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Dark flows and the cosmological axis
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ABSTRACT
Recent surveys indicate coherent large-scale peculiar motions, commonly referred to as ‘dark
flows’, considerably stronger than expected. At the same time, an increasing number of
reports suggest the presence of a weak dipolar anisotropy in the supernova data. The Universe
seems to accelerate slightly faster in one direction and equally slower in the opposite. Also,
this ‘cosmological axis’ lies fairly close to the cosmic microwave background dipole. Since
apparent, dipole-like, anisotropies are the trademark signature of peculiar motions, we consider
the possibility that these, seemingly unconnected, observations are actually related. In the
process, we find that observers living inside a dark flow could experience locally accelerated
expansion in a globally decelerating Universe. Moreover, to these observers, the acceleration
should appear slightly faster in one direction and equally slower in the opposite, as if there
is a preferred axis in the universe. When combined, these results open, in principle at least,
the theoretical possibility of addressing the supernova data and the cosmic acceleration by
appealing to dark flows rather than dark energy.
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1 IN T RO D U C T I O N

An increasing number of studies suggest that a weak dipolar
anisotropy may reside in the supernova data (Kolatt & Lahav 2001;
Schwarz & Weinhorst 2007; Gupta, Saini & Laskar 2008; Antoniou
& Perivolaropoulos 2010; Cooke & Lynden-Bell 2010; Colin et al.
2011; Cai & Tuo 2012; Mariano & Perivolaropoulos 2012). The
Universe appears to accelerate slightly faster in one direction and
equally slower in the opposite. The dipole axis, which is sometimes
referred to in the above literature as the cosmological axis, lies
close to that of the cosmic microwave background (CMB) dipole.
At the same time, other surveys (Kashlinsky et al. 2008, 2009, 2010;
Watkins, Feldman & Hudson 2009; Feldman, Watkins & Hudson
2010; Lavaux et al. 2010; Abate & Feldman 2012) indicate large-
scale peculiar velocities well in excess of those anticipated by the
current cosmological paradigm. The work of Kashlinsky et al., in
particular, suggests coherent bulk motions with roughly constant
speed close to 1000 km s−1, extending between 100 and 1000 Mpc
(perhaps even farther out). These are the so-called dark flows (see
Kashlinsky, Atrio-Barandela & Ebeling 2012, for a recent review).
Although seemingly unconnected, the dark flow reports and the
cosmological axis claims may be actually related.

Cosmological peculiar motions are measured with respect to the
CMB frame, which defines the smooth Hubble flow. In all realistic
cosmological models, typical galaxies move relative to the universal
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expansion. Our Local Group, for instance, ‘drifts’ at approximately
600 km s−1 (e.g. Padmanabhan 1993). The trademark signature of
peculiar motions is an apparent, dipole-like anisotropy, due to the
fact that the drift flow introduces a preferred direction in the ob-
server’s space. The CMB dipole, for example, is not treated as a sign
of a real large-scale anisotropy, but as an apparent (Doppler-like)
effect that results from our motion relative to the Hubble flow.

Peculiar motions change the local velocity field and can also
modify the local expansion rate. In general, ‘drifting’ observers
expand either faster or slower than the bulk of the universe. Sim-
ilarly, the deceleration/acceleration rate of the local expansion is
generally different from that of the background cosmos. One might
then ask whether it is possible for an observer to experience locally
accelerated expansion within a decelerating background universe.
Although such an effect may be local, if the peculiar motions re-
semble the dark flows reported by Kashlinsky et al., the affected
domain can be very large (of the order of 1000 Mpc). Then, to the
unsuspecting observer, it might appear as though the whole universe
has recently started to accelerate, which is the standard interpreta-
tion of the supernova observations (Riess et al. 1998; Perlmutter
et al. 1999). Moreover, if peculiar motions are responsible for such
an apparent cosmic acceleration, their trademark signature – some
degree of dipolar anisotropy – should reside in the supernova data.
Put another way, the Universe should appear to accelerate faster in
one direction and equally slower in the opposite, more or less in
the way indicated by Kolatt & Lahav (2001), Schwarz & Weinhorst
(2007), Gupta et al. (2008); Antoniou & Perivolaropoulos (2010);
Cooke & Lynden-Bell (2010); Colin et al. (2011); Cai & Tuo (2012)
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Figure 1. Region A represents a dark flow with mean bulk peculiar velocity v̄α , relative to the Hubble expansion (see equation 1 in Section 2). Inside region
B, the right-hand side of equation (5) drops below zero and there the observer (O) measures a negative deceleration parameter (see Section 3). Individual
observers in region A have velocities v̂α , which are generally different from the mean (i.e. v̂α �= v̄α). This difference, which for typical observers is small,
leads to a weak dipolar anisotropy in the distribution of the deceleration parameter inside the dark flow domain (see equations 11a and 11b in Section 4).

