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Abstract

The present work investigates the numerical evolution of linearized oscillations of non-rotating, spheri-
cally symmetric neutron stars within the framework of general relativity.

We derive the appropriate equations using the (3+1)-formalism. We first focus on the evolution of
radial oscillations, which do not emit gravitational waves. The associated system of equations being
quite simple, we demonstrate how to handle a numerical instability that also occurs in the non-radial
case, when the stellar model is constructed based on a realistic equation of state. We devise a coordinate
transformation that not only removes this instability but also provides much more accurate results. For
comparison reasons, we compute the eigenfrequencies of the radial modes with an eigenvalue code and
thereby confirm the results ofath & Chanmugam, which differ from previous calculations that were
performed by Glass & Lindblom.

The main part deals with the evolution of non-radial oscillatidns ) of neutron stars. Here, we
compare different formulations of the equations and discuss how they have to be numerically dealt with
in order to avoid instabilities at the origin. We present results for various polytropic stellar models and
differentinitial data. They show that the quasi-normal modes of the star, such &s thep-, and thew-
modes, can, indeed, be excited by suitable initial data. However, the excitation strengthwafibes
strongly depends on the chosen initial data. For some initial data the occurrencewsfrtbdes can be
totally suppressed.

For ultra-compact models we find the interesting feature that the first ring-down phase of the wave
signal cannot be associated with any of the known quasi-normal modes that belong to the star itself; the
frequency and damping time rather correspond to the first quasi-normal mode of an equal mass black
hole.

When switching to realistic equations of state, we find that we face the same numerical problems as in
the radial case. Here, too, we can get rid of them by means of the same coordinate transformation inside
the star, but things are more complicated because the fluid equation is coupled to the metric equations,
which propagate the gravitational waves. For those equations the transformation is not defined, therefore
we have to interpolate between the different grids. For polytropic equations of state this can give rise to a
quite strong violation of the Hamiltonian constraint, which can spoil the resulting wave signal. However,
for realistic equations of state, and it is only for those that the transformation is necessary, this does not
happen and the equations can be integrated in a stable way and also provide quite accurate results.

In the last part of this thesis we consider a physical mechanism for exciting oscillations of neutron
stars. We use the time dependent gravitational field of a small point méed orbits the neutron star
to induce stellar oscillations. Hereby, we assyite be much smaller than the maké of the neutron
star. In this so-called particle limit, the gravitational field of the moving particle is considered to be a
perturbation of the background field of the neutron star. With this particle we have a physical means
which removes the arbitrariness in choosing the initial data.

However, even with the presence of the particle, there is still too much freedom in constructing the
initial data, which is due to the fact that in addition to the field of the particle we always can superpose
any arbitrary amount of gravitational waves. Our task is to minimize this additional gravitational-wave
content and find initial data which correspond to the pure gravitational field of the particle. By looking at
the flat space case we can construct analytic initial data that satisfy the above requirements. Those then
will serve as a good approximation for the “real” initial data in the curved spacetime of the neutron star.
By sampling various orbital parameters of the particle we show that in general the particle is not able to
excite anyw-modes. It is only for speeds very close to the speed of light thabthrede is a significant
part of the wave signal. This result indicates that it is rather improbable that any physical mechanism
which can be simulated by an orbiting particle can exciteuthmodes of neutron stars in a significant
manner.
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Chapter 1

Introduction

The investigation of stellar oscillations has a quite long history, and is a whole astrophysical
branch on its own. The evaluation of the oscillation modes of stellar objects has helped to
reveal a lot of information about their interior structure. With the use of asteroseismological
methods we now have a quite detailed understanding of the physics of a whole range of stellar
objects, be it our own sun or a white dwarf somewhere in our galaxy.

Most stellar objects can be adequately described by Newtonian theory, however, for very
compact objects such as neutron stars, the effects of general relativity cannot be longer ne-
glected. In fact, they are very important, for now, stellar oscillations will be associated with the
emission of gravitational waves, which can carry important information about the physics inside
those compact objects. These waves, when detected, will open a totally new observational win-
dow for astrophysicists. Gravitational waves are not affected by events at the surface of the star,
which is what happens to electromagnetic radiation and they also remain practically unaffected
by any kind of matter while travelling through space. Thus, they carry “clean” information of
the physical properties of the neutron stars.

It is well known that lowest gravitational-wave multipole is the quadrupole radiation, hence
the radial and dipole oscillations do not emit gravitational waves. From the gravitational-wave
astronomical point the latter are therefore quite uninteresting, however, they could make them-
selves visible through tiny undulations in the electromagnetic radiation signal of the neutron
stars.

The study of the non-radial oscillations modes of non-rotating neutron stars within the
framework of general relativity was initiated in 1967 by a series of papers by Thorne and sev-
eral coauthors 118,719, 20,121 22]. In the following decades a lot of authors made endeavors to
study the relativistic oscillation spectrum of neutron stars, which turned out to be particularly
rich.

From the general Newtonian theory of non-radial linear oscillations it follows that the oscil-
lations of a spherical stellar object can be divided into two classes according to their transfor-
mation behavior under space reflection. One class consists of even parity or polar modes; the
odd parity or axial modes belong to the other class.

If the neutron star is modeled with a perfect fluid then from Newtonian theory it follows that
any non-radial oscillations such as tlfiendamental mode30], theressure modes, and the
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4 Chapter 1. Introduction

gravitational modes[34], must belong to the polar class. This means that for Newtonian perfect
fluid stellar models there are no axial modes at all. It is only with the inclusion of a solid crust
that there can exist axiabrsional modes.

In the first 20 years after the fundamental paper of Thorne, it was common belief that the
oscillation spectra of relativistic neutron stars would not differ much from Newtonian stars. The
only new effect of general relativity was thought to be the radiation-damping of the oscillation
modes due to the emission of gravitational waves. Therefore the main focus was to compute the
frequencies and damping times of those polar modes which also exist in the Newtonian theory,
but now within the framework of general relativity. The only axial modes under consideration
were thet-modes of neutron stars with a solid crusti[32, 35, 40].

It was only in 1988 that another family of polar modes was found by Kojima [38], whose
existence has already been anticipated two years earlier in a toy model by Kokkotas & Schutz
[36]. Those new modes, which were termedve-modes by Kokkotas & Schutz [45], are of
purely relativistic origin and do not have a Newtonian counterpart. They are predominantly
metric oscillations and couple only weakly to the motion of the matter.

Around the same time Chandrasekhar & Feriafi [42] showed that for ultra-relativistic stellar
models, there exists also a family of axial perturbations, which do not couple to the matter at all.
This is because the spacetime curvature inside the star can be so strong that it can trap impinging
gravitational waves. Those “trapped” modes are quite long-lived since they correspond to quasi-
bound states inside the gravitational potential of the neutron star, which only slowly leak out.

A little later, it was found by Leins et al[[48] that the polarmodes are split into two
branches, one with only a few strongly damped modes (calledor interface modes), and the
other one with an infinite number of modes with increasing frequency and damping times.

In 1994 Kokkotas [[50] showed that for less relativistic stars, which do not possess any
trapped modes, there also exists a family of axial modes, which are quite similar to thepolar
modes. Finally, in 1996 Andersson et all[51, 52] established that all three kinds of gravitational-
wave modes (the-modes, thev;;-modes and the trapped modes) exist for both the polar and
the axial cases, the trapped modes, however, only for ultra-relativistic star.

This rich set of various pulsation modes having been found, it then was natural to ask
whether they would indeed be excited in a real pulsation scenario. Allen éfal. [54] took a
first step in answering this question by numerically integrating the evolution equations for sev-
eral different sets of initial data. By looking at the emitted gravitational radiation, they indeed
found that both the fluigf- andp-modes and the gravitationatmodes can be excited. How-
ever, the excitation strength depends strongly on the choice of initial data, which, of course,
were constructed ad hoc and had no astrophysical meaning whatsoever.

Andersson & Kokkotas([55] have shown that, once the parameters gf-thad the first
w-mode are known, it is in principle possible to obtain the mass and the radius of a neutron
star quite accurately. Those quantities could then be used to determine the equation of state
for the neutron star matter. Because of the still quite poor understanding of the physics at the
subnuclear density level, there exists a plethora of different equations of state in the literature,
all based on different physical models of the nuclear interaction. But once the mass and radius
of a neutron star are known with a certain accuracy, it is possible to rule out those equations of
state that predict a different radius for a given mass, or vice versa. And this in turn would hint



at the physics that governs the behavior of the neutron star matter in the center of the star.

It is therefore of particular interest whether or not thenodes will be excited in a real
astrophysical scenario such as the collapse of a progenitor star to a neutron star. Whereas the
f-and some fluigh-modes will always be present in an wave signal, it is not clear if this is also
the case for th@-modes. The numerical experiments show that it is possible to construct initial
data which do not excite any-modes at all.

To satisfactorily answer the question what a real signal would look like, one would have
to follow the appropriate scenario (e.g. the collapse of a burned out star core) in full detalil
from the point on where relativistic effects become important. Unfortunately, this is, for the
time being, still impossible. This is mainly because one would have to use the full set of the
nonlinear Einstein equations together with the whole machinery of nuclear physics to simulate
a core collapse. However, when the newborn neutron star has almost settled, the study of stellar
pulsations can be done within the linearized theory, which makes it tractable. But even there
one usually restricts oneself to very simple neutron star models. In our case, we will neglect the
spin of the star, which makes the equations much simpler, but also prevents us from studying
the effects of rotation, which might be very important.

There are no unstable non-radial modes for non-rotating stars as long as the Schwarzschild
discriminant

dp Op\ de
S(r) = dr (86)8 dr
is positive [27[71]. For negativ€ the oscillations become unstable with respect to convection.
In this thesis we always use barotropic equations of state, for whichbitss0, therefore all
non-radial modes will be stable.

However, things can change dramatically when rotation is included. There will be always
some modes which will undergo the CFS-instabilityl [68, (69, 70], and recently a whole set of
unstable modes-{modes) has been discovered. They might be responsible for slowing down
rapidly rotating neutron star§ 156]. For a recent review of the stability properties of rotating
neutron stars, see72]. Other recent reviews on oscillations of neutron stars and black holes can
be found in [59[60].

The thesis is organized as follows:

In chapter 2 we will derive the general form of the perturbation equations using the (3+1)-
split.

In chapter 3 we will specialize on the radial case, where we investigate both the evolution
and the eigenvalue problem. We discuss the occurrence of a numerical instability, which occurs
both in the radial and non-radial cases when the neutron star is modeled with a realistic equation
of state. We also present a remedy which not only removes the instability but also automatically
increases the accuracy of the evolution as compared to the old set of equations.

In chapter 4 we focus on the non-radial oscillations. We present various forms of the equa-
tions and discuss which of them are the most suitable set for the numerical evolution. We show
how to treat the boundary conditions in order to obtain stable evolutions for any value of
Here, too, we demonstrate how to get rid of the same numerical instability that occurs with the
use of realistic equations of state.



6 Chapter 1. Introduction

In chapter 5 we examine the excitation of neutron star oscillations by the scattering of a
small point masg: in the particle limit, where we assumeto be much smaller than the mass
M of the neutron star. The gravitational field of the particle, which follows a geodesic path in
the background metric of the neutron star, can then be treated as a perturbation of the back-
ground. We sample a variety of orbital parameters to see whether or not the patrticle is able to
excite thew-modes of the neutron star.

Notations and conventions

e \We use Einstein’s sum convention. Greek indices run from 0 to 3, Latin indices from 1 to
3. The time component is the 0-component.

e The signature of the metric {s-, +, +, +), i.e. time-like 4-vectors have negative norm.
e \We use geometric units, i.e. we get G = 1.

e Covariant derivatives with respectt¢ are denoted by, and partial derivativeg% are
sometimes abbreviated 1by,.

e Derivatives with respect to the radial coordinatare often denoted by a prime, and time
derivatives by an over-dot.

e The perturbation variables should be properly denoted)hy(t, ), however, we will
often omit the indice$ andm.



Chapter 2
Linearizing Einstein’s equations

Within perturbation theory we first construct a stationary non-pulsating and non-rotating neu-
tron star model by solving Einstein’s equations, which in this case reduce to a set of coupled
ordinary differential equations.

Having found this (numerically) exact background solutigp, we describe the pulsations
by “small” deviations from the original metric. Thus, the metric of the perturbed spacetime
will be written asg,, = g, + hu, whereh,, is considered to be a small perturbation of the
background metrig,,,, .

To find the relevant equations fdr,,, we plug the perturbed metrig,, into Einstein’s
equations and neglect all terms that are quadratic or of a higher power fin), thé/e will thus
obtain alinear system of partial differential equations for thg,, which is much easier to solve
than the full nonlinear set. Still, this set of equations depends on all four coordinates, which,
even with the presently available computer power, would be too time-consuming to be solved
in its fullfledged form.

However, because of the spherical symmetry of the background metric we can get rid of the
angular dependence by expanding the perturbation equations into spherical tensor harmonics.
It is thus possible to reduce the equations into a (1+1)-dimensional evolution system, which can
be numerically solved on present day PCs.

2.1 The unperturbed stellar model

The simplest model for a neutron star is a non-rotating zero temperature perfect fluid sphere,
whose static spherically symmetric geometry is given by a line element of the form

ds®* = —e?dt* + P dr® 4 r(db? + sin® 0d¢?) | (2.1)

where the two functions and A only depend on the radial coordinatend have to be deter-
mined by the field equations. The appropriate energy-momentum tensor is given by

T;w - (6 + p) Uy, Uy + PAuv (22)

wherep is the pressure; the energy density, and, the covariant 4-velocity of the fluid. In the
rest frame of the fluid, which is static, the only non-vanishing component is the time component

7



8 Chapter 2. Linearizing Einstein’s equations

uy = —e”, and Einstein’s equatiors,, = 877}, and the conservation equatiohg7T*" = 0
yield the following three structure equations for the four unknowm, p, ande:

1—e*
N o= + dnre*e (2.3a)
2r
o2 _
Vo= + dmre*p (2.3b)
2r
p = —Vip+te) . (2.3c)

To fully determine this system of equations, an equation of state

p = p(s;n) (2.4)
e = €(s,n) (2.5)

must be supplemented. We will refer to the equatigns (2.3) as Tolman-Oppenheimer-Volkov or
TOV equations, even if the original TOV equations are written in a slightly different form.

Throughout this work we always assume the neutron star to have zero temperature, which
is quite reasonable since the pressure inside the neutron star is mainly maintained by a Fermi
gas of degenerate neutrons. Hence, the specific entropy be set to zero, too, and we can
eliminate the baryon densityand obtain a barotropic equation of state, where the pressure is a
function of the energy density alone:

p = ple). (2.6)

The simplest and therefore quite often used form is given by a so-called polytropic equation of
state

p = /%F, (2.7)

wherex andI' are the polytropic constant and polytropic index, respectively. More realistic
equations of state have to include the microphysics that dictates the interplay betaeea

on the nuclear and subnuclear levels for the neutron star matter. However, the physics under
the extreme conditions of the high pressures that prevail in the center of neutron stars is not yet
fully understood. In the literature there are therefore quite a few different realistic equations
of state, which were calculated based on various different microscopic models of (sub)nuclear
interactions.

It is clear that the zero temperature assumption neglects all kinds of thermal and viscous ef-
fects which can affect the stellar oscillations. On the one hand it will suppress the existence of
the whole family ofg-modes, and on the other hand we ignore the effects of viscosity and inter-
nal friction, which would normally damp out any oscillation. However, the damping times [37]
are such that their neglect will have no effect on the numerical evolutions we are investigating.

If we introduce an additional functiom, which is related to\ by

e =1-" (2.8)

r



2.2. The perturbation equations 9

we obtain from [[Z2-3a)
m = drre. (2.9)

Integration immediately leads to
m(r) = / 4rifedr (2.10)
0

which makes it clear that:(r) represents the total gravitational mass enclosed inside the radius
T.

To obtain the stellar model, we have to integrate the TOV equations (2.3) togetherwith (2.6)
from the center up to the point where the pressuvanishes. This then defines the surfdte
of the star.

From Birkhoff theorem it follows that the exterior vacuum region of the star is described by
the Schwarzschild metric with the mass paraméfes= m(R).

2.2 The perturbation equations

A somewhat more elaborate derivation of the relevant equations can be found in my Diploma
thesis [53]. Here, we will only briefly discuss the necessary steps and not go into very great
details. Our starting point is the ADM-formulation[73] or (3+1)-decomposition of the Einstein
equations. In this formulation the 10 field equations are first split into 6 dynamical equations
and 4 constraint equations. The dynamical equations, which have second order time derivatives,
are then cast into a set of 12 evolution equations, which are first order in time. Those are the
6 evolution equations for the 3-metrig; of a space-like 3-dimensional hypersurfaceand
another 6 equations for the time development of its extrinsic curvdfure

Ovij = —20K;; + ﬁkak%‘j + %z‘ajﬁk + %j@iﬁk (2.11)

1
k
&J(ij = Rij + }<}<2J - 2](zk}< i 87T (,TZJ — ET’%J)] (212)

— D;Djor + *0p Kij + Kin0; 8" + Kj,0,6" .

Herein, o denotes the lapse function amd is the shift vector. The remaining 4 constraint
equations, which have to be satisfied by any physically acceptable initial data, are given by

R— KK + K* = 16mp (2.13)

D,K — D;K’, = 8uj; . (2.14)

Here,p andj; are the energy density and momentum density measured by a momentarily sta-
tionary observer, whose 4-velocity coincides with the time-like normal vectaf the space-
like hypersurface:

p = Tuntn” (2.15)

ji = Tyn” . (2.16)



10 Chapter 2. Linearizing Einstein’s equations

The scalar equation {Z]13) is usually called Hemiltonian constrainand the vector equation
(2-13) is callednomentum constraintOnce satisfied on the initial hypersurface, they will be
automatically preserved throughout the evolution by virtue of the Bianchi-identities.

As we have already mentioned above, the oscillations of the neutron star will be described
within the framework of perturbation theory, i.e. we will treat them as small perturbations
around the fixed background which is given by the unperturbed stellar model. Hence, we
write the perturbed metrig,, as a sum of the static backgroung, and the time-dependent
perturbationsy,,, :

g,uv = Gu + huy . (217)

Since we are using the (3+1)-decomposition, we have to write down the perturbed mettic (2.17)
in terms of lapse function, shift vector, and 3-metric. Furthermore, we have to deal with the
extrinsic curvature as a dynamical variable. Their respective perturbations will be denoted by
a, ', hij, andk;;. For the background metri€{(2.1), shift and extrinsic curvature vanish and the
unperturbed lapse functiof is given by

A= /=g = €. (2.18)

In addition to the metric perturbations, we have to describe the perturbations of the energy-
momentum tensdf),,,. For a perfect fluid, the only quantities that can be perturbed are energy
densitye, pressure, and 4-velocity.,,, whose perturbations will be denoteddy dp, andéu,,,
respectively. For a barotropic equation of state, howeweanddp are not independent but are
rather related through

d
op = Lse, (2.19)
de
Where% =: C?%is the square of the sound speg&gdinside the fluid.
Due to the simple form of[{2.1), the evolution equations for the 3-metric and the extrinsic
curvature perturbations do not become as messy as they usually do in perturbation theory:
Othij = B0kyij + Wi0iB* + 1 0i8" — 2€” ki (2.20)
@kij = —8i8joz -+ Fkijﬁkoz + (5Fkij8ke” + « [R” + 47T(p — 6)"}/1']‘]
+ e [5Rij + 47 ((p —€)h;j + 5e(C? — 1)%~j)} :

Herein,~;; denotes the spatial part df (R.1), its inverseyi§ and the perturbed Christoffel
symbols are defined as

(2.21)

1
(Ssz‘j = 57’% (Ditumj + Djhmi — Dinhij)

1
= 57’% (O + Ojhm; — Omhij — 2Flz‘jhlm) : (2.22)

The perturbed Ricci tensor is given by
SRij = DyoT%, — D;oT™",
= 00T, — 0,01, + T,6T%, + T, 0T, — TV, 1%, — Th.6T (2.23)

(2



2.2. The perturbation equations 11

To first order in the perturbations, the constraifits {2.13) and](2.14) read

’}/ij(SRij’ - hini]’ = 167de (224)
’)/jk (&k]k — ajklk — Flikkﬂ + Fljkkil) = —87T(p + 6)(571,1 . (225)

It is interesting to note that it is possible to eliminaten (2.21) by virtue of the Hamiltonian
constraint[[Z.24) and to obtain thus a consistent system of evolution equations for the metric and
extrinsic curvature alone. The constraints then can serve to compute the matter perturbations
de and du;. In this case we would not have to use the equations of motion for the matter
perturbations, which follow from the conservation of energy-momentym+.

Our next step consists of expanding the equations in spherical tensor harmonics. Any
symmetric tensor4,,, can be expressed in terms of a set of ten spherical tensor harmonics

{[ylm]uv( )}A 1...10, Namely

A (t, 7,6, ) Z Z Z ) Vi (0,0) - (2.26)

=0 m=—1 A=1

Due to the spherical symmetry of the background we thereby can eliminate the angular de-
pendence and obtain equations for the coefficiefftst, r). The field equations thus will be
reduced to partial differential equationstiandr.

There are various ways to define those tensor harm@pjcsand an exhaustive overview
can be found in([7Z7]. The set first given by Regge and Wheklér [17] is widely used throughout
the literature and we will follow this tradition, even if this set has the disadvantage of not being
orthonormal. However, this is of no account in the following proceeding. It is only with the
inclusion of an orbiting particle that this fact causes some minor inconveniences.

The Regge-Wheeler harmonics can be divided into two subsets that behave in different ways
under parity transformation. Under space reflectionpblar or even parityharmonics change
sign according tg—1)!, whereas thaxial or odd parityharmonics transform like—1)!+1.

We now expand the metric as follows:

b = _QBVSim D)llm];w + Sém [yl2m]l“/ + Sil’)m [yfm]lw
+ VI i+ Vo Vil + V3" Vil + Vi Vi) (2.27)
+ Tllm [ylsin]lw + TZIm [y?m]uv Tlm[ lm]MV .

The notation has been chosen such that the coeffic@ntepresent the scalar parts if,,
namely o, 8., andh,,., whereas thd/; stand for the vector components, 34, h,g and h,.,.

Lastly, theT; represent the tensorial componehts, hee, and hy,. Note that this expansion
includes both polar and axial harmonics. Similarly, the extrinsic curvature ténswill be
expanded as

kij = K™Yl + K5 V0 + K§ V)i

(2.28)
+ Klm[yzm]w + Klm[yzm]zy + Klm[ imlis -
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Last not least, we need the matter variables

se = p™Y, (2.29)
wp = WVl + 4 V) + a4 Vi )a - (2.30)

Here, Y}, in the expansion[{Z.29) fa¥e is just the ordinary spherical harmonic. Using this
expansion, we will obtain 12 evolution equations for the coefficients of the 3-ntgframd the
extrinsic curvaturé;;. However, it is clear that this set cannot be used for the evolution, for we
have not specified any gauge yet. Picking a specific gauge means prescribing the coefficients
of lapsea and shifts; for which we do not have any evolution equations. Of course, there are
various ways to choose lapse and shift, and for the numerical evolution of the full nonlinear
Einstein equations it is crucial to make a good choice because inadequate lapse or shift may
cause the code to crash at very early times due to the blow up of some variables.

However, we are dealing with the linearized field equations and we do not have to worry too
much about some of the nasty things that might happen in the nonlinear case. We will choose
lapse and shift in a way as to simplify the equations as much as possible.

We could now proceed and write down the general form of the perturbation equations, but
we will not do so because on the one hand the equations are quite lengthy and on the other hand
they are not very useful as such. Besides, they can be found in Appendix C of my diploma
thesis [53]. However, it seems to be appropriate to make some comments on the equations.

First of all, the equations are independent of the spherical harmonic indecause of the
spherical symmetry of the background. Secondly, they decouple with respect to their behavior
under parity transformation. Hence we obtain two sets of equations, one describing polar pertur-
bations, the other axial ones. The latter cannot generate any density or pressure changes in the
neutron star for those quantities are scalars and therefore have even parity. The equations can be
further subdivided according to their valuelofTheradial anddipole modes are characterized
by ! = 0 and! = 1, respectively. Those oscillations do not give rise to gravitational radiation,
hence the equations are only meaningful in the interior of the star itself. Of course, they are also
valid in the exterior, but we can make them identically vanish by means of an appropriate gauge
transformation. Furthermore, for= 0 we do not have any angular dependence at all, hence all
the metric and extrinsic curvature coefficients that are proportional to a derivafiyg wénish
identically. We will consider this case in the next chapter. The dipole modes, which have been
studied in [25[31,-39], will not be treated in this thesis.

