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A B S T R A C T

The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular

velocity are studied, using the slow-rotation formalism together with the low-frequency

approximation, first investigated by Kojima. The time-independent form of the equations

leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that

for l ¼ 2, it is nevertheless also possible to find discrete mode solutions (the r modes).

However, under certain conditions related to the equation of state and the compactness of the

stellar model, the eigenfrequency lies inside the continuous band and the associated velocity

perturbation is divergent; hence these solutions have to be discarded as being unphysical. We

corroborate our results by explicitly integrating the time-dependent equations. For stellar

models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data.

For models admitting only an unphysical mode solution, the evolutions do not show any

tendency to oscillate with the respective frequency. For higher values of l it seems that in

certain cases there are no mode solutions at all.

Key words: relativity – methods: numerical – stars: neutron – stars: oscillations – stars:

rotation.

1 I N T R O D U C T I O N

Immediately after the discovery of the r modes being generically

unstable with respect to gravitational-wave emission (Andersson

1998a; Friedman & Morsink 1998), it was suggested that they may

cause the newly born neutron stars to spin down via the emission of

gravitational waves (Lindblom, Owen & Morsink 1998; Anders-

son, Kokkotas & Schutz 1999). Because of their surprisingly fast

growth times, r modes should be able to slow down a hot and

rapidly spinning newly born neutron star during the first months of

its existence. There is also work suggesting that the r-mode

instability might be relevant for old neutron stars in binary systems.

This potential relevance for astrophysics has attracted the interest

of both the relativity and the astrophysical communities on various

aspects of this subject. For an exhaustive up-to-date review, see for

instance Andersson & Kokkotas (2001) and Friedman & Lockitch

(2001).

Most of the recent work on r modes is based on Newtonian

calculations under the assumption of slow rotation, and the effects

of gravitational radiation are incorporated through the quadrupole

formula. However, it is clear that for a complete and quantitatively

correct understanding, one has to use the framework of general

relativity. Still, the slow-rotation approximation is well justified,

since the angular velocity of even the fastest spinning known pulsar

corresponds to a rotational expansion parameter of 1 ¼

V/
ffiffiffiffiffiffiffiffiffiffiffiffi
M/R 3
p

< 0:3: The full set of equations in the slow-rotation

limit was first given by Chandrasekhar & Ferrari (1991) for the

axisymmetric case, and by Kojima (1992) for the general case.

In the non-rotating case, the perturbation equations are

decoupled with respect to the harmonic index l, and degenerate

with respect to the azimuthal index m. Furthermore, the oscillation

modes can be split into two independent sets, which are

characterized by their behaviour under parity transformation. The

polar (or spheroidal) modes transform according to (21)l, whereas

the axial (or toroidal) modes transform according to (21)l11. For a

non-rotating perfect fluid star, the only possible fluid oscillations

are the spheroidal f and p modes. For non-barotropic stars, i.e.,

stars with a temperature gradient or a composition gradient, there

exists another family of modes, the g modes, where the main

restoring force is gravity. All axial perturbations of non-rotating

perfect-fluid stars have zero frequency, i.e., they represent

stationary currents. In the non-barotropic case, this zero-frequency

space consists only of the axial r modes, while for barotropic stars,1

it also includes the polar g modes, since they require a temperature

gradient for their existence.

As the star is set into rotation, the picture changes. In the
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1 Following Lockitch, Andersson & Friedman (2001), we call a stellar

model barotropic if the unperturbed configuration obeys the same one-

parameter equation of state as the perturbed configuration.
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slow-rotation approximation, the m-degeneracy is removed and the

polar modes with index l are coupled to the axial modes with

indices l ^ 1 and vice versa. Furthermore, the rotation imparts a

finite frequency to the zero-frequency perturbations of the non-

rotating stars. In non-barotropic stars, those modes, whose

restoring force is the Coriolis force, all have axial parity. However,

as has been first pointed out in the Newtonian framework by

Lockitch & Friedman (1999), for barotropic stars the rotationally

restored (inertial) modes are generically hybrids, whose limit in the

non-rotating case are mixtures of axial and polar perturbations.

If one focuses only on the r mode, whose frequency is

proportional to the star’s angular velocity V, one can order the

perturbation variables in powers of V. Kojima (1997, 1998) used

this low-frequency approximation, sometimes also called slow-

motion approximation (Schumaker & Thorne 1983), to show that

the purely axial modes of (non-barotropic) stellar models can be

described by a single second-order ODE. This eigenvalue problem,

however, proves to be singular, since it is possible for the highest

derivate to vanish at some value of the radial coordinate inside the

star. Kojima (1997, 1998) then argued that this singular structure

should give rise to a continuous spectrum. This has been put on a

rigorous mathematical footing by Beyer & Kokkotas (1999). The

appearance of a continuous spectrum can be explained as follows.

It is well known that in the Newtonian limit, the eigenfrequency of

the r mode for an inertial observer is given by

sN ¼ 2mV 1 2
2

lðl 1 1Þ

� �
: ð1Þ

A first relativistic correction can be obtained by using the

relativistic Cowling approximation, which consists in neglecting

all metric perturbations. In this case, the only correction comes

from the frame-dragging v, which is a function of the radial

coordinate r, thus leading to an r-dependent oscillation frequency

of each fluid layer:

sCðrÞ ¼ 2mV 1 2
2

lðl 1 1Þ
1 2

vðrÞ

V

� �� �
: ð2Þ

Instead of a single frequency, there is now a continuous band of

frequencies, whose boundaries are determined by the values of the

frame-dragging v(r) at the centre and the surface of the star.

However, it has been pointed out (Beyer & Kokkotas 1999) that

the existence of the continuous spectrum might be just an artefact

of the too restricted low-frequency approximation. With the

inclusion of gravitational radiation effects, the frequencies become

complex-valued, thus potentially removing the singular structure

of Kojima’s equation. However, even in the case of real-valued

frequencies, it has been recently shown by Lockitch et al. (2001)

that for a non-barotropic uniform-density model, in addition to the

continuous spectrum there also exists a single-mode solution with

the eigenfrequency lying outside the continuous band. It is this

mode that represents the relativistic r mode for non-barotropic

stars.