and Mariano & Perivolaropoulos (2012). Then, by appealing to the
dark flows, one might be able to address the recent accelerated ex-
pansion of the Universe without the need of dark energy, and at the
same time answer the cosmological axis question as well. The aim
of this Letter is to discuss the key features of such a scenario.

2 BU L K PE C U L I A R K I N E M AT I C S

Consider a large domain of the Universe moving relative to the Hub-
ble flow with mean bulk peculiar velocity v̄α (see regionA in Fig. 1).
For simplicity, we will adopt a Newtonian approach and refer the
reader to Tsagas (2010, 2011) for the relativistic treatment. Per-
turbing the Newtonian analogue of a dust-dominated Friedmann–
Robertson–Walker (FRW) universe, the total mean velocity of an
observer inside A is1

ūα = Hxα + v̄α , (1)

where H = H(t) is the background Hubble parameter and xa (with
α = 1, 2, 3) are the physical coordinates of the aforementioned ob-
server (e.g. Padmanabhan 1993). Note that uα = Hxα is the velocity
of the background expansion and v̄a is the perturbation due to the
peculiar flow. The divergence of equation (1) leads to (e.g. Maartens
1998; Ellis & Tsagas 2002)

�̄ = � + ϑ̄ , (2)

with �̄ = ∂αūα , � = 3H and ϑ̄ = ∂αv̄
α by definition. These

three scalars monitor the mean kinematics of region A, namely
the mean separation between neighbouring observers moving along
with the cosmic fluid. Positive values for the aforementioned scalars
imply that the average separation increases, which indicates ex-
pansion. In the opposite case, we have contraction. Hence, � is
related to the Hubble expansion, ϑ̄ describes the average volume
expansion/contraction of the peculiar flow and �̄ corresponds to
the observer’s total motion. Expression (2) shows how peculiar mo-
tions can change the local expansion. Unless the v̄a field is exactly
divergence-free, regions where ϑ̄ is positive will expand faster than
the background universe, while those with negative ϑ̄ will expand
slower (or even contract – when ϑ̄/� < −1). Here, we will consider
the ϑ̄ > 0 case.

1 Throughout this Letter ‘barred’ variables indicate mean bulk quantities
inside domainA and ‘hatted’ ones correspond to typical individual observers
living in that region (e.g. see Fig. 1, or equation (8) in Section 4).

If the expansion rate of domain A is different from that of the
Hubble flow, their corresponding deceleration/acceleration rates
will differ as well. To demonstrate that, let us take the convec-
tive derivative of equation (2). Keeping up to linear-order terms, we
immediately obtain

˙̄� = �′ + ˙̄ϑ , (3)

where ˙̄� = ∂t �̄ + ūα∂α�̄ and ˙̄ϑ = ∂t ϑ̄ + ūα∂αϑ̄ are (by
definition) the convective derivatives along the total flow, while
�′ = ∂t� + uα∂α� = d�/dt [since � = �(t)] is the one relative
to the Hubble frame. Following equation (3), the quantities ˙̄� and �′

are generally different. This means that the associated deceleration
parameters (q̄ and q, respectively) will also differ. One may then
ask whether it is theoretically possible for these two parameters to
take different signs. More specifically, whether we can have q̄ < 0
and q > 0 simultaneously. If so, observers living inside region A
will experience (locally) accelerated expansion within a globally
decelerating background universe.

