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a b s t r a c t

General relativity marked the beginning of modern cosmology and it has since been at the
centre of many of the key developments in this field. In the present review, we discuss the
general-relativistic dynamics and perturbations of the standard cosmological model, the
Friedmann–Lemaitre universe, and how these can explain and predict the properties of
the observable universe. Our aim is to provide an overview of the progress made in several
major research areas, such as linear and non-linear cosmological perturbations, large-scale
structure formation and thephysics of the cosmicmicrowavebackground radiation, in view
of current and upcoming observations. We do this by using a single formalism throughout
the review, the 1 + 3 covariant approach to cosmology, which allows for a uniform and
balanced presentation of technical information and physical insight.
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1. Relativistic cosmology

Cosmology is the study of the dynamics and make-up of the Universe as a whole, or at least the maximally observable
region of the Universe. Less than 100 years ago, the prevailing view (shared by Einstein) was that the Universe was static,
and the existence of galaxies beyond our own remained unknown. A revolution was initiated via observations by Leavitt,
Hubble and others which showed that the Universe was in fact expanding and contained many distant galaxies. Friedmann,
Lemaitre and other theorists showed how the expansion could be explained by a spatially homogeneous and isotropicmodel
obeying the field equations of General Relativity. The expansion pointed to an extremely hot origin of the Universe, the Big
Bang, and Gamow and others showed how this should leave a thermal relic radiation, and also how nucleosynthesis of the
light elements would take place in the hot early universe. However, it took many decades for observations to catch up and
confirm this, and to lay the basis for further developments.

1.1. Cosmology at the dawn of the 21st century

Cosmology has comeof age as an observationally based physical science in the last fewdecades, driven by the tremendous
growth in data from increasingly high-precision experiments. Key milestones since 1990 include:

• the Cosmic Background Explorer (COBE), that detected the large-angle anisotropies in the CosmicMicrowave Background
(CMB) temperature, and its successors, especially the Wilkinson Microwave Anisotropy Probe (WMAP), that measured
the anisotropies at small angles and detected the acoustic peaks;
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• the 2-degree Field (2dF) Galaxy Redshift Survey, that measured the matter power spectrum based on over 200k galaxies,
and its successor, the Sloan Digital Sky Survey (SDSS);

• the Supernova Cosmology Project (SCP), that measured the magnitude-redshift data for more than 40 supernovae (SNe),
and its successors, including the Supernova Legacy Survey (SNLS).

Collectively, these experiments and others, including measurements of weak lensing, underpin our current
understanding of the evolutionary history and contents of the Universe. A broad range of new and upcoming experiments
will aim to refine and extend this understanding.

The theoretical efforts to interpret the observational data and to make further predictions that can be tested
against observations, have involved an important interplay between general relativity, astrophysics, particle physics and
computation. The current model of large-scale structure formation in the Universe is based on the following:
• A spatially homogeneous and isotropic Friedmann–Lemaitre–Robertson–Walker (FLRW) background spacetime,

ds2 = −dt2 + a2(t)
[
dr2 + f 2K (r)(dθ2 + sin2 θdφ2)

]
, (1.1.1)

where the form of fK(r) depends on the model’s spatial curvature—see Section 1.4.1, represents the average dynamics on
large scales.

• The expansion rate, H, is governed by the Friedmann equation,

H2
≡

(
ȧ

a

)2

=
1
3
(
ρ(r) + ρ(c) + ρ(b) + ρ(de)

)
−

K

a2
, (1.1.2)

with K = 0,±1. Thus, H is determined by the radiation, cold dark matter, baryonic matter and dark energy content of
the Universe once K, the spatial curvature index, is chosen. The energy densities redshift with expansion according to the
conservation law,

ρ̇(i) + 3H(1 + w(i))ρ(i) = 0, (1.1.3)

wherew(i) = p(i)/ρ(i) withw(r) = 1/3,w(c) = 0 = w(b),w(de) < −1/3. The primordial radiation-dominated era is preceded
by a brief burst of inflationary expansion, driven by a scalar field (or fields). Radiation decouples from baryonic matter
soon after the totalmatter begins to dominate. At relatively recent times,matter begins to giveway to a negative-pressure
dark energy component which starts to accelerate the expansion again. The simplest model of dark energy has ρde = Λ,
the cosmological constant, representing the vacuum energy density, with wΛ = −1.