Forl > 2 it is not possible any more to make the exterior equations vanish, hence those
equations describe real gravitational waves, which propagate through the spacetime and carry
information about the oscillations of the neutron star. This case is the main point of investigation
of this thesis and is presented in chapter 4.



Chapter 3

Radial oscillations of neutron stars

As they are the simplest oscillation modes of neutron stars, radial modes have been the first
under investigation[12]. More important, they can give information about the stability of the
stellar model under considerationri [9) 10]. Since they do not couple to gravitational waves,
the appropriate equations are quite simple and it is relatively easy to numerically solve the
eigenvalue problem that leads to the discrete set of oscillation frequencies of a neutron star.
In the absence of any dissipative processes the oscillation spectrum of a stable stellar model
forms a complete set; it is therefore possible to describe any arbitrary periodic radial motion of
a neutron star as a superposition of its various eigenmodes. It hence seems quite superfluous to
explicitly solve the time dependent equations, for we do not expect to gain new physical insight.
This might be true indeed. There are, however, quite unexpected numerical problems that are
associated with the evolution of the radial oscillations of realistic neutron star models.

Those problems are quite generic, for they also occur for the non-radial oscillations and
probably also in the case of rotating neutron stars, and once we have them under control in the
radial case it should be straightforward to confer the appropriate numerical treatment to other
cases.

The above mentioned numerical problems are instabilities that occur when the neutron star
model is constructed with a realistic equation of state. However, they do not appear, if one
uses polytropic equations of state, which is often done for the sake of simplicity. As it turned
out, this instability is not a general instability of the numerical scheme, for it is dependent
on the resolution and can be made to disappear if the resolution exceeds a certain threshold.
However, this threshold strongly depends on the numerical scheme that is used to evolve the
eqguations, and can be so high that it prevents any evolutions within a reasonable time limit. For
other discretizations, the threshold can be relatively low and does not represent a real obstacle
to obtaining numerical results. However, this is mainly because the radial case is a (1+1)-d
problem and one only has to consider the stellar interior, since the exterior spacetime remains
totally unaffected. For non-radial oscillations with> 2 this is not true any more, for here
the oscillations will generate gravitational waves, which propagate towards infinity. This means
that we have to include the exterior domain in our numerical evolution as well, which will result
in a much bigger computational expenditure. Here, the required minimum resolution can extend
the computation time of a single run to quite large values. Still, even the non-radial case is a

13
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(1+1)-d problem, and if we include rotation we will face a (2+1)-d problem, which can become
totally intractable if a high resolution is required to obtain a stable evolution.

As we shall see, the cause of the instability is confined to a small region close to the surface
of the star, and it is only here that the high resolution is needed in order to obtain stability. For
the more time-consuming cases, we then could only locally refine the grid in this region instead
of using high resolution for the whole domain. However, for each stellar model, we would
have to localize the troublesome region and find the required resolution, which is more or less
a matter of trial and error.

Therefore, we seek for a better way to solve this problem and we find it in reformulating the
equations in such a way that the instability totally disappears, and the equations can be evolved
for any stellar model and for any desired resolution in a stable way.

3.1 Derivation of the evolution equations

The first one to write down the equations was Chandrasekharl[9, 10], later on various authors
rewrote them in many different ways [1T) 13] 14, 16]. Since the (3+1)-formalism is particularly
suitable for the numerical evolution we will rederive the equations using the framework of the
(3+1)-decomposition.

From the last chapter we know that radial perturbations are describéd=by). Since
the appropriate harmonic is just a numbgs = 1/+/4x there is no angular dependence at all
and any derivative of;, with respect ta or ¢ vanishes. In this case we can abségh in
the perturbation variables, which are then functions ahd» only, and the expansion of the
perturbations reads

a = e"Si(t,r) (3.1a)
By = re**Sa(t,r) (3.1b)
re? Sy (t,r) 0 0
hz’j = 0 TQT(t, 7") 0 . (31C)
0 0 r2sin? 0 T(t,r)

Similarly, we have for the extrinsic curvature

e K (t,r) 0 0
kij = —e™" 0 sT2EKo(t, ) 0 : (3.2)
0 0 1r2sin® 0K, (t,r)

This particular decomposition has been chosen in order to obtain a more convenient set of
equations. The matter perturbations are characterized by the perturbation of the energy density
de and the (covariant) radial component of the 4-veloeitywhich are expanded as

de = p(t,r) (3.3)
ou, = —e’u(t,r) . (3.4)
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We then obtain the following four evolution equations for the metric perturbations and the
perturbations of the extrinsic curvature:

083 0855 , 1 K,
E_2<8T+(A+T>SQ+T> (3.5a)
88—7; = 25, + K, (3.5b)
0K, oo ?*T  9%S, 2 N\ 0T , 05
ot © or? + or? + r A or + (@ = A) or
1, 0S5 ., 3, e -2 (3.5¢)
— <§TV + 1) W + ()\ — 51/ + , ) S3:|

+4me® (1= C2) p
% _ 62y_2)\ |: aQT (V/ _ )\/ + %) 8T 2 651 653

ot W+ r E—i_r@r or

2X
+25 T+ (2X —u/ - §) 53} (3.5d)
T

,
+8me® (1-C2) p.

In addition we have the Hamiltonian constraint

9’T 3\ O e* oS 1
2X - __ - I = o= —T _3 2 I Y .
8m e p 5,2 + ()\ 7‘> o 3 + 5 + " AN Ss (3.6)
and the momentum constraint
K 1 2
87 (p+e)e*u = —&—i- (l/——) Ko+ -K; . (3.7)
or T r

Note, that in the above equations we have not yet specified any gauge. To perform numerical
evolutions, we have to fix the gauge, that is we need some additional prescriptions fos;lapse
and shiftS;. Let us choose vanishing shift

52 = O, (38)

but, for the moment, let us keep the laggestill unspecified. Instead, let us pi@k= 0 at the
initial slice att = 0. We then obtain a much simpler set of evolution equations:

0S5 2
> _ ;Kl (398.)
oT
— = K 3.9b
ot 2 (3.9b)
0K, oy { 9%S,; , 051 1, 0S5
— = —2—1—(21/—/\)—— —r 4+ 1) =
ot or or 2 or (3.90)

2)\_2

—l—(X—%u'%—e >53}+47T€2V(1—C§)p
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0K, 202 2@ 953
- r Or or

e -4 <2X -2 — §) Sg:| + 8re® (1 — 082) p, (3.9d)
r

and the Hamiltonian constraint reduces to

8re?p = 953 +2 (1 — X) Ss . (3.10)
or r
Note that we still have an equation fér Our goal is to use the remaining gauge freedom in
such a way that we can get rid of this equation. This means that we somehow have to make
the extrinsic curvature variabl&, vanish. To do so, we first solve the Hamiltonian constraint
(B-10) forS; and plug it in into [3:9d), which then reads:

9K, = v 2 205 2y’—i—1 Ss | —8me* C2p . (3.11)
ot r Or T

We finally fix the gauge completely by choosing the lagseuch that we make the righthand
side of (3:111) vanish. This can be accomplished by requiringthsiould satisfy the following
ordinary differential equation:

95 = (Tl/ - 1) Ss + drre®*C? p . (3.12)
or 2

This condition can also be used to replageand Sy in (3:9¢). Moreover, if we use the Hamil-
tonian constraint[(3-10) to replace the fluid variableve end up with just two equations for
the metric variableS; and the extrinsic curvature variablg . We can even go one step further
and combine them to yield a single wave equation§grHowever, we do not write down this
equation because we will present a somewhat simpler system below.

Before doing so, we would like to prove that radial gravitational waves do not exist. The
particular feature of this wave equation {8y is that its propagation speed is not the speed of
light alone, but it is multiplied with the square of the sound sp€&dHence, outside the star
this equation loses its wavelike character becdtse 0. In fact, in the exterior region, where

in addition toC; = 0 we have\' = —v/, the equation fos; reduces to

6283 1 _2U—2)\ 053 / 1

61&2 = re (E + 2 (l/ —I— ;) 53) s (313)
which by virtue of the Hamiltonian constraint (3] 10) wjith= 0 becomes

%S5

o 0. (3.14)

This shows us that radial oscillations of neutron stars cannot give rise to any gravitational waves.
By the way, we could have inferred this much more easily by looking at the momentum
constraint[(3]7), which withouk’, just reads

K, = 4nre® (p4+e)u = 22 (N +1)u. (3.15)



3.1. Derivation of the evolution equations 17

Sinceu vanishes outside the star, so méstand thereforess.

To obtain a simpler set of equations than the above mentioned wave equation, we look at the
so far neglected equations which follow from the conservationlg** = 0. Here, instead
of p we rather use

2

H(t,r) = p%ep(t’r) (3.16)

because the resulting equations are somewhat nicer. We obtain the two matter equations

8(9—]: = T2 % 4+ 22X (Cf (21/ N+ %) = 1/’) u—C? K, (3.17a)
ou oH 058
5 = o + 8—7"1 ) (3.17b)

Here, we have already made uselof S; = Ky = 0. We now use the momentum constraint
(BI%) to eliminatek; from equation [[3:I7a), and our gauge conditipn (3.12) together with
(B7I6) will serve to replacs; in (B-L7b). The resulting equations still contain the metric variable
Ss3, and in order to obtain a closed system of equations, we need the evolution equafign for
which is given by [(3:9a), but witlk; replaced by[(3:15). We finally end up with the following
quite simple set of equations:

O oo (20 (o () oy y 2Y )y (3.18a)
ot or r

au 8H ’ / / 1

D +)\)H+(TV +§> s, (3.18b)
% = 81(p+€)e*u . (3.18¢)

Additionally, H and.S; have to satisfy the Hamiltonian constraint(3.10)

p+e oS 1 ,
SmeM S H = 2 42 (; - )\) Ss . (3.19)

In order to obtain physical solutions of the equations, we have to impose boundary conditions at
the origin and at the stellar surface. At the origin we have to require the perturbation variables
to be regular. By inspection we find that

H(t,r) = H°(t) +O(r?) (3.20)
u(t,r) = u’(t)r + O(r?) (3.22)
Ss(t,r) = S§(t)r+ O . (3.22)

The boundary condition at the surface is given by the requirement that the Lagrangian pressure
perturbationAp has to vanish. This condition requires the concept of the radial displacement
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function&(¢, ), which describes the displacement of a fluid element from its equilibrium posi-
tion as a function of time and position and will be discussed in more detail in chapter 3. For the
radial case the relation betwegmanddju, is given by equation (26.6) of MTW[2]:

23 —2A
[— v . .
n e ou, (3.23)

The authors then introduce the renormalized displacement function
¢ = rleVE, (3.24)

for which the Lagrangian pressure perturbatiomcan be written as
r’Ap = —I'ipe "= | (3.25)

whereT1p = (p+ ¢) C? for barotropic equations of state. The condition of vanishing La-
grangian pressure perturbation at the stellar surfaeeR then translates to

o¢
aT(R) =0, (3.26)
in the case thdtp does not vanish at the surface. For vanisHingthis is not necessarily true
anymore, instead, we just have to require the boundednésand( itself. For a more detailed
discussion of the boundary condition at the surface,see [11].

As it is only for the special cases of polytropic equations of statelthat= 0 at the surface,
we will always usel’(R) = 0 as our boundary condition, regardless of the actual equation of
state. To use this boundary condition for our system of evolution equafions (3.18), we have to
translate it into a condition fox, which can be easily obtained by making use[0f {3.23) and

B3

acy 06\ ) , o
V= <§>TR N (726 a)TR B (r26 2)\6UT)T:R - —(r2e QAU)T:R :

Explicitly we have

W(R) = (QX(R) ~V(R) - 3) u(R) | (3.29)

R

which can be used in the numerical code to update the valuatthe surface. This is the only
relevant boundary condition because the values of the remaining quantiaesl S; directly
follow from the evolution equations. From (3:18c) we deduce f3af?) = 0, and because
of Cs(R) = 0 equation [3:I8a) reduces to an ordinary differential equatioi/fat the stellar
surface.

Finally, we should mention that our system is equivalent to equation (26.19) of MTW, which
is a single wave equation for the renormalized displacement fun¢tidincan be written in a
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very compact form with the righthand side having the form of a self adjoint differential operator:

woe -0 <p %) L Q¢ (3.29)
with

W = (p+e) et (3.29b)

P = (p+e) C2eM™ (3.29¢)

r2Q = T (p+e) ((1/)2 + 4’/7, — 87?62’\]9) . (3.29d)

3.2 The eigenvalue problem

By applying the Fourier transformation to the numerical evolution we should be able to find the
frequencies of the eigenmodes. However, it is certainly reasonable to calculate the eigenfre-
guencies directly from equation (3}29), too, by making the harmonic time ansatz

C(t,r) = e“ix(r). (3.30)

This then gives us a linear ordinary differential equationf¢r) with w?, the square of the
oscillation frequency, as a free parameter:

0 = d% <P%) +(Q+ W) x. (3.31)
Together with boundary conditiof (3]26) this defines a Sturm-Liouville eigenvalue problem,
which has solutions only for a countable set of real eigenvalie$orw? positive,w itself is
real and thus, the solution is purely oscillatory. However, for negativee have an imaginary
frequencyw, which corresponds to an exponentially growing or damped solution. Since the
general solution is always a superposition of both the growing and the damped modes, this
means that the occurrence of a negative valug’aforresponds to an instability with respect to
radial oscillations of the stellar model under consideration. For neutron stars this will, indeed,
happen for central densitieg larger than the critical central density.;; at which the stellar
massM as a function ok, has its maximum. In this case the star will ultimately collapse to
a black hole. Fok, = ¢..; there must be a neutral mode with the corresponding eigenvalue
w? = 0 [].

To solve the eigenvalue equatidn (3.31) numerically, we will write it as a system of two first
order equations iry andn := Py’

dx n
X _ 1 (3.32a)
dn _ — (WW+Q) x . (3.32b)

dr
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By inspection we find that close to the origin we have) = xor® + O(r°) andn(r) =
no+O(r?). From (3:3Za) it then follows that the leading order coefficients are relatégfoy:
1m0/ Po, WwherePy = (p(0) + €(0)) C2(0) eMO+3(0) Choosingy, = 1 we obtainy, = 1/(3F),
which gives us the initial values for the integration.

To find the eigenvalues, we will choose some arbittargnd integrate the equations from
the originr = 0 outwards to the stellar surfaceat= R, where we have to check whether
the boundary condition’(R) = 0 is satisfied. If so, the chosencorresponds to the desired
eigenfrequency.

Numerically, the boundary conditiogf (R) = 0 will never be fulfilled exactly. However, if
we consider/’( R, w) as a function ofv we can find that the zeroes ¢f( R, w) are of first order,
which means that they are associated with a sign changé 8f w). Numerically it is quite
easy to look for a sign change in a given interval, and we can quickly locate the exact value of
w up to the desired precision, for example by the method of bisection. Of course, there exist
other methods of computing the eigenvalues and some of them are compiied in [11].

To check our numerical eigenvalue code, we compare our modes with results available in
the literature. An extended survey of the first two radial modes for a wide range of different
equations of state was given by Glass & Lindblam [14]. However, it seems that an error sneaked
into their computer code, for their equations are correct, but the results are erroneous. Instead,
we agree with results obtained byath & Chanmugam(i15], who also pointed out that the
results of Glass & Lindblom are flawed. The strongest argument in favor of their (and therefore
our) results being correct is that they indeed obtain the neutral modes right at the maximum of
the mass functio/ ().

In Fig.[3-1 we show the frequencies of the first 5 radial oscillation modes as a function of the
central density,. In addition, we include the values obtained btk & Chanmugam, which
perfectly agree with our results. The stellar models were obtained using a realistic equation of
state described by the model V of Bethe & Johnsgon [75] (EOS D in the list compiled by Arnett
& Bowers [76]).

3.3 Numerical results for polytropes

For the first evolution runs we use a polytropic equation of state With2 andx = 100 km?.
We discretize the systern (3]118) with a two-step Lax-Wendroff scheme (seéle.g. [8]), where we
first perform a half time step to compute intermediate values and then perform a full time step
to obtain the values at the next time level.

We show the evolution of a narrow Gaussian profil&irfor three different stellar models.
Model 1 has a central energy densityegf= 3-10'° g/cm?, which corresponds to a mass of
M = 1.27 M, and radius of? = 8.86 km. Model 2 withe, = 5.65-10'° g/cm? is right below
the stability limit and model 3 witlh, = 5.67-10'° g/cm’ is above it. For models 1 and 2 we
expect periodic time evolutions with the signal being a superposition of the various eigenmodes.
Model 3, which is unstable with respect to radial collapse, should show an exponential growing
mode.

Our expectations are fully met by the numerical evolution of equatons (3.18). InHig. 3.2 we
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Figure 3.1: The first 5 radial pulsation modes as a function of the central energy density for the
EOS of model V of Bethe & Johnson. The results @fth' & Chanmugam are represented by
circles.

show the time evolution for model 1 with its Fourier transformation in Figiure 3.3. The spectrum
shows that the chosen initial data excite many of the eigenfrequencies of the stellar model;
at least 15 modes are clearly present. In the spectrum we also include the eigenfrequencies
computed by directly solving the eigenvalue problém{3.32), which agree perfectly. It is only
for the higher frequency modes that the peaks in the spectrum are systematically located at
higher frequencies than the actual eigenfrequencies, which is due to insufficient resolution of the
evolution. By increasing the number of grid points the peaks converge to the right frequencies.

As the central density increases, the star approaches its stability limit. At the same time the
frequency of the lowest mode starts to migrate towards zero. The stability limit itself is charac-
terized by the presence of an eigenmode with zero frequency. As was already stated above, at
this point the total mass/ as function of the central density exhibits a local maximum. In
Figure[3:4 we show the time evolution &f for model 2. The evolution does not really look
different from the one for model 1, but in the signal there should be a very low frequent os-
cillation, which corresponds to the lowest eigenmodes. The Fourier transformation jn Fig. 3.5
confirms the presence of a very low frequency mode, which for this model has slipped down
to a frequency of, = 173Hz. The second mode resides at the much higher frequency of
vy = 7580 Hz. We should mention that in order to obtain the spectrum in[Fig. 3.5, where we
have a resolution of about 10 Hz, we have to evolve up=+ol00 ms. With a time step size that
is somewhat smaller than10~*ms we then need more than one million integration steps!

Model 3 is unstable, which is nicely confirmed by the evolution. With the eigenvalue code
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Figure 3.2: Evolution of; for a polytropic stellar model with central density= 3-10'° g/cnv.

Figure 3.3: The power spectrum of the above wave signal shows that at least 15 eigenmodes are
present. The circles represent the eigenfrequencies obtained by s@iving (3.32).

we find an imaginary frequency with I@) = 606 Hz, which corresponds to anfolding time

of 7 = 1.65ms. In the logarithmic plot of Fig. 3.6 the exponential growth shows up as a linear
increase in the amplitude. From a fit of an exponential function to the numerical data, we find
T =1.69ms.

3.4 Getting into trouble: Using realistic equations of state

So far we have used polytropic equations of state, which are quite decent approximations to
realistic equations of state as far as general features of neutron stars like mass and radius are
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Figure 3.4: Section of the evolution af for a polytropic stellar model with central density
€0 = 5.65-10' g/cm?, which is right below the stability limit.
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Figure 3.5: Fourier transformation of the above wave signal. Here, the lowest mode, which lies
aty; = 173 Hz is clearly visible. The second mode lies/at= 7580 Hz.

concerned. However, it is in particular the oscillations of neutron stars that are very sensitive to
local changes in the equation of state, which are due to the different behavior of the neutron star
matter under varying pressure. It is therefore much more interesting to use realistic equations of
state that take into account the underlying microphysics which determines the state of the matter
as a function of pressure and temperature. For comprehensive overviews on realistic equations
of state, see[4] 5] 6].

As was already mentioned in the first chapter, for the sake of simplicity we will resort to
zero temperature equations of state only. Of course, if we were interested in damping times,
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Figure 3.6: Evolution ofu the unstable polytropic stellar model with central densjty=
5.67-10% glcn?,

which are due to internal friction and other viscous effects that result from the finite temperature
inside the star, we would have to abandon the zero temperature approximation.

Realistic equations of state cannot be given in analytic terms over the whole pressure range
inside the neutron star, hence they usually exist in tabulated form only. To solve the TOV
equations in this case, one has to interpolate between the given values in order to obtain the
stellar model with continuous functions of radius

The thus obtained stellar models are not as smooth as those with polytropic equations of
state, for it is clear that the energy density and other matter functions will have bumps and edges
as the matter undergoes phase transitions for increasing pressure, which can change its stiffness
quite abruptly. This is particularly the case close to the stellar surface, where the pressure is
zero and increases extremely as one moves into the stellar interior. It is clear that it is here
that the matter undergoes a couple of phase transitions. First the crystal lattice gets destroyed
and changes into a plasma of nuclei and free electrons. As the pressure further increases, the
electrons get captured by the protons of the nuclei, which yields more and more neutron rich
nuclei. Eventually the nuclei start to dissolve and neutrons begin to “drip” out of the nuclei. At
this neutron drip point, which occursag-10% dyn/cn?, or at a density of about310'* g/cn?,
the equation of state has its most drastic change. For increasing pressure the matter then stays
in the form of a degenerate Fermi gas until it reaches the point beyond nuclear density, where,
again, phase transitions may take place.

This is the point where the underlying physics is the least known, and one has to rely on
physical models with simplifying assumptions in order to theoretically compute the equation of
state. Of course, different nuclear models lead to different equations of state and it is therefore
at the nuclear density level and beyond that the equations of state that are given in the literature
differ the most strongly from each other. For a more detailed description of the physics at high
densities, we refer the reader o [5].
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In the following we will make use of an equation of state called MEA [80], which yields
a maximal mass model df561/,. We can obtain a typical stellar model by taking a central
density ofe, = 4-10% g/cm?, which yields a radius and a mass Bf= 8.18km andM =
1.55M, respectively.

If we try to repeat the evolution of an initial perturbation of the radial velocity fiefdr
the above stellar model using the Lax-Wendroff scheme for the discretization of the relevant
equations[(3:18), we will witness a stellar explosion. That is, after a few oscillations we will
suddenly find an exponentially growing mode that immediately swamps the whole evolution.
This cannot be a physical instability, for we have taken a stable background model, and by
playing around with different resolutions we quickly convince ourselves that it has to be a
numerical instability, for neither thefolding time nor the frequency seem to converge to some
limiting values.

Apparently, it has to be a problem of the numerical discretization scheme we use, we can
therefore try to switch to a different one. For instance, we could try to discretize the system
(B-I8) on a staggered mesh. If we write the equations schematically as

Q = aP' +bP (3.33)
P = cQ +dQ, (3.34)

the discretized form reads
At At

Q?H = Qi + aiA_r ( 511/2 - Pin—1/2) + bi? ( ir-Li-l/Q + Pin—1/2) (3.35)
n+1 n At n+1 n+1 At n+1 n+1
Pz'+1/2 = Pz+1/2 + Ci+1/2E ( i1 — @ ) + di+1/27 ( i+ Q; ) . (3.36)

We can see thap lives on integer grid points, where&slives on half integer ones, that is the
P-grid is shifted by half a grid point both in- and¢-direction with respect to th@-grid. In
(B-I8) we putH on the regular grid and and.S; on the shifted grid.

In Fig. 3.7 we show the evolution for various resolutions. Again, we find a growing mode
for low resolutions, but as the number of grid poirdtsis increased, the occurrence of the
instability gets more and more delayed, and the slope of the exponential growth decreases, too.
And for N = 500 it suddenly disappears. Interestingly, it is even possible to pin the point where
the instability vanishes down & = 469. For N < 469 we still have exponential growth, but
if we add just another grid point we can evolve the equations arbitrarily long.

It seems that also for the Lax-Wendroff discretization the instability can be made to vanish
by increasing the resolution, but the required resolution is extremely high. Too high to allow
for numerical runs within a reasonable time scale.

