from our formalism it is clear that this feature
independent of the chosen gauge.

After having expanded the equations in spherical harm
ics, we will choose the Regge-Wheeler gauge as the bas
further investigations. As a result of the spherical harmon
the equations are independent of the azimuthal orderm and
can be divided into two uncoupled sets according to th
behavior under parity transformation. The polar or even p
ity equations transform as (21)l , whereas the axial or odd
parity equations as (21)l 11. Our main focus will be the
polar perturbations; nevertheless, because of their simpli
we also present the axial equations in the ADM form. T
derivation of the polar equations is much more involve
because the ‘‘raw’’ forms lead to numerical instabilities
the origin due to indefinite expressions, which is a we
known consequence of using spherical coordinates. We
therefore forced to recast the polar equations into a form
is well behaved at the origin.

Having forged the equations into a form that yields sta
evolutions for polytropic equations of state, we face a n
instability close to the stellar surface when we try to swit
to realistic equations of state. In this paper we use a q
recent equation of state, called MPA~Machleidt Potential A!
@17#. Yet this instability is not a consequence of just th
particular equation of state; it will occur for any realist
equation of state. As we shall show, the instability resu
06401
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from the behavior of the sound speed at the neutron d
point, where the equation of state suddenly becomes v
soft. This is accompanied by a sharp drop of the sou
speed, which can give rise to a numerical instability if t
spatial grid resolution is chosen too low. However, by
creasing the resolution this instability will eventually vanis
In the nonrotating case, having to resort to higher resoluti
does not present too great an obstacle, since the equation
1D wave equations. However, this instability presuma
also occurs for rotating stars, where the equations are
and the required resolution in order to obtain stable evo
tions might stretch the computing times to unaccepta
large values. Therefore we devise a coordinate transfor
tion of the radial coordinate inside the star, which enab
stable evolutions for any spatial resolution.

The remainder of this paper is organized as follows:
Sec. II we derive the relevant equations. Section III is d
voted to a discussion of the boundary conditions. In Sec.
we briefly comment on the construction of initial data, and
Sec. V we present results for polytropic equations of sta
Finally, in Sec. VI we discuss the instability associated w
the use of realistic equations of state, and we present
coordinate transformation that removes it. Conclusions
briefly presented in Sec. VII.

We adopt the metric signature (2111! and work in
geometric units withG5c51. Spacetime and spatial indice
are denoted by Greek and Latin letters, respectively. Der
tives with respect to the radial coordinater are sometimes
denoted by a prime and derivatives with respect to the t
coordinatet by an overdot.

II. DERIVATION OF THE PERTURBATION EQUATIONS

A. Unperturbed stellar model

The background geometry of a nonrotating, spherica
symmetric star is given by the line element

ds(0)
2 52e2ndt21e2ldr21r 2~du21sin2udf2!, ~1!

wheren andl are functions of the radial coordinater. We
model the star as a perfect fluid whose energy-momen
tensor has the form

Tmn5~p1e!umun1pgmn , ~2!

with p denoting the pressure,e the energy density, andum

the four-velocity of the fluid. In the fluid rest frameum has
only one nonvanishing componentu05e2n. Einstein’s equa-
tions Gmn58pTmn and the conservation equationsT ;n

mn

50 yield the following three independent structure equatio
for the four unknownl, n, p, ande:

l85
12e2l

2r
14pre2le, ~3a!

n85
e2l21

2r
14pre2lp, ~3b!

p852n8~p1e!. ~3c!
8-2
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NEW APPROACH TO THE EVOLUTION OF NEUTRON STAR OSCILLATIONS PHYSICAL REVIEW D63 064018
We will refer to those equations as Tolman-Oppenheim
Volkoff ~TOV! equations, although they are usually writte
in terms of the gravitational mass functionm, which is re-
lated tol through

e22l[12
2m

r
. ~4!

To fully determine this system of equations, an equation
state must be supplemented. In this paper, we restrict
selves to barotropic equations of state, where the pressu
a function of the energy density alone:

p5p~e!. ~5!

In particular, we will use either a polytropic equation of sta
in form of

p5keG ~6!

or a tabulated realistic zero-temperature equation of state
obtain the stellar model, we have to integrate the TOV eq
tions ~3! together with the equation of state~5! from the
center up to the point where the pressurep vanishes. This
then defines the surfaceR of the star. From Birkhoff theorem
it follows that the exterior vacuum region of the star is d
scribed by the Schwarzschild metric with the mass param
M[m(R).

B. Perturbation equations

1. General form

Let us recall that the general line element, when written
the ADM form, reads

ds252~a22bkb
k!dt212b idtdxi1g i j dxidxj , ~7!

where a, bk, and g i j are lapse function, shift vector, an
spatial metric, respectively. Comparing the ADM metric~7!
with the background metric~1! reveals that the backgroun
shift b (0)

k vanishes and the background lapse function
a (0)5en. In addition, the extrinsic curvature of constant
slices vanishes, since the background metric is static.

Let a andb i now be the perturbations of the lapse fun
tion and the~covariant! shift vector, and lethi j denote the
perturbations of the spatial metric. The line element desc
ing the perturbations to the background metric~1! then reads

ds(1)
2 522enadt212b idtdxi1hi j dxidxj . ~8!

The perturbations of the energy-momentum tensor~2! can be
written in terms ofde, dp, anddum , which are the~Eule-
rian! perturbations of the energy densitye, pressurep, and
~covariant! four-velocity um , respectively. We assume th
equation of state~5! to hold for both the unperturbed an
perturbed configurations~isentropic perturbations!; therefore
the perturbationsde anddp are related through

dp5
dp

de
de5

p8

e8
de5Cs

2de, ~9!
06401
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whereCs is the sound speed inside the fluid.
The dynamic equations that govern the metric and ext

sic curvature perturbationshi j and ki j read, after lineariza-
tion,

] thi j 5bk]kg i j 1gki] jb
k1gk j] ib

k22enki j , ~10!

] tki j 52] i] ja1G i j
k ]ka1dG i j

k ]ke
n1a@Ri j 14p~p

2e!g i j #1en@dRi j 14p~~p2e!hi j 1de~Cs
2

21!g i j !#. ~11!

Therein, thedGk represent the perturbations of the spat
Christoffel symbolsG i j

k ,

dG i j
k 5

1

2
gkl~hli ; j1hl j ; i2hi j ; l !

5
1

2
gkl~] jhli 1] ihl j 2] lhi j !2hlmgklG i j

m , ~12!

anddRi j the perturbations of the spatial Ricci tensorRi j ,

dRi j 5dG i j ;k
k 2dG ik; j

k

5]kdG i j
k 2] jdG ik

k 2dG mk
k G i j

m 1dG i j
m G mk

k

2dG m j
k G ik

m 2dG ik
m G m j

k . ~13!

We should note that the indices of perturbations are lowe
or raised with the background three-metricg i j . In construct-
ing initial data, the perturbations must satisfy the lineariz
version of Einstein’s constraint equations, namely,

g i j dRi j 2hi j Ri j 516pde, ~14!

g jk~] ikjk2] j kik2G ik
l kj l 1G jk

l kil !528p~p1e!dui .
~15!

From the linearized energy-momentum conservation eq
tions dT ;n

mn 50, we can deduce equations of motion for t
fluid perturbationsde and dui , which complete the set o
dynamical equations.

However, we can as well dispense with the fluid equ
tions, since it is possible to eliminate the energy density p
turbationde from the evolution equation~11! by virtue of
the Hamiltonian constraint~14!. In this way we can obtain a
consistent system of evolution equations for the metric a
extrinsic curvature perturbations alone. The constraints t
can serve as a means to compute the matter perturbationde
anddui . We should stress that the possibility to complete
describe the oscillations of neutron stars with spacetime v
ables only is a general feature of the perturbation equat
and does not depend on any specific gauge choice.

Because of the spherical symmetry of the background,
can eliminate the angular dependence of the perturba
equations by expanding them into spherical tensor harm
ics. Those tensor harmonics can be divided into two sub
that behave differently under parity transformation. Und
space reflection theeven parityor polar harmonics change
sign according to (21)l , whereas theodd parity or axial
harmonics transform like (21)l 11. Here,l is the number that
8-3
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labels the multipole of the spherical harmonicsYlm . Because
of the spherical symmetry, the axial and polar equations
decoupled and degenerate with respect to the azimuthal n
ber m.
06401
re
m-

Without picking a specific gauge, the metric perturbatio
can be expanded using the tensor harmonics given firs
Regge and Wheeler@18# in the following way ~symmetric
components are denoted by an asterisk!:
a5(
l 52

`

(
m52 l

l

enŜ1
lmYlm , ~16a!

bk5(
l 52

`

(
m52 l

l

~Ŝ2
lmYlm ,V̂1

lmCa
lm1V̂2

lmFa
lm!, ~16b!

hi j 5(
l 52

`

(
m52 l

l S e2lŜ3
lmYlm V̂3

lmCa
lm1V̂4

lmFa
lm

* r 2~ T̂1
lmCab

lm 1T̂2
lmFab

lm 1T̂3
lmxab

lm !D , ~16c!
s

th
where

Ca
lm5S ]

]u
,

]

]f DYlm , ~17!