• Large-scale structure emerges as small over-densities begin to grow in the matter-dominated era via gravitational
instability. In order to grow the galaxies fast enough, non-baryonic cold dark matter is needed in the standard model
based on general relativity. The seeds of these over-densities are provided by the vacuum fluctuations of the inflaton
field. The simplest inflation models predict a nearly scale-invariant and Gaussian spectrum of density perturbations, and
a sub-dominant component of gravitational wave perturbations. The imprint of these primordial density perturbations
is recorded in the CMB anisotropies, and the subsequent evolution is measured via the evolving galaxy distribution. The
inflationary model provides not only the seeds for the emergence of observed large-scale structure, but also resolves the
critical puzzle within non-inflationary models: that widely separated parts of the CMB sky were never in causal contact
and, yet, have the same temperature.

The current “standardmodel” of cosmology is the inflationary ColdDarkMatter (CDM)modelwith cosmological constant,
usually called LCDM, which is based on general relativity and particle physics (i.e. the Standard Model, with minimal
extensions). The LCDM model provides an excellent fit to the wealth of high-precision observational data, on the basis of
a remarkably small number of cosmological parameters (see, e.g., [1,2]). In particular, independent data sets from CMB
anisotropies, galaxy surveys and supernova luminosities, lead to a consistent set of best-fit model parameters. This is
illustrated in Figs. 1 and 2.

The LCDMmodel is remarkably successful, butwe know that its theoretical foundation, general relativity, breaks down at
high enough energies, E & Mfundamental, where the fundamental scale at which new physics kicks in is usually taken to be the
Planck scale, Mfundamental = Mp ∼ 1016 TeV , but could possibly be a lower scale, with particle collider constraints indicating
that Mfundamental & 1 TeV. LCDM can only provide limited insight into the very early universe. Indeed, the crucial role played
by inflation belies the fact that inflation remains an effective theory without yet a basis in fundamental theory. A quantum
gravity theory will be able to probe higher energies and earlier times, and should provide a consistent basis for inflation, or
an alternative that replaces inflation within the standard cosmological model (for recent work, see e.g. Refs. [3–8]).

An even bigger theoretical problem than inflation is that of the late-time acceleration in the expansion of the universe [9–
16]. In terms of the fundamental energy density parameters, Ω(i) = ρ(i)/3H2

0 , we can rewrite the Friedmann equation using
the conservation equations,(

H

H0

)2
= (Ω(c) + Ω(b))(1 + z)3 + Ω(r)(1 + z)4 + ΩΛ + ΩK(1 + z)2, (1.1.4)

where the redshift is z = a−1
− 1 with a0 = 1 today. The data indicates that the present cosmic energy budget is given by

ΩΛ ≈ 0.75 , Ω(m) ≡ Ω(c) + Ω(b) ≈ 0.25 , |ΩK | � 1, (1.1.5)
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Fig. 1. Observational constraints in the (Ω(m),ΩΛ) plane: joint constraints (left) (from [17]); recent compilation of supernova constraints (right)
(from [18]).

Fig. 2. Left: Power spectrum of CMB temperature anisotropies, showing data fromWMAP5 [19], the 2003 flight of BOOMERANG [20], CBI [21] and the full
ACBAR dataset [22]. The red line is the best-fit LCDMmodel to the data. Right: Matter power spectrum, showing data from the SDSS 2006 data release and
the best-fit LCDM curve; the inset shows the imprint (in Fourier space) of the CMB acoustic peaks, known as the baryon acoustic oscillations (from [2]).