We now try a third possible discretization, where we transfdrm{3.18) into a single second
order wave equation. This can only be performed for either S3, but not for H, since in this
case we cannot totally eliminate the remaining variafje Here we choose, but since the
resulting wave equation is somewhat lengthy, we define another vatighi®ugh

w(t,r) = re’ 2 u(t,r), (3.37)
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Figure 3.7: Evolution using the first order system (B.18) discretized on a staggered grid for
resolutions ranging from N = 100 up to 500 grid points. The key is the same as in the figure
below.

for which we have a quite transparent wave equation

2 2
gw = e Csza—w +(C2 (2 + )+ (CH =) gw
ot? or? or (3.38)
/ ! 2 2/ 21 1 1 '
+( C? P +(CS)+6 +V(V+ =) Jw]|.
ror r? r r2 r
At the stellar surface, we have the following boundary condition
(rw)'(R) = 0. (3.39)

We discretize[(3.38) with central differences, which again will be demonstrated for the schematic
equation

Q = aQ" +bQ + cQ . (3.40)

A second order discretization scheme is the following

QM = 2Q" + QM + (At)? <(ACL—T)2 Q1 — 207 + Q7))
b;

(3.41)
Fopr (@ = QL) +e@!)

In Fig.[3:8 we show the evolution for different resolutions. The plots are quite similar tp Hig. 3.7.
Here, too, the instability goes away for resolutions of 500 or more grid points. This similarity
of the behavior between those two discretizations is understandable, since the discretization of
(BI8) on the staggered grid is equivalent to the above discretization of the wave equation.
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Figure 3.8: Evolution using the wave equatign (8.38) discretized with central differences for
resolutions ranging from N = 100 up to 500 grid points.

The question now is, why is there an instability at all? Why is it that for polytropic equations
of state there is no problem at all, whereas by using a realistic equation of state the numerical
evolution can blow up? Which part of the equations is responsible for this peculiar behavior?
This is all part of the investigation in the next section.

3.4.1 The physical problem

It becomes clear very soon that the culprit has to be the profile of the sound speed inside the
star. For if we compute the stellar models with a realistic equation of state, but then replace

the profile of the sound speed with a profile that results from a polytropic equation of state, the

instability does not occur any more.

For polytropic equations of state, the sound speed is a smooth, monotonically decreasing
function of the radiug: that is zero only at the surface of the star, whereas for realistic equa-
tions of state there are regions in the outer layers of the star, where the sound speed can have
sharp drops. In particular, close to the neutron drip point, the equation of state becomes very
soft, which results in a drastic decrease of the sound speed. This sharp drop then can lead to
the observed numerical instabilities due to an interplay between the boundary condition at the
surface of the star and the small value of the sound speed in this particular region.

In Fig. we show the square of the sound speéd= % for a stellar model using eos
MPA with central density of, = 4-10'® g/cn?. It can be clearly seen thatats 8.06 km there
is a local minimum of the sound speed, where it drops dom%g ter 0.0005. For largerr we
can see a series of much smaller dips, which is an artefact of the numerical spline interpolation
between the tabulated points. But the dipra&z 8.06 km is physical and is present for any
realistic equation of state.
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Figure 3.9: Square of the sound spé&é&dinside the neutron star model using eos MPA (above)
and a section near the surface (below).

3.4.2 Atoy model

The wave equations that describe the non-radial metric oscillations, e.g. the Regge-Wheeler
equation [4.13) and the Zerilli equatidn (4.33) in chapter 4 are of the form

02 ) 0 -~ .
or

02 92 .

W = ar*2® + V@ 9 (3'43)
where

0 0

5. = Mg (3.44)
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Herec(r) is the local propagation speed, in this case the speed of lighty aeg@resents a po-
tential. Besides, the equation can contain additional terms from the coupling to other quantities,
but they are not relevant for our discussion. By choosing another va@abla/c(r)i), we can
further change[(3:42) to

0?P 82
which is the standard form of a wave equation with a variable propagation speednd
a potential term/. However, this is not possible for the fluid wave equations. If wellet
represent any of the fluid variables w or H, which have to be multiplied by appropriate
factorse” or ¢*, we cannot find a wave equation of the forfm (8.45), withr) now replaced by
the sound spee@?(r). Instead, we always will have an additional term, which is proportional

to the first derivativel’ and which we cannot make disappear (we suppress the overall factor
621/72/\)

2 2

aa—t\f:(?(>%—u%W+vw (3.46)
At first glance this does not seem to be bothersome at all, but it is in the case of the sound speed
becoming almost zero that the problems start to arise because then the term proportidnal to
starts to dominate.

For the following discussion we will not us€ (346) but rather the fluid equafion](4.30)
that governs the non-radial oscillations, which are investigated in chapter 4. From numerical
experiments we find that the problematic termd7in {4.30) are the first two ones:

OH
or

2
8H 2U—2\ 028H 02 A/>—V)

ol Rl G (3.47)

The wave equatiorf {3:.B8) that we use for the radial oscillations is somewhat different, but if we
were to transform[{3.18) into a wave equation foiinstead ofu, the first two terms would be
exactly the same as ifi(3]147). To further simplify (3.47), we now set

2U—2)\

e =1
C? = ¢
N =0
Vo= a,
which gives
0*H 0?’H oH
2 c 52 +a (202 — 1) 5 (3.48)

Our goal now is to see if we can get the same kinds of instabilities with this simplified version.
It turns out that as long as we do not require periodic boundary conditions, the actual choice
of the boundary conditions does not have a great influence on the stability behavior pf (3.48).
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For the sake of simplicity we therefore chodd¢0) = H(R) = 0. We could as well choose
the first derivative off to vanish at either boundary. Finally, we get= 1 and discretize our
toy model [3748) with central differences:

2
H = omp - gyt g @R (H, —2H] + H} )
7 7 7 7 (AT>2 i+1 7 1—1 (3 49)
2 (At)2 n n .
ta (ZCz‘ - 1) I/ (HPy — Hi—l) :

To simulate the dip in the sound speed, we assume a constant sound speed with a small Gaussian
well with depthh and widthw located atr-..:

Ar) = co— he(555)" (3.50)

To infer the stability behavior of our numerical scheme, we have to look at the eigenvalues
of the discretized time evolution operator. Let this operator, which advances data from the time
level n to the next time levek + 1, be denoted by. If we furthermore collect all value&
on the time leveh in the vectorH"”, we can formally write

H"' = BH". (3.51)
Consequently, the inverse Bf leads to the previous level
H" ' = B7'H". (3.52)
Our numerical schem&{3149) can be written in vector form as
H™ + H"' = 2GH"
& (B+B ') H" = 2GH",

whereG is the matrix that includes the discretized spatial derivatives. Suppose now'that
an eigenvector oB with eigenvalué. Hence the eigenvalue &' is ! and we have

(b+b"')H" = 2GH™ (3.53)
that is,H" is also an eigenvector @ with eigenvalue
1
= —(b+0b7Y) . 3.54
g =50+ (3.54)
Solving forb yields

b =gtvg>—1. (3.55)

For stability, we have to havé| < 1. If we denote the two solutions df (3155) by

by = g+vg>—1 (3.56a)
b = g—+g*>—1, (3.56b)
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we find thath . = b'. Hence, ifjb,| < 1itis [b_| > 1 and vice versa, i.e. we cannot have
the moduli of both eigenvalues smaller than one at the same time. Therefore it is only for
|bi| = |b_| = 1 that we can have stability. This means thdtas to lie on the complex unit
circle:

b=¢e. (3.57)

It then follows forg that
1 . .
9=73 (el‘z’ +€_1¢) = CoS ¢ . (3.58)

Thus, g is real and only assumes values in the intefvdl, 1].

Hence, if we find any eigenvalugof G that is either complex or whose modulus is larger
than one, we always have ofi¢ > 1 and therefore the numerical scheme is unstable. Nbw,
is a tridiagonal matrix with the band given by the triple

(Giic1, Giiy Giip1) =
Lon a, 2 2 laon an, 2
20f 4fA3:(2c 1), 1—c*f7, 2cf —|—4fo(20 1) ,

where we have defined
At

= 3.59
f=x (3.59)
A necessary condition for stability turns out to be

cf <1, (3.60)

which is the usual CFL criterion.

Of course, there are a lot of parameters to play around with. It would not make sense to try
out all the possible combinations. Instead, we choose some parameters to be fixed. For example,
we chooser = f = 1. Indeed, we have found that the onset of instability is independent of
f (always assuming < 1, of course), which means that smaller time steps with fixed grid
spacing cannot cure the instability. Too large a value obmbined with too low a resolution
also can give rise to instabilities. The choicezof 1 ensures that the scheme is stable- 1
throughout the whole domain.

We now set, = 1, andr. = 0.5, that is, the dip is in the middle of the domain. Interestingly,
for a given resolution, the instabilities may vanish, if we meyeowards the left boundary,
whereas a stable set of parameters can get unstable, if wemmtmxgards the right boundary.

That means if an instability occursat= 0.5, it will necessarily also occur at > 0.5. (In the
actual case of a neutron star, the dip sits pretty close to the star’s surface). Having now fixed the
parameterd, a, ¢; andr., we are left withh, w and V.

Our results can be summarized as follows. First, let us chaogebe so small that the

considered grids will not be able to resolve the Gaussian. Thus, on our grids we kave
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Figure 3.10: Largest eigenvalue as a function of the number of grid points for different values
of Crniin»

everywhere except at the middle grid point, where we hgyg = 1 — h. (We then have to take
an odd number of grid points, for only in this case there is a grid point locatee-at. = 0.5).

By explicitly computing the eigenvalues & we find that they are indeed real, but they are
not necessarily smaller than one. It is rather the case that for a given grify $lzere exists a
certain critical value-..;;, for which at least one eigenvalue will be greater than one.ckgr
only slightly larger tharn..;; all eigenvalues arg 1, whereas for.,,;,, < c..; there is always at
least one eigenvalue 1.

The higher the resolution, i.e. the larg€rand the smalleAr, the smaller....;. Conversely,
for a givenc,,;,,, there exists a minimum grid siz€..;;, above which all the eigenvalues atel
and below which there will always be at least one eigenvalue And the smallek,,;,, the
larger the required grid siz&..;; to obtain a stable evolution. However, fay;, = 0 there
always seems to be one eigenvalué, regardless of the chosen resolution. Thus, in this case,
the scheme is unconditionally unstable.

In Fig.[3-ID we show the eigenvalues@fas a function of the grid siz¥ for various values
of ¢,,in. It can be clearly seen that for smaller values,gf, it takes a larger grid size to squeeze
the largest eigenvalue below one. Fgy, = 0.002 it is for N > 61 that all eigenvalues are
< 1, whereas for,,,;,, = 0.001 we must haveV > 121.

In Fig. [3.I1 we show the eigenvector corresponding to the largest eigenvalue for the param-
etersc,,i, = 0.004 and N = 21.

Figures[3.12 an@_313 show the numerical evolutiondgs, = 0.002 for grid sizes of
N =59 and N = 61, respectively. From Fid. 3.].0 we see that fér= 59 there exists one
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Figure 3.11: Eigenvector corresponding to the eigenvalue larger than one for grid sizel
andc,,;, = 0.004. Compare with numerical results in F[g. 3.12.

eigenvalue that is- 1, whereas for grid sizes @f = 61 or greater, all eigenvalues remainl.

As expected, the numerical evolution shows a growing modé/fer 59, whereas forN = 61

the evolution remains bounded. From the shape of the growing solution we find, indeed, that it
corresponds to the eigenvector of Hig. 3.11.

The influence of the dip widthw is rather counterintuitive. The larger, the wider and
smoother the dip. If the instability should be due to the discontinuity inshould vanish for
increasingu. The contrary is the case. For a given resolution and a valuyg;pjust above:,,;;,

a widening of the width, i.e. an increaseurwill eventually result in a transition to instability.

We would also like to stress that the instability is not invariably related to the dip, but is
rather due to the interplay of the dip with the prescribed boundary conditions. For if we were to
choose periodic boundary conditions, all the previously unstable cases suddenly would become
stable! This is due to the fact that with periodic boundary conditions our domain is not bounded
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any more, in fact, it becomes infinite.

This peculiar behavior is apparently present for any numerical discretization, however, for
the Lax-Wendroff scheme the required resolution in order to suppress the instability can be so
high that it can prevent one from performing evolutions within a reasonable time frame. It is not
clear to us why for the Lax-Wendroff scheme the instability is much more persistent than for the
other two schemes we were investigating. But this shall be of no concern, for we will rewrite
the equations in such a way that they can be integrated in a stable way for any resolution.

3.4.3 The solution of the problem: Rewrite the fluid equation

From the previous section it has become clear that the exploding modes are due to the smallness
of the sound speed combined with insufficient resolution. Increasing the resolution for a given
profile of the sound speed or increasing the minimum value of the sound speed for a given
resolution will eventually result in numerical stability.

However, for the physical equations the profile of the sound speed is fixed for a given stellar
model and it is only by further increasing the resolution that we can prevent the occurrence of
the instability.

Yet, the nature of the instability is such that we only need the high resolution in the small
region close to the surface of the star, where the sharp drop in the sound speed occurs. If we use
a uniform grid, we have to use the same resolution throughout the whole domain even in those
places where it would not be necessary. And in our case, this would be 99% of our domain!

The natural way out one might first think of is to locally refine the grid and to provide the
required resolution only in the region where it is really needed. This could be accomplished by
fixed mesh refinement since this region is determined by the profile of the sound speed, which
does not change throughout the evolution. However, we then would have to deal with the tran-
sition from the coarse grid to the fine grid and vice versa, which might be troublesome. Another
drawback is that for different stellar models we would need a different grid refinement and it
would be a matter of trial and error to find the appropriate refinements for a stable evolution.

Yet, there is a better way out. We can try to find a new radial coordinateich is related
to the actual radial coordinaten such a way that an equidistant gridarwould correspond to
a grid inr that becomes automatically denser in regions where the sound speed assumes small
values. A simple relation between the grid spacidgsand Ar that would have the desired
properties is

Ar(r) = Cs(r)Ax . (3.61)

An equidistant discretization with a constant grid spacgwould correspond to a coarse grid
in r for large values of’, which becomes finer and finer as the sound spgeeadecreases.

From (3:61) we can immediately deduce the form of our new coordinagea function of
r. By replacing in [3:61) thé\'s by differentials we obtain

dx 1
i oG (3.62)
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or
T drl

x(r) = . (3.63)

0= | &
As a consequence, the derivatives transform as

d d

— = (C,— 3.64

dx dr ( )
and

d? , d? ,d

proli OSW + Cs(Cy) o (3.65)

From the last relation we see that the thus defined coordinate transformation will transform the
wave equation in such a way that the propagation speed with respecttatiwedinate will be
one throughout the whole stellar interior.

Of course, we have to us€ (3.62) with some caution, far.if= 0 this transformation
becomes singular. And this is what happens at the stellar surface. If, for instance, the profile of
the sound speed is given in the foth = Cy(1 — r/R), where we have&’s(R) = 0, we can
find an analytic expression far

x(r) = —(%log <1 — %) , (3.66)

which tells us that at the surface= R we obtainz(R) = oo. In this case the coordinate
transformation seems to be quite useless since numerically we cannot deal with a grid that
extends up to infinity. We would have to truncate it somewhere. But from a numerical point
of view this is not that bad since going to infinity in thecoordinate would mean to have
an infinitely fine resolution in the-coordinate at the stellar surface. But this is numerically
impossible as well, so truncating thecoordinate at some point means to define a maximal
resolution inr at the surface.

It should be noted that the above transformation is of the same kind as in the definition of
the tortoise coordinate,, which we will briefly encounter in the next chapter. Here, too, the
definition

dr_ pa (3.67)
dr,

leads to wave equations with propagation speeds of one throughout the whole domain (cf. the
definitions of the Regge-Wheeldr (4.13) and Zerilli equation {4.33)). Thus, we may eall
hydrodynamical tortoise coordinate.

To obtain the background data on thgrid, we have to solve the TOV equatiofis12.3) with
respect tac. Since we also needas a function ofr, we simultaneously solvé(3162), too. The
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Figure 3.14: The-coordinate as a function of thecoordinate for three different stellar models.

transformed set of equations then reads:

(3.68a)

(3.68b)

(3.68¢)

(3.68d)

1

g—; = C, (62)\2; + 47r7"62’\p)
Z—i = —;l—y(p +e)
d
é = C,.
Of course, we also have to rewrite the wave equafion](3.38) in the new coordinate:
8;—;] = 621/_2”[227154— (2V7$+/UL71+ %: - 2—2) ?)_@;}
G ) A

Here, the subscript denotes a derivative with respect to The last

el

missing thing is the

transformation of the boundary conditidn (3.39). Unfortunately, we cannot transform (3.39) in
a straightforward way since at the surface i€is= 0, and therefore the transformation of the
derivatived/dr = (C,)~'d/dz is not defined. However, the inverse transformatjon (3.64) can
make sense if we note thatdf, = 0 then any derivative with respect tohas to vanish. This

is in particular true forw itself. Thus, at the stellar surface= R, where the sound speé&d

vanishes we can impose the following boundary condition:for

ow

lowy = 0.
&'L"(R)

(3.70)
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Figure 3.15: Spectrum of an evolution using the transformed equétion (3.69) for the MPA eos
with N = 200. The circles represent the frequencies of the eigenmodes obtainedrom (3.32).

This corresponds to reflection at a loose end orutiggid. Actually, this boundary condition
is more general than the old one(3.39) since any finite boundary conditian’ fom ther-
grid would translate into[(3.70). Conversely, the above boundary condition (3.70) ensures the
finiteness ofw’ andw at the surface, which is what actually follows from the vanishing of the
Lagrangian pressure perturbation in (3.25). We do not even need to know the actual boundary
condition forw’, the equations will automatically lead to the correct one.

Figure[3I4 shows the-coordinate as a function of the-coordinate for three different
stellar models. From the curves it is clear that an equidistant grid spacingvih result in
an equivalent spacing in that gets very dense towards the surface of the star, which means
that this part gets highly resolved. And this is exactly what we need in order to overcome the
instability and to obtain a decent accuracy.

In Fig.[3-I6 we compare the evolutionwfusing the wave equation (3]38) on thgrid with
the transformed wave equatidn {3.69) on thgrid. We show the propagation of a perturbation
that starts travelling from the origin towards the stellar surface and then gets reflected. In both
cases we use a resolution of 50 grid points inside the star. For this low resolution a realistic
stellar model would cause the evolution on thgrid to be unstable, hence here we use a
polytropic equation of state.

In the lower panel of Figl_3.16 we evolve on thez-grid, but we plot it as a function of
r; = r(x;). We can clearly see that the density of grid points increases as one approaches the
stellar surface.
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We have cut off the part close to the surface, since here the valuecdstically increases.

In the part shown the two evolutions look quite alike and it seems that there is no real advantage
of one over the other. Itis only at the surface of the star that the advantage of the better resolution
comes to light, which is shown in Fig. 3]17. Here the amplitude & much higher because it

can be much better resolved.

Finally, we want to demonstrate the effectiveness of our coordinate transformation by evolv-
ing an initial perturbation for the MPA equation of state. We choose the central energy density
to be3-10'° g/cn¥, which yields a stellar mass 8f = 1.49M,. The resolution is N = 200 grid
points, which would be too low for the other cases to yield a stable evolution. Here we do not
have any problems, the evolution is stabledaly chosen resolution.

In Fig. B-I5 we only show the spectrum that results from the evolution. We can see many
sharp peaks, which perfectly agree with the corresponding eigenfrequencies computed by solv-
ing the eigenvalue equatiors(3.32).
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Chapter 4

Non-radial oscillations of neutron stars

Starting from the general expansions of the mefric (2.27) and extrinsic curvaiure (2.28), we
will choose shift and lapse in such a way that we can obtain the famous Regge-Wheeler gauge,
which was first introduced by Regge and Wheeler [17] in the context of a stability analysis of
black holes. This gauge was also used by Thorne ef al..T1.8, 19, 20,121,122, 26] in the their
pioneering papers on neutron star oscillations and still is widely used by many authors.

The main focus at that time was to investigate the different kinds of oscillation modes that
a neutron star possesses. Therefore the time dependence of the equations was assumed to be
given bye*t, which reduces the equations to a set of ordinary differential equations. Those
had to be solved together with the appropriate boundary conditions. The first system that was
presented was of fifth order, but it was later discovered that it was erroneous, and instead a fourth
order system([26] could fully describe the non-radial oscillations of a neutron star. Detweiler
& Lindblom [B3] then used this set of equations (which was actually slightly modified due to
numerical reasons) to compute tfieand some-modes modes for stellar models with various
equations of state.

Chandrasekhar & Ferrari141], however, chose a different gauge, the so-called diagonal
gauge, and were able to describe the oscillations in terms of pure metric perturbations simi-
lar to the black hole case. This enabled them to treat those oscillations as the scattering of
gravitational waves at the given background metric.

However, the resulting system of equations was of fifth order and therefore allowed for an
additional solution that had to be rejected because it was divergent at the origin. The diagonal
gauge was already used much earlier by Chandrasekhar to describe the perturbations of black
holes [7]. Here, too, he obtained systems of equations whose degrees were higher by one than
the equations that were obtained in the Regge-Wheeler gauge. Of course, they also allowed for
spurious solutions, which had to be rejected on physical grounds.

In 1981, Xanthopoulos {78, 79] then showed that the spurious solution (which was later
called Xanthopoulos solution) could actually be used to reduce the degree of those systems by
one. However, it was still not clear why in the diagonal gauge one was always led to equations,
which were higher by one degree than in the Regge-Wheeler gauge.

Shortly after the papers of Chandrasekhar & Ferrari, Ipser & Price [43] demonstrated that
also in the Regge-Wheeler gauge it is possible to construct a fourth order system that does not

42
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use any fluid perturbations. Furthermore, they showed [44] that the reason of the diagonal gauge
yielding a fifth order system instead of a fourth order system was that this gauge still allowed
for an additional nontrivial gauge transformation, of which nobody has been aware before.

The Regge-Wheeler gauge in turn is complete in the sense that it does not allow for addi-
tional gauge transformations. The main advantage of this gauge is that it halves the number of
relevant metric coefficients i (2J27). Since some of the vanishing metric components belong
to the spatial part of the metric, it is clear that we have to choose shift and lapse in such a way
that during the evolution those components remain zero.

If we make the following ansatz for lapse and shift (we omit the indicesdm):

~ 1

S, = —56”_2’\3\3 (4.1a)
Sy = 2¢"K, (4.1b)
Vi =0 (4.1c)
Vo = ¢“Kg , (4.1d)

the evolution equations for the spatial metric coeﬁicidﬁtsﬁ and@ reduce to

0 ~

9% = (4.2)
9 N

ng = —26VK4 (43)
9

—T3 = 0. 4.4
ot =0 (4.4)

In addition the evolution equation fdr, _depends only off} andvg Thus, if we initially set
V3, = T1 = T3 K4 = 0, we obtalnavg/at = 8T1/8t = 8T3/<‘9t = E)K4/8t = 0, which
ensures the vanishing of all those coefficients for all times.

This leaves us with only three dynamic metric variables namely the axial vafiaded
the two polar variables; and7;. A glance at the Hamiltonian constraint reveals that in the
exterior region, the two polar variablés and7, are not even independent from each other.
This means that in the exterior region, axial and polar perturbations each only have one degree
of freedom. This is in agreement with the general observation that any gravitational wave can
always be described by a superposition of two independent polarization states.

4.1 Axial perturbations

Due to the spherical symmetry of the background the polar and axial equations are totally de-
coupled from each other. As was already mentioned, the axial perturbations are characterized
by just one metric variabl®,. Furthermore, they do not couple to the fluid of the neutron

star since energy density and pressure are scalar quantities, and therefore their perturbations
belong to the polar class. Still, there could be some motion of the fluid, described by the axial
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coefficientus of the 4-velocity, but the dynamical equation foyturns out to be

%ag =0, (4.5)
which shows that nonzeri@; would describe at most some stationary fluid motion.

Nevertheless, the axial perturbations are not uninteresting and have been studied in much
detail [42,(50/[52]. It has been shown that each neutron star model possesses a characteristic
spectrum of quasi-normal modes, which depends mainly on the compactness of the model. It
is clear that those modes cannot be excited be means of fluid perturbations of the neutron star,
but they can very well be induced by impinging gravitational waves or by the gravitational
potential of a large mass moving on a close orbit. In this thesis, however, we mainly focus on
polar perturbations, but for sake of completeness we will also write down the equations for axial
perturbations.