3 AC C E L E R AT E D DA R K F L OW S

It is essential to investigate this possibility on a decelerating FRW
background and when the effect of the peculiar motion is relatively
weak. We ensure the former by imposing the conditions �′ < 0 and
q > 0, while for the latter we demand that |ϑ̄/�| < 1 and | ˙̄ϑ/�′| <

1 at all times. Physically, this means that the overall kinematics are
still dominated by the background expansion (see equations 2 and
3) and guarantees the linear (almost-FRW) nature of our analysis.
To begin with, we first recall that the deceleration parameters in the
‘barred’ and the Hubble frames are q̄ = −[1 + 3( ˙̄�/�̄2)] and q =
−[1 + 3(�′/�2)], respectively. Solving these relations for ˙̄� and
�′, and substituting the results into the linear relation (3) gives

1 + q̄ = (1 + q)

(
1 + ϑ̄

�

)−2
(

1 +
˙̄ϑ

�′

)
, (4)

to first order (Tsagas 2010). This is the deceleration parameter mea-
sured by observers inside A, in terms of background and perturbed
(‘barred’) variables. When the right-hand side of equation (4) drops
below unity, these observers will assign negative values to the de-
celeration parameter. This is possible even when q is positive, in
which case our observers will experience accelerated expansion
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in a decelerating background universe.2 Such an effect can only
have a local range of course. Next, we will outline the basic fea-
tures of a scenario that does exactly that.

Suppose that region A (see Fig. 1) is a nearly uniform region of
a universe that contains nothing else but conventional pressure-free
matter. Also, assume that region A has a bulk peculiar velocity with
ϑ̄ > 0, such that it expands faster than the background universe.
Following equation (4), the deceleration parameter measured inside
region A is given by the linear expression (Tsagas 2010)

q̄ =
(

1 + 1

2
�

) (
1 + ϑ̄

�

)−2
(

1 +
˙̄ϑ

�′

)
− 1 , (5)

since q = �/2 to zero order. The latter can be seen as the effec-
tive density parameter of the matter in region A, rather than that
of the whole universe. When the right-hand side of equation (5)
drops below zero, around every observer there will be a smaller
and essentially spherically symmetric patch B where the expansion
is accelerated (see Fig. 1). The chances of this happening, and the
size of the affected area (i.e. that of domain B), increase when A
is a low-density region with a relatively large bulk outflow. The
sign of ˙̄ϑ/�′ is also important, with negative values strengthen-
ing the local acceleration effect (favourable case) and positive ones
doing the opposite (unfavourable case). Here, we will consider the
favourable case and set − ˙̄ϑ/�′ � ϑ̄/� < 1, referring the reader to
Tsagas (2010) for the rest. Then, a simple Taylor expansion reduces
expression (5) to3

q̄ �
(

1 + 1

2
�

) (
1 − 3

ϑ̄

�

)
− 1 . (6)

Let us now assume that region A is a dark flow with roughly
constant bulk peculiar velocity, close to 1000 km s−1, like that re-
ported in Kashlinsky et al. (2008, 2009, 2010). In that case, we
have ϑ̄/� � v̄/Hr , where v̄ is the magnitude of the mean pe-
culiar velocity and r is the size of the region. Then, recalling that
H � 70 km s−1 Mpc−1 today, we may set ϑ̄/� � 1/7 around the
100 Mpc threshold, ϑ̄/� � 1/35 close to 500 Mpc, ϑ̄/� � 1/70
at the 1000 Mpc mark and ϑ̄/� � 1/140 as far out as 2000 Mpc.
Also, when region A is a low-density domain, with, say, � � 1/25,
equation (6) gives

q̄ � −0.417, q̄ � −0.067 (7a)

and

q̄ � −0.023, q̄ � −0.002 (7b)

on scales near 100, 500, 1000 and 2000 Mpc, respectively. The
above numerical results should be seen as indicative, rather than

