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Excitation of neutron star oscillations by an orbiting particle
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The excitation of neutron stars is expected to be an important source of gravitational radiation. Therefore it
is of fundamental importance to investigate mechanisms that trigger oscillations in neutron stars in order to
characterize the emitted radiation. We present results from a numerical study of the even-parity gravitational
radiation generated from a particle orbiting a neutron star. In contrast to previous calculations performed in the
Fourier domain, we use the direct time evolution of the perturbation equations. We focus our investigation on
those conditions on the orbital parameters that favor the excitatiemoddes. We find that for astrophysically
realistic conditions, there is practically memode contribution to the emitted radiation. Only for particles with
ultrarelativistic orbital speeds 0.9c does then-mode significantly contribute to the total emitted gravitational
energy. We also stress the importance of setting consistent initial configurations.
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[. INTRODUCTION progenitor star within the full nonlinear theory of general
relativity. The alternative is to study astrophysical systems
Neutron stars as a source of gravitational radiation havénvolving neutron star oscillations that can be treated using
been under investigation for over 30 years, with the foundaperturbation theory. A system that allows such an approach
tion developed by the work of Thorne and Campolatfdfo  and, at the same time, could be viewed as an approximation
The radiation emitted by an excited nonrotating neutron stato a realistic astrophysical system is that of a “small” par-
basically consists of a superposition of the characteristic ogicle orbiting a neutron star. Here small is to be understood in
cillatory modes of the std2—4]. Those modes fall into two the sense that the magsand size of the particle are much
categories. One class is spacetime modes, such asvthesmaller than the madg and radiusk, of the neutron star.
modes and the trapped modes for very compact star. Thender this approximation, the particle moves along a geode-
other class consists of fluid modes, such asfthode and sic in the spacetime generated by the neutron star, causing
thep modes, which also exist in Newtonian stars. Because ofmetric perturbations that propagate and eventually excite the
the emission of gravitational waves, both types of modes araeutron star. Of course, in principle those gravitational per-
damped, with the spacetime modes much stronger than tharbations in turn would cause deviations of the particle’s
fluid modes. trajectory; however, these back-reaction effects are of second
Recent studies of the time evolution of these oscillatoryorder and will therefore be neglected.
modeq 5,6] have shown that generic, but somewhat unphysi- A possible justification of our approach comes from the
cal, initial data can excite the first mode, thef mode, and a observations of quasi periodic oscillations in the Fourier
few p modes. However, the strength of these modes dependwpectra of two low mass x-ray binaries. Recent models pro-
crucially on the particular choice of initial data. Conformally posed to explain this phenomenf®,10] suggest the exis-
flat initial data, for instance, have the effect of almost com-tence of massive blobs orbiting on slightly eccentric orbits at
pletely suppressing the excitation wf modes[7], whereas the inner edge of the accretion disk around the neutron star.
the f mode is generally present. Work by Andersson andThe frequencies deduced from these models suggest that the
Kokkotas[8] shows that, by extracting the frequencies andblobs move at relativistic velocities and reach very small
damping times of the firs¥ mode and thé mode, one could separations from the neutron star surface. If they are massive
in principle determine physical parameters of the neutrorenough, they might emit some non-negligible amount of
star such as mass, radius, and even the equation of state. @fvitational radiation, in particular if their orbital frequency
course, the success in the determination of such physicé in resonance with one of the neutron star’'s fluid modes
parameters will depend on the particular modes present ifl1].
the signal and the noise level. The specific goal of this paper is to investigate the gravi-
The issue of interest for the work in this paper is whethertational radiation emitted from the orbiting and scattering of
astrophysically motivated initial neutron star perturbationsa particle by a neutron star. Collisions of particles with the
are able to excite th& modes, so that accurate determinationneutron staf12] are not considered, because it is not clear at
of the mode parameters could be possible. One of the mostl how to treat the impact and subsequent merge of the
likely events that may excite strong oscillations is the birthparticle with the neutron star. Contrary to previous studies of
of the neutron star. However, a study of this process woul@xcitations of neutron stars by orbiting particles, we perform
require a rather complete understanding of the collapse of theur calculations in the time domain instead of the frequency
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domain [13-15. In particular, we use the linearized whereU* is the 4-velocity of the particle
Arnowitt-Deser-Misner (ADM)-formalism [16], which is
naturally adapted for the numerical initial value problem.
The relevant equations have been derived in R&f.which
we shall refer to as paper I. Considering the dynamics in the
time domain has as a consequence that we are forced #nd r the particle’s proper time along its trajectoXy (7).
“smooth out” the particle; that is, the functions in the We now orient the coordinate system in such a way that
sources of the equations due to the presence of the partictbe particle’s orbit coincides with the equatorial plain of the
are approximated by Gaussians. We show, however, that omeutron star @ = 7/2). In addition, the particle’s coordinate
model of the particle is self-consistent and convergent. Antime T is identical with the time coordinateof the spacetime
other important issue is the prescription of appropriate initialin which it moves. Therefore we will ugeo parametrize the
data that satisfy the constraints. path of the particleX*(t)=[t, R(t), #/2,P(t)].

This paper presents the first attempt to obtain the emitted If we write the spherically symmetric background metric
oscillation spectrum using the direct time evolution. Thisof the neutron star in the following form:
might be viewed as a first step towards the much more in-
volved task of computing the spectrum for a particle orbiting dsfp, = —e?’dt?+e?dr?+r(d¢?+sinfod¢?)  (3)
or being scattered by a rapidly rotating neutron star. To do
this in the frequency domain seems to be an almost impogve find from the geodesic equatioB)#/dr=U"U*,,=0
sible enterprise, for it is at present still unclear how to set at

dxt

w2
U dr’

@

appropriate boundary conditions at infinity. Yet, it is quite T e?E (49)
straightforward in the time domain, once an appropriate evo- dr ’
lution code is available.