Yet, we will use a slightly different expansion from the one [in(R.27) dnd(2.28), which
somewhat simplifies the resulting equations. The nonzero axial components of the metric are
(summation over all andm is implied):

(B, Bs) = " K" <— sin”! Q%Ema sin 9%Yzm) (4.6a)
(hro, hrg) = XV™ <—sin—1 eg%ylm, sin@%Ylm) : (4.6b)

and the ones of the extrinsic curvature read

1 . 1,0 . 0
(kvo, kvg) = 5eAK};n (—sm 196—¢Y,m, sme%nm> (4.73a)
koo /ﬂgqs - 1 X\ lm —sin_lele sin 6 W,
(k’¢9 k¢¢) o 26 K6 sin@VVlm sin@le ’ (47b)

with X;,, and W, defined in Equationg{A.4) and {A.5) of Appendix A. This gives us the
following set of evolution equations (we again omit the inditaadm):

8‘/21 _ 2u-2)\ aKG / / 2 2)
—at = e —ar + |V — )\ — ; K6 — € Kg (483.)
0K  I(l+1)—2
& = SV (4.8D)
0K oV,

- = 4.
ot or’ (4.8¢)

and one constraint equation:

0Ky 2, ll+1)-2

— A ”
P Ol > K¢ = 16me”(p + €)is . (4.9)



4.2. Polar perturbations 45

The three evolution equations can be combined to yield a single wave equation for the metric
perturbation,. If instead ofl, we use

Q = Va , (4.10)
T

this wave equation reads

9%Q *Q 6m I(l+1)

o2 Or2 t+e (47T(p_€)+7“—3_ 2 )Qa (4.11)
wherer, is the tortoise coordinate defined by

dr )

= e/, 4.12
dr, € ( )

In the exterior, we have:, = M the total mass and= p = 0 and (4-1]1) reduces to the famous
Regge-Wheeler equation

9%Q 9?Q o, (6M I(l+1)

— = v — : 4.13

ot? or? e ( r3 r2 ) @ ( )
In this case we can give an analytic relation betweeandr:

ro = r+2Mlog (5= —1) . (4.14)

4.2 Polar perturbations

Here, too, we will use slightly different expansion coefficients from (2.27), which will give us a
set of evolution equations that is well suited for numerical treatment. We decompose the metric
as follows (again, summation oveandm is implied):

1 Tlm
a = —=¢e” (— + rslm> Yim (4.15)
2 r
B, = 2Ky, (4.16)
e <Tle + rSlm> 0 0
hij = 0 TTlm 0 Y2m> (417)

0 0 rsin? T

and for the extrinsic curvature (symmetric components are denoted by an asterisk)

. %Kim _62)\Kém% _GQAKém%
kij = —56_1' * r (Kém — 2K§m) 0 Yim - (4.18)

* 0 rsin® 6 (K™ — 2K4™)
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In addition we have the matter variables

Se — P_ylm (4.19)
T
v Im
Su, = —67 <ul{ﬂ - “%) Vi (4.20)
v oY, OY,
(Sug, Suy) = —%ugm( ale , 6; ) . (4.21)

It is only through this particular choice of expansion coefficients that we obtain a system of
eqguations that can numerically be integrated in a quite straightforward and — this is the main
point — a stable way. It is a quite well known and particularly bothersome feature of spherical
coordinates that the resulting equations usually contain divergent terms, which exactly cancel
at the origin, or quasi-singular terms, which at the origin reduce to indefinite expressions of
the kind0/0. For physical reasons the latter have to be finite. If not intuition then at least
bitter experience tells us that it can be impossible to obtain a numerical stable evolution scheme
for the “raw” equations without further manipulations. It is clear that a standard numerical
discretization scheme cannot fully take into account the cancellations that occur on the analytic
level, which results in severe instabilities at the origin.

As a first step to overcome those difficulties one therefore has to use special linear combi-
nations of the variables to avoid the presence of the divergent terms that have to cancel. That is
the reason why we use the particular combinationS ahd7" in the expansions of the lapse
and the metric componeht,.. Furthermore, the scaling with(e.g. p'™ /r instead of jusp'™ in
(B-19)) has been chosen such that the remaining terms, which become indefinite expressions at
the origin, are only terms that do not contain any derivatives of the variables themselves. With
this choice all the coefficients but™ have the same behavior at the origin, namely

Q"(t,r) = QMO QI

The leading term of/y™ is proportional tor!. We will discuss the different ways of writing

the equations and the associated numerical problems in much more detail in the section on the
numerical implementation. Besides, for the sake of clarity we will again suppress the ihdices
andm throughout the rest of this chapter.

Our last step before writing down the equations is to repldcéy the following quantity
r’K =K, +2r (% + XKQ) — K. (4.22)
r

This is necessary in order to get rid of the last remaining singular terms which might be a threat
to the numerical evolution.

In this way, we obtain a system of 5 coupled evolution equations, which are of first order in
time but still second order in space. There are 2 equations for the metric vabadtesl” and
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the 3 more for the extrinsic curvature variablés K, and Ks:

oS
= = K (4.23a)
oK 45, o 0S8 , n 0S
ot ¢ {8T2+(5V N %
/ / 2\
N2 LV e —1 L, Ill+41)
N\ ! I\ 2 I,
+4<1 (1) +2<5) - A;’)ﬂ
r\r r r
oT
- - K 4,23
ot b (4.23c)
6K5 _ _2u-2) o°T / / or
ot - 87‘2+<V /\)87“
/ / 2)
(Lo DN (4.23d)
r r 72 72

+2(r +rX — 1)5} +8me® (1—C21) p

0K, oo [ OS , v

— = e — 2 1 2—T) . 4.23e
Y e rar+(ru+)5+ " ( )

We could easily convert this system into a first order system in time and space by adding another

two evolution equations for the first derivati# and7”. However, the form of the first four

equations[(4.Z8a) £{4.23d), which are independerit Hfsuggests to rather convert them into

two coupled wave equations férandT’

828 2U—2\ 023 / / aS
g = G0
s VN e -1 M+ 1)
+<4(1/) +5?+3?—2 2 —é? 2 S (4.24)
N\ ! I\ 2 /)
+4<1 (5) +2(5) —/\;/)T}
T T T T
82T 2U—2A\ 02T / / aT
oz T ¢ {WH” NGy
! / 22N
+ <5+3§+26 1 —e”l(l—gl)>T (4.25)
T T T r

—I—Z(TV,—FT)\/—l)S} +8me® (1-C2) p,
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which are equivalent to equations (14) and (15) of Allen etal. [54] (Their varidbbasd.S 4;.,
are related to ours as follow#? = 7" and S4;.,, = ¢?S). As can be seen, the wave equation
for S (&23) is totally decoupled from the fluid varialpe which only couples to the metric
perturbation?” in (&.2%). The equation foK, is only necessary in the interior region, where it
couples to the hydrodynamical equations, which follow from energy consenatiér”, and
are given by

@ — pv2A [ Oy _ 1%

ot or r or
1 ! ! 1
PR PR A SUPTEST) P oo
r rooor r
0K , r? 3 ,
+(p+e (ra—:+(2+rA)K2— EK_ §K5) + 7' Ky
= O (Y (14 C) + (C))) p— 5 0+ (175 + 5o+ 2rS ) (426D)
Oty s 1 5

Here, we have definet := (p + €) u;. By introducing the enthalpy perturbation

2
H = o
p+e€

P, (4.27)

the fluid equations assume a more convenient form:

(7H  ay-92) 28“1 2 aKQ / TQ 3 /

ot ¢ ¢ or +C T@r + 24X K ZK 2K5 rv ks
e (C2 (2 —N) =)y (4.28a)
1 ev2A (CSQ (i _o¥ _GQAM) + i) Us

r r r r

ouy oH 1(,05 0T

it D S 49 4.2

r 5 5 (7’ o + or + 7’5) (4.28b)

Ouy 1 2

— = H —_ = T . 4.2

ot o (PS5 +T) (4269

Interestingly, from[(4-28b) and{4.28c) it follows that the coefficientandu, are not indepen-
dent of each other but rather are related via
0u2
= __= 4.29
Uy or ( )
The above systeni (4]28), too, can be cast into a second order wave equatibvibrch is
equivalent to equation (16) of Allen et al.[54] (the different signs in the terms contathargl
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T are correct):

82H _ 2U—2\ 262H 2 / / / aH
8t2 = € |:CSW+(CS(2V_)\>_V)W
+(O§ (V—+4i—e”l(lt1)>+2y—+i)fl
r r r r T
ey (50T (4.30)
21/ s " dr  Or

VN e —1 v 1
2 TV A v r L 2
+(Cs(27’+r 2 ) r<27’u+2))(7’5+T)}.

It thus seems that the polar oscillations of neutron stars can be completely described by three
wave equations inside the star and two in the exterior region. However, it is even possible to
further reduce the number of equations, for we have not made use of any of the remaining
constraint equations. The Hamiltonian constraint relates the fluid variaiol¢he two metric
variablesS andT"

0?T oT 0S

1
_w + )\/E + T’E + (2 — 27’/\/ + 562)\[([ + 1)) S

21 N (141
— (6 +3——62/\M)T.

72 r 72

8re?p =
(4.31)

It is therefore possible to eliminagen equation [4-25) and thus to obtain a consistent system of
equations, where both in the interior and exterior the two spacetime varizlbled’” are used
to describe the evolution of the oscillations. In the exterior, #nd 7T propagate with the
local speed of light”—*, in the interior, however] then changes its character and propagates
with the local speed of sourd—+Cl.

With p being eliminatedys and7" in the interior now become independent variables and the
Hamiltonian constrain{{4.81) serves as a definitiongfoin the exterior, howevel§ and7 are
not independent but have to satisfy the Hamiltonian constraintmstt to zero. Unfortunately,
we cannot use the Hamiltonian constraint to further eliminate one of those variables, but it is
possible to combiné andT to form a new variablegZ (we use the definition (20) of Allen et
al. [52])

9 _ 2M

. 2M —r (24 1(1+1))
I(+1)1(1+1) -2+

r—2M

Z = —

(27“T'+ T—QTQS) ,
(4.32)

which then satisfies a single wave equation, the famous Zerilli equation that was first derived in

1970 by F. Zerilli [24] in the context of black hole oscillations:
>z 0?7z n%(n + 1)r® + 3n?Mr? + InM?r + 9M3
o o2 r3(nr + 3M)?

Z. (4.33)

Here, we us@n = [(l + 1) — 2, andr, is again the tortoise coordinate from section 4.1.
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The last set of equations that is still missing are the momentum constraints:

K K

16me® (p+ €)uy = Oy 50k

or or
{1+ 1) (4.34a)

+rK — (BV/ + 3N — 62/\7) Ky + 2V K5
r
2v 0K, 2 / /
16me™ (p + €) uz :ra——rK+T(V + \) Ky — 2K5 . (4.34b)
r

They do not provide us with new information since they are equivalent to the time derivative
of the Hamiltonian constraint in the following sense. &t M; and M, denote the righthand
sides of [4-31),[{4.34a) anfd (4.34b), respectively. As already pointed auf in [47], we then find
that the following relation holds in the exterior region:

QQH = g M1—& + 2V/—f—1 Ml—& —62“MM2. (4.35)
ot or r r T 72

And conversely, we have for the time derivative of the momentum constraints

Cr é 4v
é 4v 6

This is nothing else but the contracted Bianchi identities for the Ricci tensor and can be checked
by explicitly differentiating the constraints with respect end then making use of the evolution
equations.

In the interior, we have already written down the connection between the constraints since
here the Bianchi identities are equivalent to the conservation of energy-momentum by means of
the field equations and are exactly given by the fluid equations (4.26) or (4.28).

From the above relations it is clear that if the Hamiltonian constraint is satisfied for all times,
So are the momentum constraints, and vice versa.

Let us now turn to the question which system of equations we should use for the numerical
evolution. The basic idea was to use the first order system that results from the (3+1)-split of
the field equations. However, because of the instability problems at the origin we had to recast
the first order system in such a way that it more or less became equivalent to the system of wave
equations rewritten in first order form. This means that there is no real advantage any more in
sticking to the first order system, on the contrary, from a computational point of view, it is much
more efficient to use the wave equations because we need fewer equations.

If we were to use the first order systefn (4.23) together with two auxiliary variables for
S’ andT” and with the three fluid equations{4.26), we would have to solve 10 equations in
the interior and 6 equations in the exterior. Of course, in the interior we could also use the
Hamiltonian constraint{4-81) to eliminatein (&-2%). In this case, both in the interior and the
exterior, we would have to evolve 6 equations.

If we took the wave equations the maximal set would consist of only three equations, namely
(#23), (42b) and{4-B0). Here, too, we can use the Hamiltonian consfraint (4.31) to eliminate
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the fluid variablep in (B-2%), which leaves us with two wave equations in both the interior and
the exterior. Since this is by far the fastest way to evolve the perturbations of neutron stars, we

will use those equations for the numerical evolution.
The equation fors,

028 yoon | %S ;o 98
—atQ :62 2[w+(5 )\)ar
7 N e — 1 [(l+1)
+ (4 () 5 437 2 G”T) S (4.373)

N\ 7\ 2 Iy,
+4(1(1)+2(V_) J;)ﬂ,
T T T T

is valid both in the exterior and interior, whereas Towe have to distinguish the two cases. In
the interior we use(4.25) with replaced with the Hamiltonian constraifit (4.31)

2 T T 1
o1 _ 2V =2 2{7 r——)\/a——l—(27“/\/—2—562)‘1(1—{—1))5
e

o2 or? or or
1
or . (4.37b)
- €2V_2>\|: B + 7“5 + (ZTV’ + 562’\l(l + 1)) S
! —1
~(Fr)r]
T T
and in the exterior region we uge (4.25) witlset to zero
2
CT _ [ PT ) n OT
ot? Or? or
LN e I(1+1) (4.37¢)
Y (LA LA L S T+2(rv+rN-1)S
r r r2 r2

If we also used the Hamiltonian constraipt(4.31) in the exterior, we would obtain an equation
that has lost its hyperbolic character (justGgt= 0 in (#-371)), which would immediately lead
to instabilities when numerically integrated.

In the exterior we could also try to switch to the Zerilli equatipn (#.33), which would have
the advantage of being a gauge invariant single wave equation. In addition, for large exterior
grids this would reduce the computing time by a factor of two. From{4.32) we can coipute
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from S andT’, and it is also possible to invert this expression to yigland7 in terms of Z:

o1 6M oM
g = (1=2MY g M8 2MAN
r r2 A r
4.
LBy M (o sy oyt
r2 r rA r rA r ’
where
A=l —24 M (4.38c)

r

However, the numerical experiment shows that switching in the exterior of the star from the
variablesS andT to the Zerilli functionZ and using the Zerilli equatiori (4133) to evolyve

in the exterior causes a numerical instability. This is becaysE and Z are not just related

by some linear combination, but the relations involve derivatives and are only validntlT
satisfy the Hamiltonian constraint, which is, of course, not strictly true in the numerical case.
For instance, if we were to numerically computeat grid point; from S and7" using formula
(B32), where we approximat€ by (7;,, — T;_1)/(2Ar) and then in turn computg andT at

the same grid pointfrom Z using formulas[(4.38), where again we approximate the derivatives
of Z with central differences, we would see that the resulting values could differ by quite a
large amount from the original values we started with. During the evolution, this mismatching
between those values, which would occur at the point where we switch the equations, would
rapidly amplify and spoil the whole evolution.

In [28] and [29], Moncrief showed that it is possible to construct two gauge invariant quan-
tities ¢; andgs, which completely describe the stellar oscillations inside the star. Moreover, the
fluid-like quantityg, vanishes in the exterior region by virtue of the Hamiltonian constraint and
the quantity® := ¢, /A satisfies the Zerilli function. It is even possible to defipé the stellar
interior by using the following definition foh:

A= 11+1) =21 +7N), (4.39)

which in the exterior agrees with {4.38c). This would mean that in the interior we would have
one wave equation for the fluid variabjeand another one fap, which in the exterior would
automatically transform into the Zerilli equation. This therefore would be the most efficient set
of equations with the additional advantage of being gauge invariant. Unfortunately, Moncrief
does not write down the relevant equations, which is quite understandable since in the interior
they become terribly messy.

We therefore stick to the above formulation of the perturbation equations as a set of two
coupled wave equations for both the interior and the exterior region of the star.
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4.3 Boundary and junction conditions

There are three boundaries we have to take care of. As was already discussed in the previous
section, at the origim = 0 we have to demand all variables to be regular. From Taylor expan-
sion around- = 0 we then can infer the analytic behavior of the various variables, which is
proportional tor'*! for both.S and7'.
At the outer boundary far away from the star, we require the waves to be purely outgoing.
The third boundary is the surface of the starat R, which is formally defined by the
vanishing of the total pressur@. Since the perturbations will slightly deform the star, the
perturbed surface will be displaced by an amadiwith respect to the unperturbed location at
r = R. If the coordinates of the unperturbed surface are denoted,bthe vanishing of the
total pressure” at the displaced surface translates*@, =%, + £') = 0. Taylor expansion to
first order then gives

0

= p(x) + Op(t,al) + &

0 = P,z +£&) = P(t,al) + ¢

aii p(zh) . (4.40)

In the last step, we have made use of the fact that the total preBsisr¢he sum of the un-
perturbed pressure and its Eulerian perturbatiofp. In addition, we have omitted the term
that contains the product ¢f anddp since it is of second order in the perturbations. Now, the
unperturbed pressugeis a function ofr only and it is furthermorg(r = R) = 0, hence we
obtain

op(t,a) = —€'V(R). (4.41)

Unfortunately, this is not a very convenient boundary condition since we neither use the pressure
perturbation nor the displacement vector in our set of evolution equations. Therefore we must
relate this condition to the variables we use. We will try to find a condition that gives us the
time evolution ofée at the stellar surface. The first step is to use the relatios dp/de dp,

which gives us

0 de ,0 0

—f0e = ——p —¢" = —=¢". 4.42

¢ o’ ot ot (4.42)
The time derivative of” can then be related to thecomponent of the 4-velocity, [63]:

afT =2\ v .
5 = ¢ (e"6u, — G,) . (4.43)

After expansion in spherical harmonics, we finally obtain

%p(t, R) = € |RKy(t,R) + e <u1(t, R) — @)] : (4.44)
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The equivalent equation for the quantff/as defined in[{4.27) reads

%H(t, R) = —V'|RK,(t,R) + * (ul(t, R) — %53)) } : (4.45)
Incidentally, this expression can be derived directly from the evolution equétion](4.28a) just by
settingC? to zero. The same is true for the wave equat[on {4.30). For polytropic equations of
state it is alway<C? = 0 at the surface of the star, hence [ {4]28a) the boundary condition
(#4%) is satisfied automatically. For realistic equations of state the sound speed at the surface
should be that of iron, which is very small compared to the sound speed inside the core, where it
might reach almost the speed of light for very relativistic stellar models. For practical purposes,
in those cases we just might as well 68(r = R) = 0.

Let us now turn to the junction conditions at the surface of the star. We will always assume
thate andC? go to zero when approaching the stellar surface R. If at the surface we had
a finite energy density (as for example in a constant density model), this would result in dis-
continuities in)\’, which in turn would affect the differentiability properties of the perturbation
guantities. For polytropic equations of state, our assumptions are always fulfilled and for real-
istic equations of state, both the density and the sound speed are very small compared to their
values in the core and may thus be confidently set to zero at the surface.

The continuity of the first and second fundamental forms across the surface ensures the
continuity of the metric perturbationts, 7" and.S’. The associated extrinsic curvature variables
K, K5 and K’ must be continuous as well. From (4-23b) it follows tRé&tis continuous, too. If
in (B-23d) we substituté” by means of the Hamiltonian constraift{4.31), we can se€/that
continuous. The continuity ¢f”, however, depends on the valuewoflf we let the subscripts
in andex represent the values for the interior and the exterior, respectively, we ha¥é for

T —T! = —8me*p(R) . (4.46)

As we shall see below, for polytropic equations of s{@tg) can either be zero, finite, or even
infinite, depending on the polytropic ind&€x This has to do with the behavior of the derivative
of the background energy density which appears in the boundary conditipn {(#.44).

For polytropic equations of state, it is clear that at the surface,jbatitle vanish. The TOV
equations[(Z2-3b) and(Z]3c) can be combined to yield

21
p = —(p+e) i—z (m + 47rr3p) , (4.47)

from which we see thagt’ vanishes at the surface. Howevércan behave in quite different
ways. From[(Z:3c) we find

€ = =1V (p+e) (fl_i) : (4.48)

Close to the surface, it js < ¢ and therefore



4.3. Boundary and junction conditions 55

For a polytropic equation of state the square of the sound ﬁeiecgiven by

b _ jpert (4.50)
de
hence
dp -1 2T
- - 451
‘ (de) kIl ( )
and
€ = —Vli. (4.52)
kIl

Approaching the surface,— 0 andv’ will become a constant. Now, fromi (4]52) we see that
the behavior of’ critically depends on the value of the polytropic indéxWe can distinguish
three different cases. For < 2, we haves’ — 0, forI' = 2 we haves’ — const., whereas for

I' > 2 we haves’ — —o0!

This is somewhat disturbing since for the boundary condition(4.44) this would mean that
|p| — oo, unless the expression in brackets vanishes. Unfortunately, this is not automatically
guaranteed! Interestingly, the boundary condition {4.45)Has harmless for all values df
sincev’ is always bounded. But, of course, if we were to compuite®m H using

dp -1 N 2T
p=(p+e (de) H =~ T H (4.53)

we would obtain an infinite value whah> 2 unlessH vanishes at the surface. However, as in
(&-43), (4.42b) does not guarantee the vanishing péven if H is initially set to zero. Therefore,
we must ask ourselves what really happens in the Ease, where it seems thép| — oc.

First, we would like to refer to a paper of Moncrief [29], where he discusses a sufficient
stability condition for the non-radial stellar oscillations. For a polytrope he finds that for the
potential energy in the vicinity of the surface to be positive it must hold that

) 62_F
l(l+1)_2_4wf<;—1“ > 0. (4.54)
Moncrief shows that fot > 3 this condition is always satisfied fér5 < I" < 2. Forl = 2 he
obtains6/5 < I" < 4/3. The reason for the lower limit df = 6/5 is that for smalled” there
are no bounded stellar models. Hor- 2 the above condition will always be violated since the
last term then goes to negative infinity.

However, the above condition is only a sufficient condition. But it cannot be a necessary
condition for stability, for in that case all stellar models with> 2 would be unstable with
respect to non-radial oscillations. Ho& 2 even the models with' > 4/3 would be unstable,
which is not the case as mode calculations [48] and the direct evolution of the perturbation
equations show.
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A possibility to clarify this weird behavior of is to look at the Lagrangian description of
the perturbations. By definition, Lagrangian perturbations are changes that are measured by an
observer who moves with the fluid. Hence, she would compare e.g. the energy density at the
displaced location® + £° to the original unperturbed value at. In mathematical terms the
Lagrangian energy perturbation reads

Ae(t,r") = E(t,z" + &(t,2") — e(a?) . (4.55)

Here,& denotes the total energy density. A similar expression holds for the Lagrangian pressure
change. To computAe at the surface, we set = R’ and obtain

Ae(t,R)) = E(t, R + &) — ¢(R")

sincee(R") = 0 for a polytropic equation of state. Furthermore, as we already know that the
total pressure”(t, R + ¢) has to vanish and since for the polytropic equation of state it is
E(P = 0) = 0, we obtainAe(t, R") = 0.

Hence, the Lagrangian energy density perturbation always vanishes at the surface, regardless
of the actual value of.

What then happens to the Eulerian density perturbation? By definition the Eulerian density
perturbationde is the difference between the perturbed energy deigsaynd the background
densitye at the same location

Se(t,x") = E(t, ") —e(a") . (4.57)

It is through Taylor expansion to linear order that we obtain the connection between the La-
grangian and Eulerian perturbations:

Ae(t,2') = €(t,xi)+£i(t,xi)%£(t,xi) — e(a)

= Gelt,a") + € ) £ 1, )

= Je(t, ") + £'(1, x’)% (e(r) + de(t, 2'))

 Se(t 2) + €7 (8 2 (r) + €111, ﬂ)%ae(t, 2 (4.58)

The last term usually can be dropped with the argument that it is a product ot the two infinites-
imal quantities¢? and the gradient ofe and therefore of second order in the perturbations.
However, in thd” > 2-case this argument breaks down at the surface, where the gradient of the
background energy densitybecomes infinite. If we were to drop the second order term, it is
clear that the Eulerian perturbatioawould have to become infinite, too, in order to compen-
sate for the blow up of and to yield a vanishing Lagrangian perturbativa

This shows us that in the > 2-case the physically meaningful quantity is the Lagrangian
energy perturbation\e, which remains bounded everywhere and not the Eulerian energy per-
turbationde. However, in our case it is not possible to switch from the Eulerian description to
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the Lagrangian because the latter is only defined in the stellar interior, where we can define a
fluid displacement vector. Outside the star we have vacuum, which cannot be displaced, hence
to describe the metric perturbations, we have to rely on the Eulerian description. Therefore, at
the stellar surface we would have to switch from the Lagrangian to the Eulerian description.
But it is right there that the Eulerian concept is misbehaved for 2, and we would run into

the same troubles.

