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Excitation of neutron star oscillations by an orbiting particle
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The excitation of neutron stars is expected to be an important source of gravitational radiation. Therefore it
is of fundamental importance to investigate mechanisms that trigger oscillations in neutron stars in order to
characterize the emitted radiation. We present results from a numerical study of the even-parity gravitational
radiation generated from a particle orbiting a neutron star. In contrast to previous calculations performed in the
Fourier domain, we use the direct time evolution of the perturbation equations. We focus our investigation on
those conditions on the orbital parameters that favor the excitation ofw modes. We find that for astrophysically
realistic conditions, there is practically now-mode contribution to the emitted radiation. Only for particles with
ultrarelativistic orbital speeds>0.9c does thew-mode significantly contribute to the total emitted gravitational
energy. We also stress the importance of setting consistent initial configurations.
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I. INTRODUCTION

Neutron stars as a source of gravitational radiation h
been under investigation for over 30 years, with the foun
tion developed by the work of Thorne and Campolattaro@1#.
The radiation emitted by an excited nonrotating neutron
basically consists of a superposition of the characteristic
cillatory modes of the star@2–4#. Those modes fall into two
categories. One class is spacetime modes, such as tw
modes and the trapped modes for very compact star.
other class consists of fluid modes, such as thef mode and
thep modes, which also exist in Newtonian stars. Becaus
the emission of gravitational waves, both types of modes
damped, with the spacetime modes much stronger than
fluid modes.

Recent studies of the time evolution of these oscillat
modes@5,6# have shown that generic, but somewhat unphy
cal, initial data can excite the firstw mode, thef mode, and a
few p modes. However, the strength of these modes depe
crucially on the particular choice of initial data. Conformal
flat initial data, for instance, have the effect of almost co
pletely suppressing the excitation ofw modes@7#, whereas
the f mode is generally present. Work by Andersson a
Kokkotas @8# shows that, by extracting the frequencies a
damping times of the firstw mode and thef mode, one could
in principle determine physical parameters of the neut
star such as mass, radius, and even the equation of stat
course, the success in the determination of such phys
parameters will depend on the particular modes presen
the signal and the noise level.

The issue of interest for the work in this paper is wheth
astrophysically motivated initial neutron star perturbatio
are able to excite thew modes, so that accurate determinati
of the mode parameters could be possible. One of the m
likely events that may excite strong oscillations is the bi
of the neutron star. However, a study of this process wo
require a rather complete understanding of the collapse o
0556-2821/2001/63~6!/064019~16!/$15.00 63 0640
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progenitor star within the full nonlinear theory of gener
relativity. The alternative is to study astrophysical syste
involving neutron star oscillations that can be treated us
perturbation theory. A system that allows such an appro
and, at the same time, could be viewed as an approxima
to a realistic astrophysical system is that of a ‘‘small’’ pa
ticle orbiting a neutron star. Here small is to be understood
the sense that the massm and size of the particle are muc
smaller than the massM and radiusR* of the neutron star.
Under this approximation, the particle moves along a geo
sic in the spacetime generated by the neutron star, cau
metric perturbations that propagate and eventually excite
neutron star. Of course, in principle those gravitational p
turbations in turn would cause deviations of the particl
trajectory; however, these back-reaction effects are of sec
order and will therefore be neglected.

A possible justification of our approach comes from t
observations of quasi periodic oscillations in the Four
spectra of two low mass x-ray binaries. Recent models p
posed to explain this phenomenon@9,10# suggest the exis-
tence of massive blobs orbiting on slightly eccentric orbits
the inner edge of the accretion disk around the neutron s
The frequencies deduced from these models suggest tha
blobs move at relativistic velocities and reach very sm
separations from the neutron star surface. If they are mas
enough, they might emit some non-negligible amount
gravitational radiation, in particular if their orbital frequenc
is in resonance with one of the neutron star’s fluid mod
@11#.

The specific goal of this paper is to investigate the gra
tational radiation emitted from the orbiting and scattering
a particle by a neutron star. Collisions of particles with t
neutron star@12# are not considered, because it is not clear
all how to treat the impact and subsequent merge of
particle with the neutron star. Contrary to previous studies
excitations of neutron stars by orbiting particles, we perfo
our calculations in the time domain instead of the frequen
©2001 The American Physical Society19-1
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domain @13–15#. In particular, we use the linearize
Arnowitt-Deser-Misner ~ADM !-formalism @16#, which is
naturally adapted for the numerical initial value proble
The relevant equations have been derived in Ref.@6#, which
we shall refer to as paper I. Considering the dynamics in
time domain has as a consequence that we are force
‘‘smooth out’’ the particle; that is, thed functions in the
sources of the equations due to the presence of the pa
are approximated by Gaussians. We show, however, tha
model of the particle is self-consistent and convergent. A
other important issue is the prescription of appropriate ini
data that satisfy the constraints.

This paper presents the first attempt to obtain the emi
oscillation spectrum using the direct time evolution. Th
might be viewed as a first step towards the much more
volved task of computing the spectrum for a particle orbiti
or being scattered by a rapidly rotating neutron star. To
this in the frequency domain seems to be an almost imp
sible enterprise, for it is at present still unclear how to
appropriate boundary conditions at infinity. Yet, it is qu
straightforward in the time domain, once an appropriate e
lution code is available.

A further benefit from a time evolution is that, in prin
ciple, one obtains the whole spectrum in a single run. As
shall describe later in the paper, there are also certain d
backs and difficulties associated with this method, for
stance, one has to extract the wave form at a finite dista
from the neutron star. Moreover, the particle can cross
location, which may result in an unwanted distortion of t
wave form. However, if one is mainly interested in the Fo
rier spectrum, these effects do not have any negative in
ences.

The paper is organized as follows. In Sec. II, we pres
the equations to describe the unperturbed configuration
its perturbations, as well as the method to treat the orbi
particle as a perturbation of the background spacetime. S
tion III deals with the numerical approximation of the pa
ticle terms in the equations. In Sec. IV, we outline the pro
lems with choosing appropriate initial data, and, by referr
to the flat space problem, we give an approximate presc
tion of ‘‘good’’ initial data. In Secs. V and VI, we presen
and discuss our numerical results. Details concerning
derivation the particle terms can be found in the Append
We adopt the same notation as in paper I, in particular we
G5c51; Greek indices run from 0 to 3 and Latin indice
from 1 to 3.