A further benefit from a time evolution is that, in prin- dR L2 12
ciple, one obtains the whole spectrum in a single run. As we e E*-e”| 1+ =2/ (4b)
shall describe later in the paper, there are also certain draw-
backs and difficulties associated with this method, for in-
stance, one has to extract the wave form at a finite distance dﬂ_ L (40)
from the neutron star. Moreover, the particle can cross this dr R?’

location, which may result in an unwanted distortion of the

wave form. However, if one is mainly interested in the Fou-where E and L are the energy and angular momentum per

rier spectrum, these effects do not have any negative influanit mass of the particle, respectively. Of course, the particle

ences. is moving in the region outside of the neutron star, therefore
The paper is organized as follows. In Sec. I, we presenthe spacetime is described by the Schwarzschild metric with

the equations to describe the unperturbed configuration and

its perturbations, as well as the method to treat the orbiting 2y —on_ . 2M

particle as a perturbation of the background spacetime. Sec- er=e T=1- T ®)

tion Il deals with the numerical approximation of the par-

ticle terms in the equations. In Sec. IV, we outline the prob-whereM is the gravitational mass of the neutron star. We can

lems with choosing appropriate initial data, and, by referringuse Eq.(4a) to eliminate the proper time from Egs.(4b)

to the flat space problem, we give an approximate prescripand (4c):

tion of “good” initial data. In Secs. V and VI, we present

and discuss our numerical results. Details concerning the dr e2? L2\ 12

derivation the particle terms can be found in the Appendix. at +e?|1- — |1+t = , (6a)

We adopt the same notation as in paper I, in particular we set E R

G=c=1; Greek indices run from 0 to 3 and Latin indices

from 1 to 3. ae eZVL 6
dt R2E’

Il. FORMULATION OF THE PROBLEM ) »
Equationg6a) and(6b) can be used to replace the quantities

The energy-momentum tensdt” of a point particle with  y =dR/dt and v ,=d®/dt in the source terms of the par-
massu is given by ticle. However, we also have to explicitly solve them for the
particle’s trajectory coordinateR(t) and ®(t), since we

", B gk - need those coordinates in th#functions 8(r —R(t)) and
T =,uJ S (x =X (7))utu’dr 5(¢p—D(1)).
To model the neutron star, we use a polytropic equation
ury” of statep= ke" with I'=2 andx=100 kn¥, which is a quite

=B o(r=R(1))8(¢—P(t))6(cosf—cosO(t)),  common choice. The equations governing the stellar oscilla-
tions are derived in paper |. After expansion in Regge-
(1) Wheeler tensor harmonics, these equations can be grouped
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into two families, one describing the axial perturbations and 2imuL2
the other describing the polar perturbations. t1o=2" 5 S(r—R(1))
In the exterior region, we now have to incorporate the rEI(I+1)(1=1)(1+2)
source terms due to the particle into the perturbation equa-
. J T
tions. For that purpose, the energy-momentum tensor of the X—Y* | = ®(t)]. 13
. . . , im| 5 (1) (13
particle has to be expanded in tensor harmonics. The deriva- 90 2

tion of this expansion is given in the Appendix. There is a

slight inconvenience created by the fact that the perturbation

equations are expanded using the Regge-Wheeler harmoniger radial infall, L=0, and all source terms vanish. Hence,
[17], which do not form an orthonormal set, whereas thein this case the radiation is of pure even parity.
energy-momentum tensor of the particle is expanded using Let us now turn to the polar perturbations. Here, we have
the orthonormal harmonics given by Zeri[tl8]. However, to use some caution in including the particle terms. From the
the conversion is straightforward. ADM split, we see that the matter terms enter only in the

Even though the main focus will be on the polar pertur-gqyations for the extrinsic curvature coefficiets In the

bations, we also present the axial equations, since they are g, \wheeler gauge, we are only left with equations for
simple. The only dynamical quantities are one metric com-

ponentV, and two extrinsic curvature componeritg and 1€ coefficient,, K,, andKs. In paper I, we showed that
Ke. Here and in the following, it should be always kept in We have to choose initial data witk,=0. Without the par-
mind that the perturbation variables and the source terms dicle, the evolution equations then guaranteed the vanishing
the particle carry indicesandm, even though we omit them of K, for all times. However, in the presence of the particle,

for the sake of notayongl S|mpI|C|ty. In addition, we use thehis is not true anymore, sinck, satisfies the following
prime to denote derivatives with respect to theoordinate.

With the inclusion of the particle terms, the evolution
equations for those quantities read in the extefsae paper

evolution equation:

h Jd ~
EK“: —8mrtg. (14
8V4 4y aK6 ’ 1 2v
7—8 [74‘2 v Ty Kel—e"Kj, (7) )
This means that during the evolutidf, will be become
nonzero, even if it was set to zero initially. A nonvanishing
IKz I(l +1)—2V 167 2 . K, implies nonzero metric components andVs; this vio-
ot r2 4~ 16me 7, ®  |ates the Regge-Wheeler gauge condition. A solution is to
choose a different lapse function perturbatienlf we pick
Ko N gmt 9) T
——=———38mly.
ot o 0 a=-Ze| - +rs+ 167Tt8>Y|m, (15)

The momentum constraint relates the extrinsic curvature co-
efficients to the particle’s source term via the last term exactly cancels the right-hand side of (&),
and the vanishing oK, and therewithT; andV is, again,

Kz 2 [(1+1)—2 guaranteed.
+-Kg— ————Kg=16me’t;. (10 The remaining metric quantities are expanded in the same
r

ar T way as in paper I:

For completeness, we also list the source terms of the par-

ticle ﬁi:(eZAK21 010)Y|m1 (16)
— 2v /J’L J * ™ 2\ I ) 0 0
t4= ? r2|(|+1) 5(I’—R(t)) Im(E’q)(t))’ (11) ho = € r S v 1
ij— 0 T 0 Im» ( 7)
L ) 0 0 rsiPT
M |7
t,= ZAmvr 5(I’—R(t))% Im(E'q)(t))’

(12 and the expansion of the extrinsic curvature reads
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d d
2\ 2\ 2\
e“*K — — — —
) - 1 re KZO_’(9 re KzowS , y
1 2r *  r3(Kg—2K,) 0 m - (18)
* 0 r2sirfg(Ks—2K,)

In paper I, we have shown that it is possible to write the
evolution equations as a set of two coupled wave equations S,=— 167re4”—[
only in terms of the metric componen&and T. With the r’EA(n+1)
inclusion of the particle terms those evolution equations read
in the exterior region

e?’(L2+r2)8'(r—R)