so that the Universe is currently accelerating, ä0 > 0, and (nearly) spatially flat.
Within the framework of general relativity, the acceleration typically originates from a dark energy field with negative

pressure. In LCDM, this is the vacuum energy (wΛ = −1), but dynamical dark energy fields have also been considered. For
the simplest option of vacuum energy, the observed value of the cosmological constant is overwhelmingly smaller than the
prediction of current particle physics. In particular,

ρΛ,obs = Λ ∼ H2
0M

2
p ∼ (10−33 eV)2(1019 GeV)2 ∼ (10−3 eV)4, (1.1.6)

whereas

ρΛ,theory ∼ M4
fundamental & 1 TeV4

� ρΛ,obs. (1.1.7)

In addition, the Λ value needs to be strongly fine-tuned to be of the same order of magnitude today as the current matter
density, i.e.,

ρΛ ∼ ρ(m)0 ⇒ ΩΛ ∼ Ω(m), (1.1.8)

otherwise galaxies and then life could not emerge in the universe. The question is how this “coincidence” arises at late times,
given that

ρΛ = constant, while ρ(m) ∝ (1 + z)3. (1.1.9)
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No convincing or natural explanation has yet been proposed. String theory provides a tantalising possibility in the form
of the “landscape” of vacua [23,24]. There appears to be a vast number of vacua admitted by string theory, with a broad
range of energies above and below zero. The idea is that our observable region of the universe corresponds to a particular
small positive vacuum energy, whereas other regions with greatly different vacuum energies will look entirely different.
This multitude of regions forms in some sense a “multiverse”. This is an interesting idea, but it is highly speculative, and it
is not clear how much of it will survive the further development of string theory and cosmology.

A different approach is based on the idea that there is no material dark energy field, but instead the Universe
accelerates due to gravitational effects.Within general relativity, this has been proposed via nonlinear effects from structure
formation [25–35]. As structure forms and the matter density perturbations become nonlinear, there are two questions
that are posed: (1) what is the back-reaction effect of this nonlinear process on the background cosmology? (2) how do
we perform a covariant and gauge-invariant averaging over the inhomogeneous universe to arrive at the correct FRW
background? The simplistic answers to these questions are (1) the effect is negligible since it occurs on scales too small
to be cosmologically significant; (2) in light of this, the background is independent of structure formation, i.e. it is the same
as in the linear regime. A quantitative analysis is needed to fully resolve both issues. However, this is very complicated
because it involves the nonlinear features of general relativity in an essential way.

There have been claims that these simplistic answers are wrong, and that, on the contrary, the effects are large enough
to accelerate the universe. Note the possibility that averaging effects could be significant, even if they do not lead to
acceleration. Thiswould indeed be a dramatic and satisfying resolution of the coincidence problem,without the need for any
dark energy field. Of course, thiswouldnot solve theproblemof the vacuumenergy, butwould only re-define theproblemas:
why does the vacuum not gravitate? However, the claims for acceleration via nonlinear effects have been widely disputed,
and it is fair to say that there is as yet no convincing demonstration that this is possible.

Amore drastic form of a gravitational explanation for late-time acceleration, is that general relativity breaks down on the
largest scales, and a modified gravity theory takes over on these scales. Schematically, this means modifying the geometric
side of the field equations,

Gab + G(dark)
ab = 8πGTab, (1.1.10)

rather than the matter side,

Gab = 8πG
(
Tab + T(dark)

ab

)
, (1.1.11)

as in the standard general relativity approach. Modified gravity represents an intriguing possibility for resolving the
theoretical crisis posed by late-time acceleration. However, it turns out to be extremely difficult to modify general relativity
at low energies in cosmology, without violating the solar system constraints, or without introducing ghosts and other
instabilities into the theory, or without altering the expansion rate in the matter-dominated era. Up to now, there is no
convincing alternative to the general relativistic dark-energy models. It is indicative of the stir the supernovae observations
have caused, that even the Copernican principle itself has been questioned [36].