Fa
lm5S 2sin21u

]

]f
, sinu

]

]u DYlm , ~18!

and

Fab
lm 5S 1 0

0 sin2u DYlm , ~19!

Cab
lm 5S Wlm Xlm

Xlm 2sin2uWlm
D 2

1

2
l ~ l 11!Fab

lm , ~20!

xab
lm 5sinuS 2sin22uXlm Wlm

Wlm Xlm
D , ~21!

with
Wlm5
1

2 S ]2

]u2
2cotu

]

]u
2sin22u

]2

]f2D Ylm

5S 1

2
l ~ l 11!1

]2

]u2D Ylm , ~22!

Xlm5S ]

]u
2cotu D ]

]f
Ylm . ~23!

The notation has been chosen such that the coefficientŜi
represent thescalar parts ofhmn , namely,a, b r , andhrr ,
whereas theV̂i stand for thevectorcomponentsbu ,bf ,hru ,
and hrf . Last, the T̂i represent thetensor components
huu ,huf , and hff . Note that this expansion includes bo
polar and axial harmonics. The latter are represented byFa

lm

and xab
lm with respective coefficientsV̂2 , V̂4, and T̂3. Simi-

larly, the extrinsic curvature tensorki j will be expanded as
ki j 5(
l 52

`

(
m52 l

l S e2lK̂1
lmYlm K̂2

lmCa
lm1K̂3

lmFa
lm

* r 2~K̂4
lmCab

lm 1K̂5
lmFab

lm 1K̂6
lmxab

lm !D . ~24!
the
Here,K̂3
lm and K̂6

lm are the axial coefficients.
Last not least, we need the matter variables

de5(
l 52

`

(
m52 l

l

r̂ lmYlm , ~25!
ui5(
l 52

`

(
m52 l

l

~ û1
lmYlm , û2

lmCa
lm1û3

lmFa
lm!.

~26!

The sum over the multipoles starts froml 52, since we are
only interested in perturbations which are associated with
8-4
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NEW APPROACH TO THE EVOLUTION OF NEUTRON STAR OSCILLATIONS PHYSICAL REVIEW D63 064018
emission of gravitational radiation. Besides, the nonradia
multipolesl 50 andl 51 would have to be treated in a di
ferent way.

Using the above expansions, we obtain 12 evolution eq
tions for the coefficients of the three-metrichi j and the ex-
trinsic curvatureki j . However, it is clear that this set cann
be used for the evolution, for we have not specified a
gauge yet. Within perturbation theory, picking a spec
gauge usually means to define a gauge vectorhm and trans-
form the metric perturbations according to

hmn
new5hmn

old2hm;n2hn;m . ~27!

In our case, however, we follow the spirit of the ADM fo
malism; that is, we pick the gauge by prescribing the coe
cients of lapsea and shiftb i , for which we do not have any
evolution equations. Yet this is not enough as we shall s
To fully fix the gauge, we also have to impose certain co
straints on the initial data.

The most common gauge is the Regge-Wheeler ga
@18#, which can be obtained by setting a certain number
metric perturbation coefficients to zero. Translating this in
the ADM formalism means to choose the shift and lapse
such a way that for initial data which obey the Regg
Wheeler gauge the evolution will preserve it.

Regge and Wheeler have chosen their gauge such tha
metric coefficientsV̂1

lm , V̂3
lm , T̂1

lm , and T̂3
lm vanish. By

choosing the shift and lapse as~from now on we omit the
indicesl andm)

Ŝ152
1

2
Ŝ3, ~28!

Ŝ252enK̂2 , ~29!

V̂150, ~30!

V̂25enK̂6 , ~31!

we obtain the following evolution equations for the coef
cientsV̂3 , T̂1, andT̂3:

]

]t
V̂350, ~32!

]

]t
T̂1522enK̂4 , ~33!

]

]t
T̂350. ~34!

In addition the evolution equation for the extrinsic curvatu
componentK̂4 depends only onT̂1 and V̂3. Thus, only for
initial data satisfyingV̂35T̂15T̂350 and K̂450 do the evo-
lution equations guarantee the vanishing of those coeffici
throughout the whole evolution.

Hence, the Regge-Wheeler gauge does not only imp
constraints on the initial metric perturbations but also on
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extrinsic curvature perturbations. The vanishing of the co
ficient K̂4 is a crucial feature of the Regge-Wheeler gau
and has to be imposed on the initial data. This is in con
diction with the statement of Anderssonet al. @19#, where the
authors claim that there are no constraints on the odd or e
parity nature of the extrinsic curvature. This is not true, sin
the vanishing ofK̂4 must be ensured on the initial slice
otherwise the evolutioncannotbe performed in the Regge
Wheeler gauge. For data with nonvanishingK̂4, we would
have ]T̂1 /]tÞ0, which is incompatible with the Regge
Wheeler gauge, because it would lead to a nonvanishingT̂1

even if T̂1 was initially set to zero. Therefore the initial da
presented in@19# for two colliding neutron stars are not ad
equate for an evolution code which makes use of the Reg
Wheeler gauge, since the coefficientk4 in Eqs.~82! of @19#

~which corresponds to ourK̂4) does not vanish. We will
discuss the issue of constructing initial data in more detai
Sec. IV.

Having switched to the Regge-Wheeler gauge, we are
with evolution equations for the three metric variablesŜ3 ,
V̂4, andT̂2, and all the extrinsic curvature variablesK̂ i save
K̂4. ~In the more common notation of Regge and Whee
@18#, it is Ŝ35H2 , V̂45h1 and T̂25K.! We now split the
equations with respect to their behavior under parity tra
formation. Let us first focus our attention on the axial cas

2. Axial perturbations

If in the expansions~16a! and ~24! we use new variables

V45en2lV̂4 , ~35a!

K352e2lK̂3 , ~35b!

K65r 2elK̂6 , ~35c!

we obtain the following set of evolution equations:

]V4

]t
5e2n22lF]K6

]r
1S n82l82

2

r DK62e2lK3G ,
~36a!

]K3

]t
5

l ~ l 11!22

r 2
V4 , ~36b!

]K6

]t
5

]V4

]r
, ~36c!

and one constraint equation

]K3

]r
1

2

r
K32

l ~ l 11!22

r 2
K6516pel~p1e!û3 . ~37!

From the conservation lawdT ;n
mn 50, it follows that
8-5
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JOHANNES RUOFF PHYSICAL REVIEW D 63 064018
]û3

]t
50, ~38!

which means that axial gravitational waves do not couple
the stellar fluid. Of course, this does not mean that th
cannot be any axial modes at all; in fact, there exists a wh
spectrum of axial spacetime modes, which is quite sim
the polar spectrum@20#. It is only the fluid modes that are
missing.

The three evolution equations~36! can be combined to
yield a single wave equation for the metric perturbationV4,
or better for the variable

Qª

V4

r
, ~39!

which completely describes the dynamical evolution of ax
perturbations:

]2Q

]t2
5

]2Q

]r
*
2

1e2nS 4p~p2e!1
6m

r 3
2

l ~ l 11!

r 2 D Q.

~40!

Herein,r * denotes the tortoise coordinate defined by

dr

dr*
5en2l. ~41!

In the exterior, wherep and e vanish andm5M , Eq. ~40!
reduces to the well-known Regge-Wheeler equation@18#.

3. Polar perturbations

For the polar case we have only two dynamical me
perturbationsŜ3 andT̂2, since the lapseŜ1 is proportional to
Ŝ3, and the only nonvanishing componentŜ2 of the shift is
proportional to K̂2. To obtain the relevant equations, w
again choose a somewhat different expansion. For the m
we use

a52
1

2
enS T

r
1rSDYlm , ~42!

b i5~e2lK2 , 0, 0!Ylm , ~43!

hi j 5S e2lS T

r
1rSD 0 0

0 rT 0

0 0 r sin2T

D Ylm , ~44!

and for the extrinsic curvature
06401
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ki j 52
e2n

2r

3S e2lK1 2re2lK2

]

]u
2re2lK2

]

]f

! r 2~K522K2! 0

! 0 r 2 sin2u~K522K2!

DYlm.

~45!

The expansion of the matter variables reads

de5
r

r
Ylm , ~46!

dui52
en

r S u12
u2

r
, u2

]

]u
, u2

]

]f DYlm . ~47!