II. FORMULATION OF THE PROBLEM

The energy-momentum tensorT mn of a point particle with
massm is given by

T mn5mE d (4)
„xk2Xk~t!…umundt

5m
UmUn

Utr 2
d„r 2R~ t !…d„f2F~ t !…d„cosu2cosQ~ t !…,

~1!
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whereUm is the 4-velocity of the particle

Um5
dXm

dt
, ~2!

andt the particle’s proper time along its trajectoryXk(t).
We now orient the coordinate system in such a way t

the particle’s orbit coincides with the equatorial plain of t
neutron star (Q5p/2). In addition, the particle’s coordinat
time T is identical with the time coordinatet of the spacetime
in which it moves. Therefore we will uset to parametrize the
path of the particleXm(t)5@ t, R(t), p/2,F(t)#.

If we write the spherically symmetric background metr
of the neutron star in the following form:

ds(0)
2 52e2ndt21e2ldr21r 2~du21sin2udf2! ~3!

we find from the geodesic equationsDUm/dt[UnUm
;n50

dt

dt
5e2lE, ~4a!

dR

dt
56FE22e2nS 11

L2

R2D G 1/2

, ~4b!

dF

dt
5

L

R2
, ~4c!

whereE and L are the energy and angular momentum p
unit mass of the particle, respectively. Of course, the part
is moving in the region outside of the neutron star, theref
the spacetime is described by the Schwarzschild metric w

e2n5e22l512
2M

r
, ~5!

whereM is the gravitational mass of the neutron star. We c
use Eq.~4a! to eliminate the proper timet from Eqs.~4b!
and ~4c!:

dR

dt
56e2nF12

e2n

E2 S 11
L2

R2D G 1/2

, ~6a!

dF

dt
5e2n

L

R2E
. ~6b!

Equations~6a! and~6b! can be used to replace the quantiti
v r[dR/dt and vf[dF/dt in the source terms of the par
ticle. However, we also have to explicitly solve them for t
particle’s trajectory coordinatesR(t) and F(t), since we
need those coordinates in thed functions d„r 2R(t)… and
d„f2F(t)….

To model the neutron star, we use a polytropic equat
of statep5keG with G52 andk5100 km2, which is a quite
common choice. The equations governing the stellar osc
tions are derived in paper I. After expansion in Regg
Wheeler tensor harmonics, these equations can be gro
9-2
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EXCITATION OF NEUTRON STAR OSCILLATIONS BY . . . PHYSICAL REVIEW D63 064019
into two families, one describing the axial perturbations a
the other describing the polar perturbations.

In the exterior region, we now have to incorporate t
source terms due to the particle into the perturbation eq
tions. For that purpose, the energy-momentum tensor of
particle has to be expanded in tensor harmonics. The de
tion of this expansion is given in the Appendix. There is
slight inconvenience created by the fact that the perturba
equations are expanded using the Regge-Wheeler harm
@17#, which do not form an orthonormal set, whereas
energy-momentum tensor of the particle is expanded u
the orthonormal harmonics given by Zerilli@18#. However,
the conversion is straightforward.

Even though the main focus will be on the polar pert
bations, we also present the axial equations, since they a
simple. The only dynamical quantities are one metric co
ponentV4 and two extrinsic curvature componentsK3 and
K6. Here and in the following, it should be always kept
mind that the perturbation variables and the source term
the particle carry indicesl andm, even though we omit them
for the sake of notational simplicity. In addition, we use t
prime to denote derivatives with respect to ther coordinate.

With the inclusion of the particle terms, the evolutio
equations for those quantities read in the exterior~see paper
I!

]V4

]t
5e4nF]K6

]r
12S n82

1

r DK6G2e2n K3 , ~7!

]K3

]t
5

l ~ l 11!22

r 2
V4216p e2nt7 , ~8!

]K6

]t
5

]V4

]r
28p t10. ~9!

The momentum constraint relates the extrinsic curvature
efficients to the particle’s source term via

]K3

]r
1

2

r
K32

l ~ l 11!22

r 2
K6516p e2l t4 . ~10!

For completeness, we also list the source terms of the
ticle

t45e2n
mL

r 2l ~ l 11!
d„r 2R~ t !…

]

]Q
Ylm* S p

2
,F~ t ! D , ~11!

t75e2l
mL

r 2l ~ l 11!
v r d„r 2R~ t !…

]

]Q
Ylm* S p

2
,F~ t ! D ,

~12!
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2immL2

r 2E l~ l 11!~ l 21!~ l 12!
d„r 2R~ t !…

3
]

]Q
Ylm* S p

2
,F~ t ! D . ~13!

For radial infall,L50, and all source terms vanish. Henc
in this case the radiation is of pure even parity.

Let us now turn to the polar perturbations. Here, we ha
to use some caution in including the particle terms. From
ADM split, we see that the matter terms enter only in t

equations for the extrinsic curvature coefficientsK̂ i . In the
Regge-Wheeler gauge, we are only left with equations

the coefficientsK̂1 , K̂2, andK̂5. In paper I, we showed tha

we have to choose initial data withK̂450. Without the par-
ticle, the evolution equations then guaranteed the vanish

of K̂4 for all times. However, in the presence of the partic

this is not true anymore, sinceK̂4 satisfies the following
evolution equation:

]

]t
K̂4528p t8 . ~14!

This means that during the evolutionK̂4 will be become
nonzero, even if it was set to zero initially. A nonvanishin
K̂4 implies nonzero metric componentsT̂1 and V̂3; this vio-
lates the Regge-Wheeler gauge condition. A solution is
choose a different lapse function perturbationa. If we pick

a52
1

2
enS T

r
1rS116p t8DYlm , ~15!

the last term exactly cancels the right-hand side of Eq.~14!,
and the vanishing ofK̂4 and therewithT̂1 and V̂3 is, again,
guaranteed.

The remaining metric quantities are expanded in the sa
way as in paper I:

b i5~e2lK2 , 0, 0!Ylm , ~16!

hi j 5S e2lS T

r
1rSD 0 0

0 rT 0

0 0 r sin2 T

D Ylm , ~17!

and the expansion of the extrinsic curvature reads
9-3
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ki j 52
e2n

2r S e2lK1 2re2lK2

]

]u
2re2lK2

]

]f

! r 2~K522K2! 0

! 0 r 2 sin2u~K522K2!

D Ylm . ~18!
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In paper I, we have shown that it is possible to write t
evolution equations as a set of two coupled wave equat
only in terms of the metric componentsS and T. With the
inclusion of the particle terms those evolution equations r
in the exterior region

]2S

]t2
5e4nF ]2S

]r 2
16n8

]S

]r
1S 4~n8!222

n8

r
2e2l

l ~ l 11!

r 2 D S

14
n8

r 2 S n82
3

r DT1
16p

r
P1G , ~19!