2

E .
+| 3M| 1+4—+ —r(n+1)—2imé*v,LE
9°S 9°S v l(1+1
—=e¥—+6v'—+| 4(v)?—2——e? ( ) S L?
at? ar? ar r r2 +——[rn(m’—3-2n)—M(3-2n-3m?)]
ren
+4V’( ' 3)T+ o (19
2\ roo xé(r—R)] . (25
FT | PT T v HI+1) where 21=1(1+1)—2 andA =2n+6M/r. In addition, we
F: F+2v W+ ZT_e —r2 T have three constraint equations, namely the Hamiltonian
constraint, which now reads
~2S+16m P, |, (20 T,,+V,T,_rs,_(5”_'+ezx'('+1)
r 2

r

where theP; andP, denote the source terms of the particle 1
—|2rv +2+ Ee”l(l +1)

S
3
Pi=tg—2t5+( 50/~

1
té+t5_2(3 V,_ F)te

=—8me? “TE S(r—R(1)Y,, (26)
6| 2 e?*
+2 v’( v — ?) + 2 tg— r_ztg, (21)  and two momentum constraints
! 1 2\ 2 '
1 2\ ; rKs—Ee [(1+1) Ko—rK—=(rv'+1)Ksg
P,=tg—2tg+2| v/ — |tet —to- Ee”t, (22

=8me?*uEv, 8(r—R(1))Y},, (27)

with thet; given in the Appendix. Here we have made use of imuL
the relations(5) and u'=—»’ to simplify the equations a rK;—r’K—2Ks= 167Tez”m Sr—R())YS,. (29

little. In the interior we use the evolution equatiad@®) and
(58) from paper I. Notice that the quantiti<, appears in Eqg27) and(28) but

Of course, the metric perturbations in the exterior can alsgot in the evolution equations. However, we can dispose of it
be completely described by the Zerilli equatidg. (61) of by differentiating Eq.(27) with respect tor and using Egs.
paper I, but now with an additional source ters : (27) and(28) to eliminateK , andK . The resulting equation
is then second order iKg and reads

—(922 _0722+V( )Z+S; (23
= r . v’ I(1+1
at?  orZ Kg+ ' Kg—rK'—| 65— sl XD 5 ))KS
r

In terms ofSandT, the Zerilli functionZ is given by 1
—(er’+2+ EeZAI(I +1)

K
S 2e%” - 2M—r[2+|(|+1)]T 012G
BN r—2M s u
(24) =8w7[e%rE5'(r—R(t))+imL5(r—R(t))]Yrm.
and the source ter8, reads (29
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It should be noted that this equation also follows from taking
the time derivative of the Hamiltonian constraif®6) and I
taking into account tha®=K andT=Ks.

As usual, the initial data must satisfy the constraint equa-

tlons._Unfortuna_ter, there is no unique way to solve tho_sei/vhere the domain of integration is the region outside the
equations. This is due to the fact that to a particular SOIUt'orheutron star. In the limitr—0. it should hold thatl =1

of the inhomogeneous equations, we can always add a SO%jroughout the whole evolution. Numerically, we cannot take

re?"[left-hand side of Eq(26)]dr,
(3D

! f
87 LE Yi,

:londcg' the homoggqeous equ'fltilon, ‘;Vh'Ch Wo_:_":]d corrt()alspon is limit with a fixed grid size, since, eventually, we cannot
f_o g. "1% SQWeh?I ! f_?f)ll gre;w te;]u?[na wavesi Ie ptLO emo ufficiently resolve the Gaussian. To check the convergence,
Inding the “rnight™ inftial data that represent only the per o qocrease botr and Ax by keeping the ratier/Ax con-

turr]par;u%ns WT'Ch etre_ due to ghdgt_preslencdg ?f the ﬁla[)tlclcej.an ant throughout the sequence. By consecutively doubling
which do not contain any adcitional radiation Wil b€ QiS- y,o resolution and halving, we find thatl —1 approaches

cussed in more detail in Se_c. V. zero with second order convergence. For the numerical evo-
For radial infall of a particle from res, (1=0)=0 and lutions, we will use a value af/Ax=0.15, which provides a

L=0, and thereford,=t;=0. Thus the momentum Con- g ;e resolution of the Gaussian and its derivatives.

straint (29) can be trivially satisfied by setting the extrinsic The boundary conditions used are described in detail in

curvature var_iak_JI_e_s to zero. This situation gorresp_onds t%aper I. At the outer boundary we use the outgoing radiation
time symmetric |n|t|al_ data. We then are left W'th SOIV'”Q the condition. Any reflections travelling inward are too small to
Hamiltonian constraint(26). Of course, a particle falling disturb the wave signal

from rest would fall radially towards the neutron star and There is still a subtle point. In deriving the source terms

gventually hit its S“rf‘?‘ce- Since we want to avoid such a see the Appendjx we have tacitly transformed the particle

;Tnaaf:] z\:(ljedi:i\r/f vtvcza %\I/\z/a?]tﬂt]g fgggﬁﬁrsgirf?sr:rigi#zglr?gg;;néoordinateR into the spacetime coordinatesince the pres-

veIo.cities whicr’1 means that we have to solve also the mo(_ence of the 6—function' makes a distinction unnecessary.

mentum c’:onstrai nt29) However, in the evolution equatlons we have to take deriva-
' tives of the source terms with respectrtdout not with re-

spect toR, and therefore we would obtain different source

I1l. NUMERICAL IMPLEMENTATION OE THE terms if we had not changed tif®s into r's. As an example
PARTICLE consider the following two source terms:
The presence of a particle in the calculations introduces Si(r)=f(r)é(r—R) (32

source terms in the equations that require the explicit forms

of the spherical harmonic¥,,,. The perturbation equations and

without particle are degenerate with respectosince the

background metric is spherically symmetric. However, the Sy(r)=f(R)8(r—R), (33
particle breaks this symmetry, and one is forced to consider ]

the variousm cases. Fortunately, we do not have to consideMhich are equivalent because of the presence osthenc-

all possible values ofm for a given value ofl since for  tion. But if we now differentiateS, andS, with respect ta,
negativem the spherical harmonics just undergo sign changéve obtain for S, just the derivative of thes function,
and phase ShiﬁYrm:(_l)mYl,—m]- The advantage of put- Whereas forS; we also have to dlfferelntlatb Analyt!cally
ting the particle in the equatorial plan® & 7/2) is that, in this does not make a difference, but if we approximate the

the even parity case, we only have to deal with multipolesd-function by a Gaussian, then the two expressionsSpr
with m=I, 1-2,..., the remaining ones ra=1—1, | andS, and their respective derivatives are different. To gain

—3,...)have odd parity. Since the evolution code handles2ccuracy, we should have kept terms suclr ‘aip/d o (r

21p2 H
only real valued perturbations, we have to treat the real ang R) @sLr“/R°5(r —R) and not just a& 5(r — R). However,

imaginary parts of the spherical harmonics separately. Fifor the numerical evolutions the actual difference is negli-
nally, all the equations will be solved on a finite grid, hence9iPle; S0 we have assumed the source terms to be of the form

we have to approximate th&function by a narrow Gaussian of Sy.