Of course, these expansions are to be understood as
over all l andm, analogous to the expansions~16a! and~24!.
It is only through this particular choice of expansion coef
cients~e.g., ina, hrr , andkuu! that we obtain a system o
equations that can be numerically integrated in a qu
straightforward and—this is the main point—in a stable wa

Another consequence of this decomposition is that it gi
some physical meaning to the metric perturbationsS andT.
From Eq.~44!, we can see thatT represents the conforma
part of the spatial perturbationhi j , for if we setS50, the
metric is conformally flat. Obviously,S itself then represents
the deviation from conformal flatness.

Finally, we should note that this decomposition is qu
similar to the one used by Allenet al. @11#. Their variablesF
and SAllen are related to ours as follows:F5T and SAllen
5e2nS.

In order to avoid numerical problems at the origin, w
have to replaceK1 by the following quantity:

r 2KªK112r S ]K2

]r
1l8K2D2K5 . ~48!

In this way, we obtain a system of five coupled evoluti
equations, which are of first order in time and second or
in space. There are two equations for the metric variableS
andT and three more for the extrinsic curvature variablesK,
K2, andK5:

]S

]t
5K, ~49a!

]K

]t
5e2n22lH ]2S

]r 2
1~5n82l8!

]S

]r
1S 4~n8!215

n8

r

13
l8

r
22

e2l21

r 2
2e2l

l ~ l 11!

r 2 D S

14F1

r S n8

r D 8
12S n8

r D 2

2
l8n8

r 2 GTJ , ~49b!
8-6
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]T

]t
5K5 , ~49c!

]K5

]t
5e2n22lF ]2T

]r 2
1~n82l8!

]T

]r

1S n8

r
13

l8

r
12

e2l21

r 2
2e2l

l ~ l 11!

r 2 D T

12~rn81rl821!SG18pe2n~12Cs
2!r,

~49d!

]K2

]t
5e2n22lS r

]S

]r
1~2rn811!S12

n8

r
TD . ~49e!

We could easily convert this system into a first order syst
both in time and space by adding another two evolut
equations for the first derivativesS8 and T8. However, the
form of the first four equations~49a!–~49d!, which are inde-
pendent ofK2, suggests to rather convert them into tw
coupled wave equations forS andT:

]2S

]t2
5e2n22lH ]2S

]r 2
1~5n82l8!

]S

]r
1S 4~n8!215

n8

r
13

l8

r

22
e2l21

r 2
2e2l

l ~ l 11!

r 2 D S

14F1

r S n8

r D 8
12S n8

r D 2

2
l8n8

r 2 GTJ , ~50!

]2T

]t2
5e2n22lF ]2T

]r 2
1~n82l8!

]T

]r
1S n8

r
13

l8

r
12

e2l21

r 2

2e2l
l ~ l 11!

r 2 D T12~rn81rl821!SG
18pe2n~12Cs

2!r, ~51!

which are equivalent to Eqs.~14! and ~15! of Allen et al.
@11#. As can be seen, the wave equation forS, Eq. ~50! is
totally decoupled from the fluid variabler, which only
couples to the metric perturbationT in Eq. ~51!. The equa-
tion for K2 is only necessary in the interior region, where
couples to the hydrodynamical equations, which follow fro
energy-momentum conservationdT ;n

mn 50, and are given
by
06401
n

]r

]t
5e2n22lF ]ũ1

]r
2

1

r

]ũ2

]r
1S 3n82l81

1

r D ũ1

2S 3
n8

r
2

l8

r
1e2l

l ~ l 11!

r 2 D ũ2G1~p1e!

3S r
]K2

]r
1~21rl8!K22

r 2

2
K2

3

2
K5D1r e8K2 ,

~52a!

]ũ1

]t
5Cs

2 ]r

]r
1@n8~11Cs

2!1~Cs
2!8#r

2
1

2
~p1e!S r 2

]S

]r
1

]T

]r
12rSD , ~52b!

]ũ2

]t
5Cs

2r2
1

2
~p1e!~r 2S1T!. ~52c!

Here, we have definedũiª(p1e)ui . By introducing the
enthalpy perturbation

Hª

Cs
2

p1e
r, ~53!

the fluid equations assume a more convenient form:

]H

]t
5e2n22lCs

2F ]u1

]r
1~2n82l8!u1

1S l8

r
22

n8

r
2e2l

l ~ l 11!

r 2 D u2G2n8S u12
1

r
u2D

1Cs
2S r

]K2

]r
1~21rl8!K22

r 2

2
K2

3

2
K5D2rn8K2 ,

~54a!

]u1

]t
5

]H

]r
2

1

2 S r 2
]S

]r
1

]T

]r
12rSD , ~54b!

]u2

]t
5H2

1

2
~r 2S1T!. ~54c!

Interestingly, from Eqs.~54b! and ~54c!, it follows that the
coefficientsu1 andu2 are not independent of each other b
rather are related via

u15
]u2

]r
1F~r !, ~55!

where F is a time-independent function, which has to
fixed by the initial data. The above system~54!, too, can be
cast into a second order wave equation forH, which is
equivalent to Eq.~16! of Allen et al. @11# ~the different signs
in the terms containingS andT are correct!:
8-7
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]2H

]t2
5e2n22lH Cs

2 ]2H

]r 2
1@Cs

2~2n82l8!2n8#
]H

]r

1FCs
2S n8

r
14

l8

r
2e2l

l ~ l 11!

r 2 D 12
n8

r
1

l8

r GH

1
1

2
n8~Cs

221!S r 2
]S

]r
2

]T

]r D
1FCs

2S 7

2

n8

r
1

l8

r
2

e2l21

r 2 D
2

n8

r S 2rn81
1

2D G ~r 2S1T!J . ~56!

As already mentioned in Sec. II B 1, we do not necessa
need the fluid equations, for we can eliminate them by me
of the Hamiltonian constraint, which relates the fluid variab
r to the two metric variablesS andT:

8pe2lr52
]2T

]r 2
1l8

]T

]r
1r

]S

]r

1S 222rl81
1

2
e2ll ~ l 11! DS

2S e2l21

r 2
13

l8

r
2e2l

l ~ l 11!

r 2 D T. ~57!

With r substituted by the Hamiltonian constraint~57!, the
wave equation forT, Eq. ~51!, in the interior now reads

]2T

]t2
5e2n22lCs

2F ]2T

]r 2
2r

]S

]r
2l8

]T

]r

1S 2rl8222
1

2
e2ll ~ l 11! DS

1S e2l21

r 2
13

l8

r
2e2l

l ~ l 11!

r 2 D TG
1e2n22lFn8

]T

]r
1r

]S

]r
1S 2rn81

1

2
e2ll ~ l 11! DS

1S n8

r
1

e2l21

r 2 D TG . ~58!

In the exterior, bothS andT propagate with the local spee
of light en2l; in the interior, however,T changes its charac
ter and propagates with the local speed of sounden2lCs .

The last set of equations that is still missing are the m
mentum constraints, which link the velocity perturbations
the extrinsic curvature variables:
06401
y
ns

-

16pe2n~p1e!u15
]K2

]r
22

]K5

]r
1rK

2S 3n813l82e2l
l ~ l 11!

r DK2

12n8K5, ~59a!

16pe2n~p1e!u25r
]K2

]r
2r 2K1r ~n81l8!K222K5 .

~59b!

Those constraint equations have to be solved in orde
obtain physically valid initial data. We postpone the discu
sion on how to construct initial data to Sec. IV.

With r being eliminated,S and T in the interior now
become independent variables, and the Hamiltonian c
straint~57! serves as a definition forr. In the exterior, how-
ever, S and T are not independent but have to satisfy t
Hamiltonian constraint withr set to zero. Unfortunately, we
cannot use the Hamiltonian constraint to further elimin
one of those variables, but it is possible to combineS andT
to form a new variableZ @we use the definition~20! of Allen
et al. @11#!#:

Z52
2e2n

L l ~ l 11! F2rT81e2lS 2M

r
222 l ~ l 11! DT22r 2SG ,

~60!

with

L5 l ~ l 11!221
6M

r
. ~61!

Z then satisfies a single wave equation, the famous Ze
equation that was first derived in 1970 by Zerilli@21# in the
context of black hole oscillations:

]2Z

]t2
5

]2Z

]r
*
2

22e2n
n2~n11!r 313n2Mr 219nM2r 19M3

r 3~nr13M !2
Z.

~62!

Here, we use 2n5 l ( l 11)22, andr * is again the tortoise
coordinate defined in Eq.~41!.

It is also possible to invert Eq.~60! and expressSandT in
terms ofZ through

T5re2nZ81S 1

2
l ~ l 11!2

6M

rL
e2nDZ, ~63a!