]2T

]t2
5e4nF ]2T

]r 2
12n8

]T

]r
1S 2

n8

r
2e2l

l ~ l 11!

r 2 D T

22 S116p P2G , ~20!

where theP1 andP2 denote the source terms of the partic

P15t8922 t681S 5 n82
3

r D t881t522S 3 n82
1

r D t6

12Fn8S n82
6

r D1
2

r 2G t82
e2l

r 2
t9 , ~21!

P25t8822 t612S n82
1

r D t81
e2l

r
t92

r

2
e2l t, ~22!

with the t i given in the Appendix. Here we have made use
the relations~5! and m852n8 to simplify the equations a
little. In the interior we use the evolution equations~49! and
~58! from paper I.

Of course, the metric perturbations in the exterior can a
be completely described by the Zerilli equation@Eq. ~61! of
paper I#, but now with an additional source termSZ :

]2Z

]t2
5

]2Z

]r
*
2

1V~r !Z1SZ . ~23!

In terms ofS andT, the Zerilli functionZ is given by

Z52
2e2n

L l ~ l 11! S 2 rT81
2M2r @21 l ~ l 11!#

r 22M
T22 r 2SD ,

~24!

and the source termSZ reads
06401
ns

d

f

o

SZ5216pe4n
m

r 2EL~n11!
H e2n~L21r 2!d8~r 2R!

1F3M S 114
E2

L D2r ~n11!22ime2mv rLE

1
L2

r 2n
@rn~m22322n!2M ~322n23m2!#G

3d~r 2R!J Ylm* , ~25!

where 2n5 l ( l 11)22 andL52n16M /r . In addition, we
have three constraint equations, namely the Hamilton
constraint, which now reads

T91n8T82rS82S 5
n8

r
1e2l

l ~ l 11!

r 2 D T

2S 2rn8121
1

2
e2ll ~ l 11! DS

528pe2l
mE

r
d„r 2R~ t !…Ylm* , ~26!

and two momentum constraints

rK 582
1

2
e2l l ~ l 11! K22r 2K2~rn811!K5

58pe2mmEv r d„r 2R~ t !…Ylm* , ~27!

rK 282r 2K22 K5516pe2n
immL

rl ~ l 11!
d„r 2R~ t !…Ylm* . ~28!

Notice that the quantityK2 appears in Eqs.~27! and~28! but
not in the evolution equations. However, we can dispose o
by differentiating Eq.~27! with respect tor and using Eqs.
~27! and~28! to eliminateK2 andK28 . The resulting equation
is then second order inK5 and reads

K591n8K582rK 82S 5
n8

r
1e2l

l ~ l 11!

r 2 D K5

2S 2rn8121
1

2
e2ll ~ l 11! DK

58p
m

r
@e2lv rEd8„r 2R~ t !…1 imLd„r 2R~ t !…#Ylm* .

~29!
9-4
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EXCITATION OF NEUTRON STAR OSCILLATIONS BY . . . PHYSICAL REVIEW D63 064019
It should be noted that this equation also follows from tak
the time derivative of the Hamiltonian constraint~26! and
taking into account thatṠ5K and Ṫ5K5.

As usual, the initial data must satisfy the constraint eq
tions. Unfortunately, there is no unique way to solve tho
equations. This is due to the fact that to a particular solut
of the inhomogeneous equations, we can always add a s
tion of the homogeneous equation, which would corresp
to adding some arbitrary gravitational waves. The problem
finding the ‘‘right’’ initial data that represent only the pe
turbations which are due to the presence of the particle
which do not contain any additional radiation will be di
cussed in more detail in Sec. IV.

For radial infall of a particle from rest,v r(t50)50 and
L50, and thereforet25t350. Thus the momentum con
straint ~29! can be trivially satisfied by setting the extrins
curvature variables to zero. This situation corresponds
time symmetric initial data. We then are left with solving th
Hamiltonian constraint~26!. Of course, a particle falling
from rest would fall radially towards the neutron star a
eventually hit its surface. Since we want to avoid such
impact, we have to give the particle some angular mom
tum. In addition, we want to consider different initial radi
velocities, which means that we have to solve also the m
mentum constraint~29!.

III. NUMERICAL IMPLEMENTATION OF THE
PARTICLE

The presence of a particle in the calculations introdu
source terms in the equations that require the explicit fo
of the spherical harmonicsYlm . The perturbation equation
without particle are degenerate with respect tom, since the
background metric is spherically symmetric. However,
particle breaks this symmetry, and one is forced to cons
the variousm cases. Fortunately, we do not have to consi
all possible values ofm for a given value ofl since for
negativem the spherical harmonics just undergo sign chan
and phase shift@Ylm* 5(21)m Yl ,2m#. The advantage of put
ting the particle in the equatorial plane (Q5p/2) is that, in
the even parity case, we only have to deal with multipo
with m5 l , l 22, . . . , the remaining ones (m5 l 21, l
23, . . . ) have odd parity. Since the evolution code hand
only real valued perturbations, we have to treat the real
imaginary parts of the spherical harmonics separately.
nally, all the equations will be solved on a finite grid, hen
we have to approximate thed function by a narrow Gaussia

d„r 2R~ t !…'
1

sA2p
e2„r 2R(t)…2/2s2

, s small. ~30!

To demonstrate the validity of this approximation, we ha
to ensure the convergence of the solution fors→0. This can
be done in two different ways. One can look at the conv
gence of the waveforms that are obtained in the evolution
one can monitor the violation of the constraints. A possi
way do to so is to monitor the following quantity:
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I 5
1

8p mE Ylm*
E re2n@ left-hand side of Eq.~26!#dr,

~31!

where the domain of integration is the region outside
neutron star. In the limits→0, it should hold thatI 51
throughout the whole evolution. Numerically, we cannot ta
this limit with a fixed grid size, since, eventually, we cann
sufficiently resolve the Gaussian. To check the converge
we decrease boths andDx by keeping the ratios/Dx con-
stant throughout the sequence. By consecutively doub
the resolution and halvings, we find thatI 21 approaches
zero with second order convergence. For the numerical e
lutions, we will use a value ofs/Dx50.15, which provides a
suitable resolution of the Gaussian and its derivatives.

The boundary conditions used are described in detai
paper I. At the outer boundary we use the outgoing radiat
condition. Any reflections travelling inward are too small
disturb the wave signal.