IV. SETTING UP THE INITIAL CONDITIONS
—(r
e

2/ 2
o(r—R(t))~ TR g small. (30) Any construction of initial data for a particle initially lo-
cated at Ry, P,) with initial radial velocityv, and angular
momentumL involves solving the Hamiltonian constraint
To demonstrate the validity of this approximation, we have(26). Usually, we set the initial anglé®, to zero. However,
to ensure the convergence of the solutionder0. Thiscan  Eq. (26) contains two quantitie$ and T. This means that
be done in two different ways. One can look at the converthere is some freedom in choosing the initial values. Obvi-
gence of the waveforms that are obtained in the evolution, oously, the simplest way to solve the constraint is to set one of
one can monitor the violation of the constraints. A possiblethe variables to zero and solve for the remaining one. We

way do to so is to monitor the following quantity: can, e.g., either set the quantifyto zero and solve fog, or

o2
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FIG. 1. Profile of the initial values for both kinds of initial data.
The upper graph showsS; whenT,=0. The lower graph shows
To/r when S;=0. Note, thatS, exhibits a discontinuity at the  (b) "®10 e 80 70 0
particle’s location wherea§, is continuous.

50 40 30

rin km

_ FIG. 2. Evolution ofrS. The upper graph shows the evolution
do it the other way and se&8=0 and solve forT. In the  for T,=0, in the lower graphS,=0. In the first case the graph

former case, we would have to solve a first order equation foshows a burst of gravitational waves that propagate both in and
S, and the latter case would lead to a second order equatigrutwards. The ingoing pulse gets reflected at the origin and travels
for T. In Fig. 1 we show both possible sets of initial data for back outwards again. In the other case, a wave originating from the
a particle being initially at rest aty=80 km. Actually, here interior of the neutron star travels outwards. Note the differences in
and in the following, instead d and T, the plots show the the amplitudes of both cases.
guantitiesrS andT/r, since from the expansion of the metric
(17), it is clear that only those expressions allow direct com-tion of an extra amount of gravitational radiation that is not
parisons. at all related to the radiation that is emitted when the particle
To assess which choice is the more natural, we consider moves through the spacetime. This extra amount will start to
particle initially at rest in flat spacetime. Of course, the par-propagate during the evolution and eventually hit the neutron
ticle will remain at rest, since there is no matter around thastar and thereby cause it to oscillate. However, if we put the
could attract the particle. Thus, the perturbation of the spacearticle far enough away from the neutron star, the strength
time that is created by the particle will be stationary. Henceof the induced oscillation should be small compared to the
the equations of motion for the metric perturbati®andT  ones excited when the particle comes close to the neutron
will read 9S/9t=0 anddT/dt=0. From these conditions and star.
from the Hamiltonian constraint, it then follows thahas to In Figs. 2 and 3, we show the evolution of the two pos-
vanish. sible choices of initial data for a particle falling from rest.
Of course, in the presence of the neutron star, those argd-he upper graphs show the evolution®&andT in the case
ments do not hold any more, ais=0 will not be the right Ty=0, whereas the lower graphs show the evolutionSof
choice of initial data, but if the particle is initially far enough and T with S;=0. The differences are obvious. The initial
away from the neutron star, the error in settlig 0 should shape ofT in the latter case is almost unchanged during the
be very small. This error actually corresponds to an introducevolution, whereass starts to acquire its right shapéy
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FIG. 4. Evaluation of the Hamiltonian constraint during the evo-
50 40 30 0 lution. Again, the upper graph shows the evolutionTg=0, in the
1.6100 90 80 70 60 . . X
(b) rin km lower graphS,=0. The Gaussian shape of the particle is clearly

visible and has been chosen to be quite broad for a better visualiza-
FIG. 3. Evolution ofT/r. The upper graph shows the evolution tion. The particle is initially at rest and starts falling towards the
for To=0, in the lower grapl5,=0. In the first case, we can see neutron star.
the built up ofT which is disturbed by the reflected part of the wave ) ) . )
that was sent out by the particle. The second case clearly shows thé@lid initial data, since by construction the Zerilli function
T basically has its right shape right from the beginning. always satisfies the constraint equations. Hence, we cannot

seea priori whether or not the chosen initial data will have

“right shape” we mean the radial profiles &andT after  additional radiation content.
the superfluous waves, stemming from the wrong initial data, If the particle is initially not at rest, in addition to solving
have been radiated awayn the other case, we can see in the the Hamiltonian constrainf26), we also have to solve the
evolution of S a huge burst of radiation propagating in both momentum constrain29). Of course, as with the Hamil-
directions. In the same tim& is acquiring its right shape. tonian constraint, we are again faced with the same kind of
This clearly demonstrates that setting initisly=0 is by far ~ ambiguities in solving that equation.
the better choice. Now, for a particle being initially at rest or very slow, or

In Fig. 4, we show the evolution of the Hamiltonian con- for circular orbits, we do not have to really worry about what
straint where we evaluate the left-hand side of Ezp), kind of initial data we choose. Since any initial gravitational
which monitors the “path” of the particle. In both cases the wave pulse travels with the speed of light and is therefore
graphs agree. Lastly, in Fig. 5, we also show the metric funcmuch faster than the particle, it will long be gone when the
tionsSandT at the end of the evolution. This figure clearly particle comes close to the star. Of course, there will be still
shows that, regardless of the chosen initial data, the functionsome radiation present even at late times due to back scat-
SandT will adjust to their proper values after having radi- tering processes, but this amount is by several orders of mag-

ated away the superfluous initial wave content. nitudes smaller than the gravitational field of the particle
We should note that we cannot escape the whole ambigutself and can therefore be neglected.
ity of how to choose the variableS and T by using the However, if the particle’s initial velocity is close to the