In addition to the theoretical problems of inflation and dark energy, there is also the problem of “missing mass”, i.e. the
fact that we cannot account for the observedmatter power spectrum, given the observed CMB power spectrum, if we invoke
only baryonic matter and use general relativistic dynamics. The general relativistic solution to this problem is non-baryonic
CDM, dominating over baryonic matter at roughly 5 to 1. This solution simultaneously accounts for the rotation curves of
spiral galaxies. Extensions of the Standard Model of particle physics predict various candidate particles for the cold dark
matter, and a range of experiments is underway or planned to constrain, detect or rule out some of these.

A more radical approach to the missing mass problem is to reject non-baryonic CDM, and to propose, instead, a
modification to gravity at low accelerations, similar in spirit to the modified gravity approach to the dark energy problem.
Modified Newtonian dynamics (MOND) can account for the galactic rotation curves, and there are covariant relativistic
modifications of general relativity that can reproduce MOND in the Newtonian limit [37,38]. These modified theories
typically require both scalar and vector degrees of freedom in the gravitational field, in addition to the tensor. They lack
a simple and natural motivation – much like most of the modified theories that are alternatives to dark energy. Future
developments may lead to a low-energy modification of general relativity that does not require dark matter or dark energy,
that preserves the successes of general relativity from solar system to cosmological scales, and that has some motivation in
fundamental theory and a level of internal simplicity and naturalness.

In this review, we will not discuss further the key theoretical challenges posed by inflation, by the “missing mass”
problem, and by the late-time acceleration of the Universe. Instead, we will adopt the standard view, based on a simple
phenomenological model of inflation, on non-baryonic cold dark matter, and on the cosmological constant model of dark
energy – with general relativity applying on all scales from the inflationary energy scale downwards. Our aim is to study the
dynamics of structure formation within this framework and by means of a single formalism, the 1 + 3 covariant approach
to cosmology. We begin with a comprehensive presentation of the covariant formalism, followed by a discussion of the
standard cosmological model, the Friedmann–Lemaitre universe. In Section 2, we analyse the nonlinear behaviour of a
general cosmological spacetime, containing matter in the form of a single fluid, a mixture of interacting fluids, a minimally
coupled scalar fields and in the presence of a large-scale magnetic field. We linearise the nonlinear formulae in Section 3
and then use them to discuss the key features and the evolution of perturbed Friedmannianmodels in various environments
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and during different epochs. Section 4 provides an overview of the covariant kinetic theory, before applying it to the study
of the cosmic microwave and neutrino backgrounds. We conclude this review with a brief summary of the currents trends
in cosmological research and a look to the future in Section 6. Finally, in the Appendices, we provide the reader with all the
technical information that is necessary for the detailed study of this manuscript.

1.2. The 1 + 3 covariant description

The covariant approach to general relativity and cosmology dates back to the work of Heckmann, Schücking, and
Raychaudhuri in the 1950s [39,40] and it has since been employed in numerous applications by many authors (see [41–
44] for details). The formalism uses the kinematic quantities, the energy–momentum tensor of the fluid(s) and the gravito-
electromagnetic parts of the Weyl tensor, instead of the metric, which in itself does not provide a covariant description.
The key equations are the Ricci and Bianchi identities, applied to the fluid 4-velocity vector, while Einstein’s equations are
incorporated via algebraic relations between the Ricci and the energy–momentum tensor.

1.2.1. Local spacetime splitting
Consider a general spacetime with a Lorentzian metric gab of signature (−,+,+,+) and introduce a family of observers

with worldlines tangent to the timelike 4-velocity vector1

ua
=

dxa

dτ
, (1.2.1)

where τ is the observers’ proper time, so that uaua
= −1. This fundamental velocity field introduces a local 1+ 3 ‘threading’

of the spacetime into time and space. The vector ua determines the time direction, while the tensor hab = gab + uaub projects
orthogonal to the 4-velocity into the observers’ instantaneous rest space at each event. In the absence of vorticity the 4-
velocity is hypersurface-orthogonal and hab is the metric of the 3-dimensional spatial sections orthogonal to ua.