The whole discussion seems somewhat irrelevant, for in the actual set of equations we do
not use the Eulerian perturbation of the energy density at all. We have got rid of it by using
the Hamiltonian constrainf{4131). Also, the gradient of the background energy density does
not appear anywhere in the equations. However, we have to compute the second derivative of
T, which, as can be seen from the continuity analysis at the beginning of this section, depends
on the behavior of the Eulerian energy perturbagorrom (4:456) we infer that in thE > 2-
case we must have a blow up 6f at the surface. Of course, this is very troublesome for the
numerical discretization, and even fbr= 2 we still have a discontinuity i7", which will
spoil the second order convergence of the numerical discretization scheme.

The numerical evolutions indeed confirm the above analysis. By compunuiity the aid of
the Hamiltonian constrainf{4.31) we find that for polytropic stellar models With2, p tends
to blow up at the stellar surface, even if it was there initially set to zero. In[Fig. 4.1 we have
plotted the values op after a certain time of evolution for three different polytropic indices,
namelyl’ = 1.8, I' = 2.0 andI’ = 2.2. The corresponding values efare0.184 km*¢, 100 km?
and 49600 km*4 and were chosen in such a way that for the same central density, we obtain
models with the same radius. As is evident from Fig. 4.1]fet 1.8, p vanishes at the stellar
surface, foll' = 2.0 it assumes a constant value andifoe 2.2 it diverges, which is consistent
with the foregoing discussion. It should be noted that in those numerical simulations we have
used a grid size of 6400 points inside the star in order to have a decent resolution.

4.4 Numerical implementation

It is not quite straightforward to implement a numerical discretization scheme for the above set
of equations[(4.37), and one has to worry about some severe problems that will arise when one is
not doing the right thing. First, we have to treat the boundaries in a correct way. In the previous
section we have seen that there are in fact three boundaries one has to deal with, namely the
originr = 0, the surface of the star and the outer boundary of the grid. The latter is the easiest
to handle and could in principle (if computing time does not matter) be totally ignored.

At the outer boundary we impose outgoing radiation condition, which can be realized in
the following way: Far away from the star, we know that the asymptotic solukignr) is
an outgoing wave with a propagation speeé ¢~ and an amplitude that scales with some
power ofr:

U(t,r) = r*®(ct—r) . (4.59)
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Figure 4.1: Snapshots of the valuesobfter a certain evolution time for polytropic stellar

models with three different polytropic indicds = 1.8,2.0 and2.2. It is obvious that for
I' = 2.2 p diverges at the surface of the star.

Here W stands for eithef or 7'. Working out the different derivatives

%\P(t,r) = cr®®(ct —r) (4.60)
agllf(t, r) = —r"®(ct —r) +ar'®(t,r) = —r'®(ct—r)+ g\Il(t, T) (4.61)
r r
leads us to the following relationship:
0 10 a

Knowing this relation can help us to compukét, r) at the boundary grid poin¥ at the next
time leveln 4 1. If we denote the time step h¥¢ and the spatial grid spacing layr, we can
discretize equatiori{4.62) at the intermediate grid paWit- 1/2,n + 1/2) with ¥, &¥ and %
approximated by

n 1 n n n n
\IIN—i——ll//QQ =1 (URT + Uy, + IR 4 0R) (4.63)
ov sz 1 n n n n
(W) 287 (IR T VR R R (4.64)
O n+1/2 1
— = — (unt — o LA 4.65
(at)Nl/z AL ( N-1 N71+ N N) ) ( )

and solve the resulting equation for the unknown valijg'

\I'NJr1 = 1+ B ((1 - B)¥y_,—B (\PN + \Ithll) + 1+ A (\IJNJr—ll - \IJN)) ) (4.66)
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where
Az
B = a . (4.68)

(1-2N)(1+ A)
If @ = 0 this reduces to

P = o+ L—i (TR — 0% (4.69)
This is the case faf, whereas fofl’ we have to set = 1, i.e. the amplitude df’ grows linearly
with r as the the wave travels outwards. As we shall see this will cause some problems when
we want to compute the Zerilli function.

Of course, the approximation gf (4162) with finite differences will lead to a partial reflection
of the outgoing wave at the grid boundary. The reflected wave will then travel back inwards and
contaminate the numerical evolution. The effect of this contamination depends on the choice of
the initial data and in some cases can be quite interfering. For instance we can choose initial data
that will cause a quite large outgoing initial pulse of radiation followed by a strong ring-down.
The amplitude of the final ringing of the neutron star can then be smaller by several orders of
magnitude. In this case, even if only a very small fraction of the first pulse gets reflected, it
can strongly affect the later numerical evolution. However, we can also construct initial data
which produce oscillations with more or less constant amplitude. In this case, the reflected part
practically does not affect the results at all.

In any case, to be on the safe side, and if computation time does not matter, one can always
move the boundary that far afield that any reflections will take too long to travel back to the
point where the wave signal gets extracted.

The boundary condition at the surface of the star has been described in much detail in the
previous section. It has become obvious that for polytropic equations of state with the polytropic
indexI" > 2 we have to deal with a discontinuity i’ at the stellar surface.

This, of course, will affect the convergence of the numerical discretization scheme, because
for instance a second order scheme converges only in second order if the second derivative is
continuous. And, indeed, by using a second order discretization scheme that does not take care
of the discontinuity, we only find first order convergencelfor 2.

However, from a practical point of view, it does not seem necessary to really worry about
this fact. First, the use of any polytropic equation of state with a constant polytropic index
throughout the whole star is unrealistic anyway. If we wanted to obtain more realistic results,
we would have to resort to realistic tabulated equations of state. And for thasel, therewittp
is almost zero at the surface, which results in a contind&usVe therefore discretize equations
(B237) with central differences on the whole domain.

A somewhat more tricky business is the inner boundary at 0. The reason is the fact
thatr = 0 is not a physical boundary but rather a coordinate boundary, which is only due to
the choice of spherical coordinates, and which is absent, for example, in Cartesian coordinates.
Hence, at- = 0 we cannot impose physical boundary conditions but we must ask for some
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regularity conditions the functions have to satisfy. To understand what is going on at the origin,
we look at a simplified version of equation (4.25), where we focus only on the troublesome
parts:

0T T I(l+1)

o2 o2 ) T. (4.70)

Obviously the righthand side is regular if and onlyithas a Taylor expansion of the kind

T(t,r) = Ty@) ™ + 17 ) r' 3+ (4.71)
The other valid solution
T(t,r) = Tgl(t) r b Tld(t) rt2 (4.72)

is diverging at the origin. Hence, we have to make sure, that during the numerical evolution this
solution will be suppressed. Now, there are several possibilities to madify (4.70) by rescaling
the variableT. For instance, we can introdudé = 7', for which we have the following
equation:

PT 0T 20T I(l+1)~

= or i 2 L 4.73)

In this casel’ has to be proportional td at the origin. We also can get rid of thebehavior
by introducingl” = r'T'. The appropriate equation then reads
RT T 2(+1)0T

= — . 4.74
0252 87"2 + T 87" ( )

Ijeref is finite at the origin and symmetric with respect to the transformatien —r. Hence
T'(0) = 0, but (77 /r)(0) is finite, again. However, numerically, we cannot directly compute
this expression at = 0 since this would result i6/0, which, as such, is ill-defined. However,
we could use the I'spital rule to obtair7” /r)(0) = (" /')(0) = T"(0).

If we naively try to discretize any of the above equations, say, with central differences,
we will positively run into troubles. If we ignore the divergent terms for a moment and only
discretize the simple wave equatiGh = 7" by means of central differences, we find from
the von Neumann stability analysis that the Courant numbirone. The Courant numbér
determines the maximal allowed time step si¥g,,, for a given spatial resolutioAr. Since
in our case the propagation speed is one, we have the retation\t,,,,,. / Ar.

As soon as we include the divergent terri(l + 1)7'/r?, this is not true any more and
instead we find”' < 1 to be a monotonically decreasing function/ofFor largel this means
that in order to have stability we have to take very small time steps, which makes the evolutions
more and more time consuming.

We can compute the Courant condition in the same way as we did in the gection 3.4, where
we discussed the influence of the dip in the sound speed on the stability behavior of the dis-
cretized fluid equation. We have to compute the eigenvalues of the niatihich acts on the
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Figure 4.2: The Courant numbér as a function of for the discretized version of equations

(#70), (4.7B) (solid line) and{4]74) (dashed line).

vector?™ of grid values at the time level. Those eigenvalues then have to be smaller than one
in their moduli in order to insure stability. Here, the only free paramet€# afel and the ratio
At/Ar.

In Fig. @.2 we show the Courant numb@&ras a function ot for the discretized versions of
(#70) and [(4-44) with the following boundary conditions-at 0: 7'(0) = 0,7'(0) = 0 and

T(0) = (21 + 3)T"(0). It turns out that" (1) is the same for the versions (4.73) afd (4.70). As
[ is increased, the allowed time step size drastically decreases.=Fdrthe Courant number
C' has shrunk by a factor of 2 compared to its valuelfer 1. It is interesting to note that for
small values of version [4.74) allows for a smaller time step size than the other versions, but
for largel things get reversed. This is probably due to the fact thdt'ini(4.74) the singular term is
only proportional td, whereas in[{4.70) an@ {4]74) it is proportionalto

This reduction of the maximal allowed time step six&,,... is a quite undesirable feature,
but we could live with it if we only used small valuesioBut why wait longer for the numerical
results than really necessary if there is a quite simple trick that allows us to retain a Courant
number of, say(' = 0.9 for all values ofl?

This trick consists in moving the boundary condition frogn= 0 to some inner grid point
r; = iAr, depending on the value &f The larger the higher the number of the boundary grid
point. Specifically, for a given we choose the boundary to berat; = (I — 1)Ar. Hence,
for the numerical computation we ignore all grid pointwith i < [ — 1 and set/’(r,_;) = 0.
What this basically amounts to is to cut off the bad influence ofthe 1) /r*-term close to the
origin. Of course, by doing so, we artificially introduce some additional numerical error at the
boundary, but the numerical experiment shows that with the above prescription this error will
remain bounded and localized only at the boundary. It thus does not have a bad influence on the
evolution in the remaining computational domain.

In Fig. @3 we show the Courant numb@ras a function of for different boundary grid
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Figure 4.3: The Courant numbéras a function of for different boundary grid points.

points. It can be clearly seen that for fixethe Courant numbe?’ increases as the boundary is
moved to a higher grid point number. Eventuallywill become larger than our desired value
of 0.9.

To see whether this is indeed true for a real numerical evolution, we evolve an analytic
solution to [4:-70) with periodic time dependendg(t,r) = Ty(r) cost, whereTy(r) can be
expressed in terms of spherical Bessel functions.

In Fig. 44 we show the numerical evolutionbfwith [ = 3 for the different left boundary
pointsi = 0,7 = 1 andi = 2andC = 0.9. From Fig[4.R we expect the case where the boundary
is located at = 2 to be stable, whereas the other cases should exhibit an instability. This is
indeed what we find from the numerical evolution. In the upper panel, where the boundary is
at: = 0, we have a quite drastic growth at the origin. In the middle panel, we have put the
boundary at = 1, which reduces the strength of the instability, and finally in the lower panel,
wherei = 2, we have a stable evolution.

So far we have only discussed the numerical treatmentof| (4.70). Since the singular term in
(B-73) is the same as i {4]70), the same procedure is also val{dTar (4.73). For practical reasons
we prefer [4-70), for we save a first derivative. However, things change a little if we want to
take equation[{4-T4). In this case we have a different boundary condition at the origin. Still, it
is possible to move this boundary condition farther to the right, but even by doing so we always
have to use a smaller Courant number than in the other cases. Since we would like to have a
fast numerical evolution, we therefore do not use this version.

The reader may ask why we are presenting three different versions of the same equation,
when, at the end, we discard two of them. The reason is that when one derives, for example, the
equations for neutron star oscillations (or any kind of (linear) evolution equations in spherical
coordinates), the “raw” form usually is not well suited for the numerical treatment. One then
has the freedom of rescaling the variables. Our suggested prescription is to choose the variables
in such a way that they have-4™!-behavior at the origin. If possible, the singular terms of the
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resulting equations should not contain any derivatives. It then should be possible to cure any
instability at the origin by moving the boundary fram= 0 so far to the right till the numerical
scheme eventually becomes stable.

The whole discussion so far has dealt only with the second order equation. However, it is
also valid for the equivalent first order system.

4.5 Convergence and the punishment for violating the con-
straints

As was already discussed earlier, any valid initial data have to satisfy the constraint equations.
Once satisfied at= 0 the evolution equations then guarantee, by means of the Bianchi identi-
ties, that the constraints will be conserved for all times.

Of course, in the numerical evolution of the free evolution system, the constraints will start
to be violated due to discretization and truncation errors. The degree of violation can then be
used to monitor the accuracy of the evolution.

In our case we use the free evolution only outside the star, whereas inside the star we have
already used up the Hamiltonian constraint to reduce the number of equations. Therefore we
will monitor the Hamiltonian constrainf{4131) only outside the star, where/tis0. We do
not monitor the momentum constrainfS(4134a) [an (4.34b), for we have already seen that they
are equivalent to the Hamiltonian constraint, and since we use the wave equations, we do not
explicitly compute the extrinsic curvature variables, anyway.

The exact evaluation of the Hamiltonian constraint should yield zero, however, due to the
numerical errors throughout the evolution the righthand sid¢0f](4.31) will deviate from zero.

If the discretization is consistent and the equations are correct, then the violation of the Hamil-
tonian constraint should converge to zero as the resolution is increased. With a second order
discretization scheme the error should decrease by a factor of four if one doubles the resolution.

To check the convergence of our code, we will monitor the Hamiltonian constraint as a
function of time at some arbitrary location outside the star. In the following we will use poly-
tropic stellar models witH® = 2 andx = 100km?. The advantage of this choice is that it
produces smooth functions fer ¢, and C;, but the disadvantage is the discontinuity in the
second derivative df'.

As initial data, let us choose a time symmetric gravitational wave pulse that travels towards
the star and gets scattered back. In Figl 4.5 we first show the evolution of the vdrialble
a fixed location outside the star for the two different resolution®&/of= 100 and N = 800
grid points inside the star. As the amplitude of the wave signal changes by some orders of
magnitude, we use a logarithmic scale and show the moduliis of

The signal consists of three characteristic features. Because of the time symmetry of the
initial data the initial pulse splits into one outgoing and one ingoing pulse. Since the obser-
vation point is situated further outside than the initial pulse, we first see the outgoing part of
the pulse. This pulse is followed by the scattered and distorted ingoing pulse and finally by
some oscillatory ringing, which consists of the strongly dampedodes and the fluig- and
p-modes, which have much smaller amplitudes.
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Figure 4.5: Wave form of" for two runs withN = 100 and N = 800. The main difference
shows up in the fluid ringing aftér= 1 ms, where there is an obvious phase shift between the
wave forms that are obtained with the different resolutions.

Up to the point where the fluid ringing starts there is basically no difference in the signal for
the different resolutions. However, in the fluid ringing there is an obvious phase shift for the
different resolutions. For low resolutions the frequencies of the fluid modes tend to be larger
than their actual values. Also, the amplitudes of the higher modes are underestimated in this
case.

Let us now turn to the Hamiltonian constraint. In Fig.]4.6 we show the violation of the
Hamiltonian constraint for the same evolution as in Fig. 4.5, this time for four different reso-
lutions starting withV = 100 and doubling each time. For comparison we also include the
evolution of . The evolution of the constraint is similar to the evolutiori/gfbut it also has
some distinctive features. First of all, the oscillation frequencies are much higher, which is
what we would expect since the violation of the constraint is mainly due to the residual error in
the approximation of the derivatives by finite differences, which is proportional to some higher
derivatives. Secondly, in addition to the outgoing and scattered pulses, there is a third one in
between, which stems from a partial reflection of the ingoing pulse right at the surface of the
star. For the very high resolutions the violation of the constraint has a lower limit due to the
finite machine precision, which manifests itself in the noise that is present fer800.

As one can clearly see, in the logarithmic plot of Fig] 4.6 the spacing between the curves
for the different resolutions is equidistant, which means that we can translate each curve to
match its adjacent one by multiplying it with a certain factor. For the upper part of Fig. 4.6 this
factor turns out to be exactly, which tells us that, indeed, we have second order convergence.
However, in the ringing phase, which is shown in the lower panel of[Fig. 4.6, this is not true
any more. Here we can see that the behavior of the Hamiltonian constraint is quite different
for the various resolutions. The different curves would not match if we tried to superpose them
onto each other by translating them in the appropriate way. This is because the oscillation
frequencies of the fluid modes are slightly different for different resolutions. Of course, they
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Figure 4.6: Same evolution as in Fig.]4.5 for four different resolutions. In addition to the
variableT', we show the violation of the Hamiltonian constraint (#.31). For more details see
text.

start to converge for increasing resolution, but unfortunately the convergence is only of first
order. As was already explained in the previous section, this fact is due to the stellar surface,
where the second derivative @fis discontinuous. A second order discretization scheme can
only yield second order convergence if the second derivatives are continuous, which is not the
case.

Another somewhat nasty feature that goes hand in hand with the violation of the constraint
is the sensitivity in the computation of the Zerilli function. As was already mentioned in the
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Figure 4.7: Evolution for a resolution éf = 100 grid points inside the star. The upper panel
showsS andT, in the lower panel we show the Zerilli functiogh Note that even that andT
seem to be quite smooth, the Zerilli function looks quite jagged.

section 4.2, the Zerilli functiott is the single gauge invariant function that fully describes the
polar perturbations of the Schwarzschild spacetime. It can be constructedSfeond 7" by
means of formula{4-32), however, it is crucial ti¥aandT satisfy the Hamiltonian constraint.
Unfortunately, even small violations of the constraint can lead to quite crummy Zerilli functions.
This can be seenin Figs. .7 dnd 4.8, where we show the evoluti®awd7 together with the
resulting Zerilli functionZ for the two different resolutions @¥ = 100 andN = 800. Whereas

the wave forms of5 and7" are smooth and look almost alike for the different resolutions, the
Zerilli function Z is quite rough for the low resolution, because of the violation of the constraint.
For N = 800 this violation has decreased enough to produce a smooth Zerilli function.
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Figure 4.8: Same evolution as in F[g.]4.7, this time with a resolutioN cf 800. Again, we
show S andT in the upper panel, which appear quite similar to Fig] 4.7. In contrast to the
jagged appearance of the low resolution Zerilli function in [Fig. 4.7 the high resolution Zerilli
function in the lower panel is very smooth.

Unfortunately, the error in the Zerilli function increases as a function dthis means that
even if the Zerilli function computed fa¥ = 800 looks very smooth, it can again become quite
distorted if we move to larger. We then would have to further increase the resolution in order
to obtain accurate enough results.

This is quite unfortunate since if one is interested in the radiation power of the oscillations,
one has to compute the Zerilli function at spatial infinity. Of course, this is numerically not
feasible, hence one would like to extract the Zerilli function as far away from the star as possible.
But there is the caveat. In the wave zone far away from the star, the amplitude of the variable
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Figure 4.9a: Zerilli function evaluated at= 125 km (upper panel) and = 250 km (lower
panel).

S remains bounded as the wave propagates towards infinity, whereas the amplifugeoafs
linearly with». The amplitude of the Zerilli function, of course, has to remain bounded, since
it is related to the radiated power (see appendix C), which has a finite asymptotic value. It
is therefore clear that in the computationfby means of[(4.32) the growing behavior Bf
somehow must exactly cancel. But, again, this happens if and oSlaifd7 exactly satisfy
the Hamiltonian constraint. If there is only a slight violation of the constraint, the cancellation
cannot occur at a hundred percent level and thus the Zerilli function will eventually start to
grow for larger. This growth is particularly dominant for the high frequency components in the
wave form. They get much more amplified than the low frequency modes as we move towards
infinity. Thus, in a power spectrum of the Zerilli function, which is recorded very far away from
the star we will have a bias towards the high frequency components, which is a pure numerical
artefact.

To illustrate the above discussion, in FigS. 4.9a gnd]4.9b we show the Zerilli fungtion
constructed frond and7 at the four different locations of = 125, 250, 500, and000 km for
a given resolution of 400 grid points inside the star.rAt 125 km, which is the upper panel
of Fig.[&.9a, the Zerilli function appears quite smooth.rAt 250 km, the panel below, some
small bumps in the fluid ringing appear, which get enhanced in the upper panel ¢f Fig. 4.9b,
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Figure 4.9b: Zerilli function evaluated atat= 500 km (upper panel) and = 1000 km (lower
panel).

where 7 is extracted at = 500km. Finally, in the lower panel of Fig. 4.9b panelat=
1000 km, we can see that the high frequency components have totally distorted the shape of the
Zerilli function.

We have already discussed in section 4.2 that it is not possible to switch from the variables
S andT to the Zerilli function in the exterior region, because of the numerical instability as-
sociated with this procedure. The most practical way to obtain a quite reliable Zerilli function,
therefore, is not to completely switch to the Zerilli function in the exterior region but to addi-
tionally evolveZ together withS and7'. That is, close to the surface of the star we constiuct
from S andT by means of formula[{4-82) and then use the Zerilli equation](4.33) to indepen-
dently evolveZ parallel toS andl’. Of course, this amounts to the additional computational
expenditure of evolving an extra wave equation, but we get rewarded by obtaining much nicer
results.

In Fig. .10 we show the Zerilli function evolved with the Zerilli equation and then extracted
atr = 1000 km. The difference to the Zerilli function in the lower panel of Hig. 4.9b, which
should be the same, is quite striking but plausible. There is no amplification of any high fre-
guency components, and thus the evolved Zerilli function in[Fig] 4.10 remains smooth, even at
large radii.
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Figure 4.10: Zerilli function at = 1000 km evolved with the Zerilli equation. Compare with
bottom panel of Fig. 4.9b.

In the following section, where we present the results for various stellar models and initial
data, we always evolve the Zerilli function together witland7'.

4.6 Results for polytropic equations of state

If not mentioned otherwise, throughout this section we always use polytropic models with
andx = 100 km?.

Before presenting any results we have to discuss the various ways of constructing initial
data, which boils down to the question of how to solve the constraints. Basically, there are only
two different classes of initial conditions we can construct.

First, we could excite the neutron star by hitting it with a gravitational wave. This means
that in the star we initially set all the perturbation variables to zero. In the exterior we can at
some finite domain arbitrarily prescribe one of the metric perturbations and use the Hamiltonian
constraint to solve for the remaining one. For the sake of simplicity, we prestritzebe
a narrow Gaussian located sufficiently far outside the star. The Hamiltonian constraint then
reduces to a first order ordinary differential equation$orOr, we could prescribe the Zerilli
function and us€{4.88) to compute the appropriate valugsamid'. In this case we would not
have to solve any differential equation since by constructiband’ satisfy the Hamiltonian
constraint.

The other type of initial data is an initial perturbation of the fluid with the associated per-
turbation of the metric. This means that we arbitrarily prescyilend use the Hamiltonian
constraint to solve for the metric variabl®sand7. However, this cannot be done uniquely,
since we have two variables to solve for but only one equation. The two easiest possibilities are
to set one variable to zero and solve for the remaining one. As we shall see, it can make a huge
difference in the resulting wave form, whether for the sainee choose to be zero and solve
for T or, vice versa, séf’ to zero and solve fo§.

Of course, all the above choices of prescribing initial data are pure ad hoc prescriptions and
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have no astrophysical meaning whatsoever. As a first attempt to construct initial data by means
of a more physical prescription, Allen et gi.[57] have tried to apply the very successful method
of constructing initial data for black hole collisions in the close limit to the case of the final stage
of two merging neutron stars. Still, from an astrophysical point of view, this procedure, which
works surprisingly well in the black hole case is somewhat questionable in its applicability for
neutron stars.

The construction of physically realistic initial data is still a very open field and involves
a deep understanding of the physics behind core collapses or neutron star quakes (glitches),
which one assumes to be the most important mechanisms to produce significant oscillations of
the neutron star. That is why we have to stick to our ad hoc data. Nevertheless, they still can
give us important insight into what kind of modes can be excited, and what generic wave forms
look like.