There is still a subtle point. In deriving the source term
~see the Appendix!, we have tacitly transformed the partic
coordinateR into the spacetime coordinater, since the pres-
ence of thed-function makes a distinction unnecessa
However, in the evolution equations we have to take deri
tives of the source terms with respect tor but not with re-
spect toR, and therefore we would obtain different sour
terms if we had not changed theR’s into r ’s. As an example
consider the following two source terms:

S1~r !5 f ~r !d~r 2R! ~32!

and

S2~r !5 f ~R!d~r 2R!, ~33!

which are equivalent because of the presence of thed func-
tion. But if we now differentiateS1 andS2 with respect tor,
we obtain for S2 just the derivative of thed function,
whereas forS1 we also have to differentiatef. Analytically
this does not make a difference, but if we approximate
d-function by a Gaussian, then the two expressions forS1
andS2 and their respective derivatives are different. To ga
accuracy, we should have kept terms such asr 2df/dtd(r
2R) asLr 2/R2d(r 2R) and not just asLd(r 2R). However,
for the numerical evolutions the actual difference is neg
gible, so we have assumed the source terms to be of the
of S1.

IV. SETTING UP THE INITIAL CONDITIONS

Any construction of initial data for a particle initially lo
cated at (R0 ,F0) with initial radial velocityv r and angular
momentumL involves solving the Hamiltonian constrain
~26!. Usually, we set the initial angleF0 to zero. However,
Eq. ~26! contains two quantitiesS and T. This means that
there is some freedom in choosing the initial values. Ob
ously, the simplest way to solve the constraint is to set on
the variables to zero and solve for the remaining one.
can, e.g., either set the quantityT to zero and solve forS, or
9-5
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JOHANNES RUOFF, PABLO LAGUNA, AND JORGE PULLIN PHYSICAL REVIEW D63 064019
do it the other way and setS50 and solve forT. In the
former case, we would have to solve a first order equation
S, and the latter case would lead to a second order equa
for T. In Fig. 1 we show both possible sets of initial data f
a particle being initially at rest atr 0580 km. Actually, here
and in the following, instead ofS andT, the plots show the
quantitiesrS andT/r , since from the expansion of the metr
~17!, it is clear that only those expressions allow direct co
parisons.

To assess which choice is the more natural, we consid
particle initially at rest in flat spacetime. Of course, the p
ticle will remain at rest, since there is no matter around t
could attract the particle. Thus, the perturbation of the spa
time that is created by the particle will be stationary. Hen
the equations of motion for the metric perturbationsS andT
will read ]S/]t50 and]T/]t50. From these conditions an
from the Hamiltonian constraint, it then follows thatShas to
vanish.

Of course, in the presence of the neutron star, those a
ments do not hold any more, andS[0 will not be the right
choice of initial data, but if the particle is initially far enoug
away from the neutron star, the error in settingS50 should
be very small. This error actually corresponds to an introd

FIG. 1. Profile of the initial values for both kinds of initial data
The upper graph showsrS0 when T050. The lower graph shows
T0 /r when S050. Note, thatS0 exhibits a discontinuity at the
particle’s location whereasT0 is continuous.
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tion of an extra amount of gravitational radiation that is n
at all related to the radiation that is emitted when the part
moves through the spacetime. This extra amount will star
propagate during the evolution and eventually hit the neut
star and thereby cause it to oscillate. However, if we put
particle far enough away from the neutron star, the stren
of the induced oscillation should be small compared to
ones excited when the particle comes close to the neu
star.

In Figs. 2 and 3, we show the evolution of the two po
sible choices of initial data for a particle falling from res
The upper graphs show the evolution ofS andT in the case
T050, whereas the lower graphs show the evolution oS
and T with S050. The differences are obvious. The initi
shape ofT in the latter case is almost unchanged during
evolution, whereasS starts to acquire its right shape.~By

FIG. 2. Evolution ofrS. The upper graph shows the evolutio
for T050, in the lower graphS050. In the first case the graph
shows a burst of gravitational waves that propagate both in
outwards. The ingoing pulse gets reflected at the origin and tra
back outwards again. In the other case, a wave originating from
interior of the neutron star travels outwards. Note the difference
the amplitudes of both cases.
9-6
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EXCITATION OF NEUTRON STAR OSCILLATIONS BY . . . PHYSICAL REVIEW D63 064019
‘‘right shape’’ we mean the radial profiles ofS and T after
the superfluous waves, stemming from the wrong initial da
have been radiated away.! In the other case, we can see in t
evolution ofS a huge burst of radiation propagating in bo
directions. In the same timeT is acquiring its right shape
This clearly demonstrates that setting initiallyS050 is by far
the better choice.

In Fig. 4, we show the evolution of the Hamiltonian co
straint where we evaluate the left-hand side of Eq.~26!,
which monitors the ‘‘path’’ of the particle. In both cases th
graphs agree. Lastly, in Fig. 5, we also show the metric fu
tions S andT at the end of the evolution. This figure clear
shows that, regardless of the chosen initial data, the funct
S andT will adjust to their proper values after having rad
ated away the superfluous initial wave content.

We should note that we cannot escape the whole amb
ity of how to choose the variablesS and T by using the
Zerilli formalism, instead. There, any regular initial data a

FIG. 3. Evolution ofT/r . The upper graph shows the evolutio
for T050, in the lower graphS050. In the first case, we can se
the built up ofT which is disturbed by the reflected part of the wa
that was sent out by the particle. The second case clearly shows
T basically has its right shape right from the beginning.
06401
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valid initial data, since by construction the Zerilli functio
always satisfies the constraint equations. Hence, we ca
seea priori whether or not the chosen initial data will hav
additional radiation content.

If the particle is initially not at rest, in addition to solvin
the Hamiltonian constraint~26!, we also have to solve the
momentum constraint~29!. Of course, as with the Hamil
tonian constraint, we are again faced with the same kind
ambiguities in solving that equation.

Now, for a particle being initially at rest or very slow, o
for circular orbits, we do not have to really worry about wh
kind of initial data we choose. Since any initial gravitation
wave pulse travels with the speed of light and is theref
much faster than the particle, it will long be gone when t
particle comes close to the star. Of course, there will be
some radiation present even at late times due to back s
tering processes, but this amount is by several orders of m
nitudes smaller than the gravitational field of the partic
itself and can therefore be neglected.

However, if the particle’s initial velocity is close to th
speed of light, then the particle ‘‘rides’’ on its own wav

hat

FIG. 4. Evaluation of the Hamiltonian constraint during the ev
lution. Again, the upper graph shows the evolution forT050, in the
lower graphS050. The Gaussian shape of the particle is clea
visible and has been chosen to be quite broad for a better visua
tion. The particle is initially at rest and starts falling towards t
neutron star.
9-7
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pulse, and it will be not clear any more whether the exc
tion of some particular modes of the neutron star is due
the particle itself or due to the initial burst coming fro
inappropriate initial data. If the particle is slow enough, tho
two effects can clearly be distinguished. For very fast p
ticles, this is not possible any more. This is particularly bo
ersome given that a pulse of gravitational waves will p
dominantly excitew modes. If we have a wave signal from
particle that grazes a neutron star with almost the spee
light, and we find that, indeed, there are some traces ofw
mode, it would be very difficult to state that the excitation
w modes is a ‘‘real’’ signal and not an artifact due to t
inappropriate initial data.