2 There are two types of universal acceleration, based on the value of the
deceleration parameter. The first has −1 < q < 0 and may be termed ‘weakly
accelerated’ expansion. The second has q < −1 and corresponds to ‘strong
acceleration’ (see Tsagas 2010, 2011, for more details). Observers in a
perturbed, almost-FRW, universe can only experience weak acceleration.
Strong acceleration means ˙̄� > 0, which requires ˙̄ϑ/�′ < −1 (see equa-
tion 3). The latter is not allowed at the linear level, where | ˙̄ϑ/�′| < 1. Note
that the supernova data suggest that q̄ � −0.5 and therefore indicate weak
acceleration for our universe (Turner & Riess 2002; Riess et al. 2004).
3 For simplicity, we have used Taylor expansions and kept up to ϑ/�-
order terms only (see equation 5 above and also equations 11a and 11b
given below). This has slightly compromised our numerical accuracy on
scales close to 100 Mpc, but has no practical effect on larger lengths. More
accurate numerical estimates can be found in Tsagas (2010, 2011).

typical, since lower values for q̄ are possible. For example, set-
ting ˙̄ϑ/�′ � −1/2 close to 500 Mpc and keeping ϑ̄/� and � as
before gives q̄ � −0.5 there. Similarly, setting ˙̄ϑ/�′ � −1/10
at 1000 Mpc will lead to q̄ � −0.1 on that scale. In fact, q̄ can
take all the values within the (−1, 0) interval without violating the
(linear) conditions |ϑ̄/�| < 1 and | ˙̄ϑ/�′| < 1. The characteristic
feature is that the effect of the peculiar motion fades away as we
move on to larger lengths. This means that the deceleration pa-
rameter will eventually become positive. So, in this scenario, the
accelerated expansion is not a global effect, but a local one. The
affected scales, however, can be large enough (�1000 Mpc) to cre-
ate the false impression that the whole universe recently started to
accelerate. Recall that the supernova data set the threshold from de-
celerated to accelerated expansion at approximately z � 0.5, which
corresponds to a scale of a couple of thousand Mpc. Therefore, one
could in principle confront the observations without the need of
dark energy, or of any new physics. Living inside a dark flow may
be just enough.

4 TH E C O S M O L O G I C A L A X I S

To this point, we have argued that peculiar motions could provide
a conventional explanation to the accelerated expansion of the Uni-
verse, which does not require dark energy. Since the supernova data
became public, various alternative scenarios have appeared in the
literature. One could therefore ask whether there is a particular fea-
ture that can distinguish the dark flow paradigm from the rest of the
alternatives and whether there are any observational data supporting
that feature. As we will explain below, it seems that the answer to
this question may be positive.

The typical, trademark, signature of peculiar motions is an appar-
ent dipolar anisotropy, triggered by the fact that the flow introduces
a preferred direction into the observer’s space. The dipole seen in
the CMB spectrum, for example, has been traditionally interpreted
as such an apparent Doppler-like effect (e.g. Padmanabhan 1993).
If the accelerated expansion of the Universe is a side-effect of our
large-scale peculiar motion, as described above, there should be a
similar dipole-like signature into the supernova data as well. Put
another way, the Universe should appear to accelerate faster in one
direction and equally slower in the opposite. To analyse and esti-
mate such an apparent effect, we first need to discuss the kinematics
of anisotropic peculiar motions.

For our purposes, it suffices to consider irrotational flows and
include only shear. Then, inside region A, the expansion tensor of
the overall motion reads (e.g. Ellis & Tsagas 2002)

�̂αβ = 1

3
�δαβ + ϑ̂αβ = 1

3

(
� + ϑ̂

)
δαβ + σ̂αβ , (8)

with �̂αβ = ∂(β ûα) and ϑ̂αβ = ∂(β v̂α) = (ϑ̂/3)δαβ + σ̂αβ . The latter
is the expansion tensor of the peculiar flow, where ϑ̂ = ∂av̂a and
σ̂αβ = ∂(β v̂α) − (ϑ̂/3)δαβ is the peculiar shear (with σ̂ α