Moreover, for the sake of simplicity, we stick to time symmetric initial data. In this case, the
momentum constraints are trivially satisfied since all extrinsic curvature variables are zero. In
[68] Andersson et al. extend the close limit approach of Allen et al. [57] to the head-on collision
of boosted neutron stars. Here the initial data are not time symmetric any more and therefore
they have to explicitly solve the momentum constraints for the extrinsic curvature variables.
Unfortunately we cannot use their initial data in a straightforward way since their data do not
conform to the Regge-Wheeler gauge. From sedtion 4.2 we know that in the Regge-Wheeler
gauge the extrinsic curvature varlakﬂ’@ has to vanish, otherwﬁl which has to vanish, too,
would assume nonzero values. The initial data of Allen et al. have non- vamEnlng

Let us now turn to the first choice of initial data, the impinging gravitational wave. In
previous simulations[54] it was shown that for a reasonable neutron star model in general a
gravitational wave will excite the firgst-mode, thef-mode and severatmodes. However, the
authors confined themselves to only one polytropic model wite 3-10'°g/cm? and consid-
ered only the quadrupolé € 2) case.

Here we would like to present a much more exhaustive survey of wave forms for a whole
series of polytropic stellar models, ranging from very low mass up to ultra-compact models. Of
course, both the low mass and the ultra-relativistic stellar models are quite unrealistic; especially
the latter ones, for they are unstable with respect to radial oscillations. Nevertheless, it is quite
interesting to see the change in the wave forms as one moves along the series of different models.
In addition to the quadrupole case, we also pay some attentioa tband/ = 4.

BecauseS andT' are gauge dependent quantities and as such not very meaningful, in the
plots we therefore always show the Zerilli functighobtained by the prescription of the last
section.

As initial data we choose a narrow Gaussiaf'icentered around = 50 km. For the runs
with [ = 2, the resolution is 500 grid points inside the star. Fer 3 we have to increase
the resolution to 2000 grid points inside the star in order to obtain reasonable results. The
observation point is located at= 100 km and the outer boundary has been moved far enough
to the right in order to prevent any contamination from reaching the observation point before
the evolution stops. The physical properties of the used stellar models are given in fable 4.1.

Figure[4. 111l shows the evolution of the modulus of the Zerilli function for the stellar models
M1 — M3 for [ = 2 on a logarithmic scale. The wave forms of the low mass models M1 and
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Polytropic stellar modeld (= 2, x = 100 km?)
Model || ¢, [g/lcm?®] | M [My)] | R [km] | R/M

5.0-101 0.495 | 11.58 | 15.843
1.0-10% 0.802 | 10.81 | 9.137
2.0-101 1.126 | 9.673 | 5.819
3.0-10" 1.266 | 8.862 | 4.740
5.0-101 1.348 | 7.787 | 3.912
7.0-10" 1.343 | 7.120 | 3.585
1.0-10% 1.300 | 6.466 | 3.369
3.0-101¢ 1.097 | 5.211 | 3.217
5.0-10'6 1.031 | 4.992 | 3.280

©CoO~NOULA~WNEPE

Table 4.1: List of the used polytropic stellar models and their physical parameters.

M2 are quite similar: After the reflected wave pulse has crossed the observation point around
= 0.5 ms, the amplitude of the wave signal drops rapidly by several orders of magnitude until
the final fluid ringing starts, which is dominated by thenode. The less relativistic the model
the lower the amplitude of the fluid ringing. Also, the frequency of thmode decreases as the
models become less relativistic. Obviously, in all three cases, theredsnode presence at all!
This is somewhat surprising since mode calculations show that thereueristdes for those
models. Instead, the wave forms show a tail-like fall-off that is characteristic for the late time
behavior of black hole oscillations. For black holes, the wave form consists of the exponentially
damped quasi-normal modes and an additional ring-down, which obeys a power law, and which
results from the backscattering of the gravitational waves at the curved background spacetime.
After the quasi-normal modes have damped away, it is this tail that dominates the late-time
evolution.

In the case of those less relativistic stellar models M1 and M2, the damping ofthedes
is quite strong and we therefore can see a tail-like fall-off before the fluid ringing starts.

It is only with model M3 that things start to change. Here we can see some timid oscillations
before the amplitude again starts dropping down to give way for the final fluid ringing. In the
wave form of model M4, which is shown in Fi§. 4]12, a strongly damped oscillation, which
corresponds to the first-mode, is clearly visible. In models M5 and M6, with the latter being
right above the stability limit, it is even more pronounced. In [ig.]4.17 we show the power
spectrum of the wave form of model M6. Also included are the frequencies gtthede, the
first p-mode and the first-mode that were obtained by a mode calculation with a program of
M. Leins [49]. The agreement is excellent.

From comparing the wave forms of models M4 — M7 we can discern thawthedes
get more and more long-lived as the neutron stars become more and more relativistic, which
is confirmed by explicit mode calculations. Finally, for the ultra-relativistic models M8 and
M9 in Fig. I8 the wave forms again change their shapes quite drastically, which hints at the
appearance of a new effect. In those cases there exists another family of very long-lived modes,
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Figure 4.11: = 2 wave forms for the low mass models M1 — M3.
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Figure 4.12: = 2 wave forms for the intermediate mass models M4 — M6.
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Figure 4.14: = 3 wave forms for the low mass models M1 — M3.
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Figure 4.15: = 3 wave forms for the intermediate mass models M4 — M6.
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Figure 4.17: Power spectrum for model M6. THenode, the firsp-mode and the firsb-mode
are clearly present.
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Figure 4.18: Power spectra of the evolution for Model M9 witk 2. In the upper panel the
Fourier transformation is taken for an early starting time and shows the presence of the modest
dampedw-modes. The lower spectrum is for a later time, where most ofuttmeodes have
damped away and the very long-liveamodes prevail.
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Figure 4.19: Wave forms fot = 2,3,4 for model M6. The highef the less energy gets
transfered to the fluid.

which are called trapped modes, and were first found by Chandrasekhar & Ferrari [42] for the
axial perturbations of ultra-relativistic stars. As was discussed in sectipn 4.1 the axial modes
can be described both within and outside the star by a single wave equation with a potential
termV, whose shape depends on the stellar model. For less relativistic modetominated

by the centrifugal terni(l + 1)/r? and is therefore a monotonically decreasing function.of

As the central density increases, the stellar models get more compact and the remaining terms
become more important. Above a certain central dengitgtarts to develop a local minimum
inside the star, which then gives rise to the existence of the new family of trapped modes. For
our polytropic equation of state this happens at a central density of aldewut'® g/cn?.

For the polar case we have two coupled equations and it is therefore not possible to write
down an effective potential. But there also exist polar trapped modes for stellar models with
central densities above a certain value, which is about the same where the axial trapped modes
start to appear.

In Fig. @.I8 we show two power spectra of the wave form of model M9, one taken from
the timet = 1 ms, where the trapped modes dominate, and one taken from a much later time,
where they have mostly damped away and the fluid modes dominate. Here, too, the agreement
with the modes obtained by a direct mode calculation is evident.

In Fig. &.I9 we compare the wave forms of model M6ffer 2, 3, and 4. It is obvious that
the higherl is, the less energy the impinging gravitational wave can transfer to the fluid. The
amplitudes of the fluid modes decrease by about two orders of magnitude for increasing

There is another interesting feature in the wave forms for the ultra-compact stars. By com-
paring the three panels of Fig. 4.13 we can see that the reflection of the impinging wave packet
with the following quasi-normal ringing gets more and more delayed as the star becomes more
and more compact. This feature is also evident in [Fig] 4.16, which is-th& case.

For model M7 the reflection occurs at arouné 0.7 ms, for model M8 after = 0.8 ms,
and for model M9 it is at = 0.9ms. For all models the wave forms up to the time of about
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t = 0.6 ms are quite similar. But for the ultra-relativistic models a gap starts to develop between

t = 0.6 ms and the point where the reflected wave packet crosses the observer and the quasi-
normal ringing starts. This is due to the fact that the more compact the model the slower the
local (coordinate) speed of light (which is given &y #) inside the star and the longer the time

the wave packet takes to penetrate the star, get reflected and leave the star again. In the time
during which the wave packet is “trapped” inside the neutron star, there is an exponentially
damped oscillation with a characteristic frequency that depends almost onlgrah)/ and

that starts in all cases considered at aliout0.6 ms.

The surprise is that the frequency and damping time of this ring-down do not correspond
to any of the quasi-normal modes of the particular stellar model. They rather correspond to
the (complex) quasi-normal frequency of a black hole with the same mass as the star! The
correspondence is not quite perfect, but the frequencies agree within less than one percent, only
the damping of the black hole is slightly larger than that of the neutron star. Still, this is a rather
unexpected result and, to our knowledge, has not been reported before.

This peculiar feature is also present in the axial case, which is apparent [n F|g. 4.20, where
we evolve the same initial data for two different stellar models. The first stellar model is model
M9 of table[4.1L, the other one, let us call it M9a, is a polytropic star Wit 2.2 andx =
28911.95. This choice yields the same total mass for the same central energy density as for
model M9. The radius, however, is somewhat smaller and giveR by4.58 km. In addition,
we also evolve the initial data for a black hole with the same mass as the two stellar models.

Up tot = 0.6 ms all three wave forms are identical since the exterior is given by the same
Schwarzschild metric for all three cases. As soon as the wave packet hits the surface of the
star, things start to change slightly. It is evident that the first ring-down phase is not exactly the
same in the neutron star and the black hole case. Even for the two different stellar models it is
not identical. But this should not cause any wonder since we are dealing with quite different
objects, on the contrary, it is remarkable how close the wave forms are up to the point where
the wave packet gets reflected in the neutron star case. The most obvious difference is that the
damping for the black hole is somewhat stronger than for the neutron stars. The frequencies are
almost the same.

For a black hole the normalizéd/ = 1) complex frequencies of the least damped quasi-
normal modes fof = 2 and/ = 3 are given both for the polar and axial case as

[=2:w = 0.74734 + 0.17792i
1.19888 + 0.18540i .

l:3:w1

Since the potentials inside the star are somewhat different for the two stellar models and
quite different from the black hole, it must be the outer parts of the potentials, which are the
same in all three cases, that are mainly responsible for the first ring down. Concerning the stars
it is clear that the inner part of the potential is important, too, for it is responsible for the stellar
guasi-normal modes, especially the trapped modes, which do not exist in the black hole case.
But it seems that in the black hole case the parameters of the least damped mode, which is the
most important one, are predominantly determined by the outer parts of the Regge-Wheeler
potential in the axial case, or the Zerilli potential in the polar case.



4.6. Results for polytropic equations of state 83

I
\r\\(\,\p NIRTRTAYAY
| IR RARE

T

10-10 1 1 1 1
0.2 0.4 0.6 0.8

Figure 4.20: Evolution of the same initial data for two neutron star models (M9 and M9a) and
a black hole with the same mass.

To corroborate our presumption, we look at initial data inside the star, now again for the
polar case. That is we prescribe a fluid perturbatiop end use the Hamiltonian constraint
to solve for the metric variableS and7'. As was mentioned earlier, this cannot be done in a
unique way, hence we consider the two extreme cases. For giwercan either sétf’ = 0 and
solve forS, or vice versa, sef = 0 and solve forT".

Furthermore, we can choogéo have its major contribution close to the stellar surface, that
is at the peak of the potential, or closer to the stellar core, that is right inside the dip of the
potential. In Figs[4.21 and 4]22 we show the initial data and the evolution for both cases.

It is interesting to see that in the first case the wave forms for the two kinds of initial data,
where we either solve faf or for 7', are almost identical. Furthermore, it is evident that there is
no sign at all of a black-hole-like ring-down phase. The spectral analysis of the resulting wave
forms shows that there are predominately fluid modes and only some of the first long-lived
trapped modes present.

In the second case, things have changed dramatically. Here the wave forms for the two
kinds of initial data are totally different. Those where we initially $et= 0 and solve forS
lead to a wave form that is somewhat similar to the case of an impinging gravitational wave.
The frequency of the ring-down after the first pulse is, indeed, close to the first quasi-normal
mode of an equal mass black hole. Itis only after the second pulse that we find the characteristic
guasi-normal modes of the neutron star. The spectral analysis reveals that both the trapped and
fluid modes are excited.

However, if we now initially setS = 0 and solve forT’, the resulting wave form is quite
different. There is no trace of any black hole frequency whatsoever, and in the spectrum we
scarcely find any of the higher trapped modes. All in all the wave form is quite similar to the
case where the fluid perturbation is located near the center of the star.

It should be mentioned that a long term evolution shows that both wave forms start to look
alike. This can be explained in such a way that for both kinds of initial data the fluid modes
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Figure 4.21: Evolution of the initial data which are located inside the potential. The upper
panel shows the initial fluid perturbation. In the middle we show the two possible solutions of
the Hamiltonian constraints for the metric variablevith 7' = 0 and for7 with S = 0. The
lower panel shows the evolution of both kinds of initial data.
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Figure 4.22: Evolution of the initial data which are located outside the dip of the potential. As
in Fig /.21 the upper panel shows the initial fluid perturbation. In the middle we show the two
possible solutions of the Hamiltonian constraints for the metric varidmath 7" = 0 and for

T with S = 0. The lower panel shows the evolution of both kinds of initial data.
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Figure 4.23: Evolution of two sets of initial data with the same initial fluid perturbation, but in
one case itis(t = 0) = 0, and in the other itig'(t = 0) = 0.

are excited to the same extent since we prescribe the same initial fluid perturhdiidgnn the

case where differs from zero and’ = 0, we have an additional excitation of themodes,
which because of their strong damping will quickly fade away. Eventually, both wave forms
contain only the long-lived modes and therefore will have the same time dependence.

Thus, it seems that in the interior it is the varialslevhich is mainly responsible for the
metric modes, and’ is responsible for the fluid modes, everfiis actually a metric perturba-
tion. However, it has already become clear that in the int&fionore or less assumes the role
of the fluid variable.

We demonstrate this effect more clearly for a less relativistic stellar model, which does not
have any trapped modes. Hence, here any exaiteadodes will immediately damp away and
give way to the long-lived fluid modes. In Fig. 4123 we show the evolution for a given initial
fluid perturbationp, where we either solve the Hamiltonian constraintfoor for S. In the
former case the resulting wave form is composed of fluid modes exclusively, whereas in the
latter case we see a short burst of radiation, which then fades away very quickly. The remaining
fluid oscillations are then almost identical in both cases.

It thus seems that the prescriptionpadetermines more or less exclusively how much energy
we initially put into the fluid modes. In addition, the value®tietermines how much energy is
put into thew-modes. The remaining varialléis then fixed by the Hamiltonian constraint. If
we setS = 0, we do not obtain any-modes at all. If we increas®, more and more energy is
released throughy-modes without significantly changing the energy of the fluid modes because
of the weak coupling between gravity and matter.

Of course, we cannot choose arbitrarily high valuesSfarithout affecting the energy of the
fluid modes. If we increasg by too large an amount, the coupling will transfer the energy of
the metric into the fluid. Hence, in this case, the excitation of the fluid modes afterthedes
have radiated away will be much stronger than for small valugs of
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It thus seems that the metric varialfiehas a quite important influence on the form of the
gravitational waves that are emitted by neutron stars. If we assume the oscillations of a neutron
star to be excited by either some star quakes or by the precursing core collapse in the stage of
the birth of the neutron star, and not by an impinging gravitational wave, then the emitted wave
form will strongly depend on whether or not this particular physical process was able to produce
some non-vanishing. From the decomposition of the spatial metric perturbatipnsi(4.17) we
see thafl’ is similar to a conformal factor, for if we sét = 0 the perturbed metrid(41.7) is
conformally flat. The value of is therefore a measure of the deviation from the conformal
flatness. Hence, if the physical process somehow conserves the conformal flatness of the metric
to some degree, it is clear that one cannot expect to have a significant excitatienades.

Andersson & Kokkotas[[55] have shown that by extracting the frequencies and damping
times of the firstw-mode and thef-mode in a wave sighal one can reveal important stellar
parameters such as mass and radius, which then can be used to restrict the set of possible
equations of state. But this procedure stands and falls with the presencenofies in the
signal. It is therefore important to investigate the processes that lead to oscillations of neutron
stars in greater detail on their ability to excitemodes in a significant manner.

It is also clear that any construction of numerical initial data that rely on conformal flatness
as in [57,58] will suppress the presenceaiemodes.

4.7 Using realistic equations of state

When we try to switch to a realistic equation of state, we will run into the same numerical
troubles as in the radial case in chapter 3, i.e. we will have instabilities that are associated with
the dip in the sound speed at the neutron drip point in conjunction with too low a resolution.

This is because the structure of the fluid equation {4.30) is of the same kind as in the radial
case. Here we have found a convenient way to get rid of those problems by introducing a new
“hydrodynamical tortoise coordinate” which stretches those parts of the neutron star where the
sound speed assumes low values.

Of course, this transformation is only defined in the stellar interior for the fluid equations,
for it is only there that the propagation speed is the speed of sound (apart from thefacjor
If we still wanted to use the system of equations (#.37), where in the intErays the role
of the fluid, we would have to switch from thegrid in the interior to the--grid in the exterior,
which is somewhat inconvenient. It is therefore much more natural to explicitly include the
fluid equation [4:30), which is defined in the interior only. Thence, it is anly4.30) which will
be transformed according tp(3.62), whereas we keep the wave equatigharoll as they
are given in[[4.24) and (4.25).

However, this means that in the interior we have to simultaneously evolve the fluid variable
H on a different grid than the metric variabl§sandT'. Because of the coupling at each time
step we have to interpolaté from thex-grid onto ther-grid in order to update equation (4.25),
and, vice versa, both and7" from ther-grid onto ther-grid in order to update equation(4.30),
which can easily be done using spline interpolation.
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Figure 4.24: Comparison of the power spectra for a resolutioN,0f= 50 grid points on the
x-grid with different resolutions on thegrid.

The transformed fluid part of the fluid equatign{4.30) reads
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The subscriptc denotes a derivative with respectto As in the radial case, the boundary
condition for H at the surface of the star simply translates into

0H’
o z(R)

Apparently, it is the region close to the surface, which is mainly responsible for the fluid modes.
To obtain the right mode frequencies in the power spectrum, it is important to have high resolu-
tion close to the surface of the star and this is what can be accomplished by our new coordinate
z. In Fig. &2Z4 we show the power spectra of wave forms obtained from runs with different
resolutions. The initial data always were some fluid excitations at the center of the star together
with S = 0. In this case we suppress amymode contribution.

It is apparent that even for the quite moderate resolution of 50 grid points an-giniel
inside the star we obtain very accurate frequencies for the first couple of fluid modes. On the
r-grid, however, a resolution of 200 grid points is still not enough to obtain the same accuracy,
and the peaks of the highgrmodes in the spectrum are still quite far off their true values.
Of course, those results were obtained with a polytropic equation of state, since otherwise we
would not have been able to do the evolution onitigrid because of the occurring instability.

After all those pleasant features of our neswgoordinate, we should also mention one draw-
back that comes along with the transformation of the fluid equation, and which affects the use of

— 0. (4.76)
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polytropic equations of state wifh > 2. In this case, we already know from the discussion of

the boundary condition that the perturbed Eulerian energy density at the stellar surface can ei-
ther be finite [" = 2) or even infinite [" > 2). This then goes hand in hand with a discontinuity

or an infinite jump inl™.

In the discretization of the wave equatiofis (#.37) we more or less ignored this fact and
computed?” everywhere, the stellar surface included, by means of central differences with
second order accuracy. Of course, for> 2 the neglect of the appropriate treatment of the
discontinuity was punished by the reduction of the order of convergence from second down to
first. But otherwise we did not have any serious disadvantages.

Unfortunately, with the new coordinate things get much worse. Because of the better reso-
lution of the fluid at the surface, the discontinuityifi will be much more pronounced. In our
case this then leads to some artificial reflections at the surface, which in the dase dfare
truly severe. In Figd. 4.25 and 4126 we show the wave fornfsright at the stellar surface for
different polytropes witH" =1.8, 2.0 and 2.2. Figuig 4]25 shows the evolutions on-tged
and Fig[4.26 on the-grid.

Whereas for the conventional discretizationrirthe main inaccuracy of low resolutions
is the phasing, we can see that using theoordinate we get some ugly additional bumps in
the wave function, which start to vanish as the resolution is increasedl” Forl.8, 7" is
continuous at the surface, thus there is only a small reflection for the lowest resolution of 100
grid points inside the star. For resolutions of 400 or more, the wave form seems to have more or
less converged to its proper shape. Foe 2, the bumps for low resolutions are much higher
and it is only for the quite large number of 1600 grid points inside the star that the wave form
coincides with the one from the-grid. But forI' = 2.2 things seem to be quite hopeless.
Even for 1600 grid points the shape of the wave form still has almost nothing to do with the
corresponding one of thegrid. One would have to double the resolution some more times
before one could obtain an acceptable wave form.

This seems to be quite a nasty feature of the new set of equations and it might be worth trying
to implement an appropriate handling of the discontinuity. However, for our purposes this is not
necessary. The main motivation for transforming the equations was to get rid of the instability
that occurs when we switch to realistic equations of state. And this can be accomplished with the
new version of the equations. Moreover, for realistic equations of state, the perturbation of the
energy density is almost zero at the surface, and thus, there is only a negligible discontinuity in
T”. Thus, we will not encounter any of those interfering reflections, and it is possible to obtain
reasonable wave forms without having to rely on unacceptably high resolutions as it would be
the case with the old discretization in order to overcome the instability.

In Fig. @27 we demonstrate the usefulness of our coordinate transformation. We show the
evolution of a sharp peak in the fluid perturbatjgnwhich leads to the excitation of a multitude
of fluid modes. This is convincingly confirmed by the power spectrum which shows 37 modes
in the interval up tal00 kHz. And they agree with the modes which are obtained by the direct
mode computation.
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Figure 4.25: Evolutions on thegrid forI' = 1.8, 2.0 and 2.2, each with different resolutions.
ForI' = 1.8 the convergence is much faster thanffoe 2.0 and 2.2.
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Figure 4.26: Same evolutions as in Hig. 4.25, but this time onrtgad for ' = 1.8, 2.0 and
2.2, each with different resolutions. Again, for= 1.8 the convergence is the best, whereas for
' =2.2itis very bad.
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Figure 4.27: Upper panel: Evolution of a sharp initial fluid pulse using the MPA equation of
state. The power spectrum in the middle panel reveals that dozensiofles are excited. In
the lower panel we include the modes computed with explicit mode calculation.



Chapter 5

Shooting particles at the neutron star

In the previous chapter we demonstrated that it is possible to excite the oscillations of a neutron
star and that the resulting gravitational wave signal contains the expected quasi-normal modes.
However, all the chosen initial data were purely arbitrary and void of any astrophysical meaning.
This arbitrariness will now be removed by simulating a physical process that could excite the
modes of a neutron star. We will use the gravitational field of a moving masgerturb the
neutron star, hoping that this will lead to excitations of some of its eigenmodes. Since this
investigation takes place in the framework of perturbation theory, we have to require that the
massy is much smaller than the madg of the neutron star, gu/M < 1. Furthermore, we
will treat the orbiting masg as a point mass. In this particle limit, the gravitational field of the
massy can be considered as a perturbation of the spherical background field that is due to the
neutron star. The particle will move on a geodesic in the background metric since deviations
thereof due to gravitational radiation are effects of second order and will therefore be neglected.

We will not consider collisions of particles with the neutron star [64] because itis not clear at
all how to treat the impact and subsequent merge of the particle with the neutron star. Therefore
we will only focus on circular and scattering orbits. Previous studies of excitations of neutron
stars by orbiting particles were performed in the frequency domaini65, 66, 67]. Since we
already have the evolution code, we will include the particle and do the explicit time integration.
As we shall show, considering the dynamics in the time domain has as a consequence that we are
forced to “smooth out” the particle; that is, thdunctions in the sources of the equations due to
the presence of the particle are approximated by Gaussians. We show, however, that our model
of the particle is self-consistent and convergent. Another important issue is the prescription of
appropriate initial data that satisfy the constraints. We will face the same problems as in the
previous chapter, since the constraints do not provide us with a unique way to find valid initial
data. However, by resorting to the flat space case we can find analytic initial data which can
serve as a good approximation in the case that the particle is initially far away from the neutron
star.

We now proceed how to mathematically describe the particle and how to incorporate it into
the perturbation equations.