To obtain an approximate answer, we again turn to the
space case. In this limit, the equations governing the ev
tion of SandT reduce to two simple coupled wave equatio
with a source term for each that takes into account the p
ence of the particle:

]2S

]t2
5

]2S

]r 2
2

l ~ l 11!

r 2
S116p mE

v2

r 3
d„r 2R~ t !…Ylm* ,

~34!

]2T

]t2
5

]2T

]r 2
2

l ~ l 11!

r 2
T14 S28p

m

rE
d„r 2R~ t !…Ylm* .

~35!

Herein, we have omitted the terms proportional toL, since
we let the particle move on a radial trajectory with const
velocity v, hence it isL50 and

R~ t !5R01vt, ~36!

with R0 being the initial location of the particle. Furthe
more, the normalized energyE of the particle is just given by
the Lorentz factor

E5
1

A12v2
. ~37!

It is interesting to note that the wave equation forS is totally
decoupled from the one forT. However, the solutions of Eqs
~34! and~35! have to satisfy the flat space Hamiltonian co
straint which reads

]2T

]r 2
2

l ~ l 11!

r 2
T2r

]S

]r
2S 21

1

2
l ~ l 11! DS

528p
mE

r
d„r 2R~ t !…Ylm* . ~38!

We now seek an exact solution of Eq.~34! that obeys the
right boundary conditions at the origin and at infinity. On
found, we may use the flat space Hamiltonian constraint~38!
to numerically compute the appropriateT. We state that a
solution for Eq.~34! is given by the following series ansat
06401
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S~ t,r !5AS (
i 50

ai

r 2i 1 l 11

~R01vt !2i 1 l 13
Q~R01vt2r !

1(
i 50

bi

~R01vt ! l 22i 22

r l 22i
Q~r 2R02vt !D ,

~39!

whereQ is the Heaviside function satisfying

Q~x!5H 0, x,0,

1, x>0.
~40!

Continuity atr 5R01vt requires that

(
i 50

ai5(
i 50

bi . ~41!

The overall amplitude will be determined byA, hence we
deliberately may set

FIG. 5. Plot of rS and T/r at the end of the evolution of the
different initial data. The artificial radiation of the initial data ha
been radiated away, and both variables have assumed their ‘‘rig
values that are independent of the initial data. The small differe
in the shapes ofS is due to the fact that the initial data withT0

50 contain much more radiation, which excites the neutron star
pulsations, which in turn disturb the profile ofS. The variableT is
mostly unaffected by this.
9-8
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FIG. 6. Initial data for a particle with different initial radial velocitiesv, whereS is given by Eq.~39! andT is obtained by solving the
Hamiltonian constraint~26!. For small velocities,T/r dominatesrS, whereas for ultrarelativistic velocities,rS dominatesT/r .
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i 50

ai5(
i 50

bi 5 1. ~42!

The amplitudeA and the coefficientsai andbi can be found
by plugging our ansatz~39! into Eq. ~34!. For A we find

A5
16p mE3v2 Ylm*

2 l 1112(
i 50

i ~ai2bi !

, ~43!

and the coefficientsai andbi are determined by the follow
ing recursion relations:

ai 115ai v2
~2 i 1 l 13!~2 i 1 l 14!

2~ i 11!~2 i 12 l 13!
, ~44!

bi 115bi v2
~ l 22 i 22!~ l 22 i 23!

2~ i 11!~2 i 22 l 11!
. ~45!

It is interesting to note that, while the series inai never
terminates, the series inbi always terminates because one
06401
f

the two factors in the numerator will become zero for somi.
The series inai converges if and only ifuvu,1.

Of course, these solutions forS and T are not valid any
more if we put the particle into the curved spacetime beca
they now would violate the curved spaced constraints~26!
and~29!. However, we can still use Eq.~39! as a prescription
for S and then use the curved space Hamiltonian constr
~26! to solve for T. In Fig. 6, we show the thus obtaine
initial data for a particle located atR05500 km with differ-
ent initial velocities. Forv50 it is rS50 but the amplitude
of rS grows rapidly when the particle’s velocity approach
the speed of light, whereas the peak ofT/r slightly de-
creases. In the ultrarelativistic limitrS totally dominates
over T/r .

For a particle initially not at rest, we also need initi
values forK andK5. In this case, we can obtainK from K
5dS/dt and then use the momentum constraint~29! to com-
pute K5. As long as the particle does not have any angu
momentum and is far away from the neutron star, the t
obtained initial values should be a very good approximat
for a boosted particle in a Schwarzschild background. Th
9-9
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JOHANNES RUOFF, PABLO LAGUNA, AND JORGE PULLIN PHYSICAL REVIEW D63 064019
are exact initial data insofar they do not violate the constra
equations. If the particle has a large angular momentum,
cannot neglect any more theL terms, and our approximatio
should break down. However, we are mainly interested
trajectories which come very close to the neutron star, a
hence, have only small angular momentum compared to
linear momentum. In this case the above prescription
yields good initial data.

V. NUMERICAL RESULTS

To compare the code with known results, we first consi
a particle in a circular orbit around the neutron star and co
pute the radiated energy at infinity. Numerically, this can
accomplished by evaluating the Zerilli function at some la
distance. The radiated power for a particular pair ofl andm
can then be computed from@19#

dElm

dt
5

1

64p

~ l 12!!

~ l 22!! UdZlm

dt U2

. ~46!

Cutleret al. @20# have numerically computed the normalize
gravitational power (M /m)2 dElm /dt radiated by a particle
orbiting a Schwarzschild black hole for various values ofl ,
m andR0 /M . In Table II of Ref.@20#, they show the multi-
pole components forR0 /M510. To compare the output o
our code to those results, we chose the mass of the neu
star to beM51.99 km and the orbit of the particle the be
R0519.9 km in order to obtain the ratio ofR0 /M510. The
mass of the particle was set tom51 km. In Fig. 7, we show
dZlm /dt as a function of time extracted atr 5500 km for
l 5m52. After some wave bursts that come from the ina
propriate choice of initial data, we see that the signal is
riodic with a frequency of twice the orbital frequency of th
particle. The amplitude is about 0.0076 which correspond
a radiated power of (M /m)2 dE22/dt55.4631025 which is
in excellent agreement with Cutleret al. who obtain a value
of (M /m)2 dE22/dt55.38831025. The slightly higher
value of our result may be due to the fact that atr 5500 km

FIG. 7. Evolution of the real and imaginary parts ofŻ22 ex-
tracted atr 5500 km. After the initial radiation bursts, the wav
forms show periodical oscillations with twice the orbital frequenc
The amplitude is about 0.0076, which corresponds to a radia
power of (M /m)2 dE22/dt55.4631025.
06401
t
e

n
d,
he
ill

r
-

e
e

on

-
-

to

the Zerilli function is still somewhat off its asymptotic valu
which will be a little bit smaller. And, of course, a neutro
star is not a black hole, since its oscillation spectrum is qu
different. But as long as the particle does not excite
eigenmodes in a significant way, i.e., as long as the partic
orbital frequency~multiplied by m) is not in resonance with
one of the eigenmodes, the emitted radiation should be q
similar to the black hole case. And, indeed, we find that
agree with all the polar and axial modes compiled in Table
of Cutler et al. within a few percent, only for the casel 53
and m51 we find the radiated power to be 5.9310210 in-
stead of their value of 5.7131028.