α = 0).
Since the shear matrix is diagonalizable, we may ignore the off-
diagonal components of equation (8) and use a single index for the
diagonal components. Then, written along the three principal shear
(eigen)directions, expression (8) simplifies to

�̂α = 1

3
� + ϑ̂α = 1

3

(
� + ϑ̂

) + σ̂α , (9)

where
∑3

α=1 σ̂α = 0. For zero shear, the above equation reduces to
equation (2). In general, however, there are three scalefactors and
three deceleration parameters. The former are defined by ȧα/aα =
�α and the latter by qα = −äαaα/ȧ

2
α . Then, the time derivative of

C© 2012 The Author, MNRAS 426, L36–L40
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Dark flows and the cosmological axis L39

equation (9) leads to (see Tsagas 2011 for details)

q̂α =
(

1 + 1

2
�

) [
1 + ϑ̂

�

(
1 + 3

σ̂α

ϑ̂

)]−2

×
[

1 +
˙̂ϑ

�′

(
1 + 3

˙̂σα

˙̂ϑ

)]
− 1 , (10)

along the three main directions of motion. Note that � is the effec-
tive density parameter of region A. Also, in the absence of shear
anisotropy, ϑ̂ → ϑ̄ and the above equation reduces to equation (6).

In the case of real anisotropy, the shear takes three different
values along the corresponding axes (eigendirections). When the
anisotropy is apparent, induced by the observer’s peculiar motion,
there is only one shear axis in the direction of the motion (as in
the CMB case). Let us go back to the dark flow domain A. An
observer that happens to move with the mean bulk velocity of the
patch exactly will measure an isotropically distributed deceleration
parameter. To this observer, the universe will accelerate equally
fast in all directions. Typical observers in region A, however, have
peculiar velocities close but not equal to the bulk velocity (see
Fig. 1). This difference should lead to an apparent dipole in the
distribution of the deceleration parameter, as measured by these
observers.

To estimate the magnitude of the aforementioned apparent
anisotropy, assume that our observer moves along the first of the
shear axes and assign a positive value to the apparent shear (σ̂+

1 )
along that direction. Then, in the opposite way, the corresponding
shear will be σ̂−

1 = −σ̂+
1 . For typical observers, with v̂a � v̄a , the

associated (apparent) anisotropy should be small, which implies
that |σ̂±

1 /ϑ̂ | � 1. Let us assume, mainly for illustration purposes,

that σ̂+
1 /ϑ̂ = 1/15 = −σ̂−

1 /ϑ̂ and ˙̂σ
+
1 / ˙̂ϑ = 1/15 = − ˙̂σ

−
1 / ˙̂ϑ (any

small value for these ratios will do). When − ˙̂ϑ/�′ � ϑ̂/� (i.e. in
the favourable case – see equations 5 and 6) expression (10) gives

q̂+
1 �

(
1 + 1

2
�

) (
1 − 18

5

ϑ̂

�

)
− 1 (11a)

and

q̂−
1 �

(
1 + 1

2
�

) (
1 − 12

5

ϑ̂

�

)
− 1 , (11b)

along the direction of motion and in the opposite way, respectively.
Applying the above to a region of 100 Mpc, where ϑ̂/� � 1/7, and
setting � � 1/25 there, we find

q̂+
1 � −0.504 and q̂−

1 � −0.330 , (12)

which should be compared to the average value of q̄ � −0.417
(see equation 7a). According to equation (12), there is a small
dipole anisotropy in the spatial distribution of q̂ along the direction
of the peculiar flow. The universe seems to accelerate faster in that
direction and equally slower in the opposite (relative to the average).
This pattern is maintained on larger scales, where the effects of the
peculiar motions weaken. Close to 500 Mpc, for example, equations
(11a) and (11b) give

q̂+
1 � −0.084 and q̂−

1 � −0.050 , (13)

instead of the average q̄ = −0.067 (see equation 7a). Again, a small
dipole appears in the q̂ distribution.