S5e2nZ91
M

r 2 S 12
6

L
e2nDZ81

1

r 2 F3M

r
2 l ~ l 11!

1
6M

rL S 32
8M

r D2S 6M

rL D 2

e2nGZ. ~63b!

Last, we should note that the radiated energy at infinity c
be computed from@22#
8-8
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dE

dt
5

1

64p (
l ,m

~ l 12!!

~ l 22!!
uŻlmu2. ~64!

Since the Zerilli function contains the full polar gravitation
wave information, it should be possible to recover the ori
nal metric and extrinsic curvature variables from it. ForS
and T we have already given the relevant formulas in E
~63!. SinceK5Ṡ andK55Ṫ, they also can computed from
Eqs.~63! with Z replaced byŻ. In the exterior the momen
tum constraints~59! can be combined to give an algebra
relation for K2. Finally, the last remaining quantityK1 fol-
lows from Eq.~48!.

In the derivations of all the above equations we ha
made extensive use of the computer algebra programMAPLE

V in order to avoid possible mistakes. Furthermore, we h
checked that our equations and our numerical results a
with those of Allenet al. @11#.

III. BOUNDARY AND JUNCTION CONDITIONS

There are three boundaries we have to take care of:
origin, the surface, and the outer boundary of the numer
grid, which lies somewhere outside the star.

At the origin r 50 we have to demand all variables to b
regular. From Taylor expansion aroundr 50, we can infer
the analytic behavior of the various variables. Close to
origin, S andT, for instance, are both proportional tor l 11.

At the outer boundary, we impose the Sommerfeld bou
ary condition; i.e., we require the waves to be purely out
ing. If computational time does not matter, we can even
this boundary so far away that any contamination that en
the grid from there has not enough time to travel to
region where we extract the signal.

The third boundary is the surface of the star atr 5R,
which is formally defined by the vanishing of the total pre
sureP. Since the perturbations will slightly deform the sta
the perturbed surface will be displaced by an amountj i with
respect to the unperturbed location atr 5R. If the coordi-
nates of the unperturbed surface are denoted byxR

i , the van-
ishing of the total pressureP at the displaced surface tran
lates to P(t,xR

i 1j i)50. From Taylor expansion to firs
order we find that the~Eulerian! pressure perturbationdp at
the surface has to obey

dp52j rp8. ~65!

Unfortunately, this is not a very convenient boundary con
tion, since we use neitherdp nor the displacement vectorj i

in our set of evolution equations. Therefore we must rel
this condition to the variables we use. We will try to find
condition that gives us the time evolution ofde at the stellar
surface. The first step is to use the relationde5p8/e8dp,
which gives us

]

]t
de52e8

]

]t
j r . ~66!

The time derivative ofj r can then be related to ther com-
ponent of the four-velocityur @23#:
06401
-

.

e
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]j r

]t
5e22l~endur2b r !. ~67!

After expansion in spherical harmonics, we finally obtain

]

]t
r~ t,R!5e8F rK 21e2n22lS u12

u2

r D G
r 5R

. ~68!

The equivalent equation for the quantityH as defined in Eq.
~53! reads

]

]t
H~ t,R!52n8F rK 21e2n22lS u12

u2

r D G
r 5R

. ~69!

Incidentally, this expression can be obtained directly fro
the evolution equation~54a! just by settingCs to zero. In the
same manner, we can obtain the boundary condition for
wave equation~56!. Also, Eq.~68! follows immediately from
Eq. ~52a!, if one setsp5e5p850.

For polytropic equations of state, it is alwaysp5e5Cs
5p850 at the surface of the star; hence the evolution eq
tions ~52a! and ~54a! automatically lead to the right bound
ary conditions. For realistic equations of state, the sou
speed at the surface should be that of iron, which is v
small compared to the sound speed inside the core, whe
might reach almost the speed of light for very relativis
stellar models. For practical purposes, in these cases we
might as well setCs(r 5R)50. Of course, this analysis doe
not hold for constant density models, but those are not c
sidered in this paper, anyway.

Let us now turn to the junction conditions at the surfa
of the star. We will always assume thate andCs go to zero
when approaching the stellar surfacer 5R. Following the
line of reasoning of@11#, we find that S is at leastC 2,
whereas the differentiability ofT depends on the value ofr
at the surface. For if we let the subscriptsin andex represent
the values for the interior and the exterior, respectively,
deduce from Eq.~51! that for the second derivative ofT
across the surface the following relation has to hold:

Tin9 2Tex9 528pe2lrur 5R . ~70!

From condition~68!, it follows that the values ofr at the
surface depend on the value ofe8 at this point. As already
discussed above, for polytropic equations of state, we h
p5e5p850 at the surface. However,e8 does not necessar
ily vanish; instead we have the following relation:

e852n8
e22G

kG
, ~71!

which shows that the behavior ofe8 critically depends on the
value of the polytropic indexG. We can distinguish three
different cases. ForG,2, we havee8→0; for G52, we
havee8→const; and forG.2, we havee8→2`.

This is somewhat disturbing, since for the boundary co
dition ~68! this would mean thaturu→`, unless the expres
sion in brackets vanishes. However, this is not automatic
guaranteed. Interestingly, the boundary condition~69! for H
8-9
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is harmless for all values ofG, sincen8 is always bounded
But, of course, in Eq.~51!, we have to user, which we have
to compute fromH using

r5~p1e!S dp

de D 21

H'
e22G

kG
H. ~72!

Again, we obtain an infinite value whenG.2, unlessH
vanishes at the surface. However, as with Eq.~68!, the
boundary condition~69! does not guarantee the vanishing
H, even ifH is initially set to zero.

The reason for this peculiar behavior ofr is that in the
G.2 case, the Eulerian description breaks down at the
face, which is a direct consequence ofe8 becoming infinite.
In this case, a Lagrangian description of the fluid pertur
tions would be much more appropriate, since for any po
tropic equation of state, the Lagrangian energy density p
turbation always vanishes at the surface, because of
vanishing of the Lagrangian pressure perturbation.

What then happens to the Eulerian density perturbati
By definition, the Eulerian density perturbationde is the
difference between the total energy density and the ba
ground densitye at the same locationr, whereas the La-
grangian density perturbationDe measures the densit
change in a fluid element that is displaced by some amo
j i . It is through Taylor expansion to linear order that w
obtain the connection between the Lagrangian and Eule
perturbations:

De5de1j re8. ~73!

But of course for theG.2 case this expression is ill define
at the surface, since the second term diverges. It is then c
that the Eulerian perturbationde has to become infinite, too
in order to compensate for the blowup ofe8 and to yield a
vanishing Lagrangian perturbationDe.

The whole discussion seems somewhat irrelevant, s
we have seen that the equations can be written in term
metric quantities only. However, we have to compute
second derivative ofT, which, as can be seen from Eq.~70!,
depends onr. In the G.2 case, we therefore must have
blowup of T9 at the surface. Of course, this is very troub
some for the numerical discretization, and even forG52, we
still have a discontinuity inT9, which can spoil the secon
order convergence of the numerical discretization schem

The numerical evolutions indeed confirm the above ana
sis. By computingr with the aid of the Hamiltonian con
straint ~57!, we find that for polytropic stellar models wit
G.2, r tends to blow up at the stellar surface. ForG,2, we
have r50 at the surface, whereas forG52, we obtain a
finite value@22#.

IV. CONSTRUCTING INITIAL DATA

To obtain physically valid initial data, we have to solv
the constraint equations~57! and ~59!. As is well known,
there is no unique way to do so, for those equations
underdetermined, and therefore one always has to m
06401
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some additional assumptions about the geometry of the
tial slice.

The simplest way is to choose time symmetric initial da
since in this case the momentum constraints~59! can be sat-
isfied trivially by setting all extrinsic curvature variables
zero, and we only have to solve the Hamiltonian constra
~57!. Of course, time symmetric data are somewhat unph
cal, since they represent a stage of a physical system w
had an arbitrary amount of incoming radiation in the pa
Nevertheless, they can give valuable insight into the beh
ior of the system under consideration.

In general, all conceivable initial data for neutron st
oscillations fall into two basic categories or combinatio
thereof. First, we can assume the star being initially unp
turbed. In the exterior vacuum region, we then can arbitra
prescribe some metric perturbations representing a gra
tional wave, which travels towards the star and eventua
excites it to oscillations. The most convenient way to do so
to prescribe the initial Zerilli functionZ and its time deriva-
tive Ż, and to computeS, T, K, andK5 through Eqs.~63!. In
this way, we have initial data that automatically satisfy t
constraints without having to solve any differential equatio

The other possibility is to prescribe some fluid perturb
tions inside the star and then use the constraints to solve
the associated metric perturbations. As is well known,
matter distribution does not uniquely fix the metric, since
can always superpose some additional gravitational wave
is therefore not clear at all what would represent ‘‘true
physically realistic initial data.