If the orbital frequency is in resonance with one of t
eigenmodes, the emitted radiation can drastically incre
@11#. It is clear, however, that only the low-frequency mod
such as thef mode can be excited by this mechanism, t
frequencies of thew modes are much too high to be consi
erably excited. In addition, due to their strong damping, th
is no sharp resonance for thew modes at all, it is only for the
weakly damped fluid modes that resonant mode excita
can occur.

Therefore, the only way to possibly excitew modes are
very eccentric orbits, where the periastron is very close to
surface of the star, or scattering processes with very sm
impact parameters. The investigation of the latter is the m
objective of this work. Before presenting the results,
should point out some problems that are related with the
of an evolution code.

Ideally, one should extract the wave form atr 5`, which
is clearly not possible on a finite grid. We have to record
wave form at some finite distance from the star. But t
means that if the particle moves on an unbounded orb
will eventually cross the location of the observer who will b
located on a finite radiusr obs. This happens because in ou
formalism we have decomposed the particle into its ‘‘mu
pole shells.’’ Since in this paper we only pickl 52, we
should rather speak of a quadrupole shell than of a parti
Of course, the particle~or shell! is always slower than the
propagation speed of the gravitational waves, hence the
server will see the wave signal first before the parti
crosses atr obs. However, when the particle is very fast an
the observer is not far enough away from the neutron s
then the signal and the particle will cross the observer alm
at the same time. That means that the signal will be a su
position of the ‘‘real’’ gravitational wave signal and the in
fluence of the gravitational field of the particle itself. Th
farther the observer moves outwards the better the separ
of the two components in the signal can be made. Furth
more, the amplitude of the signal remains constant for
creasingr, whereas the influence of the particle decrease
least as 1/r . The effectiveness of this undesired influence
the particle strongly depends on the actual excitation stren
of the neutron star oscillations. Smaller turning pointsr t of
the particle will induce oscillations with higher amplitude
and thus make the influence of the particle undetectable.
large r t the induced fluid oscillations are so weak that th
will totally be buried within the gravitational field of the
particle. Figure 8 drastically shows the influence of the pr
ence of the particle on the observed wave form. Here,

.
n
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EXCITATION OF NEUTRON STAR OSCILLATIONS BY . . . PHYSICAL REVIEW D63 064019
compare the signals that result for two scattering orbits w
r t510 km andr t550 km. One can also see that the effect
much more pronounced in the wave form ofT. But regard-
less of this unwanted feature it is still possible to infer qua
tative statements from the obtained wave signals.

Unfortunately, the influence of the source terms is ev
much worse for the Zerilli function, which should be used
present the results, since it is a gauge invariant quantity
directly related to the radiated power. At the particle’s loc
tion the Zerilli function is discontinuous, which is not th
case for our variablesS and T. But since we are mainly
interested in assessing which modes are excited by the
tering process, we do not have to compute the Zerilli fu
tion. It is enough to just examine the wave forms ofSandT.

In Figs. 9–11, we show the wave forms ofS and T for
different initial radial velocitiesv0 and different values of
the radius of the turning pointr t . In Figs. 12–14, we show
the associated power spectra.

FIG. 8. Comparison of the excitation strengths for the two d
ferent turning radiir t510 km ~solid line! and r t550 km ~dashed
line!. The wave form ofS ~upper graph! for r t510 km is totally
unaffected by the presence of the particle, whereas forr t550 km,
the gravitational field shifts the amplitude of the signal to high
values. ForT ~lower graph!, this effect is much more pronounce
and can already be detected forr t510 ms. Forr t550 km, the
oscillations of the neutron star are totally buried in the gravitatio
field of the particle. Att510 ms the particle crosses the observ
who is located atr obs51000 km.
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For all cases considered, the wave forms always have
same overall features. The first part of the signal consist
an increase in the amplitude that results of the particle en
ing the strong gravitational field of the neutron star. After
few irregular oscillations, which correspond to the partic
curving around the neutron star, the final signal will be dom
nated by the quasinormal ringing of the neutron star, wh
is confirmed by Fourier analyzing the signal.

For slow particles the power spectrum shows one br
peak around the frequency that corresponds to the ang
velocity of the particle at the turning pointr t and some little
sharp peaks that correspond to the fluid modes of the neu
star (f mode and lowestp modes!. From the wave forms it is
clear that the excitations strengths of the modes decre
rapidly as the turning pointr t of the particle moves farthe
away from the neutron star.

When the particle reaches the speed of light, the pict
changes drastically. For initial velocitiesv0&20.6 the ap-
pearance of thew mode becomes evident. In the ultrarelati
istic case ofv0520.97 ~Fig. 11! which corresponds toE
'4.5 it is clear that the majority share of the energy g
radiated through the firstw-mode channel. Note that in ob
taining the power spectrum of Fig. 14, we have cutoff t
initial radiation and have taken the Fourier transformat
right where thew mode ringing starts. It is interesting to se
that even if the particle’s turning point is quite far away (r t

-

r

l
,

FIG. 9. Wave forms ofS and T for the three different turning
radii r t510 km, r t520 km andr t530 km. The initial velocity of
the particle isv0520.1.
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JOHANNES RUOFF, PABLO LAGUNA, AND JORGE PULLIN PHYSICAL REVIEW D63 064019
550 km! the w mode is still visible.
All the calculations have been performed using a ste

model with central energy density ofe055.731015g cm23

which leads to a mass of 1.35 M( and radius of 7.52 km
This model is right below the maximum mass that is allow
for the polytropic equation of state withG52 and k
5100 km2. It is clear that the results will not change to
much if we change the equation of state, or if we consi
models with different masses. Only for very light neutr
stars, thew modes can become invisible again. For ultraco
pact stars, we expect the long-lived trapped modes to b
dominant part of the power spectrum.