In this paper we extend the search of r-mode solutions to stars

with various polytropic and realistic equations of state (EOSs). We

shall show that in addition to the continuous part, the eigenvalue

equation always admits a single-mode solution, at least for l ¼ 2.

However, for some stellar models, depending on the polytropic

index n and on the compactness, the frequency of this solution lies

inside the continuous band and is associated with a divergence in

the fluid perturbation at the singular point. This is clearly not

acceptable, and therefore we have to discard such solutions as

being unphysical. As a logical consequence, we conclude that in

those cases, there do not exist any r modes, at least within the low-

frequency approximation. In an independent work, Yoshida (2001)

has come to a similar conclusion. He showed that even when

studied in the post-Newtonian approximation, some polytropic

models do not admit any r modes.

For realistic EOSs, the existence of r modes depends on the

average polytropic index of the high-density regime. For very stiff

EOSs, the neutron star models can exhibit r modes throughout the

complete physically acceptable mass range, whereas for the very

soft EOSs, none of the neutron star models does. For EOSs in the

intermediate range, the existence of r modes depends on the

compactness of the stellar model. In addition to the mode

calculations, we also use the time-dependent form of the equations.

For those cases where we can find a physical r mode solution, the

Fourier spectrum of the time evolution does indeed show a peak at

the appropriate frequency, whereas for those cases where we only

have the unphysical mode, it does not.

2 M AT H E M AT I C A L F O R M U L AT I O N

Assuming that the star is slowly rotating with a uniform angular

velocity V, we neglect all terms of order higher than V. In this

approximation, the star remains spherical, because the deformation

due to centrifugal forces is of order V2. Thus the metric can be

written in the form

ds2
0 ¼ 2 e2n dt 2 1 e2l dr 2 1 r 2ðdu 2 1 sin2u df 2Þ

2 2vr 2 sin2u dt df; ð3Þ

where n, l and the ‘frame-dragging’ v are functions of the radial

coordinate r only. With the neutron star matter described by a

perfect fluid with pressure p, energy density e, and four-velocity

ðu t; u r ; u u; ufÞ ¼ ðe2n; 0; 0;V e2nÞ; ð4Þ

the Einstein equations, together with a one-parameter equation of

state p ¼ pðeÞ, yield the well-known TOV equations plus an extra

equation for the function 4, defined as

4UV 2 v: ð5Þ

To linear order, this equation is

400 2 4pr e2lðp 1 eÞ2
4

r

� �
40 2 16p e2lðp 1 eÞ4 ¼ 0: ð6Þ

In the exterior, it reduces to

400 1
4

r
40 ¼ 0; ð7Þ

for which we have the solution (Hartle 1967)

4 ¼ V 2
2J

r 3
; ð8Þ

with J being the total angular momentum of the neutron star.

Equation (6) has to be integrated from the centre of the star to its

surface R, where it has to match smoothly the exterior solution (8).

With the angular momentum given by (Hartle 1967; Glendenning

1997)

J ¼
8p

3

ðR

0

r 4 el2nðp 1 eÞ4 dr; ð9Þ
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the matching condition becomes

R 440ðRÞ ¼ 6J; ð10Þ

and with equation (8)

40ðRÞ ¼
3

R
½V 2 4ðRÞ�: ð11Þ

If we focus on pure axial perturbations, the perturbed metric can be

written in the following form:

ds 2 ¼ ds2
0 1 2

l;m

X
½hlm

0 ðt; rÞ dt

1 hlm
1 ðt; rÞ dr� 2

›fYlm

sin u
du 1 sin u›uYlm df

� �
; ð12Þ

where Ylm ¼ Ylmðu;fÞ denote the scalar spherical harmonics. In

addition, the axial component of the fluid velocity perturbation can

be expanded as

4pðp 1 eÞðdu u; dufÞ ¼ en

l;m

X
U lmðt; rÞ

� 2
›fYlm

sin u
; sin u›uYlm

� �
: ð13Þ

Einstein’s field equations then reduce to four equations for the

three variables hlm
0 , hlm

1 and U lm (Kojima 1992).

As an alternative, we can use the ADM-formalism (Arnowitt,

Deser & Misner 1962) to derive the evolution equations for the

axial perturbations. The usefulness of this formalism for the

perturbation equations of non-rotating neutron stars has been

shown in Ruoff (2001). This formalism can be taken over to

rotating stars, and we can deduce equations describing the

evolution of purely axial oscillations of slowly rotating neutron

stars in terms of metric and extrinsic curvature variables. We

should mention that our derivation starts with the complete set of

perturbations, including both polar and axial perturbations. Only at

the end do we neglect the coupling between the two parities and

focus only on the axial equations. In the Regge–Wheeler gauge,

there are just two non-vanishing axial metric perturbations and two

axial extrinsic curvature components. In Ruoff’s notation, the

metric components are given by

ðbu;bfÞ ¼ en2l

l;m

X
Klm

6 2
›fYlm

sin u
; sin u›uYlm

� �
; ð14Þ

ðhru; hrfÞ ¼ el2n

l;m

X
Vlm

4 2
›fYlm

sin u
; sin u›uYlm

� �
; ð15Þ

and the extrinsic curvature components read

ðkru; krfÞ ¼
1

2
el

l;m

X
Klm

3 2
›fYlm

sin u
; sin u›uYlm

� �
; ð16Þ

kuu kuf

kfu kff

 !
¼

1

2
e2l

l;m

X
Klm

6 sin u
2 sin u22Xlm Wlm

Wlm Xlm

 !
;

ð17Þ

where Wlm and Xlm are abbreviations for

Wlm ¼ ½›
2
u 1 lðl 1 1Þ�Ylm; ð18Þ

Xlm ¼ 2ð›u 2 cot uÞ›fYlm: ð19Þ

For the fluid velocity perturbation, we use the covariant form

ðduu; dufÞ ¼ e2l

l;m

X
ulm

3 ðt; rÞ 2
›fYlm

sin u
; sin u›uYlm

� �
: ð20Þ

The relation to the expansions (12) and (13) is given by (from now

on we omit the indices l and m):

h0 ¼ en2lK6; ð21Þ

h1 ¼ el2nV4; ð22Þ

U ¼ 4pe 2l2nðp 1 eÞðu3 2 K6Þ: ð23Þ

We obtain the following quite simple set of evolution equations for

the variables V4, K3, K6 and u3:

›

›t
1 imv

� �
V4 ¼ e2n22l K 06 1 n0 2 l0 2

2

r

� �
K6 2 e2lK3

� �
;

ð24Þ

›

›t
1 imv

� �
K3 ¼

lðl 1 1Þ2 2

r 2
V4 1

2im

lðl 1 1Þ
v0 e22lK6; ð25Þ

›

›t
1 imv

� �
K6 ¼ V 04 2

imr 2

lðl 1 1Þ

� ½v0K3 2 16pðV 2 vÞðp 1 eÞu3�; ð26Þ

›

›t
1 imV

� �
u3 ¼

2imðV 2 vÞ

lðl 1 1Þ
ðu3 2 K6Þ: ð27Þ

Furthermore, we have one momentum constraint:

16pðp 1 eÞu3 ¼ K 03 1
2

r
K3 2

lðl 1 1Þ2 2

r 2
K6

2
2imv0

lðl 1 1Þ
e22nV4: ð28Þ

These equations are completely equivalent to the axial parts of

equations (20), (24), (25) and (27) of Kojima (1992) when the

coupling to the polar equations is neglected.

3 L OW- F R E Q U E N C Y A P P R OX I M AT I O N

The above evolution equations should not only describe the r

modes but also the axial w modes, which have much higher

oscillation frequencies. If we want to focus on the r modes only, we

can use the fact that from equation (1), it follows that the r-mode

frequency s is proportional to the star’s angular velocity V. Hence,

we can require that in our evolution equations (24)–(27), the time

derivative ›t be proportional to the r-mode frequency s or,

equivalently, to V (Kojima 1997, 1998). In this case, we can order

the perturbation variables in powers of V (Lockitch et al. 2001) as

u3;K3;K6 , Oð1Þ;

V4 , OðVÞ: ð29Þ

Keeping only the lowest order terms, we can neglect terms

proportional to V4 in the evolution equation (24) and in the

constraint (28), which then read

K 06 1 n0 2 l0 2
2

r

� �
K6 2 e2lK3 ¼ 0; ð30Þ

K 03 1
2

r
K3 2

lðl 1 1Þ2 2

r 2
K6 ¼ 16pðp 1 eÞu3: ð31Þ
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These can be easily combined to give a single second-order

differential equation for K6. However, it is more convenient to

write this equation in terms of the variable h0 ¼ en2lK6 :

e22lh000 2 4prðp 1 eÞh00 1 8pðp 1 eÞ1
4M

r 3
2

lðl 1 1Þ

r 2

� �
h0

¼ 16p en2lðp 1 eÞu3; ð32Þ

together with the evolution equation for u3

›

›t
u3 ¼ 2 im Vu3 1

24

lðl 1 1Þ
ðel2nh0 2 u3Þ

� �
: ð33Þ

At this point, it is worth making some comments on this

approximation. The full set of axial equations (24)–(27) is a

hyperbolic system describing the propagation of gravitational

waves, which are excited on the one hand by the fluid motion

(r modes), and on the other hand by the curvature of space-time

itself (w modes). With the above approximation, we have

completely suppressed the wave propagation, and the resulting

equations now correspond to a Newtonian-like picture, where the

fluid oscillations are acting as a source in the equation of the

gravitational field. As now being described by a Poisson-like

elliptic equation, implying an infinite propagation speed, the

gravitational field h0 reacts instantaneously on any changes in

the source u3. Of course, this picture is only an analogy, since the

metric variable h0 corresponds to a post-Newtonian correction of

the gravitational field and vanishes completely in the Newtonian

limit.

Furthermore, our derivation of this approximation is valid only

for non-barotropic stars. This is because in general we cannot start

from decoupling the polar and axial equations in the first step as we

did. Instead, when we apply the low-frequency approximation, we

actually have to start from the coupled system of equations,

including both polar and axial perturbations. If we then do the same

ordering in powers of V, we also would have some polar variables

of order O(1), namely the remaining two fluid velocity

components, coming from dur and the polar part of the angular

components (duu, duf), and the (rt) component of the metric,

usually denoted by H1. It turns out that the polar constraint

equations can be combined to give a single constraint for H1, which

can be reduced to

ðG 2 G1ÞH1 ¼ 0; ð34Þ

with

G ¼
p 1 e

p

dp

de
ð35Þ

being the adiabatic index corresponding to the unperturbed

configuration, and G1 the adiabatic index of the perturbed

configuration, which in general differs from G. This is the case

for non-barotropic stellar models, and equation (34) can be

satisfied only if H1 vanishes. However, this automatically implies

that the polar fluid perturbations vanish, too, leaving thus only the

axial equations, given above. In the barotropic case, it is G ¼ G1

and the constraint for H1 is trivially satisfied, even for non-zero H1.

However, this has as a consequence that the coupling between the

polar and axial mode cannot be neglected, which means that there

cannot exist pure axial mode solutions, since any kind of pure axial

initial data will through the coupling automatically induce polar

fluid oscillations. Hence our analysis is strictly valid only for non-

barotropic stellar models.

As a further approximation, we could completely neglect all the

metric perturbations. With this so-called relativistic Cowling

approximation, we would be left with a single evolution equation

for the fluid variable u3:

›

›t
u3 ¼ 2 im V 2

24

lðl 1 1Þ

� �
u3: ð36Þ

From this equation we can immediately deduce that the various

fluid layers are decoupled from each other, which means that each

layer has its own real oscillation frequency given by

s ¼ 2m V 2
24

lðl 1 1Þ

� �
: ð37Þ

In the Newtonian limit ð4!VÞ, this reduces to the well-known

result for the frequency of the r mode given in equation (1). It

should be pointed out that in the relativistic case, the presence of

the frame-dragging v destroys the occurrence of a single mode

frequency and gives rise to a continuous spectrum, at least to this

order of approximation. Of course, it has been argued that this

might be a pure artefact of the approximation, and the continuous

spectrum may disappear as soon as certain approximations are

relaxed.