A quite common procedure is to construct conforma
flat initial data @24#. In our case, this amounts to settin
S(t50)5S050 in the Hamiltonian constraint~57! and solv-
ing for T0 for a given initial fluid perturbationr0. Interest-
ingly, the initial data thus obtained do not excite any of t
spacetime modes to a significant extent, whereas initial d
with the same fluid perturbationr0, but with T050 andS0
Þ0, can show largew-mode excitations. In Fig. 1, we com
pare the wave signals of these two cases for time symme
initial data. In the case where we setS050, there is no
w-mode signal at all, and the waveform consists of pure fl
oscillations. In the other case, we can see a burst of grav
tional radiation, which quickly damps away through the fi
w mode. The final fluid ringing then coincides with theS0
50 case.

This shows that the presence ofw modes is not a generic
feature of neutron star oscillations. They are only excited
a special subset of initial data. The open question now
whether or not they will show up in a real wave signa
Andersson and Kokkotas@25# have shown that by extractin
the frequencies and damping times of thef mode and the first
w mode in a gravitational wave signal, one can obtain i
portant information such as mass and radius of the neu
star. These data, in turn, can then be used to restrict
possible equations of state. Of course, this method stands
falls with the presence of thew modes in the wave signal
But as we have seen, it could well be thatw modes do not
play a significant role at all. In a subsequent paper@26#, we
will investigate the excitations of neutron star oscillations
means of particle scattering, which will show that thew
8-10
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modes can only be excited by extremely relativistic particl
Let us now focus on initial data which are not time sym

metric. In this case, we also have to solve the momen
constraints. Here, too, we have some additional freedom
specifying the extrinsic curvature. For instance we c
choose TrK50, which is equivalent to setting

K154K222K5 , ~74!

or, equivalently, because of Eq.~48!,

r 2K52r
]K2

]r
12~rl812!K223K5 . ~75!

We then can substituteK in Eq. ~59! and obtain thus two
coupled differential equations for the remaining unknow
K2 and K5. For given fluid perturbationsu1 and u2, the
momentum constraints yield a unique solution.

Before presenting the numerical results, we would like
comment on the applicability of the Lichnerowicz-York a
proach@27# for the construction of initial data for neutro
star perturbations, which was used in@19#. Stated in a some
what crude way, this method consists in decomposing the
degrees of freedom~DOF! of the extrinsic curvature into its
trace TrK ~1 DOF!, a transverse trace free partAi j

TTF ~2
DOF!, and a trace free longitudinal partAi j

LTF~3 DOF!. Since
the momentum constraints consist only of three equati
with three source functionsj i , which describe the matte
distribution, only 3 DOF are fixed, whereas the remain
ones are freely specifiable. The simplest way is to set TK
5Ai j

TTF50; i.e., the extrinsic curvature is purely longitud
nal. It can thus be written in terms of a vector potential w
three independent components, for which the momen
constraints provide a unique solution once the sourcesj i and
appropriate boundary conditions have been specified.

FIG. 1. Wave signals from two different sets of initial data. T
signal coming from initial data withT050 ~solid line! shows a
strong gravitational wave burst followed by aw-mode ringdown,
whereas the signal coming from data withS050 ~dashed line! does
not show anyw modes at all but rather consists of pure fluid rin
ing. Both signals coincide after thew mode has damped away.
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If the extrinsic curvature is first decomposed into sphe
cal harmonics, this procedure still works. For the polar pa
we then have four components and two constraint equati
i.e., only two components can be freely specified. Here, t
by assuming TrK5Ai j

TTF50, we can write the remaining
longitudinal part in terms of a vector potential with two pol
components. Solving the constraint equations with nonv
ishing sourcesj i will yield nonzero values for those compo
nent, and therefore all four polar components of the extrin
curvature will in general have nonzero values, either.

But this is contradiction with the Regge-Wheeler gaug
which requires the componentK̂4 to vanish. This could only
be accomplished by setting one component of the vector
tential to zero. However, this is not possible, since both co
ponents are already fixed by the constraint equations an
general, nonvanishing.

Hence, if we want our initial data to be conform to th
Regge-Wheeler gauge, we have to haveK̂450, and therefore
we cannot have both TrK50 and Ai j

TTF50. By choosing
Tr K50, we already have used up all degrees of freedom
fix the extrinsic curvature components, since we have to
K̂450, too.

V. NUMERICAL RESULTS FOR POLYTROPIC
EQUATIONS OF STATE

A. Some general remarks

Our actual goal was, by using the ADM formalism,
obtain the evolution equations in a hyperbolic first ord
form. However, as a result of numerical problems at the o
gin, we were forced to modify those equations in such a w
that the resulting set~49! is more or less equivalent to the s
of wave equations for the variablesS, T, andH. Thus, from
the computational point of view, there is no point in stickin
to the first order system, since the wave equations can
numerically integrated in a much faster way. Also, we w
not explicitly integrate the fluid equations, since we c
eliminater in Eq. ~51! by means of the Hamiltonian con
straint ~57!.

For the numerical evolution, we therefore use Eqs.~50!
and ~58! in the interior, whereas in the exterior we use Eq
~50! and~51! with r set to zero. Of course, in the exterior w
could try to switch fromSandT to the Zerilli functionZ. We
thus would have to integrate only one wave equation, a
from the resulting waveforms, we could easily read off t
emitted gravitational energy, since the radiation power
proportional to the square ofŻ.

Unfortunately, this causes numerical problems, becaus
the seam, we would have to computeZ and its derivatives
from S andT and vice versa. However, in order to obtain
correct value ofZ, it is crucial thatSandT satisfy the Hamil-
tonian constraint. On the other hand,S and T satisfy the
Hamiltonian constraint by construction, at least up to d
cretization errors, when directly computed fromZ through
Eqs.~63!. At the seam somewhere outside the star, where
switch fromS andT to Z, we will always have some viola
tion of the Hamiltonian constraint, thus the computed Zer
function Z will not be quite correct. If we then go back an
8-11
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JOHANNES RUOFF PHYSICAL REVIEW D 63 064018
computeSandT from the just obtained value ofZ, they will
differ significantly from their original values, since now the
suddenly satisfy the Hamiltonian constraint. This mismat
ing at the seam gives rise to additional reflections, wh
rapidly amplify inside the star and cause the numerical c
to crash after a few dynamical time scales.

There is another point we would like to mention. Wh
evolved with the Zerilli equation, the amplitude of an outg
ing wave remains constant for larger. The same is true forS;
however, the amplitude ofT grows linearly with r. When
computingZ from S and T by means of formula~60!, this
growth has to cancel, which is indeed the case whenSandT
exactly satisfy the Hamiltonian constraint. If not,Z will also
start to grow for larger. But this is what happens, sinc
numerically S and T do not satisfy the Hamiltonian con
straint. It is predominantly the high frequency compone
that get amplified the most strongly. Unfortunately, this c
lead to quite rough waveforms forZ, while those forSandT
look perfectly smooth. By increasing the resolution, this a
plification will decrease, but the resolution has to be qu
high in order to obtain accurate results.

The most practical way to obtain a quite reliable Zer
function, therefore, is not to completely switch to the Zer
function in the exterior region, but to additionally evolveZ
together withSandT. That is, close to the surface of the st
we constructZ from S andT by means of formula~60! and
then use the Zerilli equation~62! to independently evolveZ
parallel toSandT. Of course, this amounts to the addition
computational expenditure of evolving an extra wave eq
tion, but we get rewarded by obtaining much more accur
results.

To discretize the wave equations, we use the explicit s
ond order leap frog scheme. If the equations are corre
implemented, the numerical violation of the constrain
should converge to zero in second order. By monitoring
Hamiltonian constraint in the exterior, this is indeed what
find. Of course, as mentioned above, for polytropes withG
>2, the stellar surface can reduce the convergence dow
first order.

We should make one final note concerning the numer
treatment of the originr 50. It is well known that in radial
coordinates, the equations usually show a singular beha
close to the origin. Moreover, Taylor expansion around
origin shows that the equations admit two kinds of solutio
a regular and a divergent one. On physical grounds, one
ally rejects the divergent solution. For the evolution, it
crucial that the numerical scheme preserve the regula
condition and suppress the divergent solution.