VI. CONCLUSIONS

We have performed simulations of particles on circu
orbits as well as on scattering trajectories. The circular or
were done for code testing reasons, and we found that
radiated energies agree perfectly with those obtained by
ler et al. @20#, who looked at a particle orbiting a black hol

For the scattering orbit, we discussed the numerical d
culties associated with an evolution code. However, the
sults are accurate enough to address the issue of the ex
tion of w modes by orbiting particles. First of all, it becam
clear that in order to excite a significant amount ofw modes

FIG. 10. Wave forms ofS andT for the three different turning
radii r t510 km,r t520 km, andr t530 km. The initial velocity of
the particle isv0520.5.
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the particle’s velocity at infinity must be@0.5c. Secondly,
the excitation strength of the modes rapidly decreases as
particle’s turning pointr t increases. This is in agreeme
with the results of Ferrariet al. @13#, who report that no
significantw-mode excitation is observable. However, th
did not consider the case where the particle has an en
E@1, which is necessary if it were to excitew modes. This
was done by Andrade and Price for the axial case@15#. Here,
too, they find excitations ofw modes.

The following question now arises: Can we infer anythi
about what happens in an astrophysical event? Our res
show that the particle’s initial velocity has to be incredib
high in order to produce a significant amount ofw-mode
excitation. It is very unlikely that there exist astrophysic
events at all that could accelerate the particle~which, of
course, represents some heavy extended object, such
planet or even another neutron star! up to some significant
fraction of the speed of light. Hence, we might safely co
clude that any astrophysical scenario that might be simula
by a particle orbiting a neutron star will not produce a
detectable amount ofw modes.

A brief comment on certain models which explain th
quasi periodic oscillation Fourier spectra of two low ma
x-ray binaries seems worthwhile. Those models try to
plain the two appearing quasiperiodic frequencies by the

FIG. 11. Wave forms ofS andT for the three different turning
radii r t510 km,r t520 km, andr t550 km. The initial velocity of
the particle isv0520.97.
9-12
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EXCITATION OF NEUTRON STAR OSCILLATIONS BY . . . PHYSICAL REVIEW D63 064019
istence of massive blobs orbiting on slightly eccentric orb
at the inner edge of the accretion disk around the neutron
@9#. The higher frequency corresponds to the orbital f
quency of the blob, whereas the lower frequency is a b
frequency, which is the difference between the orbital f
quency of the blob and the rotation frequency of the neut
star. In these models the blobs are approximated by part
@10#. It is clear that these blobs move with a significant fra
tion of the speed of light, and, if they are massive enou
they might emit some non-negligible amount of gravitation
radiation, in particular if their orbital frequency is in res
nance with one of the neutron star’s fluid modes. But fro
our results it is clear that they will not be able to excite a
w modes. This statement holds as long as the blobs are
in the orbiting phase. But what happens if they eventually
the surface of the neutron star?

Our method could not be applied to this situation, but
could speculate about the possible implications. It has b
suggested that in this case there might be some signifi
excitation ofw modes. In particular, simulations of a partic
that spirals onto a ultracompact constant density star w
done by Borelli @12#, who found that, indeed, both th
trapped modes and thew modes were excited, the latte

FIG. 12. Fourier transform of the wave forms forv0520.1.
Only the f mode is significantly excited.
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much less, however, than the former. One serious drawb
of those calculations, however, was that as soon as the
ticle had hit the surface of the star, the calculation w
stopped. This lead to an overestimation of the high freque
components in the power spectrum which, of course, are
resented by thew modes. Since in this study only axia
modes were investigated, it is clear that thew modes will
always show up in the spectrum because they will not
screened by the presence of fluid modes which can happe
the polar case. Now, even in the particle limit, it is not po
sible to simulate a collision, since it not clear at all wh
happens if the particle hits the surface. Just removing i
certainly not the best way to account for the collision.

A first step, though, might be to let the particle go rig
through the neutron star without being affected by the pr
ence of the neutron star matter. If this creates strongw-mode
excitations even for particles with low initial velocities, the
one could conclude that, in a realistic scenario where
physics of the impact is included, there still might bew
modes present. Of course, in this case, it seems reasonab
infer that at least the fluid modes would be much mo
strongly excited than in a scattering event.

Of course, we have only presented results for one part

FIG. 13. Fourier transform of the wave forms forv0520.5.
Here, too, only thef mode is significantly excited.
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JOHANNES RUOFF, PABLO LAGUNA, AND JORGE PULLIN PHYSICAL REVIEW D63 064019
lar polytropic stellar model. However, it seems to be perm
sible to conclude that the same results should also, at l
qualitatively, hold for realistic equations of state.

Furthermore, our results seem to indicate that the p
ence of thew modes in the signal is somehow related w
the value ofS. We have seen that for ultrarelativistic pa
ticles the values ofrS greatly dominatesT/r . And it is only
there that we find a significant amount ofw modes. This
particular role ofSseems to be corroborated by the results
paper I, where it was shown that the occurrence ofw modes
strongly depends on the chosen initial data. It was found
for conformally flat initial metric perturbations~i.e., S050)
the evolution shows practically now modes at all. However

FIG. 14. Fourier transform of the wave form forr t510 km and
v0520.97. Here, not only thef mode but also the firstw mode are
strongly excited. In order to clearly extract the firstw mode, only
the part of the signal after 0.4 ms has been Fourier transforme
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if one takes the same initial fluid perturbation, setsT050
and solves forS, suddenly one can observe a quite lar
excitation of thew modes in the signal. This also agrees w
results in Refs.@5# and @7#.

Still, the question remains of what happens in a realis
scenario. We have excluded the possibility ofw modes ex-
citation by means of a realistic scattering process. Howe
it is not possible to relate our results to the merger proces
a binary neutron star system, since one cannot adequa
describe the system within perturbation theory. Only, if t
final object does not immediately collapse to a black hole
might wildly oscillate and emit some significant radiatio
throughw modes. It will only be through nonlinear evolu
tions that this issue might finally be settled.
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APPENDIX: THE SOURCE TERMS OF THE PARTICLE

The particle’s energy-momentum tensor~1! will be ex-
panded using the orthonormal set of tensor harmon

$@Ŷlm
A #mn%A51•••10 given by Zerilli @18#:

Tmn5(
l 50

`

(
m52 l

l

(
A51

10

t̂ A
lm@Ŷlm

A #mn . ~A1!

The coefficientst̂ A
lm can be obtained by means of the o

thogonality relation

E
S2

@Ŷlm
A #* mn@Ŷl 8m8

A8 #mn dV 5sAdAA8d l l 8dmm8 , ~A2!

where the asterisk denotes complex conjugation and

@Ŷlm
A #mn5hmkhns @Ŷlm

A #ks . ~A3!