Let us therefore return to the low-frequency approximation,

which is less restricted than the Cowling approximation, and see

whether or not we can find real mode solutions. To this end, we

assume our variables to have a harmonic time dependence

u3ðt; rÞ ¼ u3ðrÞ e
2 ist; ð38Þ

h0ðt; rÞ ¼ h0ðrÞ e
2 ist: ð39Þ

Note that for the sake of notational simplicity, we do not explicitly

distinguish between the time-dependent and time-independent

form of the variables. With this Ansatz, we assume the r-mode

frequency s to be positive for positive values of m, in contrast to

the definitions in equations (37) and (1). From equation (33) we

find that

u3 ¼
2m4

2m4 1 lðl 1 1Þðs 2 mVÞ
el2nh0; ð40Þ

which can be used to eliminate u3 in equation (32), yielding

s 2 mV 1
2m4

lðl 1 1Þ

� �
e22lh000 2 4prðp 1 eÞh00

�

2 8pðp 1 eÞ2
4M

r 3
1

lðl 1 1Þ

r 2

� �
h0

�
1 16pðp 1 eÞðs 2 mVÞh0 ¼ 0: ð41Þ

With appropriate boundary conditions, this equation represents an

eigenvalue problem which should yield one, or possibly several,

distinct eigenmodes. However, as was at first pointed out by

Kojima (1997, 1998), it might occur that the denominator in

equation (40) can become zero at some point inside the star, and the

resulting eigenvalue problem becomes singular at this point. If the

zero of the denominator lies outside the star, the eigenvalue

problem is regular, since outside u3 ¼ 0 equation (32) can be

directly solved without using equation (40). The zeros of the

denominator occur if the frequency s lies in an interval determined

by the values of 4 at the centre and the surface, which we denote
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by 4c and 4s, respectively:

mV 1 2
24s

Vlðl 1 1Þ

� �
, s , mV 1 2

24c

Vlðl 1 1Þ

� �
: ð42Þ

By comparison with similar results from fluid dynamics, Kojima

concluded that equation (41) should have a continuous spectrum

with the frequency range given by (42). This was put on a rigorous

mathematical footing by Beyer & Kokkotas (1999). However, they

could not exclude the possibility that there might not exist

additional isolated eigenvalues, which would correspond to true

mode solutions.

We will now show that there actually exist such solutions, even

though in some cases they are unphysical since the corresponding

fluid perturbations would be divergent at the singular point. To

make things look simpler, we can rescale equation (41) and make it

independent of V and m. Following Lockitch et al. (2001), we

introduce a normalized frequency

a ¼
1

2
lðl 1 1Þ 1 2

s

mV

� �
ð43Þ

and rewrite equation (41) as

ða 2 4̂Þ e22lh000 2 4prðp 1 eÞh00

�

2 8pðp 1 eÞ2
4M

r 3
1

lðl 1 1Þ

r 2

� �
h0

�
1 16pðp 1 eÞah0 ¼ 0; ð44Þ

where

4̂U4/V: ð45Þ

Equation (40) then reads

u3 ¼
4̂

4̂ 2 a
el2nh0: ð46Þ

Equation (44) becomes singular if a lies in the interval limited by

the values of 4̂ at the centre and at the surface of the star, i.e., if

4̂c , a , 4̂s: ð47Þ

For a solution to be acceptable, it must be regular at the origin,

which amounts to h0ð0Þ ¼ 0, and it must vanish at infinity. As

already mentioned, the integration of equation (41) is straight-

forward if the singular point lies outside the star. It is only when the

singular point lies inside the star that some care has to be taken.

Let us now assume the singular point r ¼ r0 lie inside the star.

An analysis of equation (41) (Andersson 1998b) shows that the

singular point is a regular singularity, which admits a Frobenius

expansion of the form

h0ðr 2 r0Þ ¼ A½a1ðr 2 r0Þ1 a2ðr 2 r0Þ
2 1 …�

1 B{½a1ðr 2 r0Þ1 a2ðr 2 r0Þ
2 1 …� lnjr 2 r0j

1 b0 1 b1ðr 2 r0Þ1 b2ðr 2 r0Þ
2 1 …}: ð48Þ

Even though the solution is finite and smooth at the singular point

r ¼ r0, its derivative diverges, because of the logarithmic term.

Moreover, if we want to compute the associated velocity

component u3, we find that, unless h0ðr ¼ r0Þ ¼ 0, it will blow

up at the singular point r ¼ r0. Therefore we conclude that the

coefficient B has to vanish in order to obtain a physical solution,

and we are left with only the first power series starting with the

linear term a1ðr 2 r0Þ. This yields vanishing h0 at r ¼ r0, and

therefore u3 can be finite at this point. The question is whether there

are solutions satisfying both h0ðr ¼ r0Þ ¼ 0 and the appropriate

boundary conditions at the centre and at infinity. We will now show

that this cannot be the case.

Suppose that h0ðr ¼ r0Þ ¼ 0 and h00ðr ¼ r0Þ . 0. We can then

integrate equation (41) from r0 to r . r0:

h00ðrÞ ¼ h00ðr0Þ1

ðr

r0

e2l 4prðp 1 eÞh00

�

1 8pðp 1 eÞ2
4M

r 3
1

lðl 1 1Þ

r 2

� �
h0

116pðp 1 eÞ
a

4̂ 2 a
h0

o
dr: ð49Þ

Since it is 4 2 a . 0 for r . r0, each coefficient in the integral is

strictly positive; hence we will have h00ðrÞ . 0 for all r . r0, i.e., h0

keeps increasing as r!1, which is clearly incompatible with our

requirement that h0 vanish at infinity. Of course, the same argument

holds if h00 , 0 at r ¼ r0, with h0 keeping decreasing. It follows

that h0ðr ¼ r0Þ – 0, but this means that we cannot have a vanishing

coefficient B. Therefore our solution will always contain the

logarithmic term, which means that the associated velocity

perturbation u3 is divergent at this point. This is clearly unphysical.

We thus conclude that it is in principle possible to find

eigensolutions to equation (44); however, if the associated

eigenfrequencies lie inside the continuous band, the solutions

become singular and have to be discarded on physical grounds.