We have chosen dynamical variables such that the o
singular terms are the ones proportional tol ( l 11)/r 2. The
regularity condition requires all the perturbation variables
vanish at the origin; however, even forl 52 the equations
cannot be numerically evolved with a time step sizeDt close
to the maximal allowed time step sizeDtmax, which follows
from the Courant-Friedrichs-Levy~CFL! condition

Dtmax5
Dr

c
, ~76!
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whereDr is the grid spacing in ther coordinate andc the
largest propagation speed, because the presence of the d
gent l ( l 11)/r 2 terms causes the scheme to become unst
at the origin. Only by decreasingDt can stability be rein-
forced. However, for large values ofl, Dt has to be so smal
that it prevents one from obtaining numerical results within
reasonable time frame.

We therefore propose a different way that allows sta
evolutions withDt close toDtmax for all values ofl. Instead
of having the boundary conditions located exactly atr 50,
we move itn grid points to the right; i.e., atr n5nDr , we
imposeS(r n)5T(r n)50. The actual value ofn depends onl
in the following simple way:n5 l 21.

The numerical experiments and a detailed stability ana
sis @22# have shown that with this little trick, we can indee
obtain stable and second order convergent evolutions for
bitrary values ofl with a Courant number of about 0.9.

B. Results

Results concerning the evolution of various initial da
have already been presented in@11#. Since the authors only
focused on a single polytropic stellar model with a cent
density of e05331015g/cm3, we would like to consider
three more models, one being less relativistic and the oth
being more relativistic. The physical parameters of the m
els are given in Table I. All results presented are forl 52.
Results for more stellar models and for other values ofl can
be found in@22#.

As initial data, we choose a narrow time symmetric gra
tational wave pulse, centered atr 0580 km, where we pre-
scribeT to have a Gaussian shape, and use the Hamilton
constraint to computeS. The numerical resolution is 500 gri
points inside the star. The resulting waveforms for the d
ferent models are shown in Fig. 2. Using a logarithmic sca
we plot the modulus of the Zerilli function, extracted atr
5100 km.

The three waveforms clearly have quite different featur
For the least relativistic model 1~upper panel!, there is no
w-mode signal at all, and the falloff, which immediately fo
lows the reflected wave pulse at aboutt50.6 ms, shows
more a tail-like behavior. Att51.1 ms it merges into the
fluid ringing, which is dominated by thef mode. This is a
somewhat unexpected result, since a direct mode calcula
reveals that for this model there do existw modes, which
should show up in the waveform. However, even the firsw
mode has a quite large imaginary part (v50.30510.24i),
which results from the model being less compact. Thus,
w modes get buried in the tail-like falloff. The more compa

TABLE I. List of the polytropic stellar models used and the
physical parameters.

Polytropic stellar models (G52,k5100 km2)
Model e0@g/cm3] M @M (# R@km] M /R

1 1.031015 0.802 10.81 0.109
2 5.031015 1.348 7.787 0.256
3 5.031016 1.031 4.992 0.305
8-12
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and therefore more relativistic the stellar model is, the l
damped are thew modes, and they should eventually dom
nate over the tail-like falloff.

This is the case for model 2~middle panel!, which is quite
close to the stability limit. Here, instead of the tail-like fa
off, we now can see the ringdown of the firstw mode (v
50.25610.085i). Still, it is much more strongly dampe
than the fluid modes, which therefore dominate the late t
part.

Model 3 ~lower panel!, which is unstable with respect t
radial oscillations, is compact enough to allow the existe
of trapped modes. Because of their comparatively w
damping, we cannot have a clear cut discrimination betw

FIG. 2. Time evolution of the Zerilli function for the three dif
ferent polytropic stellar models M1, M2, and M3 withl 52. The
numerical resolution is 500 grid points inside the star. In the le
relativistic model~model 1, upper panel!, there are now modes
observable. For model 2~middle panel!, both thew and the fluid
modes are excited. Model 3~lower panel!, which is the most com-
pact, exhibits two ringdowns, one ranging from 0.6 to 0.9 ms a
corresponding to the first black hole quasinormal mode and
‘‘proper’’ ringdown starting at about 1.0 ms and consisting of t
various trapped and fluid modes.
06401
s

e

e
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the two ringdown phases, i.e., at first thew modes and then
the fluid modes. Instead, the signal consists of a mixture
both the trapped and the fluid modes. Nevertheless,
trapped modes dominate in early times, which can be s
from the Fourier transform in the upper panel of Fig. 3.
the lower panel, we have taken the Fourier transform
much later times, where the most strongly damped trap
modes have damped away and the fluid modes prevail. S
the first two trapped modes are present in the spectrum.

However, there is still one feature present in the wa
signal for model 3, which was also present in previous e
lutions of the axial modes for very compact stars, but wh
apparently has not been noticed before~see, e.g., Fig. 4 of
@28# and Fig. 5 of@8#!.

If, in the wave signal, we determine the frequency a
damping time of the very first ringdown~from t'0.5 ms to
about t'0.9 ms!, we find that they do not match to any o
the quasinormal modes associated with this particular ste
model. Instead, they are almost identical with the comp
frequency of the first quasinormal mode of an equal m
black hole. How is that?

For black hole spacetimes, the quasinormal modes
derived from the Regge-Wheeler potential in the axial c
and the Zerilli potential in the polar case. Both potentia
exhibit a maximum at aboutr 53M . For ordinary neutron
stars the surface lies usually at a radius larger than 3M ;

st

d
e

FIG. 3. Power spectra for model 3 withl 52. In the upper panel,
the Fourier transform is taken for an early starting time (t.0.9 ms!
and shows the presence of the weakly damped trapped mode
the lower panel, the Fourier transform is taken at a much later ti
where most of the trapped modes have damped away and tp
modes prevail. Still, the first two trapped modes are clearly visib
8-13
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JOHANNES RUOFF PHYSICAL REVIEW D 63 064018
therefore these peaks do not exist for those stars. Howe
for ultracompact stars these peaks can lie outside. Any a
or polar incoming gravitational wave packet has to cross
corresponding peak before penetrating the neutron s
While trying to cross this peak, a large fraction of the wa
will be scattered off, which in the black hole spacetime giv
rise to the quasinormal ringdown, but since the situation
now almost identical for the neutron star spacetime, this
sociated ringdown will have black hole characteristics.

Since inside the star, the local speed of lighten2m is
largely reduced, it takes a while for the remaining wa
packet to be reflected, and this is gives rise to the str
increase in the signal at aboutt50.9 ms. Here, the trappe
wave packet finally finds its way out again, and it is on
from thereon that the wave signal consists of the proper fl
and spacetime modes.~It is also from this time when we
have taken the Fourier transformation to obtain the up

FIG. 4. Profile of the sound speedCs inside the neutron sta
model using EOS MPA and a section near the surface~inlet!. At the
neutron drip point aroundr'8.06 km, the sound speed exhibits
local minimum.

FIG. 5. Ther coordinate as a function of thex coordinate for
three different stellar models. An equidistant discretization ofx cor-
responds to a increasingly finer resolution inr as the stellar surface
is approached.
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spectrum in Fig. 3. If we had included the first ringdown, th
spectrum would have sat on top of a large broad peak.! For
less compact stars the local light speed inside the sta
higher, and therefore the wave packet gets reflected m
earlier, making the black-hole-like ringdown phase mu
shorter. We should mention that this ringdown phenomen
for very compact stars is much more pronounced for lar
values ofl @22#.

Of course, we gave a somewhat crude and heuristic
planation of this ringdown phenomenon; we therefore po
pone a more detailed study to a future paper@29#.

VI. GETTING INTO TROUBLE: USING REALISTIC
EQUATIONS OF STATE

So far we have used polytropic equations of state, wh
are quite decent approximations to realistic equations of s
as far as the bulk features of neutron stars such as mass
radius are concerned. However, it is in particular the flu
oscillations that are very sensitive to local changes in
equation of state, which are due to the different behavior
the neutron star matter under varying pressure. It is there
important to use realistic equations of state that take i
account the underlying microphysics which determines
state of the matter as a function of pressure and tempera

Realistic equations of state cannot be given in analy
terms over the whole pressure range inside the neutron
hence they usually exist in tabulated form only. To solve
TOV equations in this case, one has to interpolate betw
the given values in order to obtain the stellar model w
continuous functions of radiusr. In the following, we will
make use of an equation of state called the MPA@17#, which
yields a maximal mass model of 1.56M ( . The nonradial
oscillations modes for various stellar models have been c
piled in @30#.

If we try to repeat the evolution of the same initial dat
but now for a realistic stellar model with, say,N5200 grid
points inside the star, we will find, after a few oscillations,
exponentially growing mode that immediately swamps
whole evolution. It is clear that this has to be a numeri
instability, since the frequency ande-folding time of this
growing mode strongly depend on the chosen resolution
fact, by further increasing the resolution, the growing mo
starts to weaken and eventually vanishes completely. T
happens at aboutN5500 grid points inside the star, depen
ing on the stellar model under consideration. Hence, we h
this strange fact that for low resolutions the numerical e
lution tends to be unstable, whereas for resolutions h
enough, the evolution is stable. We should stress that
happens only with the use of realistic equations of st
~EOS!. It does not happen for polytropic stellar models, ev
if the resolution is extremely low.