93
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5.1 Adding a particle

The energy-momentum tensor for a point particle with massoving on a geodesi& *(7) in
a Schwarzschild metric is given by

T = [L/5(4)(JZ>\—X>\(T))UMUV(17'

urgr

;LW(S(T’ — R(t)) 6(cos @ — cosO(t)) d(p — (1)), (5.1)

whereU* is the particle’s 4-velocity

dXx#

U+ =
dr '

(5.2)

and 7 the patrticle’s proper time along its trajectory. We now orient the coordinate system
in such a way that the particle’s orbit coincides with the equatorial plain of the neutron star
(© = 71/2). Besides, the particle’s coordinate tirfids identical with the time coordinateof
the spacetime in which it moves. Therefore we will use parametrize the path of the particle
XAt) = [t, R(t), ©/2, D(t)].

From the geodesic equatioAs~ = U”D,U* = 0 we find:

dt

% = €2>\E (53a)
2
L2
(‘;—R) = E% ¥ (1 + ﬁ) (5.3b)
-
dd L
ek 5:3)

whereFE andL are the energy and angular momentum per unit mass of the particle, respectively.
We also recall that for the Schwarzschild metric we have
2M
e = e = 1-"— . (5.4)

r

We can use[(5.8a) to eliminate the proper timfeom equations[(5-3b) an@(5]3c):

Cg)::w(yggc+%;) (5.50)

> L
= = (5.5b)

On the one hand those equations can be used to replace the quazﬁtiﬁeéég andvg = %
in the source terms of the particle. But on the other hand we also have to explicitly solve them
for the particle’s trajectory coordinatd®t) and®(t), since we need those coordinates in the

d-functionsé(r — R(t)) andd(¢ — D (¢)).
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The perturbation equations for the isolated neutron star are given by (2.20)and (2.21). In
the vacuum region, the matter terms n (2.21) vanish, of course. However, when we add the
particle, we have to include its energy-momentum tensdrinj(2.21), which then reads

Okij = —0;0j00 + F’j.jaka + (5Fkij8ke”
v 1w (5.6)
+ OZRZ']‘ +e (SRZ] T M T .

To obtain the initial data, we also have to modify the perturbed constraint equdtions (2.24) and
(2:25), which then read

gij(SRij — hinij = 1671'6_2”760 (57)
gjk (azkjk — (%klk — Flikkﬂ + Fljkkil) = 871'67’/76@' . (58)

In writing these constraint equations, we have assumed that initially the fluid of the neutron star
is unperturbed.

To simplify the above set of equations, we again want to get rid of the angular dependence by
expanding the equations in Regge-Wheeler harmoiizs, | (0, 0)}a=1,.10. We then obtain
equations for the expansion coefficients, which only depend amdt. For the metric part of
the equations the decomposition can be done in exactly the same way as in chapter 2, and the
energy-momentum tensor of the particle can be written as

T (t,7,0, 9) ZZZt ) Vimluw (0, 9) - (5.9)

=0 m=—1 A=1

Unfortunately, the Regge-Wheeler harmorni¢g do not form an orthonormal set, and it is thus
not possible to directly obtain the coefficients (¢, r) by means of the orthogonality relation.
We rather have to take some detour. We have to construct an orthonormal set of tensor harmon-
ics 37;;, which can be expressed as some linear combination of the Regge-Wheeler harmonics
Vim:

R 10

Vi = Y _Caph, . (5.10)

B=1

We then compute the coefficient§'(t, ) corresponding to the orthonormal s)%ﬁl by using
the orthogonality relation

flmn = /S 2(37;1‘;1)*W7W e . (5.11)

Finally, the desired coefficient§" (¢, r) can be obtained by

10
e =Y Cpaly', (5.12)
B=1
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which then will be plugged in our equations.

One convenient orthonormal S]A%ﬁb can be found in Zerillif[61]. In Appendix A we will list
the complete set and explicitly show the relation to the Regge-Wheeler harmonics. In Appendix
B, we then demonstrate how to derive the coefficigfjtét, ).

If we want to include the particle terms in the equations for the extrinsic curvature (5.6), we
have to use some caution. In chapter 2 we saw that the expans[on of (5.6) into tensor harmonics
lead to evolution equations for the six coefficief?tﬁ”. By choosing the Regge-Wheeler gauge
together with the appropriate initial data we could reduce the evolution equati&jfmo the
trivial case%f(ff" = 0. This then ensured the vanishing]Eiﬁm for all times.

However, in the presence of the patrticle this is not true anymore. Instead of a zero on the
righthand side, we have a source term

a 7> m m
aKfl = —8mti". (5.13)

But this means that during the evolutid?iim will start to differ from zero, which, because
of (3), in turn would maké&'™ non-vanishing. This is somewhat unfortunate but it can be
remedied by choosing a different lapse functianf we pick

1 v Tlm lm lm Ilm
o = —56 T + TS + 167Tt8 Y y (514)

the last term exactly cancels the righthand sideg 0f {5.13) and the vanishing dﬁbaﬁd&
can be guaranteed.

Again, we have to distinguish between the axial and the polar perturbations. It is only the
polar part which will be studied in this chapter, nevertheless, for the sake of completeness and
because the inclusion of the particle terms[in](4.8) 4 (4.9) is straightforward, we also present
the axial equations for the particle:

8‘/;1 Ay 8K6 / 1 2u

E =€ (W + 2 (I/ — ;) K6) — € Kg (5153.)
0Ky _Wi+1) - 21/4 — 167t (5.15b)
ot 2

0K, 0V,

W = E — 87Tt10 . (5150)

The momentum constraint relates the extrinsic curvature coefficients to the particle’s source
term via

0K 2 (l+1)—2
o 2 - D 22— tgme, (5.16)
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The relevant source terms of the particle read:

L 0

_2v _ _V*
= oyt = B g Vi (5.17a)
2\ :LLL a *
_ _ - A7
1= gy Y0~ B Vi (5.17)
H 2
to = —e 2mpl. 5(r — R(1)-Lv (5.17¢)

r2BI(1 4+ 1)1 —1)(1 +2) 00 " m
For radial infall, it is. = 0 and all source terms vanish. Hence, in this case the radiation is of
even parity only.

We can now use the system of equations of chapter 4, arid’in (4.23b)and (4.23d) we just
have to add the following source terms:

4v
8@—]; = -~~+167r€—[t§—2t’6+ (5u’—§) tg+t5—2(3y/—1) te
T
: L " (5.18a)
N vV 3—e e
—|—2(<V) —474— 2 )tg—?t9‘|
K 1 2
% = .-+ 16me™ {tg — 2t +2 (y’ — ;> tg + €7t9 - ge”‘t} . (5.18Db)
The appropriate source terms are derived in Appendix B and are given by
b )
ts = e“‘i—ﬂ?(m(r — R()Y;, (5.19a)
oy implL B .
tg = —e 0T D) l)v(t)é(r R(t))Y;, (5.19b)
o L2 (I +1) —2m?) )
= — R(1))Y, 5.19
fs = e rEI(l+ 1)1 — 1)(z+2)5(7" ()Y, (5.19¢)
L2 (11 +1) = m® = 1) .
= — Y, 5.19d
lg € TQE(Z — 1)([ + 2) 5(T R<t)) Im ( )
v M X
t = —e TTEa(r—R(t))Ylm. (5.19¢)
With the explicit form of the source termg, {5.18a) and (5.18b) read:
0K o K AN, 2 ; vL / 2X
= ... vE (94 E 2 —
BT + 8me 7"3[6 v5—|—lmr(n+1) ré’ + (e 7)0
+ et (m*(n+27) — (n+1)(2n +27)) & (5.20)
r?En(n+1) '

Im

+(n+1-m? ((22”7’25" + g(Q —23e*)0' + 3 (e** + 13e*) 5) )} Y,
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wh| (1 o VL
Y = ... L _ 2 K )
+ 8me r[<E+ me T(n+1)>

L2 2v 2 !
+m<e (n+1—m%)(rd —60) (5.21)

+ ((n+1)(2n+3) — m*(n + 3)) 6)]}/*

Ilm >
where we have defined
1
n = 5l(l +1)—1. (5.22)

For the Zerilli equation[{4.33) we obtain the following source term:

0?Z
= ... — 16me" s

_ 2 2 2\ ¢/
ot? r?EA(n+1) LT+

2

) MFE
— 2ime**vLE + 12 A

—r(n—f—l)—l—SM)é]Yl;.

The Hamiltonian constrainf(8.7) with the particle term reads

! l(l+1 1
L ope ( —Z ))T— (2rv’—|—2+§e2kl(l—|—1))5

T+ VT —rS — (

r r (5.24)
= —8uretty ,
and the momentum constrainfs{5.8) lead to the following two equations
1
rKi — Eezkl(l + 1)Ky — 1K — (r/ + 1) K5 = —871r’ty (5.25a)
rK) —r’K —2K; = 16mrt; . (5.25b)
Here, the appropriate particle terms are
E *
t = GQV%a(r — R(t))Y;, (5.26a)
E
ty = —eE20(0)s(r — R()Y (5.26D)
T
imuL
ty = ¥ ————6(r — R(t))Y}, . 5.26¢
3 € P2+ 1) (r ()Y ( )

In the momentum constraints (5.25) the quantity still appears, which, again, is not used in
the evolution equations. Therefore, we will get rid of it by differentiating (5.25a) with respect to
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r and using[(5:Z%a) an@{5:25b) to elimindte and K}. The resulting equation is then second
order inK5 and reads

v o l(l+1)

1
K +VK. — (? et 3y ) Ks—rK' — (27’1/ +2+ 562)\[([ + 1)) K

A1), ) (5.27)
S

= —8r (rt’Q +2(r + 1)ty —e

It should be noted that this equation also follows from taking the time derivative of the Hamil-
tonian constraint[{5.24) and taking into account that K and7 = K5, which is consistent
with the discussion in chapter 4.

We can actually verify that the following relations have to hold:

. [ 1 1

t = e |th+2 (1/ + —) ty — eQﬂl(lJ; )t3] (5.28)
L T T

- [ 2 e2H

ty = e |th — eVt + (3y’ + —) ts — — (l(l + 1)(rte — tg) + 2t9>] (5.29)

r T
. i 1 e2H
t3 = e |t} +2 (1/’ + ;> te — = ((1 —I(l+1))ts +t9>] (5.30)

The constraint equations serve as initial value equations that have to be solved on the initial
slicet = 0 in order to obtain valid initial data. Unfortunately, there is no unigque way to
solve those equations. This is due to the fact that to a particular solution of the inhomogeneous
equations, we can always add a solution of the homogeneous equation, which would correspond
to adding some arbitrary gravitational waves. The problem of finding the “right” initial data
that represent only the perturbations which are due to the presence of the particle and contain
no additional radiation will be discussed in more detail in sedfian 5.3.

For a particle falling from rest we would havgt = 0) = 0 and L = 0, and therefore
ty = t3 = 0. Thus the momentum constraint (5.27) can be trivially satisfied by setting the
extrinsic curvature variables to zero, which corresponds to time symmetric initial data. We then
are left with solving the Hamiltonian constraift{5.24). Of course, a particle falling from rest
would fall radially towards the neutron star and eventually hit its surface. Since we want to
avoid such an impact, we have to give the particle some angular momentum. We also will give
it some radial velocity in order to decrease the time it takes to come close to the neutron star.
However, this means that we have to solve the momentum consfraint (5.27), too.

5.2 Numerical implementation

In order to solve the equations on the computer, we have to use the explicit forms of the spherical
harmonicsY;,,. The perturbation equations without particle are degenerate with respegt to
since the background metric is spherically symmetric. However, the presence of the particle
breaks this symmetry and we have to consider the vartogases. Fortunately, we do not have

to consider all possible values of for a given value of, since for negativen the spherical
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harmonics just undergo sign change and phase shjft € (—1)"Y, _,,). The advantage of
putting the particle in the equatorial plai® & 7) is that in the polar case we only have to deal
with multipoles withm =1, [ — 2, ... ; the remaining ones witm =1 —1, [ — 3, ... are axial
multipoles. Since the evolution code can only handle real valued perturbations, we have to treat
the real and imaginary parts of the spherical harmonics separately. Finally, all the equations will
be solved on a finite grid, hence we have to approximaté-fis@ction by a narrow Gaussian

1 _ (r=R(®)?
e 202 o small.

d(r— R(t) =~

oV 2

We also need first and second derivatives, which can be expressed as

5~ r0) ~ M5~ R
§'(r— R ~ (Lti—; )’ 1) 5(r— R(t)) .

For this approximation to be valid, we have to ensure the convergence of the solutiorfor
This can be done in two different ways. On the one hand we can look at the convergence of
the waveforms that are obtained in the evolution, and on the other hand we can monitor the
violation of the constraints. A possible way do to so is to monitor the following quantity

1

- - 2v
I = 87T,uEYljn/T€ (rhs of (5:28) dr (5.31)

where the domain of integration is the region outside the neutron star. In theslimit 0

itis I = 1 throughout the whole evolution, which is, of course, not true in the discretized
form. Numerically, we cannot take this limit with a fixed grid size, since eventually we cannot
sufficiently resolve the Gaussian. Therefore, by performing this limit, we also have to decrease
the grid spacing in order to resolve the narrowing Gaussian. We do so by keeping the fatio
constant throughout the sequence. From the numerical data we find second order convergence.
In the following, we will user/ Az ~ 0.15, which gives us a decent resolution of the Gaussian

and its derivatives.

There is still a subtle point. In deriving the source terms (see Appendix C), we have tacitly
transformed the particle coordinakinto the spacetime coordinatesince the presence of the
o-function makes a distinction unnecessary. However, in the evolution equations we have to
take derivatives of the source terms with respeot but not with respect td&?, and therefore
we would obtain different source terms if we had not changed®kento ’'s. As an example
consider the following two source terms

Si(r) = f(r)é(r — R) (5.32)
and

Sa(r) = f(R)é(r — R) , (5.33)



5.3. Setting up the initial conditions 101

which are equivalent because of the presence obthenction. But if we now differentiate

S; and.S; with respect ta- we obtain forS; just the derivative of thé-function, whereas for

S; we also have to differentiatg. Analytically this does not make a difference, but if we
approximate theé-function by a Gaussian, then the two expressionsSioand S, and their
respective derivatives are different. To gain accuracy, we should have kept e.g. an expression
like r?d¢/dré(r — R) asLr?/R*§(r — R) and not just ad.d(r — R). However, this is rather
cumbersome, and for the numerical evolutions the actual difference is negligible, so we have
assumed the source terms to be of the formy,of

5.3 Setting up the initial conditions

As we already know from chapter 4, any construction of initial data for a particle falling from
rest or starting with some initial velocity involves solving the Hamiltonian constraint](5.24).
However, [5:24) is one equation for the two metric quantifiesnd7’, which means that we
have more or less the same freedom in choosing the initial values as in chapter 4. Let us denote
the initial values ofS andT" att = 0 by S, andTj, respectively. We then can, for example,
either choosé}, = 0 and solve forS,, or do it the other way round and s&t = 0 and solve for

T,. Inthe former case, we would have to solve a first order equatiatyfdhe latter case would
lead to a second order equation gt In Figs.[5.1L and’5}2 we show those two possibilities. By
comparing the different shapes.&f andT, we might already deduce that the case in which we
setT, = 0 and solve forS, (Fig.[5.1) is less favorable sincg exhibits a discontinuity at the
location of the particle. In the other case (Fig] 52 still exhibits a kink, but it is continuous.

To assess which choice is the more natural, we consider a particle initially at rest in flat
spacetime. Of course, the particle will remain at rest since there is no matter around that could
attract the particle. Thus, the perturbation of the spacetime that is created by the particle will be
stationary. Hence the equations of motion for the metric perturbati@ms7" will read %—f =0
and%—f = 0. From this conditions and from the Hamiltonian constraint it then follows $hat
has to vanish.

Of course, in the presence of the neutron star, those arguments do not hold any more, and
So = 0 will not be the right choice of initial data, but if the particle initially is far enough away
from the neutron star, the error in settislg = 0 should be very small. This error actually
corresponds to an introduction of an extra amount of gravitational radiation, which is not at all
related to the radiation that is emitted when the particle moves through the spacetime. This extra
amount will propagate during the evolution and eventually excite oscillations of the neutron
star. However, if we put the particle far enough away from the neutron star, the strength of
the induced oscillations should be small compared to the ones excited when the particle comes
close to the neutron star, which can be confirmed by the numerical evolutions. Close to the
neutron star, where the gravitational field is strongest, sefting 0 will causeS to bulge up
and send a wave towards infinity. Again, this amount of radiation is by far smaller than the
radiation that will come directly from the particle itself.

In Figs.[5.B throughi 5.6 we show the evolution of the two possible choices of initial data
for a particle falling from rest. In Fig. 5.3 and Fig. 5.5 we show the evolutiof ahdT for
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Figure 5.1: Profile ofS, with 7, = 0. Note thatS, exhibits a discontinuity at the particle’s
location.
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Figure 5.2: Profile off;, with S, = 0. Note thatl} is continuous in contrast to the initial profile
of Sy in Fig. 51

the initial data of Fig[5]1, and in Fi§. 5.4 and Hig.]5.6 the evolutios @ind T for the initial

data of Fig[52. The differences are obvious. The initial shageiofthe latter case is almost
unchanged during the evolution, wheregastarts to aquire its “right” shape. In the other case
we can see a huge burst of radiation propagating in both directions. In the samé tsne
acquiring its “right” shape. We also include the evolution of the Hamiltonian constraint, where
we plot the righthand side of {5124), which monitors the “path” of the particle. In both cases
the graphs agree as it should be, of course, for the Hamiltonian constraint should only monitor
the energy density of the particle, independent of any gravitational waves. Lastly, we also show
the metric functionS and7" after a certain time, which clearly shows that regardless of the
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chosen initial data they will adjust themselves to their proper values after having radiated away
the superfluous initial wave content.

We should note that we cannot escape the whole ambiguity of how to choose the vétfiables
andT by using the Zerilli formalism instead. There, any regular initial data are valid initial data
since by construction the Zerilli function always satisfies the constraint equations. Hence, we
cannot see a priori whether ot not the chosen initial data will have additional radiation content.

If the particle initially is not at rest, in addition to solving the Hamiltonian constrainty5.24)
we also have to solve the momentum constrainis (b.25a)[@and(5.25b). Of course, as with the
Hamiltonian constraint we again are faced with the same kinds of ambiguity in solving that
equation.

Now, for a particle initially being at rest or very slow, or for circular orbits, we do not have
to care about what kind of initial data we choose, for we do not have to worry about the initial
gravitational wave pulses, since they travel with the speed of light and will long be gone when
the particle, which is much slower, comes close to the star. However, if the particle’s initial
velocity is close to the speed of light, then the patrticle “rides” on its own wave pulse and it will
be not clear any more whether the excitation of some particular modes of the neutron star is
due the the particle itself or due to the initial burst, which comes from the inappropriate initial
data. If the particle is slow enough, those two effects can clearly be distinguished. For very fast
particles this is not possible any more and this is particularly bothersome, insofar it is known
that a pulse of gravitational waves will predominately exeitenodes. Now, if we have a wave
signal from a particle that grazes a neutron star with almost the speed of light, and we find that,
indeed, there are some traces ofanode, how then can we make sure that this is a “real”
signal and not an artefact due to the inappropriate initial data?

To obtain an approximate answer, we again turn to the flat space case. In this limit, the
equations governing the evolution Sfand 7" reduce to two simple coupled wave equations
with a source term that takes the presence of the particle into account:

%S 925 1(1+1) v? .

52 = g2 g2 S+ 167T,uET—35(T — R(t)Y;, (5.34a)

0T PT  I(l+1) 0 .

57 = g2 2 T +4S — 87E5(7‘ — R(t)Y,, . (5.34b)
In flat space the particle moves on a straight line with constant velogcitgnce it is

R(t) = ro+ vt (5.35)

with ry being the initial location of the particle. Furthermore, the normalized enBrgpyjust
the Lorentz factor

-1 (5.36)

Vi-o?
It is interesting to note that the wave equation $06(5.344) is totally decoupled from the one
for T'. However, the solutions of (5.34a) and (5J34b) have to satisfy the flat space Hamiltonian
constraint, which reads
S
”

O*T  1(1+1) 1 _ pE .
TR e <2 + 50+ 1)) § = —8r—=d(r = R(t))Y,, . (5.37)
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Figure 5.3: Evolution of5 for 7Ty = 0 and.Sy from Fig.[5.1. We can see two bursts of gravita-
tional waves that propagate both in and outwards. The ingoing pulse gets reflected at the origin
and travels back outwards again.
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Figure 5.4: Evolution of5 for S, = 0 andT; from Fig.[5.2. Here, we can see a wave emerging
from the vicinity of the neutron star and travelling outwards. However, the amplitude is much
smaller than in Fig. 5] 3.
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Figure 5.7: Evaluation of the Hamiltonian constraint during the evolutiorifor= 0. The
Gaussian shape of the particle is clearly visible and has been chosen to be very broad for a
better visualization. The patrticle initially is at rest and starts falling towards the neutron star.
On the very right side we can see the matter oscillations of the neutron star.
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Figure 5.8: Evaluation of the Hamiltonian constraint during the evolutionSfoe= 0. As
expected, it basically does not differ from Fjg.]5.7, for the gravitational waves do not give any
contribution. Note, however, that the matter oscillations of the neutron star are much smaller

than in Fig.[57.
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Figure 5.9: Plot of the variableS at the end of the evolution of the different initial data. The
artificial radiation of the initial data has been radiated awayshds assumed its “right” profile

that is independent of the initial data. The difference between the different profiles is due to the
fact that the initial data witli; = 0 contain much more radiation, which excites the neutron
stars to pulsations, which in turn disturb the profileSof
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Figure 5.10: Plot of the variablés at the end of the evolution of the different initial data.
Here, too, the artificial radiation of the initial data has been radiated awa¥ drad assumed
its “right” profile, which is independent of the initial data. In contrasttthere is almost no
difference in the two profiles.

We now seek for an exact solution ¢f (5.B4a) that obeys the right boundary conditions at the ori-
gin and at infinity. Once it is found, we may u$e (5.37) to numerically compute the appropriate
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T. We state that a solution for(5.34a) is given by the following series ansatz:

0 7,21’-§-H—1
S(t,?") = A Zaim@(m—{—vt—ﬂ
=0 (5.38)

ro—i—vtl 2=
—i—Zb oy @(r—ro—vt) ,

where® is the Heaviside function, which satisfies

0, z<0
O = ’ ) 5.39
(@) {1, e (5.39

Continuity atr = rq + vt requires that

=0 1=0

The overall amplitude will be determined by, hence we deliberately may set

=0 1=0

The amplituded and the coefficients;, andb; can be found by plugging (5138) intp (5.84a).
For A we find

_ 16T pE3v?Yr,
24+ 1+2), (e —b)

and the coefficients; andb; are determined by the following recursion relations

2R l3)2it 1+ ) (5.43)
T 0>+ 1) (2 + 20+ 3) '
(1—2i—2)(1—2i—3)

2(i + 1)(2i — 20 + 1)

It is interesting to note that whereas the serieg;iwill extend to infinity, the series in; will
always terminate because one of the two factors in the numerator will become zero for. some
The series im; will converge if and only iflv| < 1.
In Fig.[5.I1 we show the initial data obtained from (5.38) for a particle that is locatedt at
500 km with different initial velocities. Here, we plotS and7'/r since only those quantities
can be meaningfully compared with each other. #er 0 it is S = 0 but the amplitude of.S
grows rapidly when the particle’s velocity approaches the speed of light, whereas the peak of
T /r slightly decreases. In the ultra-relativistic limi$' totally dominates over'/r.
Of course, the above solutions f6randT” are not valid any more if we consider the parti-
cle in curved spacetime, because they would violate the constraints. However, we can still use

(5.42)

bi-‘,—l = bﬂ]z (544)
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Figure 5.11: Initial data for a particle with different initial radial velocitiesvheresS is given
by (6:38) andl" is obtained by solvind(5-87). For small velociti&y,r dominates S, whereas
for ultra-relativistic velocitiesy.S dominates’/r.
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(5-38) as a prescription fof and then use the curved space Hamiltonian constr@int (5.24) to
solve forT. Furthermore, we can compute from K = dS/dt and then use the momentum
constraint [[5.27) to computE;. As long as the particle does not have any angular momentum
and is far away from the neutron star, the thus obtained initial values should be a good approx-
imation for a boosted particle on a Schwarzschild background. However, if the particle has a
large angular momentum, there will be additional source terms in the evolution equations and
our approximation should break down. However, we are mainly interested in trajectories which
come very close to the neutron star, and hence have only small angular momentum. In this case
the above prescription still yields good initial data.

5.4 Numerical results

To compare the code with known results, we consider a particle in a circular orbit with radius
ro around the neutron star and compute the radiated energy at infinity. Numerically, this can be
accomplished by evaluating the Zerilli functiégfy which can be computed frosi and7" by
means of formula{4-83), at some large distances.