It has been shown by Lockitch et al. (2001) that for the existence

of mode solutions, the allowed range of the eigenvalues a is

bounded from below by 4̂c:

4̂c # a # 1: ð50Þ

However, based on our above argumentation, we can further

restrict this interval for the physically allowed eigenmodes to have

as lower limit the value of 4̂s:

4̂s , a # 1: ð51Þ

4 N U M E R I C A L R E S U LT S

The numerical integration of equation (44) can be easily

accomplished if the singular point lies outside the star, since in

the exterior u3 ¼ 0 and we can therefore use the non-singular

equation (32) for the integration toward the outer boundary. If the

singular point lies inside the star, we initiate our integration with a

regular solution at the origin and integrate outward close to the

singular point, where we match the solution to the expansion (48),

i.e., we compute the leading coefficients b0 and a1. This gives us

the new starting values to the right of the singular point, and we can

continue the integration up to a finite point outside the star, where

we test whether the solution satisfies the correct boundary

condition. We mention again that for the integration outside the star

we take the non-singular equation (32), with u3 set to zero.

We have performed mode calculations for sequences of uniform-

density and polytropic stars. For the uniform-density models, the

eigenfrequency a always lies outside the range of the continuous

spectrum, and therefore the associated eigenfunctions do not

exhibit any singularities. In Fig. 1 we show the normalized

eigenvalues a for l ¼ 2 as a function of the compactness M/R

together with 4̂c and 4̂s, marking the boundaries of the continuous
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spectrum. For larger l (not shown), the eigenvalues a decrease and

converge to 4̂s, but stay always above 4̂s.
2 In Fig. 2 we show the

eigenfunctions h0 and u3 for a uniform-density model with a

compactness of M/R ¼ 0:153 and corresponding mode frequency

a ¼ 0:89806. Close to the centre of the star, the fluid perturbation

u3 is proportional to r l11, but as it approaches the stellar surface, it

grows much stronger, which comes from the denominator in

equation (46) becoming very small.

4.1 Polytropic models

For polytropic models, obeying an equation of state of the form

p ¼ ke 111/n ð52Þ

with polytropic index n, we obtain a quite different picture. For a

polytropic index n ¼ 1, as it is for instance shown in Fig. 3, it is

only for the less compact stellar models that the eigenfrequencies a

lie outside the continuous spectrum and therefore represent

physical mode solutions. However, they are already so close to the

upper boundary of the continuous spectrum 4̂s that in Fig. 3 they

cannot be distinguished any more. For more compact models, the

eigenfrequency eventually moves inside the domain of the

continuous spectrum, which means that the singular point now

lies inside the star. This happens for a compactness of about

M/R < 0:085. As discussed above, at the singular point the mode

solution for h0 exhibits an infinite slope, and the associated fluid

perturbation u3 diverges. Therefore we have to discard them as

being unphysical mode solutions. In Table 1 we have listed some

polytropic models with their physical parameters and the

eigenvalues a for l ¼ 2 and l ¼ 3. The frequencies which are

marked by an asterisk lie inside the continuous band and therefore

correspond to unphysical mode solutions. For l ¼ 2, only models 1

and 2 permit physical modes, whereas for l ¼ 3, the modes are

unphysical for all the stellar models. We should also mention that

all our values are in perfect agreement with those previously

obtained by Andersson (1998b).

Figure 3. Boundaries of the continuous spectrum 4̂c and 4̂s, together with

the r-mode frequency a as a function of compactness MR for polytropic

n ¼ 1 models. For M/R , 0:085, the mode frequency a lies outside the

continuous band (shaded area), but differs from the value of 4̂s by not more

than 0.01 per cent. For M/R . 0:085, it migrates inside the band.
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2 Note that in table 1 of Lockitch et al. (2001), there is a systematic error in

their given values of a, which are too large by about 5 per cent. This might

be a consequence of a misprint in their equations (5.2), (5.4) and (5.7),

where the terms ð1–2M0/RÞ1=2 and ½1–2M0/Rðr/RÞ2�1=2 got confused.

Figure 1. Boundaries of the continuous spectrum 4̂c and 4̂s, together with

the r-mode frequency a as a function of compactness MR for uniform-

density models. The mode frequency a always lies outside the continuous

band (shaded area).
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Table 1. List of polytropic stellar models with n ¼ 1 and k ¼ 100 km2.

Model e0 [g cm23] M [M(] R [km] M/R 4̂c 4̂s aðl ¼ 2Þ aðl ¼ 3Þ

1 1.0� 1014 0.120 12.32 0.014 0.96168 0.99237 0.99254 0.98523*
2 5.0� 1014 0.495 11.58 0.063 0.83048 0.96431 0.96453 0.92446*
3 1.0� 1015 0.802 10.81 0.109 0.70420 0.93407 0.93362* 0.84895*
4 5.0� 1015 1.348 7.787 0.256 0.28377 0.80236 0.72579* 0.44782*
5 1.0� 1016 1.300 6.466 0.297 0.14214 0.74960 0.52932* 0.25301*

Figure 2. Eigenfunctions h0 and u3 for a uniform-density model with

compactness M/R ¼ 0:153. The corresponding r-mode frequency is

a ¼ 0:89806.
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To assess how the existence of a physical mode solution depends

on the polytropic index n, we have computed modes for stellar

models with fixed compactness M/R but with different values of n,

ranging from 0 to 1.5. The results are depicted in Fig. 4, where we

show a as a function of n for l ¼ 2. For small values of n, i.e., for

stiff equations of state, the mode eigenfrequency lies outside the

range of the continuous spectrum. However, as n is increased, what

corresponds to softening the EOS, the mode frequency eventually

crosses the boundary and migrates inside the continuous spectrum.

This happens at n < 0:8, but for larger values of l, the transition

point moves to smaller values of n. Actually, it is not the mode

frequency a which moves towards the boundary of the continuous

spectrum 4̂s as n is increased; it is rather the boundaries of the

continuous spectrum which start to expand, and 4̂s approaches the

mode frequency a, which more or less hovers at a constant value.

For n ¼ 0, the uniform-density models, the range of the continuous

spectrum (the shaded area in Fig. 4) is the smallest, and probably it

is only in this case that one can find eigenvalues for quite large l, if

not for all l. We should also mention that for each polytropic

model, there seems to exist a maximal value of l, beyond which

there are neither physical nor unphysical mode solutions. The

frequency a of the unphysical mode solution quickly approaches

4̂c as l is continuously increased. For l larger than the critical

value, where aðlÞ ¼ 4̂c, we could not find any mode solution at all.

For the n ¼ 1 models in Table 1, this happens already for l ¼ 4.