Zerilli formalism, instead. There, any regular initial data arespeed of light, then the particle “rides” on its own wave
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0.0010 . . . . . . .

pulse, and it will be not clear any more whether the excita-
tion of some particular modes of the neutron star is due to
the particle itself or due to the initial burst coming from
inappropriate initial data. If the particle is slow enough, those
two effects can clearly be distinguished. For very fast par-
ticles, this is not possible any more. This is particularly both-
ersome given that a pulse of gravitational waves will pre- s
dominantly excitev modes. If we have a wave signal from a
particle that grazes a neutron star with almost the speed ol
light, and we find that, indeed, there are some traceswf a
mode, it would be very difficult to state that the excitation of
w modes is a “real” signal and not an artifact due to the
inappropriate initial data.

To obtain an approximate answer, we again turn to the flaty)
space case. In this limit, the equations governing the evolu-
tion of SandT reduce to two simple coupled wave equations
with a source term for each that takes into account the pres-
ence of the particle:

0.0005

—0.0000

—0.0005

—0.0010

—0400150 . 20 10

rin km

0.045 T T T T T T T T
0.040+

0.035

PS 9*S |(|+1)s+1677 Eu2§ RO 0.030
a2 gr? r2 H=s (= RO)Yim, " 0.025
(34) 0.020
0.015

PT_FT 1+ s sr® st ROV
F—P 2 WE (r (1) Im - 0.010
(35) 0.005

0.000

Herein, we have omitted the terms proportionalLtosince {b)

we let the particle move on a radial trajectory with constant

rin km

velocity v, hence it isL=0 and

R(t)=Ry+vt, (36)

with Ry being the initial location of the particle. Further-
more, the normalized ener@yof the particle is just given by
the Lorentz factor

1
1-v

S (37)

It is interesting to note that the wave equation &is totally
decoupled from the one fdr. However, the solutions of Eqgs.

(34) and(35) have to satisfy the flat space Hamiltonian con-

straint which reads

T 1(1+1) S ([, Yiinls
proi T Ea A
HnE .
=—87—— 80 —R())Y},,. (38)

We now seek an exact solution of E@4) that obeys the

right boundary conditions at the origin and at infinity. Once

found, we may use the flat space Hamiltonian const(@at
to numerically compute the appropriale We state that a
solution for Eq.(34) is given by the following series ansatz:

FIG. 5. Plot ofrS and T/r at the end of the evolution of the
different initial data. The artificial radiation of the initial data has
been radiated away, and both variables have assumed their “right”
values that are independent of the initial data. The small difference
in the shapes o§ is due to the fact that the initial data with,
=0 contain much more radiation, which excites the neutron stars to
pulsations, which in turn disturb the profile 8f The variableT is
mostly unaffected by this.

2i+1+1

>

a——————
=y I(R0+vt)2'+|+3

+> b
=

S(t,r)=A O(Rytuvt—r)

(Rotot)' 7272

r|*2i (r_RO_Ut) f

(39
where0 is the Heaviside function satisfying
o 0, x<0,
)= 1, x=0. (40
Continuity atr =Ry+uvt requires that
> a=> b. (41)
=0 =0

The overall amplitude will be determined &, hence we
deliberately may set
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FIG. 6. Initial data for a particle with different initial radial velocities whereSis given by Eq.(39) andT is obtained by solving the
Hamiltonian constrain26). For small velocitiesT/r dominates'S, whereas for ultrarelativistic velocitiesS dominatesT/r.

the two factors in the numerator will become zero for some
ZO ai:i:EO by = 1. (42 The series irg; converges if and only ifv|<1.
Of course, these solutions f&and T are not valid any
The amplitudeA and the coefficienta; andb; can be found more if we put the particle into the curved spacetime because

by plugging our ansatf39) into Eq. (34). For A we find they now would violate the curved spaced constrai@®
. and(29). However, we can still use E¢39) as a prescription
Al 167 uEv” Yy, 43 for Sand then use the curved space Hamiltonian constraint

(26) to solve forT. In Fig. 6, we show the thus obtained
initial data for a particle located &,=500 km with differ-
ent initial velocities. Fow =0 it is rS=0 but the amplitude
and the coefficients; andb; are determined by the follow- of rS grows rapidly when the particle’s velocity approaches
ing recursion relations: the speed of light, whereas the peak Dfr slightly de-
creases. In the ultrarelativistic limitS totally dominates
(44) overT/r. _ o o
For a particle initially not at rest, we also need initial
values forK andKs. In this case, we can obtak from K
2(I -2i—-2)(1-2i—-3) =dYdt and then use the momentum constra#8l) to com-
2(i+1)(2i—-21+1) ° (45 pute Ks. As long as the particle does not have any angular
momentum and is far away from the neutron star, the thus
It is interesting to note that, while the series an never  obtained initial values should be a very good approximation
terminates, the series I always terminates because one of for a boosted particle in a Schwarzschild background. They

21+1+22, i(a—b)
=0

L(21+1+3)(2i+1+4)
2(i+1)(2i+21+3)

aj1=qiv

bir1=bjv
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0010 ————T1 the Zerilli function is still somewhat off its asymptotic value

which will be a little bit smaller. And, of course, a neutron
star is not a black hole, since its oscillation spectrum is quite
different. But as long as the particle does not excite the
eigenmodes in a significant way, i.e., as long as the particle’s
orbital frequencymultiplied by m) is not in resonance with
one of the eigenmodes, the emitted radiation should be quite
similar to the black hole case. And, indeed, we find that we
agree with all the polar and axial modes compiled in Table Il
' “ \ ! . of Cutleret al. within a few percent, only for the case=3
LY M ML ML andm=1 we find the radiated power to be %90 in-
PN S T stead of their value of 5.2410 8.