Further investigations show that the origin of this ins
bility comes from the region close to the surface, where
sound speed has a sharp drop. In Fig. 4 we show the pr
of the sound speedCs5Adp/de for a stellar model using
EOS MPA with a central density ofe05431015 g/cm3. It
can be clearly seen that atr'8.06 km, there is a local mini-
mum of the sound speed, where it drops down toCs'0.02.
8-14
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NEW APPROACH TO THE EVOLUTION OF NEUTRON STAR OSCILLATIONS PHYSICAL REVIEW D63 064018
For largerr we can see a series of much smaller dips, wh
is an artifact of the numerical spline interpolation betwe
the tabulated points. But the dip atr'8.06 km is physical
and is related to the neutron drip point, where the equatio
state suddenly becomes very soft. Since this occurs sti
the low pressure regime, the dip is present for any reali
equation of state.

It is indeed this dip in the sound speed that is respons
for the numerical instability, for if we remove it ‘‘by hand,’
we obtain a stable evolution. Moreover, the occurrence of
instability is independent of the actual formulation of t
equations, since the terms that are responsible are the
in each case. But what are the ‘‘bad’’ terms? By simp
crossing out individual terms, we find that the culprits a
those terms in the fluid equation~52a!, ~54a!, ~56!, or ~58!
which are not multiplied byCs

2 . These are the terms whic
remain when the sound speed goes to zero; i.e., these co
tute the boundary conditions~68! and ~69!. Without these
terms, the evolution would be stable for any resolution.

The next question is then whether this instability is jus
feature of our finite differencing scheme and does not app
for a different scheme. It turned out that the instability do
indeed occur for all discretization schemes we have tried:
central difference scheme for the wave equations, a cen
difference scheme on staggered grids, and the two-step
Wendroff scheme both for the first order system of eq
tions. Of course, these are only explicit schemes, and we
not know whether switching to implicit schemes could be
remedy.

However, in all the above cases, the instability eventua
vanishes when the resolution is increased above a ce
threshold. For the central difference schemes, this thres
is at aboutN5500 grid points, depending on the stell
model, whereas for the Lax-Wendroff scheme, the requ
minimum resolution in order to overcome the instability c
even exceedN510000 grid points inside the star, which
clearly unacceptable.

A more elaborate analysis of the nature of the instabi
can be found in@22#. There it is shown on the basis of
simplified toy equation that the resolution needed in orde
overcome the instability strongly depends on the locat
and depth of the dip in the sound speed. The closer to
surface and the deeper the dip, the higher the required r
lution. Since this resolution is only needed in a very ti
region close to the surface, it would be enough to just re
the grid in this region and use a coarser grid outside. T
could be accomplished, for instance, by a fixed mesh refi
ment, since this region is determined by the profile of
sound speed, which does not change throughout the ev
tion. However, we then would have to deal with the tran
tion from the coarse grid to the fine grid and vice ver
which might be troublesome. Another drawback is that
each different stellar model, we would need a different g
refinement, and it would be a matter of trial and error to fi
the appropriate refinements for a stable evolution.

Yet there is a better way out. We can try to find a ne
radial coordinatex, which is related to the actual radial co
ordinater in such a way that an equidistant grid inx would
correspond to a grid inr that becomes automatically dens
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in regions where the sound speed assumes small value
simple relation between the grid spacingsDx andDr that has
the desired property is

Dr ~r !5Cs~r !Dx. ~77!

An equidistant discretization with a constant grid spacingDx
would correspond to a coarse grid inr for large values ofCs ,
which becomes finer and finer as the sound speedCs de-
creases.

From the relation~77!, we can immediately deduce th
form of our new coordinatex as a function ofr. By replacing
the D ’s by differentials we obtain

dx

dr
5

1

Cs~r !
~78!

or

x~r !5E
0

r dr8

Cs~r 8!
. ~79!

As a consequence, the derivatives transform as

d

dx
5Cs

d

dr
~80!

and

d2

dx2
5Cs

2 d2

dr2
1CsCs8

d

dr
. ~81!

From the last relation, we see that the thus-defined coo
nate transformation will transform the wave equation in su
a way that the propagation speed with respect to thex coor-
dinate will be unity throughout the whole stellar interior.

Of course, we have to use relation~78! with some caution,
for if Cs50, this transformation becomes singular. And th
is what happens at the stellar surface. If, for instance,
profile of the sound speed is given in the formCs5C0(1
2r /R), where we haveCs(R)50, we can find an analytic
expression forx:

x~r !52
R

C0
logS 12

r

RD , ~82!

which tells us that at the surfacer 5R we obtainx(R)5`. In
this case, the coordinate transformation seems to be q
useless, since numerically we cannot deal with a grid t
extends up to infinity. We would have to truncate it som
where. But from a numerical point of view, this is not th
bad, since going to infinity in thex coordinate would corre-
spond to an infinitely fine resolution in ther coordinate at the
stellar surface. But this is numerically impossible as well,
truncating thex coordinate at some point means to define
maximal resolution inr at the surface. However, this cas
usually does not happen. In all cases considered,x(R) has
always a finite value.
8-15
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JOHANNES RUOFF PHYSICAL REVIEW D 63 064018
It should be noted that the above transformation is of
same kind as the definition of the tortoise coordinater * in
Eq. ~41!, which also leads to wave equations with un
propagation speed throughout the whole domain. Thus,
may callx a hydrodynamical tortoise coordinate.

Figure 5 shows ther coordinate as a function of thex
coordinate for three different stellar models. From t
curves, it is clear that an equidistant grid spacing inx will
result in an equivalent spacing inr that gets very dense to
wards the surface of the star, which means that this part
highly resolved. And this is exactly what we need in order
overcome the instability and to obtain a decent accuracy

To obtain the background data on thex grid, we have to
solve the TOV equations~3! with respect tox. Since we also
needr as a function ofx, we simultaneously solve Eq.~78!,
too. The transformed set of equations then reads

dl

dx
5CsS 12e2l

2r
14pre2le D , ~83a!

dn

dx
5CsS e2l21

2r
14pre2lpD , ~83b!

dp

dx
52

dn

dx
~p1e!, ~83c!

dr

dx
5Cs . ~83d!

Of course, this transformation is only defined in the ste
interior for the fluid equations, for it is only there that th
propagation speed is the speed of sound~apart from the fac-
tor en2l). If we still wanted to use Eq.~58!, wherein the
interior T plays the role of the fluid, we would have to switc
from the x grid in the interior to ther grid in the exterior,
which is somewhat inconvenient. It is therefore much m
natural to explicitly include the fluid equation~56!, which is
defined in the interior only. Thence, it is only Eq.~56! which
will be transformed according to the transformation~78!,
whereas we keep the wave equations forSandT as they are
given in Eqs.~50! and ~51!.

The transformed fluid part of the fluid equation~56! reads

]2H

]t2
5e2n22lH ]2H

]x2
1S ~2n ,x1l ,x!2

n ,x

Cs
2

2
Cs,x

Cs
D ]H

]x

1FCsS n ,x

r
14

l ,x

r
2Cse

2l
l ~ l 11!

r 2 D
1

l ,x

rCs
12

n ,x

rCs
GHJ . ~84!

Here, the subscriptx denotes a derivative with respect tox.
The last missing thing is the transformation of the bound
condition ~69!. Unfortunately, we cannot transform Eq.~69!
in a straightforward way, since at the surface it isCs50, and
therefore the transformation of the derivatived/dr
5Cs

21d/dx is not defined. However, the inverse transform
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tion ~80! can make sense if we note that ifCs50 then any
derivative with respect tox has to vanish. This is in particu
lar true forH itself. Thus, at the stellar surfacer 5R, where
the sound speedCs vanishes we impose the followin
boundary condition forH:

]H

]x U
x(R)

50. ~85!

This corresponds to reflection at a loose end on thex grid.
Since we only transform the fluid equation and not t

equations for the metric perturbationsS and T, we have to
simultaneously use two different grids: thex grid in the in-
terior for the fluid variableH and ther grid both in the
interior and exterior for the metric variablesS and T. Be-
cause of the coupling, at each time step we have to inte
late H from thex grid onto ther grid in order to update Eq
~51!, and, vice versa, bothSandT from ther grid onto thex
grid in order to update Eq.~56!. This can easily be accom
plished by using spline interpolation.