To check and corroborate our above results, we also numerically

evolved the time-dependent equations (32) and (33) and took

Fourier transforms of the resulting evolution. For initial data

representing the physical mode solution in Fig. 2, the time

evolution indeed gives a single-frequency signal at each point

inside and outside the star. In this case, there is no sign of a

continuous spectrum at all, and all the fluid layers oscillate in a

uniform manner. This is shown in Fig. 5, where for both the fluid

variable u3 (top panel) and the metric variable h0 (bottom panel),

there is a single peak, which is independent of the location r.

If we now choose arbitrary initial data, as for instance in Fig. 6,

we expect the power spectrum at a given location r to consist of two

peaks: one which is independent of the location inside the star and

represents the eigenmode, and another peak which varies between

the boundaries determined by 4̂c and 4̂s as one moves throughout

the star. This is how the continuous spectrum should show up in the

Figure 4. The boundaries of the continuous spectrum 4̂c and 4̂s, together

with the r-mode frequency a as a function of the polytropic index n for

stellar models with compactness of M/R ¼ 0:2. The case n ¼ 0 corresponds

to a uniform-density model.
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Figure 5. Power spectrum of the time evolution of a mode solution (initial

data of Fig. 2) for the uniform-density model. For both the fluid u3 (top

panel) and the metric variable h0 (bottom panel), the spectrum shows a

single peak at the expected frequency of a ¼ 0:89806. In each panel, the

power spectrum has been taken at five different locations inside the star. For

h0, there is an additional one from outside the star. The spectra have been

individually rescaled in order to give clearer graphs.
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Figure 6. Arbitrary initial data for the uniform-density model.
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Fourier transform. For the fluid variable u3, the power spectrum of

the evolution indeed confirms our expectations, as is shown in the

top panel of Fig. 7.

However, the spectra of h0 show that for locations closer to the

stellar surface, the peaks corresponding to the continuous spectrum

are smaller by several orders of magnitudes compared to the peak

representing the eigenmode. For u3, the peaks are of the same order

of magnitude. Also, outside the star, h0 shows only the eigenmode

peak, and no sign of the presence of the continuous spectrum,

which should reveal itself as a superposition of all the frequencies

in the range between 4̂c and 4̂s. It therefore seems to be invisible

for an external observer. We should note that those spectra are

taken after a certain initial time, in which the system adjusts itself.

If we had taken the Fourier transform right from t ¼ 0, we would

have obtained a clear sign of the continuous spectrum.

Let us now turn or attention to the polytropic cases, where we

can have unphysical mode solutions. We will present evolution

runs for the stellar models 1 and 5 from Table 1 with l ¼ 2. For

model 1, the singular point lies outside the stellar surface, and

therefore there exists a physical mode solution. For model 5, the

singular point lies inside the star; hence a , 4̂s, and the associated

eigensolution is unphysical. It should be noted that this model is

also unstable with respect to radial collapse.

For model 1, the physical mode solution can be used as initial

data. As for the uniform density case, the numerical evolution of

such data yields a purely sinusoidal oscillation with the expected

r-mode frequency a. Therefore the corresponding power spectrum

is similar to Fig. 5. For arbitrary initial data, we obtain a picture

similar to Fig. 7. Note that the values of a and 4̂s differ by only

about 0.01 per cent. Still, with a high-resolution run we can

numerically distinguish these values, as is shown in Fig. 8. Here we

plot the power spectra of h0(t) and u3(t) taken at the stellar surface.

The spectrum of h0 shows a single peak at the eigenfrequency a,

whereas u3 shows two peaks at a and 4̂s.

For model 5, things are quite different. Here we cannot evolve

initial data representing the unphysical mode solutions, because the

fluid perturbation would diverge at the singular point. Yet, if this

solution still had some physical relevance, then arbitrary initial

data should be able to excite this mode, and the power spectrum of

the time evolution should show a peak at the corresponding

frequency. However, this is clearly not the case, as can be seen in

Fig. 9, where we show the late-time power spectra of the time

evolution of u3 (top panel) and h0 (bottom panel) for model 5. For

the fluid variable u3, there is always one single peak, which varies

for different locations r between the boundaries 4̂c and 4̂s. There

is not even the slightest trace of a common peak at the expected

value of a ¼ 0:52932.

For the metric variable h0 (bottom panel of Fig. 9), we

essentially observe the same picture. Here, too, no common peak

can be found at the expected mode frequency a, but curiously there

is nevertheless an additional common peak for all locations, with

its frequency given exactly by 4̂s. However, this peak does not

show up in the power spectrum of u3, except, of course, directly at

the surface.

It is obvious that it cannot be a mode solution, since first of all

the eigenvalue code does not give a solution for this particular

frequency 4̂s or even in the close vicinity. Moreover, the time

evolution shows a quite different behaviour compared to the case

where a physical r-mode exists. In Fig. 10 we plot the time

Figure 7. Late-time power spectrum of the time evolution of arbitrary

initial data (initial data of Fig. 6) for the uniform-density model. At each

location r inside the star, the fluid u3 (top panel) shows two peaks, one

corresponding to the r-mode frequency a ¼ 0:89806, and another

corresponding to the value of 4̂ at this particular location r. The spectrum

of the metric variable h0 (bottom panel) is quite similar, however, for the

spectra corresponding to locations close to the surface and outside the star,

the influence of the continuous spectrum becomes negligible and the mode

dominates. Again, the amplitudes of the spectra are arbitrarily rescaled.
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Figure 8. Power spectrum of the time evolution of arbitrary initial data for

the polytropic model 1, taken at the surface. Both u3 and h0 show a peak at

the expected r-mode frequency a ¼ 0:99254. However, only u3 shows an

additional peak at 4̂ ¼ 4̂s ¼ 0:99237.
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evolutions of h0 outside the star for models 1 and 5 of Table 1. For

model 1, where we have a physical r mode, after some initial time

the amplitude remains constant, whereas for model 5 the amplitude

keeps decreasing with time and in this case fits very well a power

law with an exponent of 22. For model 1, the dominant oscillation

frequency is the corresponding r-mode frequency a, whereas for

model 5 it is given by 4̂s. In both cases, the amplitude of the fluid

perturbation u3 remains constant after some initial time. It now

becomes clear why we cannot observe the common peak at 4̂s in

the fluid spectrum. The spectra are taken at late times, where the

amplitude of h0 and therewith its influence on u3 have considerably

decreased. If we had taken the spectra at earlier times, we could

observe a similar peak in the fluid spectrum as well.