0 L 2 3 4 5 If the orbital frequency is in resonance with one of the

tinms eigenmodes, the emitted radiation can drastically increase

[11]. It is clear, however, that only the low-frequency modes
tracted atr=500 km. After the initial radiation bursts, the wave such as _thé mode can be excited by th's_ mechanism, _the
forms show periodical oscillations with twice the orbital frequency. frequencies of thev modes are much too high to be consid-

The amplitude is about 0.0076, which corresponds to a radiatioffrably excited. In addition, due to their strong damping, there
power of (M/u)2 dE,,/dt=5.46x 1075 is no sharp resonance for themodes at all, it is only for the

weakly damped fluid modes that resonant mode excitation

are exact initial data insofar they do not violate the constrainfan occur.

equations. If the particle has a large angular momentum, we Therefore, the only way to possibly excie modes are
cannot neglect any more theterms, and our approximation Very eccentric orbits, where the periastron is very close to the
should break down. However, we are mainly interested irfurface of the star, or scattering processes with very small
trajectories which come very close to the neutron star, andmpact parameters. The investigation of the latter is the main
hence, have only small angular momentum compared to thebjective of this work. Before presenting the results, we
linear momentum. In this case the above prescription stilshould point out some problems that are related with the use

yields good initial data. of an evolution code. .
Ideally, one should extract the wave formrat oo, which

is clearly not possible on a finite grid. We have to record the
wave form at some finite distance from the star. But this
To compare the code with known results, we first considemeans that if the particle moves on an unbounded orbit it
a particle in a circular orbit around the neutron star and comwill eventually cross the location of the observer who will be
pute the radiated energy at infinity. Numerically, this can beocated on a finite radius,,.. This happens because in our
accomplished by evaluating the Zerilli function at some largeformalism we have decomposed the particle into its “multi-
distance. The radiated power for a particular pait ehdm  pole shells.” Since in this paper we only pidk=2, we
can then be computed frofi9] should rather speak of a quadrupole shell than of a particle.
Of course, the particléor shel) is always slower than the
propagation speed of the gravitational waves, hence the ob-
server will see the wave signal first before the particle
crosses at . However, when the particle is very fast and
Cutleret al.[20] have numerically computed the normalized the observer is not far enough away from the neutron star,
gravitational power 1/u)? dE;/dt radiated by a particle then the signal and the particle will cross the observer almost
orbiting a Schwarzschild black hole for various valued ,of at the same time. That means that the signal will be a super-
m andR,/M. In Table Il of Ref.[20], they show the multi- position of the “real” gravitational wave signal and the in-
pole components foR,/M =10. To compare the output of fluence of the gravitational field of the particle itself. The
our code to those results, we chose the mass of the neutrdarther the observer moves outwards the better the separation
star to beM =1.99 km and the orbit of the particle the be at of the two components in the signal can be made. Further-
Ry=19.9km in order to obtain the ratio &,/M=10. The  more, the amplitude of the signal remains constant for in-
mass of the particle was set to=1 km. In Fig. 7, we show creasing, whereas the influence of the particle decreases at
dz,,,/dt as a function of time extracted a&=500 km for least as /. The effectiveness of this undesired influence of
I=m=2. After some wave bursts that come from the inap-the particle strongly depends on the actual excitation strength
propriate choice of initial data, we see that the signal is peof the neutron star oscillations. Smaller turning point®f
riodic with a frequency of twice the orbital frequency of the the particle will induce oscillations with higher amplitudes
particle. The amplitude is about 0.0076 which corresponds tand thus make the influence of the particle undetectable. For
a radiated power ofNI/u)? dEy,/dt=5.46x 10 ° which is  larger, the induced fluid oscillations are so weak that they
in excellent agreement with Cutlet al. who obtain a value will totally be buried within the gravitational field of the
of (M/u)?dE,,/dt=5.388<10"°. The slightly higher particle. Figure 8 drastically shows the influence of the pres-
value of our result may be due to the fact that &500 km  ence of the particle on the observed wave form. Here, we

T T=read)

00051 1

‘
i
'
)
¢
)
'
)
|
)
H
1
i
|
)

0.000

—0.005 -

FIG. 7. Evolution of the real and imaginary parts 5, ex-

V. NUMERICAL RESULTS

dEm 1 (1+2)![dZy|?
dt — 64x (1-2)!| dt | -

(46)
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FIG. 8. Comparison of the excitation strengths for the two dif- "adil 't=10 km,r;=20 km andr;=30 km. The initial velocity of
ferent turning radir,=10 km (solid line) andr,=50 km (dashed the particle isvo=—0.1.
line). The wave form ofS (upper graphfor r,=10 km is totally
unaffected by the presence of the particle, whereasfe60 km,
the gravitational field shifts the amplitude of the signal to higher

For all cases considered, the wave forms always have the
same overall features. The first part of the signal consists of
values. ForT (lower graph, this effect is much more pronounced an increase in the E.‘mp”tUde.that results of the particle enter-

’ ing the strong gravitational field of the neutron star. After a

and can already be detected fig=10 ms. Forr,=50 km, the f . | lati hich d to th ficl
oscillations of the neutron star are totally buried in the gravitational ew Irregular osciiiations, which correspond 1o the particie

field of the particle. At=10 ms the particle crosses the observer,curvIng around the, neutron _S‘ta,r' the final signal will be dom"
who is located at ype=1000 km. _nated by the quasmqrmal ringing of thg neutron star, which
is confirmed by Fourier analyzing the signal.

compare the signals that result for two scattering orbits with For slow particles the power spectrum shows one broad
r.=10km andr,=50km. One can also see that the effect ispeak around the frequency that corresponds to the angular
much more pronounced in the wave formTfBut regard-  velocity of the particle at the turning point and some little

less of this unwanted feature it is still possible to infer quali-sharp peaks that correspond to the fluid modes of the neutron
tative statements from the obtained wave signals. star (f mode and lowegb modes. From the wave forms it is