Because of the use of the inverse Minkowsky metrichmn to
raise the indices, the inner product~A2! is not positive defi-
nite, and it issA521 for the harmonics with nonzero 0j
components (A52,3,4!.

By using the orthonormality condition~A2! we can com-
pute the coefficientst̂ A

lm through

t̂ A
lm5E

S2
@Ŷlm

A #* mnTmn dV . ~A4!

We thus obtain the following set~Ref. @21#, with some cor-
rections!:
@ tt# t̂1
lm5e4n

m

r 2

dt

dt
d„r 2R~ t !…Ylm* ,

@ tr # t̂2
lm5 iA2

m

r 2

dR

dt
d„r 2R~ t !…Ylm* ,
9-14
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F tu

tfG 5 t̂3
lm5e2n

2im

rA2l ~ l 11!
d„r 2R~ t !…

d

dt
Ylm* ,

t̂4
lm5e2n

2m

rA2l ~ l 11!
d„r 2R~ t !…S 1

sinQ

dQ

dt

]

]F
2sinQ

dF

dt

]

]Q DYlm* ,

@rr # t̂5
lm5e4l

m

r 2

dt

dt S dR

dt D 2

d„r 2R~ t !…Ylm* ,

F ru

rfG 5 t̂6
lm5e2l

2m

rA2l ~ l 11!

dt

dt

dR

dt
d„r 2R~ t !…

d

dt
Ylm* ,

t̂7
lm5e2l

2im

rA2l ~ l 11!

dt

dt

dR

dt
d„r 2R~ t !…S sinQ

dF

dt

]

]Q
2

1

sinQ

dQ

dt

]

]F DYlm* ,

F uu

uf

ff
G 5

t̂8
lm5

m

A2l ~ l 11!~ l 21!~ l 12!

dt

dt
d„r 2R~ t !…H F S dQ

dt D 2

2sin2 QS dF

dt D 2GWlm* 12
dQ

dt

dF

dt
Xlm* J ,

t̂9
lm5

m

A2

dt

dt
d„r 2R~ t !…F S dQ

dt D 2

1sin2 QS dF

dt D 2GYlm* ,

t̂10
lm5

im

A2l ~ l 11!~ l 21!~ l 12!

dt

dt
d„r 2R~ t !…sinQH F S dF

dt D 2

2
1

sin2 Q
S dQ

dt D 2GXlm* 12
dQ

dt

dF

dt
Wlm* J
-

g
e

e
ic
so
with

Xlmª2S ]

]u
2cotu D ]

]f
Ylm , ~A5!

WlmªS ]2

]u2
2cotu

]

]u
2

1

sin2u

]2

]f2D Ylm

5S l ~ l 11!12
]2

]u2D Ylm . ~A6!

Here,Ylm* ,Wlm* andXlm* are functions of the particle’s angu
lar positionQ andF parametrized by the coordinate timet,
therefore all derivatives with respect to proper timet are to
be understood as

d

dt
5

dt

dt

d

dt
5e2lE

d

dt
. ~A7!

Since the evolution equations are expanded using the Re
Wheeler harmonics, which do not form an orthonormal s
we have to convert the above coefficientst̂ A

lm into the coef-
ficients tA

lm that would result from an expansion of th
energy-momentum tensor into Regge-Wheeler harmon
Using the relationship between the different sets of ten
harmonics given in Refs.@18# and @19# we find

t1
lm5 t̂1

lm ,
06401
ge-
t,

s.
r

t2
lm5

i

A2
t̂2
lm ,

t3
lm5

ir

A2l ~ l 11!
t̂3
lm ,

t4
lm52

r

A2l ~ l 11!
t̂4
lm ,

t5
lm5 t̂5

lm ,

t6
lm5

r

A2l ~ l 11!
t̂6
lm ,

t7
lm52

ir

A2l ~ l 11!
t̂7
lm ,

t8
lm5

2r 2

A2l ~ l 11!~ l 21!~ l 12!
t̂8
lm ,

t9
lm5

r 2

A2
S t̂9

lm1A l ~ l 11!

~ l 21!~ l 12!
t̂8
lmD ,

t10
lm52

2ir 2

A2l ~ l 11!~ l 21!~ l 12!
t̂10
lm .
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We now restrict the motion of the particle to the equator
planeQ5p/2. In this case it isdQ/dt50 and sinQ51, and
we can use the geodesic equations~4a! and~4c! to substitute
all expressions containing derivatives with respect to pro
time t. Furthermore, we can obtain quite simple relations
the derivatives ofYlm* :

]

]F
Ylm* 52 imYlm* , ~A8!

]2

]Q2
Ylm* 5@m22 l ~ l 11!#Ylm* . ~A9!

This gives us a somewhat simpler set of coefficients:

t1
lm5e2n

mE

r 2
d„r 2R~ t !…Ylm* ,

t2
lm52e2l

mE

r 2
v rd„r 2R~ t !…Ylm* ,

t3
lm5e2n

immL

r 2l ~ l 11!
d„r 2R~ t !…Ylm* ,

t4
lm5e2n

mL

r 2l ~ l 11!
d„r 2R~ t !…

]

]Q
Ylm* ,

t5
lm5e6l

mE

r 2
v r

2d„r 2R~ t !…Ylm* ,

t6
lm52e2l

immL

r 2l ~ l 11!
v rd„r 2R~ t !…Ylm* ,

t7
lm5e2l

mL

r 2l ~ l 11!
v rd„r 2R~ t !…

]

]Q
Ylm* ,
06401
l

r
r

t8
lm5e2n

mL2@ l ~ l 11!22m2#

r 2El~ l 11!~ l 21!~ l 12!
d„r 2R~ t !…Ylm* ,

t9
lm5e2n

mL2@ l ~ l 11!2m221#

r 2E~ l 21!~ l 12!
d„r 2R~ t !…Ylm* ,

t10
lm52e2n

2immL2

r 2El~ l 11!~ l 21!~ l 12!
d„r 2R~ t !…

]

]Q
Ylm* ,

wherev r5dR/dt is the radial velocity of the particle. The
field equations also require the computation of the trace

T5gmnTmn5(
l ,m

tlmYlm , ~A10!

with

t lm52e2l t1
lm1e22l t5

lm2
l ~ l 11!

r 2
t8
lm1

2

r 2
t9
lm .

~A11!

Using the explicit forms of the coefficients we obtain

t lm5
m

r 2
d„r 2R~ t !…S E v r

2 e4l2E1e2n
L2

r 2E
D Ylm* ,

~A12!

and by making use of the geodesic equation~4b!, we can
reduce this expression to

t lm52e2n
m

r 2E
d„r 2R~ t !…Ylm* . ~A13!
,
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