We have no clear explanation what causes this additional peak,

but we suppose that it comes from the behaviour of the energy

density e at the surface. The peak is much more pronounced for

polytropes with n , 1, since there the energy density e has an

infinite slope at the surface. For n ¼ 1, the slope e0 is finite, and for

n . 1, it is zero. In the latter case, the peak is strongly suppressed.

Even for uniform-density models, one can observe this additional

peak, arising because of the discontinuity of the energy density at

the surface. However, this peak is several orders of magnitudes

smaller than the peak corresponding to the eigenmode, which is

always present for uniform-density models, and therefore hard to

detect.

It is instructive to compare the evolution of the same initial fluid

perturbation for a uniform-density model and a polytropic model,

having the same compactness but without the latter admitting a

mode solution. Since in the low-frequency approximation there is

no radiation which can dissipate the energy of the fluid, the total

energy of the system should be conserved. However, we have

observed that in the polytropic case the amplitude of h0 is

constantly decreasing, hence its initial energy has to be transferred

to the fluid, whereas in the uniform-density model, the energy

should be shared between u3 and h0. This is indeed what can be

observed. In the uniform density case, the fluid amplitude does not

change too much, but in the polytropic case, it shows a quite strong

initial growth, accompanied by the strong decrease of h0.

4.2 Realistic equations of state

Having found that for a quite large range of polytropic stellar

models, there do not exist any physical r modes, an obvious

question is whether or not realistic equations of state do admit

physical mode solutions. To give an answer, we have investigated

the collection of realistic equations of state which have been

studied by Kokkotas & Ruoff (2001) for the radial modes. The

relevant notations, references and data of the stellar models can be

found there.

The results are quite unexpected and seemingly contradictory.

When trying to compute the modes through equation (44), we find

that for all the equations of state, the frequencies always lie inside

the continuous band. Based on our above discussion, we therefore

would have to discard them as being unphysical. It then would

seem that none of the existing realistic EOSs admits an r mode, at

Figure 9. Late-time power spectrum of the time evolution of arbitrary

initial data for the polytropic model 5. For this model, we do not expect a

physical mode to exist. The frequency of the unphysical mode is given by

a ¼ 0:52932. It is clear that at this location, neither u3 nor h0 show a peak in

the power spectra. At each location, the spectrum of u3 shows a single peak

corresponding to the respective value of 4̂. However, in addition to those

variable peaks, the spectra of h0 reveal a common peak with the frequency

given by 4̂s. This peak can be traced back to the kink in the energy density

profile at the surface.
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Figure 10. Logarithmic plot of the time evolution of h0 outside the star for

the polytropic models 1 and 5 in Table 1. For model 1, which admits a

physical mode solution, the oscillation amplitude remains constant, and h0

oscillates with the r-mode frequency a. Model 5 does not admit a physical

mode solution, and here the amplitude of h0 decreases with the decay fitting

very well a power law with an exponent of 22. The oscillation frequency is

given by the values of 4̂s.
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least in the physically relevant range from about one solar mass up

to the stability limit of each EOS. The surprise is now that the time

evolution does show a quite different picture. Only for the EOS B

(Pandharipande 1971), G (Canuto & Chitre 1974) and MPA (Wu

et al. 1991) do the evolutions meet our expectations and show the

continuous decrease in the amplitude of the metric variable h0, in

accordance with the polytropic cases without r modes. However,

for all other EOSs, the amplitude remains constant after a while,

indicating that there is indeed a mode present. Only when

approaching their respective stability limit do some EOS show a

decay of the amplitude of h0. When obtaining the frequency

through Fourier transformation, we find that it always lies inside

the continuous spectrum; however, it does not coincide with the

frequency found from the mode calculation. Instead, the frequency

is in all cases given by the value of 4̂ close to the neutron drip

point.

How can we explain this discrepancy with our previous

considerations? First, we would like to stress that it is not a

numerical artefact of the time evolution, since convergence tests

corroborate the presence of this mode. When examining the

different EOSs, we find that the EOSs B, G and MPA are the softest

ones, with a maximal polytropic index in the high-density regime

around n ¼ 0:8. All others have indices less than 0.8, going down

to n < 0:5 for the EOSs I (Cohen et al. 1970) and L

(Pandharipande, Pines & Smith 1976). From Fig. 4, it becomes

clear that it is just for polytropic models with n $ 0:8 that the

eigenvalue migrates inside the continuous band, and the r-mode

therefore ceases to exist. For models with n , 0:8, we usually can

find a physical r mode, but this depends on the compactness of the

model under consideration.

At a density of 1014 g cm23, the effective polytropic index of any

EOS is given by n < 2. As the EOS is approaching the neutron drip

point at a density of e < 4 � 1011 g cm23, the EOS becomes softer,

i.e., n increases even further. Only for densities below the neutron

drip point does the EOS stiffen again. This structure of the EOS is

responsible of putting a low-density layer (the crust) around the

high-density core. However, because of its low density compared

to the core, this layer practically does not contribute to the total

mass; its only effect is to slightly increase the radius of the neutron

star. Thus, whether or not the EOS admits a mode should be

determined solely by the core. To assess this proposition, we can do

the following. We replace the whole part of the EOS below

1014 g cm23 by a smooth polytropic EOS with polytropic index of

n ¼ 2. By doing so, we obtain a model with practically the same

mass, but a somewhat smaller radius. Computing the modes of the

thus-modified model, we find that the r-mode frequencies a

actually do lie outside the continuous spectrum, if the average

polytropic index of the core is less than 0.8, and the model is not

too compact. However, a lies extremely close to the value of 4̂s.