Unfortunately, the influence of the source terms is everclear that the excitations strengths of the modes decrease
much worse for the Zerilli function, which should be used torapidly as the turning point; of the particle moves farther
present the results, since it is a gauge invariant quantity anaway from the neutron star.
directly related to the radiated power. At the particle’s loca- When the particle reaches the speed of light, the picture
tion the Zerilli function is discontinuous, which is not the changes drastically. For initial velocitieg<—0.6 the ap-
case for our variable$ and T. But since we are mainly pearance of thev mode becomes evident. In the ultrarelativ-
interested in assessing which modes are excited by the scastic case ofvy=—0.97 (Fig. 11) which corresponds t&
tering process, we do not have to compute the Zerilli func~4.5 it is clear that the majority share of the energy gets
tion. It is enough to just examine the wave formsSHndT.  radiated through the first-mode channel. Note that in ob-

In Figs. 9—11, we show the wave forms §fand T for  taining the power spectrum of Fig. 14, we have cutoff the
different initial radial velocitiesvy and different values of initial radiation and have taken the Fourier transformation
the radius of the turning point,. In Figs. 12—14, we show right where thew mode ringing starts. It is interesting to see
the associated power spectra. that even if the particle’s turning point is quite far away (
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FIG. 10. Wave forms oS andT for the three different turning FIG. 11. Wave forms oS andT for the three different turning
radiir,=10 km,r,=20 km, and',=30 km. The initial velocity of ~ radiir;=10 km,r;=20 km, and';=50 km. The initial velocity of
the particle isvg=—0.5. the particle isvg=—0.97.

=50 km) the w mode is still visible. the particle’s velocity at infinity must be-0.5c. Secondly,

All the calculations have been performed using a stellathe excitation strength of the modes rapidly decreases as the
model with central energy density ef=5.7x 10"°gcm 2 particle’s turning pointr, increases. This is in agreement
which leads to a mass of 1.354viand radius of 7.52km. With the results of Ferraret al. [13], who report that no
This model is right below the maximum mass that is allowedsignificantw-mode excitation is observable. However, they
for the polytropic equation of state with'=2 and « did not consider the case where the particle has an energy
=100 kn?. It is clear that the results will not change too E>1, which is necessary if it were to excitemodes. This
much if we change the equation of state, or if we consideMvas done by Andrade and Price for the axial dd$d. Here,
models with different masses. Only for very light neutron 00, they find excitations olv modes. _ .
stars, thav modes can become invisible again. For ultracom-  The following question now arises: Can we infer anything
pact stars, we expect the long-lived trapped modes to be @out what happens in an astrophysical event? Our results

dominant part of the power spectrum. show that the particle’s initial velocity has to be incredibly
high in order to produce a significant amount wwfmode
VI. CONCLUSIONS excitation. It is very unlikely that there exist astrophysical

events at all that could accelerate the partighhich, of

We have performed simulations of particles on circularcourse, represents some heavy extended object, such as a
orbits as well as on scattering trajectories. The circular orbitplanet or even another neutron g$tap to some significant
were done for code testing reasons, and we found that thieaction of the speed of light. Hence, we might safely con-
radiated energies agree perfectly with those obtained by Cutlude that any astrophysical scenario that might be simulated
ler et al.[20], who looked at a particle orbiting a black hole. by a particle orbiting a neutron star will not produce any

For the scattering orbit, we discussed the numerical diffi-detectable amount af modes.
culties associated with an evolution code. However, the re- A brief comment on certain models which explain the
sults are accurate enough to address the issue of the excitguasi periodic oscillation Fourier spectra of two low mass
tion of w modes by orbiting particles. First of all, it became x-ray binaries seems worthwhile. Those models try to ex-
clear that in order to excite a significant amountwofmodes  plain the two appearing quasiperiodic frequencies by the ex-
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FIG. 12. Fourier transform of the wave forms fop=—0.1. FIG. 13. Fourier transform of the wave forms fop=—0.5.
Only thef mode is significantly excited. Here, too, only théd mode is significantly excited.

istence of massive blobs orbiting on slightly eccentric orbitsmuch less, however, than the former. One serious drawback
at the inner edge of the accretion disk around the neutron staf those calculations, however, was that as soon as the par-
[9]. The higher frequency corresponds to the orbital fre-ticle had hit the surface of the star, the calculation was
guency of the blob, whereas the lower frequency is a beastopped. This lead to an overestimation of the high frequency
frequency, which is the difference between the orbital fre-components in the power spectrum which, of course, are rep-
guency of the blob and the rotation frequency of the neutromesented by thev modes. Since in this study only axial
star. In these models the blobs are approximated by particlesodes were investigated, it is clear that themodes will
[10]. It is clear that these blobs move with a significant frac-always show up in the spectrum because they will not be
tion of the speed of light, and, if they are massive enoughscreened by the presence of fluid modes which can happen in
they might emit some non-negligible amount of gravitationalthe polar case. Now, even in the particle limit, it is not pos-
radiation, in particular if their orbital frequency is in reso- sible to simulate a collision, since it not clear at all what
nance with one of the neutron star’s fluid modes. But fromhappens if the particle hits the surface. Just removing it is
our results it is clear that they will not be able to excite anycertainly not the best way to account for the collision.
w modes. This statement holds as long as the blobs are still A first step, though, might be to let the particle go right
in the orbiting phase. But what happens if they eventually hithrough the neutron star without being affected by the pres-
the surface of the neutron star? ence of the neutron star matter. If this creates strwgode

Our method could not be applied to this situation, but weexcitations even for particles with low initial velocities, then
could speculate about the possible implications. It has beeone could conclude that, in a realistic scenario where the
suggested that in this case there might be some significaphysics of the impact is included, there still might e
excitation ofw modes. In particular, simulations of a particle modes present. Of course, in this case, it seems reasonable to
that spirals onto a ultracompact constant density star wermfer that at least the fluid modes would be much more
done by Borelli[12], who found that, indeed, both the strongly excited than in a scattering event.
trapped modes and the modes were excited, the latter  Of course, we have only presented results for one particu-
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FIG. 14. Fourier transform of the wave form fg=10 km and
vo=—0.97. Here, not only thtmode but also the first mode are
strongly excited. In order to clearly extract the firgtmode, only

the part of the signal after 0.4 ms has been Fourier transformed. where the asterisk denotes complex conjugation and

lar polytropic stellar model. However, it seems to be permis-

PHYSICAL REVIEW B3 064019

if one takes the same initial fluid perturbation, s&ts=0
and solves forS suddenly one can observe a quite large
excitation of thew modes in the signal. This also agrees with
results in Refs[5] and[7].