The radiated power for some particular value$ ahdm can then be computed from

dt  64n (1 —2)!

| Zim|? . (5.45)

(For a derivation, see Appendix C). Cutler et ail [63] have numerically computed the normalized
gravitational powet M/ u1)%d Ey,,, /dt that is radiated by a particle orbiting a black hole. In table

Il they compile the multipole components fay/M = 10. To compare the output of our code

to those results, we choose the mass of the neutron star to ba BD&m and the orbit of

the particle to be at, = 19.9km in order to obtain the ratio of,/M = 10. The mass of

the particle is set to« = 1km. In Fig. (5.IR) we showZ,, as a function of time extracted

atr = 500km for[ = m = 2. After some wave burst that comes from the inappropriate
choice of initial data, we see that the signal is periodic with a frequency of twice the orbital
frequency of the particle. The amplitude is abOui076, which corresponds to a radiated
power of (M /u)?dEq /dt = 5.46-107°, which is in excellent agreement with Cutler et al. ,who
obtain a value of M /;1)2dF,, /dt = 5.388-107°. The slightly higher value of our result may be
due to the fact that at = 500 km the Zerilli function is still somewhat off its asymptotic value,
which will be a little bit smaller. Also, a black hole absorbs some of the radiation, whereas a
neutron star will re-emit all of the incoming radiation. We find that we agree with all the polar
modes compiled in table Il of Cutler et al. within a few percent, only for the ¢ase3 and

m = 1 we find the radiated power to 15¢9-10~1Y instead of their value df.71-1075.

It is clear that a particle on a circular orbit will not excite the eigenmodes of the neutron
star in a significant manner, unless the orbital frequency is close to the frequency of a stellar
guasi-normal mode. In this case, we can have a resonant excitation of this particular mode
and the radiated energy flux can drastically increase [62]. It is clear, however, that only the
low-frequency modes like th&-mode can be excited by this mechanism; the frequencies of the
w-modes are much too high to lie in the frequency range of the orbiting particle.



5.4. Numerical results 111

001 T T }" ‘ T T T T T T
i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U - e e i
i & - i o~
}: Ll I// \\ // \\ ,, \\ / \\ /,
Re(dz/dt) i i [ {0 i /
0.005 + il | | i | \ | \ -
Im(dz/dt) ---—--- it i P i j
A ! \ ] | ! ! / \ /
A Y | \ ! \ 1 \ 1 \ i
i \ ! \ ! \ | \ I \ |
| \ ! \ ! \ I \ ! \ I
| i ! \ ! | / \ ! | |
I \ | | ! \ ! \ ! ! i
0 e - i ! | ! \ I \ ] | T
| | \ ! \ | \ I \ !
f | \ [ L | \ I \ {
/ \ ! | I \ [ \ 1
I \ I \ ! \ ! ! I
h \ I \ h \ i i !
i | \ ! ! i ! / ) /
\ \ [
-0.005 + VoY VoY oy v VoV A
A Vo v Voo Vo
v v Voo o/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _ . ,,\}*i,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,\/,,,,,,,,,,,,,,,,,,,{,, NSNS
_001 | | | | | | | |
0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 5.12: Evolution of the real and imaginary partsZef atr = 500 km. After the initial
radiation bursts the wave forms show periodical oscillations with twice the orbital frequency.
The amplitude is about.0076, which corresponds to a radiation power(f /u)2dEy, /dt =
5.46-107°.

Therefore the only way to possibly excitemodes are very eccentric orbits, where the
periastron is very close to the surface of the star, or scattering processes with very small impact
parameters. The investigation of the latter is the main objective of this work.

Before presenting the results for scattering orbits, we should comment on some difficulties
that are related with the use of our evolution code.

As we have learned in the previous chapter, the computation of the Zerilli function is some-
what troublesome, for the violation of the Hamiltonian constraint during the numerical evolu-
tion prevents the exact cancellation of the growtl¥in However, we managed to go around
this problem by extracting the Zerilli functiati very close to the star and then using the Zerilli
equation itself to propagaté towards infinity. This lead to very reliable results.

There should be nothing that prevents us from doing the same thing for the particle. Of
course, we would have to include the appropriate source term which takes care of the presence
of the particle. Unfortunately, the inclusion of this term is not straightforward, but for our
purposes it is not really necessary either.

Our concern is not so much to obtain the quantitative amount of energy that gets radiated
away in a scattering process. We are much more interested in some qualitative statements
concerning the relative excitations of the various neutron star modes, and especially whether or
not the particle can excite the-modes. For this purpose it is enough to look at the waveforms
of S andT’, which also contain all the relevant information.

Of course, it is not totally impossible to compute a quite accurate Zerilli function as we
have already demonstrated for the circular orbits. Here, the problems with the amplification
of the high frequency components are not present, since the orbital frequency of the particle is
comparably low. Still, we were forced to resort to quite high resolution in order to obtain the
desired accuracy.
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Before we go on with the discussion we should clarify one point that might give rise to
some confusion. We have decomposed the particle, which is represented by a 3-dimensional
o-function, into its various multipole components, which are labeletldrydm. Each of those
multipoles represents an infinitely thin matter shell, whose surface density is proportional to the
spherical harmonit},, (6, ¢). It is only by the summation over all the shells, i.e. over @hd
m, that the particle gets localized at the particular pokit®, ®) in space. In the following we
focus onl = m = 2, but we will still use the term “particle” though we better had to speak of a
“quadrupole shell”.

Ideally, we should extract the wave formrat oo, which is clearly not possible on a finite
grid. We have to record the signal at some finite distance from the star. But if the particle moves
on an unbounded orbit, it means that it will eventually cross the location of the observer.

Now, the patrticle is always slower than the propagation speed of the gravitational waves,
which, of course, propagate with the speed of light. Hence, the observer will usually see the
wave signal before he is hit by the particle (better: quadrupole shell). However, when the
particle is very fast and the observer is not far enough away from the neutron star, not enough
time has elapsed for the interesting part of the signal to cross the observer before the particle
arrives. That means that the signal will be a superposition of the “real” gravitational wave signal
and the influence of the gravitational field of the particle itself.

The farther the observer moves outwards, the better the separation of the two components
in the signal can be made. Furthermore, the influence of the particle, i.e. the strengths of the
source terms in the equations f6rand 7' decrease with /r3 for S and with1/r for T' (see
equations[(5-34)), whereas the amplitude of the outgoing signal remains const&haihor
grows linearly for7". But this means that the presence of the particle affects the wave form of
T much stronger than that of.

Of course, the effective interfering influence of the particle strongly depends on the actual
excitation strength of the neutron star oscillations. The latter in turn depends on the value of the
particle’s turning point;, which is the smallest distance between the particle and the neutron
star. The closer the particle approaches the neutron star, i.e. the smalehe higher is the
amplitude of the induced oscillations. For largethe induced fluid oscillations are so weak
that they will totally be buried within the gravitational field of the particle. This is depicted
in Fig. 513, where we show the wave forms®fandT for two different orbits with turning
points ofr, = 10 km andr, = 50 km. The influence of the gravitational field on the wave forms,
especially or’, is obvious.

In Figs.[5.1# through 5:16 we show the wave formsSadnd 7" for different initial radial
velocitiesvy and different parameters of the turning porat Figures5.17 through 519 show
the corresponding Fourier transformations for the orbit wjth 10 km.

From Figs.[5.14 anf 5.115 and their corresponding power spectra[Figs. 5.7 dnd 5.18 it is
clear that for “small” initial velocities, < 0.5 there is no hint of av-mode excitation in the
signal. Instead the signal consists of a first pulse, which comes from the part of the particle’s
orbit close to the turning point, where the particle is closest to the neutron star and radiates the
most strongly. The power spectrum of this part of the signal should peak at about twice the
angular velocityw = d®/dt of the particle at the turning point, since the particle’s source
term is proportional t@os(mwt). Forvy = 0.5 andr; = 10 km the peak is aroundl5 kHz.
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Figure 5.13: It is shown the difference of excitation strengths for the two different grazing radii
r, = 10km (solid line) andr, = 50 km (dashed line). The waveform of (upper panel) for

r, = 10km is totally unaffected by the presence of the particle, whereas, fer 50 km the
gravitational field shifts the amplitude of the signal to higher values.TFfower panel) this
effect is much more pronounced and can already be detected fori0 km. Forr, = 50 km,

the oscillations of the neutron star are totally buried in the gravitational field of the particle. At
aboutt = 10 ms the particle crosses the observer who is locateg .at 1000 km.

As soon as the patrticle leaves the star, its radiation strongly decreases and the fluid modes
of the excited neutron star take over. Here, we find that almost all the energy is fimtloele,
only a tiny fraction is in the firsp-mode.

It is only for very high initial values of, and very small values of, that there is indeed
a significant excitation ofv-modes. By sampling different initial velocities we find that for
vg ~ 0.7 we can spot a trace of the firgtmode. And fory, approaching 1, we can obtain a
quite strong excitation of the first-mode, which can be seen in Fi§lS. $.16 and]5.19.
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Figure 5.14: Wave forms of andT for the three different grazing radij = 10km, r; = 20km
andr; = 30km. The initial velocity of the particle is, = 0.1.

5.5 Discussion

With the particle we have a physical even though probably a quite unrealistic process, which
induces oscillations in a neutron star. By unrealistic we mean that this mechanism is unlikely to
generate gravitational waves that are strong enough to be detectable on Earth.

Whereas all the considered kinds of initial data of Chapter 4 could excitg-thede and
some of the firsp-modes, this was not the case for thanodes. There, only a special class of
initial data was able to excite those modes.

Andersson and Kokkotas55] have shown how to extract the physical parameters of a neu-
tron star, like mas8/ and radiug: and possibly the equation of state, if the complex frequencies
of the f-mode and the first-mode are known. Of course, it is only possible to detect the first
w-mode of a neutron star if it gets excited by some physical mechanism.
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Figure 5.15: Wave forms of and7 for the three different grazing radij = 10km, r; = 20km
andr; = 30km. The initial velocity of the particle is, = 0.5.

We used an orbiting mass in the particle limity < M to assess whether or not it is
possible to excite the first-mode. We found that in order to excite a significant amount of
w-modes the particle’s velocity at infinity must be much more than 70 percent of the speed of
light. Moreover, the excitation strength of the modes rapidly decreases as the particle’s turning
pointr; increases. This is in agreement with the results of Ferrari ef al. [65], who find that no
significantw-mode excitation is observable. However, they do not consider the cases where the
particle has an energy > 1, which is necessary if it were to excite amymodes.

The question now arises: Can we infer anything about what happens in an astrophysical
event? Our results show that the particle initially has to be incredibly fast in order to excite a
significant amount ofv-mode content. It is clear that there do not exist any astrophysical events
at all that could accelerate the particle (which, of course does not represent an elementary par-
ticle, but some heavy extended object, like a planet or an asteroid or even another neutron star)
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Figure 5.16: Wave forms of and7 for the three different grazing radij = 10km, r; = 20km
andr; = 50km. The initial velocity of the particle i, = 0.97.

up to more than half the speed of light. Hence, we might safely conclude that any astrophys-
ical scenario that can be simulated by a particle orbiting a neutron star will not produce any
detectable amount ef-modes.

But what if the object collides with the neutron star? It has been suggesied [65] that in
this case there might be some significant excitatiom-whodes. In particular, simulations of a
particle that radially falls onto a neutron star were done by Botrelli [64] who found that, indeed,
both fluid andw-modes were excited to a significant level. However, one serious drawback
of those calculations is that as soon as the particle hits the surface of the star, the calculation
is stopped. This leads to an overestimation of the high frequency components in the power
spectrum. Besides, in this study only axial modes were investigated, it is therefore clear that the
w-modes will always show up in the spectrum because they will not be screened by the presence
of fluid modes, which can happen in the even parity case. Now, even in the particle limit, it is
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Figure 5.17: Fourier transformation of the wave forms:dpe 0.1.

not possible to simulate a collision since it not clear at all what happens when the particle hits
the surface. A first step might be, though, to let the particle go right through the neutron star
without being affected by the presence of the neutron star matter. In case there is a significant
amount ofw-modes one might conclude that in a realistic scenario, where the physics of the
impact is included, there still might he-modes present, maybe they are even more strongly
excited than in the unphysical “tunnelling” case. However, our view is that even in the impact
case the particle still must have an initial velocity that is a significant fraction of the speed of
light. Since for scattering orbits with initial speeds less than 50 percent of the speed of light
there is no hint of anyv-mode presence even for the closest trajectories, we believe that this
should not change very much even if the particle’s turning point lies inside the neutron star. Of
course, in this case it seems reasonable to infer that-thedes of the fluid would be much
more strongly excited.

Our results in chapter 4 indicate that the presence ofitimeodes in the signal is closely
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Figure 5.18: Fourier transformation of the wave forms:dpe 0.5.

related with the value of. This particular role ofS seems also to be confirmed in our par-
ticle simulations, for we have seen that for ultra-relativistic particles the value gjreatly
dominates the value @f/r. And it is only there that we find a significant amount@imodes.

Still, the question remains as to what happens in a realistic astrophysical scenario. We
have excluded the possibility af-modes excitation by means of a realistic scattering process.
However, it is not possible to confer our results to the merger process of a binary neutron star
system, for the latter cannot be adequately described within perturbation theory. Only if the
final object does not immediately collapse to a black hole, it might wildly oscillate and emit
some significant radiation througimodes.
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Figure 5.19: Fourier transformation of the wave formi#fpe= 10km andv, = 0.97. The scales
are arbitrary. The presence of the fitsinode is clearly visible.



Appendix A

Relations between the Regge-Wheeler and
Mathews-Zerilli harmonics

The evolution equationg (5.6) will be expanded using the Regge-Wheeler harfigfits,

which are defined inf{17], and which do not form an orthonormal set. However, in order to
perform the expansion of the energy-momentum terjsdr (5.1), we need an orthonormal set. This
is given by the Mathews-Zerilli harmoni{:ﬁlf:%] w [I4,123], which are orthonormal with respect

to the following inner product

/ VAT Vil dQ = 484400 S | (A.1)
52
where the asterisk denotes complex conjugation and

[j}l?n]w = n““n“a[fﬁn]m- (A.2)

Because of the use of the inverse Minkowski metyit to raise the indices, the inner product
(A7) is not positive definite and it is

. {+1,,A::L5,.w10' A3)

~1, A=2,34

For the sake of completeness we list the whole set of the 10 tensor harmghioshere we
correct some errors in[61]:
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andY,,, are the ordinary scalar harmonics. There are three odd parity harm%igﬁﬁn and
19 the remaining seven ones have even parity.
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Appendix B

The source terms of the particle

The particle’s energy-momentum tengory5.1) will be expanded using the orthonormal Mathews-
Zerilli harmonics defined in appendix A:

Z ZZt Vi L - (B.1)

=0 m=—1 A=1

By using the orthonormality conditio {A.1) we can compute the coefficiéftthrough

i — / [V T, dQ (B.2)
SQ
We thus obtain the following set:

N dt
fm = e B 50— RV,

r2 dT
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e R s
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Here,Y;*

. Wi andX: are functions of the particle’s angular posit®rand® parametized by
the coordinate time, therefore all derivatives with respect to proper timare to be understood
as

d dtd
dr  drdt’
Since for the decomposition of the evolution equations we use the Regge-Wheeler harmonics

YA, which do not form an orthonormal set, we have to expand the energy-momentum tensor
(531) in Regge-Wheeler harmonics as well:

[e'¢) l 10
ZW = Z Z thn[yﬁn]uv- (B.4)

=0 m=—1 A=1

(B.3)

Of course, we cannot obtain the Regge-Wheeler coefficiéptby means of a formula sim-
ilar to (B22), but we can construct them from the Mathews-Zerilli coefficiéfjts Using the
relationship between the different sets of tensor harmonics given in Appendix A, we find:

| N
2 \/5 2
ir N
’ V2I0+1)°
T ~
tlm — _ 7flm
! A0 +1)
tlm o £l6m

.
o 21+ 1)
lm

I
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2
tlm 2r lm

S 2+ ) —-D(i+2) "

Tl (+1 .
: ﬂ(“+UJWHW

P2
tlm o 2IT lm
10 —

NV EN D z)t“’ '

We now restrict the motion of the particle to the equatorial pléne- 7. In this case it is
% = 0 andsin © = 1, and we can use the geodesic equatigns](5.3a)and (5.3c) to substitute all
expressions containing derivatives with respect to proper timeurthermore, we can obtain

quite simple relations for the derivatives Xjf ,:

¥ = —imYy, (B.5)
Oy (m?—=1(l+1)) Y, (B.6)
a@g Im — m .

This then gives us a somewhat simpler set of coefficients:

fm ezl’ljn—E(S(r — RE)Y

m pE )
i =~ — ROV,
m _  2v Im:uL . *
t3 = ¢ T‘QZ(Z + 1)6(T R(t))yim
Ilm 2v /LL d *
= S S — —Y
t4 € 7’21(1 + 1)6(T R(t))a(_) im

m pE ;
i = P06~ RV,
imuL

Im . _ 2)\ _ *
t6 - € T’2l(l + 1)U(t)5(7’ R(t))yim
Im o ML 9 5.
= — Y,
W= gy — R g,
L2114+ 1) — 2m?
tgm — 621/ H ( ( + ) m ) 5(7, o R(t))yxn

r2El(l+1)(1—1)(1+2)
mo_ LA+ 1) —m? = 1) )
= E a0 T RO,

2imuL? 0
Im 2v - R Y *
1o PRI DI -+ 2)5(r (1)) g Yim
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wherew(t) = % is the radial velocity of the particle. The field equations also require the

computation of the trace
T = g"Tw = Y 1"Yin, (B.7)
Il,m
with

l(1+1) 2

= = e — ot St (B.8)

Using the explicit forms of the coefficients, we obtain

2

Pt~ R(E) (EUQ(t)e“ o e2vL—) v (B.9)

,r=2 T2E lm »
and by making use of the geodesic equat[on {5.3b) we can reduce this expression to

fm = —62”%5(7‘—]%(75))}/1;. (B.10)



Appendix C

Derivation of the radiation extraction
formula

The radiated energy emitted per unit time and unit angle is givenl by [3]

d2E T2 0 2 1 0 o 2
dtdQ) ~ 16w [(ath91 ) Ty <§h[ene} 8th[¢u¢) ] : (C.1)

h[l] \/ ”gﬂ h” , (CZ)

or specifically

1
hioe) = 55570 (C.3)
1
higi) = T—Qhee (C.4)
1
higie) = TanZg 9h 6 - (C.5)

The metric components; ;) have to be in the radiation gauge, which asserts that only

higjig) = O(1/7) (C.6)
higie) — higlig = O(1/7) , (C.7)
whereas all other components must fall off faster tfi§n /). Furthermore, it must hold that
hioe) = —hig)ie +O(1/7%). We now expand the angular parts of the metric into the orthonormal

Mathews-Zerilli tensor harmonics given in Appendix A. Since we focus on the polar perturba-
tions, we only need to considgt™ and)}™, and we have

1 7 1A
hiag = D (S Gt G i (C.8)
’ Ns1n9Glm‘)(lm <\/_Klm Im — GlmI/Vlm>

l,m
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where we use

N =201+ 1)(1-1)(1+2). (C.9)

This gives us

2 2

élm
N2

Win| | (C.10)

Glm
dtdQ 167r |Z N2gin? 0 Xim

where we have to take the square moduli because we are dealing with complex metric coeffi-
cients. To obtain the total energy flux, we have to integrate over a 2-sphere

dFE T2 1 ~ = X[ X/ ’
i GGt e W W ) A2 c.11
dt 16w m;m/ N2 : /Sz ( sin” § W ) ( )

Now, because of the orthonormality relation the integral is just

Xin X5, 1
/ (M " Wlmmm/) A0 = NS (€.12)
52

sin“ 0

and we obtain

2
= Z Cin? (C.13)

Since the actual metric perturbations are derived using the expansion into the Regge-Wheeler
harmonics, we have to expre$s (C.13) in terms of those variables. The relation bétyeen
and the Regge-Wheeler varialile,, is easily derived to be

Gin =5 i (c14)

which leads to the following radiation formula

dE

- 647T21 (L+ 1) = 1)1+ 2)|Giml? - (C.15)
Note, however, thatr;,, is still in the radiation gauge and not in the Regge-Wheeler gauge. In
the Regge-Wheeler gauge we havg, = 0, and the above formula would not make any sense.
We now have to devise a way which relatés, to the variables in the Regge-Wheeler gauge.
This can be accomplished as follows. Following Moncriei [28], we construct some gauge in-
variant quantities, in particular the Zerilli function, and examine their asymptotic behavior. We
then will show that the Zerilli function has the same asymptotic behavi6i,asn the radiation
gauge. Hence, the radiated power is proportional to the time derivative of the Zerilli function,
which can be easily constructed from the metric variables in the Regge-Wheeler gauge.
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Let us write the general expansion of the even parity perturbations of the spacial part of the
metric in terms of Regge-Wheeler harmonics (Here we use the notation of Moncrief and focus
on fixed valueg andm:)

By = € Hy Y (C.16)
Yim OYim
heg =hi——, hws = h C.17
0 =hi—7g ¢ 50 (C.17)
0?%Y,
2 lm
7.2
hey = EGX”” (C.19)
2 . 9 aQYEm
hog = 1750”0 | K¥pm = G ( U1+ 1)Vim + —55% | | - (C.20)
We can then construct the following gauge invariant quantity
q1 = 4re Py + (1 + Vky (C.21)
where
2
ky = K +e 2 (TG’ — —h1> (C.22)
T
and
1
by =5 (M Hz = (re'K)) (C.23)

We now have to determine the asymptotic behavior,of To do so, we have to know the
asymptotic behavior of the metric coefficierts H,, K andG, which, of course, will depend
on the chosen gauge. However, because of its gauge invarigned, always have the same
asymptotic behavior, regardless in what gauge the metric variables are.

Therefore we assume our metric variables to be in the radiation gauge, where we know the
asymptotic behavior. Sindegg = —hyig + O(1/r?), the sumhge + hige has to be of
orderO(1/r?),i.e.

hioyie) + Pigjie) = (2K — 11+ 1)G) Vi = O(1/1%) (C.24)

But this can only hold if

2K =1(1+1)G + O(1/r?) (C.25)
for the leading order. Using this relation we find farandk,

ky ~ K+rG ~ %l(l +1)G +rG’ (C.26)

ky ~ —%K - %K’ ~ —%l(l +1)(G+rG) | (C.27)
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where “a~ b” meanse equalsh plus higher order terms. This leaves us with
g~ gzm D ((I+1)-2)G. (C.28)
Moncrief finally defines the quantity

41
= C.29
¢ (I4+1)—2+4 2L (C.29)

which satisfies the Zerilli equation. The leading order@ois then

Q ~ SII+1)G, (C.30)
which is equivalent to
G LQ (C.31)
rl(l+1) 7" '

This relation only holds i~ is given in the radiation gauge. But in the radiation form@la{lC.15)
this is the case and we may substitGtéy means of[{C.31), which yields

dE 1 «—(I-1)(+2)
dat 1671’2 I(1+1)

I,m

1Quml? - (C.32)

We now have to expresg in terms of our actual perturbation variablgsand7’, which are in
the Regge-Wheeler gauge. We first recall that in the Regge-Wheeler gauge, it is

hi=0 (C.33)
_ I (C.35)

T
G=0. (C.36)

by — g (C.37)

ky = % (e” (; + rS> —e (eAT),) . (C.38)
Next isq;

q = 2re” (62’\ (; + TS) —e (eAT)/) +1(l+1)T (C.39)

=2 (1=rN)T+r*S=T") +1(L+1)T . (C.40)
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Appendix C. Derivation of the radiation extraction formula

Using
M
r_ Cc.41

A r(2M —r) ( )
and collecting terms yields

Q= — 1—% 27“T’—i—2M_T(2+l(l+1))T—2r2S . (C.42)

r r—2M
If we furthermore defing to be
2 q1
_ C.43
z<z+1)Q (+1)U(l+1)—24 2L (C43)

we find from (C:311) that

a~Z, (C.44)

”

and the radiation formuld{C132) finally reads

£ _ le+1 (1= 1)1 4 2)| Zim|* = Z yZ 2, (C.45)

dt  64r bm o i '
with

N -5 27’T’—|—2M_T(2+l(l+1))T—2r2S) (C.46)

O+ +1) -2+ M r—2M ’ '

which agrees with our definition of the Zerilli function in(4.32).
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