For softer EOSs with an average index of n < 0:8, we still would

not be able to find any physical modes. If we now go back and

restore the outer layer, the r-mode frequency should not

significantly change, because of the negligible gravitational

influence of this outer layer. The only effect is the slight increase

of the stellar radius R. However, with R becoming larger, the value

of 4̂s also increases and actually becomes larger than the r-mode

frequency a, which then lies inside the continuous band. This is

shown in Fig. 11, where we plot the two density profiles for a stellar

model based on the EOS WFF (Wiringa, Ficks & Fabrocini 1988)

and the same model with the low-density regime replaced by a

n ¼ 2 polytropic fit. For the polytropic fit, the zero of 4̂ 2 a lies

right outside the star, whereas for the complete realistic model, it is

inside the star. In the latter case, however, the mode still exists, but

it can no longer have a purely harmonic time dependence. If this

were the case, it had to be a physical solution of equation (44), but

it is clearly not since the frequency lies inside the continuous

spectrum. We therefore conclude that this stable oscillation that

can be seen in the time evolution is always a mixture of a mode and

the continuous spectrum. We should mention that in our treatment

of realistic EOSs, we have assumed that the neutron stars consist

entirely of a perfect fluid, even in the outer layer. This is certainly

not true; instead, a neutron star should have a solid crust, which

clearly will modify the above results. However, this is beyond the

scope of this work.

5 S U M M A RY

We have performed both mode calculations and time evolutions of

the pure axial perturbation equations for slowly rotating stars in the

low-frequency approximation. Although the time-independent

equation (44) represents a singular eigenvalue problem, admitting a

continuous spectrum, it is nevertheless possible to find discrete

mode solutions, representing the relativistic r modes. If the mode

frequency lies outside the continuous spectrum, the eigenvalue

problem becomes regular, and the associated solution represents a

physically valid r-mode solution. If the eigenvalue lies inside the

continuous band, the eigenfunction exhibits an infinite slope at the

singular point, which is due to the presence of a r logjrj term in

the series expansion. Moreover, the corresponding fluid pertur-

bation u3 diverges at the singular point. Therefore we conclude that

these mode solutions are unphysical, and the only physically valid

mode solutions are the ones where the associated frequencies a lie

outside the range of the continuous spectrum.

We have performed mode calculations for uniform-density

models, for various polytropic models, and also for a set of realistic

equations of state (EOSs). In agreement with the results of

Lockitch et al. (2001), we find that uniform-density models

generally admit r modes for any compactness. For polytropic

equations of state, however, the existence of physical r-mode

solutions depends strongly on both the polytropic index n and the

compactness M/R of the stellar model. The general picture is that

the smaller n is, which corresponds to a stiffer EOS, the larger is

Figure 11. It is shown the density profiles near the surface for neutron star

model obtained from EOS WFF with a central density of 2 � 1015 g cm23.

In the one case we include the low density part, whereas in the other case

this part is replaced by a polytropic fit. Also shown is the location where

4̂ ¼ a. For the polytropic fit it lies outside the star, therefore representing a

physical mode, but for the complete realistic model it would lie inside.
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the compactness range where one can find physical mode solutions.

For a given polytropic index n, one usually finds physical mode

solutions for models with a small M/R ratio. As the compactness is

increased, i.e., as the models become more relativistic, the mode

frequency a decreases and starts approaching 4̂s. Eventually it

crosses this point and migrates inside the range of the continuous

spectrum, thus becoming unphysical, and no r-mode exists any

more.

When considered as a function of l, the r-mode frequency a is

monotonically decreasing. For a uniform-density model, a

approaches 4̂s as l is increased. In polytropic models, this has

the effect that it is even harder to find physical mode solutions for

higher values of l, since a will much sooner cross the border 4̂s of

the continuous spectrum. If l is large enough, it seems that the

eigenvalue equation (44) does not admit any mode solution at all,

not even a singular one.

We have verified our results by explicitly integrating the time-

dependent equations. The time evolutions for the models admitting

an r mode can clearly be distinguished from those without a

discrete mode. In the former case, both the fluid perturbation u3 and

the metric perturbation h0 oscillate with a constant amplitude after

some initial time. In the latter case, the amplitude of h0 constantly

decreases. The fluid amplitude, however, still remains at a constant

level. This can be explained by a decoherence effect in the fluid

oscillations, since the frame-dragging causes each fluid layer to

oscillate with a different frequency. Thus the initially uniform fluid

profile becomes more and more disturbed, because the fluid layers

get out of phase, resulting in a continuously weakening of the

strength of the fluid source term in equation (32). When a physical r

mode exists, the system can oscillate in a coherent manner.

When turning to realistic EOSs, the mode calculations yielded

only frequencies lying inside the continuous band, therefore being

apparently unphysical. However, for most EOSs the numerical

time evolutions revealed the presence of a mode, but with the

frequency still lying inside the continuous band and corresponding

approximately to the value of 4̂ at the neutron drip point. We

explained this seemingly contradictory behaviour by making the

core responsible for the existence of the r mode. Thus, if we

remove the outer layer, which does not have any significant

gravitational contribution, we can indeed find eigenvalues a which

lie outside the continuous band. However, they are very close to the

upper limit of the continuous band 4̂s. By adding the additional

layer, we increase 4̂s such that it now becomes larger than a,

which remains basically unaffected. Though now lying inside the

continuous spectrum, the mode still exists, but it will be always

associated with an excitation of the continuous spectrum. Most of

the realistic EOSs do admit r modes in a certain mass range, but

only the stiffest ones admit modes throughout the whole mass

range up to the stability limit. The less stiff ones have a maximal

mass model above which there are no r modes any more, and for

the softest EOSs, namely B, G and MPA, there are no r modes for

the whole physically relevant mass range.

It should be kept in mind that all our results concerning the r

modes are obtained within the low-frequency approximation. It

would be clearly much too early to infer any statements about the

existence or non-existence of the r modes in rapidly rotating

neutron stars. Also, if the true EOS of neutron stars is rather stiff,

and therefore would already admit r modes within the low-

frequency approximation, then the whole discussion about the

singular structure would be irrelevant. However, as the true EOS is

not known yet, we cannot exclude it to be rather soft, and the

appearance of the singular points has to be taken much more

seriously. Still, it could still be seen as a mere artefact of the low-

frequency approximation. Nevertheless, the work of Kojima &

Hosonuma (1999) indicates that the inclusion of second-order

terms in V even increases the range of the continuous spectrum,

which is responsible for the disappearance of the r mode. They

worked only in the Cowling approximation, but whether or not the

inclusion of more higher order terms and the complete radiation

reaction can restore the existence of the r modes in all cases is still

an open question and deserves further investigation. As a next step

in this direction, we will investigate in a subsequent paper the full

set of axial equations (equations 24–27), which contain the

radiation reaction.
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