In Fig. 6 we demonstrate the convergence of this n
method using a stellar model based on the realistic E
MPA. For initial data similar to the ones used for Fig. 2, w
plot the evolution of a Gaussian wave packet together w
the evaluation of the Hamiltonian constraint for three diffe
ent spatial resolutions. By doubling the resolution, the er
in the Hamiltonian constraint should decrease by a facto
4, if the scheme is of second order. Conversely, the ma
tude of the error should remain roughly constant, if for ea
doubling of the resolution the error is multiplied by a fact
of 4. This has been done in Fig. 6, and one can clearly

FIG. 6. It is shown, using a realistic EOS, the evolution of t
metric variableT together with the error in the Hamiltonian con
straint (HC) for the three different resolutions ofN5200, N
5400, andN5800 grid points inside the star. The graphs forT
practically coincide for the different resolutions. In doubling th
resolution, the error should decrease by a factor of 4, which
compensated by multiplying the error by a factor of 4 forN5400
and by a factor of 16 forN5800. It is clearly discernible that the
magnitudes of the scaled errors remain constant, which shows
second order convergence of our new numerical scheme. In a
tion the errors do not grow with time, which shows the stability
8-16
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NEW APPROACH TO THE EVOLUTION OF NEUTRON STAR OSCILLATIONS PHYSICAL REVIEW D63 064018
that the magnitudes of the thus-rescaled errors remain
stant for the different resolutions. Furthermore, the schem
stable since the error does not grow with time.

The fluid modes have their largest amplitude in the reg
close to the surface. To obtain the correct mode frequen
in the power spectrum, it is important to have high resolut
close to the surface of the star, and this is what is acc
plished by our new coordinatex. In Fig. 7, we show the
power spectra of waveforms obtained from runs with diff
ent resolutions. As initial data, we chose a narrow fluid
flection at the center of the star together withS50. In this
case, we suppressed anyw-mode contribution.

It is apparent that even for the quite moderate resolu
of 50 grid points on thex grid inside the star we obtain ver
accurate frequencies for the first couple of fluid modes.
ther grid, however, a resolution of 200 grid points is still n
enough to obtain the same accuracy, and the peaks o
higher p modes in the spectrum are still quite far off the
true values. Of course, these results were obtained wi
polytropic equation of state, since otherwise we would
have been able to perform the evolution on ther grid at all,
because of the occurring instability.

Finally, we want to demonstrate the effectiveness of
coordinate transformation by evolving an initial perturbati
for the MPA equation of state. We choose the central ene
density to be 331015 g/cm3, yielding a stellar mass ofM
51.49M ( . The resolution isN5200 grid points, which,
again, would be too low to yield a stable evolution using t
r coordinate. Here we do not have any problems; the ev
tion is stable forany chosen resolution. In Fig. 8, we sho
the power spectrum of the evolution of a sharp initial peak
the fluid perturbationH, which leads to the excitation of
multitude of fluid modes. In the interval up to 100 kHz, w
can find 37 modes. The direct calculation of the first cou
of modes with an eigenvalue code shows perfect agreem
which is demonstrated in the lower panel of Fig. 8. Actual

FIG. 7. Comparison of the power spectrum obtained from
evolution with a resolution ofNx550 grid points on thex grid with
the spectra obtained from evolutions with different resolutions
the r grid. Even for only 50 grid points inx, the peaks are closer t
the true values than for 200 grid points inr.
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the direct mode calculation is much more involved and ti
consuming than the evolution with a subsequent Fou
transformation. Even with 1000 grid points inside the star
is a matter of minutes to obtain an accurate fluid mode sp
trum for stellar models with realistic equations of state.
course, with this method one can only obtain the real part
the frequencies; the imaginary parts are too small to be
termined.

VII. CONCLUSIONS

In this paper, we have derived, using the ADM formalis
the perturbation equations for nonrotating, spherically sy
metric neutron star models with barotropic equations of st
We have shown how to choose shift and lapse and the in
data on the three-dimensional initial slice in order to obt
the Regge-Wheeler gauge. We pointed out that not o
some of the metric components but also one of the extrin
curvature components has to vanish in order to preserve
Regge-Wheeler gauge throughout the evolution.

Unfortunately, the equations that directly come out af
the expansion in spherical tensor harmonics are not suited
the numerical treatment due to problems at the origin.
therefore had to introduce different variables that remove
singular structure of the ‘‘raw’’ equations. Since the fin
system of equations in those variables is nothing else b
system of coupled wave equations written in first order for

n

n

FIG. 8. Upper panel: power spectrum of the evolution of a sh
initial fluid pulse withS050 on thex grid. Now modes are present
but dozens ofp modes are excited. In the lower panel, we inclu
the modes computed by explicit mode calculation. Note that
contrast to polytropic equations of state, the modes do not lie
equidistant locations.
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it is therefore much more convenient to use instead the
ond order wave equations for the numerical evolution. Th
wave equations have already been previously derived
Allen et al. @11# in a different way. Still, our formulation is
quite useful because it facilitates the construction of ini
data in terms of metric and extrinsic curvature perturbatio

Moreover, by introducing the ADM formalism for th
derivation of the evolution equations of nonrotating neutr
stars, we have performed the first step towards the m
more involved task of deriving the evolution equations
rotating neutron stars. Here, the linearization of the origi
Einstein equations yields quite obscure perturbation eq
tions, which first have to be cast into a suitable hyperbo
form before trying to discretize them on a numerical gr
With the ADM equations this is a much more straightfo
ward procedure.

We have presented results for different stellar mod
with polytropic equations of state. For the least relativis
model, the wave signal did not show anyw modes, although
mode calculations show that they do exist. But they are
strongly damped that the tail-like falloff wins over thew
modes. Only for more compact stellar models are thew
modes less strongly damped, and they can show up in
waveforms. However, even for very relativistic neutron s
models,w modes are not necessarily part of the waveform
fact, their occurrence strongly depends on the choice of
tial data. For initial data representing a gravitational wa
pulse that will hit the star,w modes in general will be part o
the spectrum; however, for initial fluid perturbations, t
choice of conformally flat initial data (S050) can totally
suppress the presence ofw modes, whereas settingT050
andS0Þ0, which can be regarded in some sense as a m
mal deviation from conformal flatness, shows strongw-mode
excitation.

For very compact stars, we found that the complex f
quency of the very first ringdown phase does not corresp
to any of the proper quasinormal modes of the stellar mo
Instead, the frequency is almost identical with the first q
sinormal frequency of a black hole with the same mass.
explained this phenomenon by observing that those part
the potential, which are responsible for the first scattering
the impinging wave packet, lie outside the star and there
are the same as for a black hole. Only when the part of
wave packet that could penetrate the neutron star is reflec
the proper ringdown with the trapped and fluid modes sta
This phenomenon, although already present in previous e
lution results@28,8#, apparently has not been recognized b
fore.

When switching to realistic equations of state, we a
faced with a numerical instability that is due to the sha
drop of the sound speed at the neutron drip point, which
located quite close to the stellar surface. Since the neu
06401
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drip point is located in the low pressure regime, it is a feat
of any realistic equation of state, and therefore the instab
should occur for all of them. The quite peculiar fact abo
this instability is that it disappears when the resolution
increased above a certain threshold. This threshold dep
on the depth of the dip of the sound speed and is the hig
the deeper the dip is. It seems that this instability is pres
for any explicit numerical discretization scheme; howev
the minimum resolution that is needed in order to suppres
can vary drastically for different schemes. Indeed, when
ing the two-step Lax-Wendroff scheme for the equatio
written as a first order system, we were confronted with
almost unsurmountable resolution threshold needed
stable evolution.

This instability does not depend on the actual formulat
of the equations and is present for any of the given formu
tions of this paper. In fact, it is not only a peculiar proble
of the nonradial perturbation equations, the same instab
also occurs in the radial case@22#, the reason being that th
structure of the fluid equations is the same in both cases

As a remedy, we introduced the coordinate transformat
~78!, which leads to a wave equation for the fluid with uni
propagation speed throughout the whole star. It is now p
sible to evolve oscillations of realistic stellar models for a
resolution. As a further benefit, the evolution of the fluid
thex grid is, for a given number of grid points inside the sta
much more accurate than the corresponding evolution on
r grid with the same number of grid points. This is becau
the x coordinate resolves the region close to the stellar s
face much better than the ordinaryr coordinate.

This coordinate transformation could also prove useful
fast rotating neutron stars, since the evolution equations
the fluid will certainly have the same structure that leads
the numerical instability in the nonrotating case. Since
rotating case is a 2D problem, resorting to higher resoluti
may become impossible, and therefore our coordinate tra
formation could do the job. Maybe this transformation cou
even be of avail in nonlinear evolutions, although it is n
that straightforward to implement, since there is no fix
background model with a static profile of the sound speed
possibility is to view Eq.~78! as a dynamic coordinate con
dition that depends on the actual profile of the sound spee
every instance of time.
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