If both the q̂ dipole and its CMB counterpart are apparent
(Doppler-like) effects, triggered by the observer’s peculiar flow,
it is plausible to argue that they should not lie far apart from each

other. We should not expect these two axes to coincide either, how-
ever, because their corresponding reference frames are different. In
the CMB case, the rest frame is that of the smooth Hubble expan-
sion, while here the rest frame is that of the average velocity of
the dark flow. Recently, an increasing number of surveys claim that
a small dipolar anisotropy, which is more or less aligned with the
CMB dipole and is occasionally referred to as the ‘cosmological
axis’, may actually exist in the supernova data (Kolatt & Lahav
2001; Schwarz & Weinhorst 2007; Gupta et al. 2008; Antoniou &
Perivolaropoulos 2010; Cooke & Lynden-Bell 2010; Colin et al.
2011; Cai & Tuo 2012; Mariano & Perivolaropoulos 2012).

5 D I SCUSSI ON

The course of modern cosmology changed at the turn of the mil-
lennium as a result of the supernova observations. The subsequent
development of the 
 cold dark matter (
CDM) paradigm and its
agreement with key observations, like the angular anisotropy of the
CMB and the large-scale galactic correlations, has led most cos-
mologists to embrace the idea of an accelerated Universe driven by
dark energy. There are still scepticism and open issues, however,
both theoretical and observational. The theoretical questions stem
mainly (though not entirely) from the mysterious nature of dark
energy, which remains an essentially free parameter fine-tuned by
the observations (see Sarkar 2008 for an overall discussion). From
the observational perspective too, there are a number of puzzling
data that seem to disagree with the 
CDM predictions at a notice-
able level (2σ or higher – see Perivolaropoulos 2008, 2011). One of
these puzzles is the recently reported large-scale peculiar motions,
especially the dark flows; another is the apparent existence of the
cosmological axis.

Peculiar motions are believed to result from structure formation
and their domain of influence reflects the inhomogeneity scale of
the Universe. The latter is typically set around the 100 Mpc mark,
beyond which our cosmos is expected to resemble an FRW model to
a high degree of accuracy. This picture has been challenged by recent
observations, suggesting faster than expected peculiar motions on
very large scales. The dark flows are probably the best known
example. We have argued that observers living inside a dark flow
can experience accelerated expansion within a decelerating, almost-
FRW universe that contains conventional dust. Such an acceleration
is local and not universal. Nevertheless, the affected regions can be
large enough (of the order of a few thousand Mpc), to make the
unsuspecting observer believe that the whole Universe has recently
entered a phase of accelerated expansion. One might therefore be
able to address the supernova observations without appealing to dark
energy, introducing new physics, or abandoning the FRW models.
Living inside a fast dark flow, like that reported by Kashlinsky et al.,
may be just enough.

If the accelerated expansion of the Universe is a local effect,
caused by our participation to a large-scale dark flow, the supernova
data should also contain the trademark signature of peculiar mo-
tions. This should appear as a dipolar anisotropy in the related data,
which will not be real but apparent. In other words, observers within
the dark flow domain should see the Universe accelerating faster
in one direction and equally slower in the opposite. For typical ob-
servers, the aforementioned anisotropy should be weak and the axis
of the supernova dipole should lie close to its CMB counterpart.
Thus, the presence of a weak dipolar anisotropy in the distribution
of the deceleration parameter is a generic feature (a ‘prediction’) of
the dark flow scenario, which distinguishes it from the rest of the
known dark energy alternatives. Interestingly, an increasing number

C© 2012 The Author, MNRAS 426, L36–L40
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



L40 C. G. Tsagas

of reports claim that such a small dipolar anisotropy may actually
reside in the supernova data. So far, the close alignment of the
so-called cosmological axis with the CMB dipole has been largely
treated as coincidental. In our dark flow paradigm, however, the
proximity of the two axes is a physical consequence rather than
a mere coincidence. Put another way, the supernova data seem to
contain the trademark signature of a large-scale peculiar motion.
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