Still, the question remains of what happens in a realistic
scenario. We have excluded the possibilityvoimodes ex-
citation by means of a realistic scattering process. However,
it is not possible to relate our results to the merger process of
a binary neutron star system, since one cannot adequately
describe the system within perturbation theory. Only, if the
final object does not immediately collapse to a black hole, it
might wildly oscillate and emit some significant radiation
throughw modes. It will only be through nonlinear evolu-
tions that this issue might finally be settled.
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APPENDIX: THE SOURCE TERMS OF THE PARTICLE

The particle’s energy-momentum tensdy will be ex-
panded using the orthonormal set of tensor harmonics

(I3]0} ac1...10 given by Zerilli [18];

o0 | 10
n-3, Z, 2, Hh.

(A1)

The coefficientst" can be obtained by means of the or-
thogonality relation

| T T3 1,0 00 =0 B0 (82

[ 147 = 7" 9" [ Vo - (A3)

sible to conclude that the same results should also, at leaEtecause of the use of the inverse Minkowsky metftt to
gualitatively, hold for realistic equations of state.

Furthermore, our results seem to indicate that the pre
ence of thew modes in the signal is somehow related with
the value ofS. We have seen that for ultrarelativistic par-

ticles the values of S greatly dominate3/r. And it is only
there that we find a significant amount wf modes. This

particular role ofSseems to be corroborated by the results of

paper |, where it was shown that the occurrencevahodes

strongly depends on the chosen initial data. It was found that

for conformally flat initial metric perturbation§.e., Sy=0)

the evolution shows practically ne modes at all. However,

[tt] f'lmze“vﬁ
B

lm_ s M
[tr] tz—uﬁr—z

raise the indices, the inner produét2) is not positive defi-
Shite, and it issp=—1 for the harmonics with nonzeroj 0
componentsA=2,3,9.

By using the orthonormality conditio@A2) we can com-
pute the coefficients,y" through

thn= fsz[jz,‘\m]*#m,, dQ . (A4)

We thus obtain the following s€Ref.[21], with some cor-
rections:

dt .

dR

3-8 =RO)Yi,
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[te} ryv2l(l+1)
to 2u dd o
Tim_ 2v _ - qj - |VY*
R TSR Rm)(sin@ dr 90 S"9g; 5g) Yim:
[rr] f'm:e‘“ﬂd—T dr 25(r—R(t))Y*
5 r2dtldr Im>
. 2 drdR d
- L s R(D)
[ra} ry21(1+1) dt dr dr
re . 2ip. drdR d 1 do 4
Im_ 2\ _ _ i PR VA
e e dtdr ¢ R(t))<s'”® dr 90 sin® dr acb) i
( P dr de )2 dd )2 de do
-] [| ) oo 2 - 222 0
N Ty R A dr/ [T Tdr dr M
06
0| { tm=E PV, 2 o 22 v
tg —Ea (r (1) ar + sl ar Im s
b
im e 97 s~ R(1))sin® (dcp)z ! (dG)Z xio 4202 9%
= - 6(r— sin - = - —
L0 V210 (- D +2) dt dr/ si@!\dr/ |7'™ “dr dr M
|
=i,
d J 2
X|m==2(ﬁ —cot&) %Ylm , (AS) .
m_ T m
W 7 A a2>Y ENCTES
= ——coth—— —— —
™ pe2 30 sirtg 942 ™ r
I4m:_ ’fl4m
J* ENE R
= 1(1+D)+2—| Y. (AB) ( )
96° m_fim
Here, Y, , W, and X} are functions of the particle’s angu-
lar position® and® parametrized by the coordinate tirhe m_ r fim
therefore all derivatives with respect to proper timare to N T
be understood as
0 _dtd_, d - o1 m
ar drai ¢ Ear (A7) 21(1+1)
Since the evolution equations are expanded using the Regge- {Im 2r? ~lm
8 tg »

Wheeler harmonics, which do not form an orthonormal set,
we have to convert the above coefficienf8 into the coef-
ficients t\" that would result from an expansion of the
energy-momentum tensor into Regge-Wheeler harmonics.
Using the relationship between the different sets of tensor
harmonics given in Ref§18] and[19] we find

tllm:’t‘llm'
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We now restrict thg motion _of the particle to.the equatorial | L2114 1)—2m?]
plane® = /2. In this case it i€l®/d7=0 and sin®=1, and tg"=e2 > Sr—R))Y},,
we can use the geodesic equatiofid and(4c) to substitute reEl(+1)(1-1)(1+2)
all expressions containing derivatives with respect to proper
time 7. Furt_hermorg, we can obtain quite simple relations for | wl1(1+1)—m2—1]
the derivatives ofY} : tg"=e?" S(r—R(M))Yf,
rPE(l—1)(1+2)
d .
5 I*m:_lel*m’ (AS) ) )
m ) 2imul 50—R(1)) d .
= —e v r_ — ,
2 10 PEI(1+1)(1—1)(1+2) g0 " 'm
Yrm:[m2_|(|+1)]Yrm' (A9)
wherev, =dR/dt is the radial velocity of the particle. The
This gives us a somewhat simpler set of coefficients: field equations also require the computation of the trace
Im ZVME * |
ti"=ge r—zé(r—R(t))Y,m, T= g’“’?;w:% MY, (A10)
m_ _ 2 ME . with
t, =—e r—zvrﬁ(r —R(t))Y,,
I(1+1 2
im,uL tlm:_eZ)\tIlm_l_e—thISm_(—z) I8m - Igm.
ty'=e?" ————5(r—R(1))Yj,, r r
rel(l+1) (A11)

L d ' ici ici -
(=2 M (- R(t))ﬁ . Using the explicit forms of the coefficients we obtain

ra(+1)
2
m o KE t'm=ﬁz5(r—R(t)) Evfe‘“‘—EJreZVLZ—E)Y,*m,
te"=e—u28(r—R(1))Y},, r r
° 2 " (A12)
imul and by making use of the geodesic equatidh), we can

Im_ _ 2\ _ *
tg=—e r2|(|+1)vr5(r R(t)Yim, reduce this expression to
et R Vi, tm= —e2r 2 5 —R(1)YE,. (A13)

ra(+1) 90 (2E
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