The vector field ua and its tensor counterpart hab allow for a unique decomposition of every spacetime quantity into its
irreducible timelike and spacelike parts. These fields are also used to define the covariant time and spatial derivatives of any
tensor field Sab···

cd··· according to

Ṡab···
cd···

= ue
∇eSab···

cd··· and DeSab···
cd···

= he
sha

fhb
phq

chr
d
· · · ∇sSf p···

qr···, (1.2.2)

respectively.
The effective volume element in the observer’s instantaneous rest space is given by contracting the spacetime volume

element (ηabcd) along the time direction,

εabc = ηabcdu
d. (1.2.3)

The totally antisymmetric pseudotensor ηabcd has η0123 = [− det(gab) ]
−1/2, it is covariantly constant and satisfies the

identities ηabcdη
efpq

= −4!δ[a
eδb

f
δc

p
δd]

q. It follows that εabcua
= 0,

ηabcd = 2u[aεb]cd − 2εab[cud] and εabcε
def

= 3!h[a
dhb

ehc]
f
. (1.2.4)

Note that Dchab = 0 = Ddεabc, while ḣab = 2u(aAb) and ε̇abc = 3u[aεbc]dAd (with Aa = u̇a — see Section 1.3.1 below).

1.2.2. The gravitational field
In the general relativistic geometrical interpretation of gravity, matter determines the spacetime curvature, while the

latter dictates the motion of the matter. This interaction is realised via the Einstein field equations,

Gab ≡ Rab −
1
2
Rgab = Tab − Λgab, (1.2.5)

where Gab is the Einstein tensor, Rab = Racb
c is the spacetime Ricci tensor (with trace R), Tab is the total energy–momentum

tensor of the matter fields and Λ is the cosmological constant. The twice contracted Bianchi identities guarantee that
∇

bTab = 0 and total energy–momentum conservation.
The Ricci tensor describes the local gravitational field at each event due to matter there. The non-local, long-range

gravitational field, mediated via gravitational waves and tidal forces, is encoded in the Weyl conformal curvature tensor
Cabcd. The splitting of the gravitational field into its local and non-local parts is given by the decomposition of the Riemann
tensor,

Rabcd = Cabcd +
1
2

(gacRbd + gbdRac − gbcRad − gadRbc) −
1
6
R (gacgbd − gadgbc) , (1.2.6)

1 Latin indices vary between 0 and 3 and refer to arbitrary coordinate or tetrad frames. Greek indices run from 1 to 3. We use geometrised units with
c = 1 = 8πG, which means that all geometrical variables have physical dimensions that are integer powers of length.
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where the Weyl tensor shares all the symmetries of the Riemann tensor and is also trace-free, Cc
acb = 0. Relative to the

fundamental observers, the conformal curvature tensor decomposes further into its irreducible parts (e.g. see [45,46])

Eab = Cacbdu
cud and Hab =

1
2
εa

cdCcdbe u
e. (1.2.7)

Then,
Cabcd =

(
gabqpgcdsr − ηabqpηcdsr

)
uqusEpr −

(
ηabqpgcdsr + gabqpηcdsr

)
uqusHpr, (1.2.8)

where gabcd = gacgbd − gadgbc. Alternatively,

Cab
cd

= 4
(
u[au

[c
+ h[a

[c
)
Eb]

d]
+ 2εabeu[cHd]e

+ 2u[aHb]eε
cde. (1.2.9)

The spatial, symmetric and trace-free tensors Eab and Hab are known as the electric and magnetic Weyl components. The
electric part generalises the tidal tensor of the Newtonian gravitational potential, but Hab has no Newtonian counterpart.
Note that both tensors must be present for a nonzero super-energy flux vector (Pa = εabcEbdHc

d), which is essential for the
propagation of gravitational waves.

TheWeyl tensor represents the part of the curvature that is not determined locally by matter. However, its dynamics are
not arbitrary because the Riemann tensor satisfies the Bianchi identities, whose contraction gives [45]

∇
dCabcd = ∇[bRa]c +

1
6
gc[b∇a]R, (1.2.10)

using decomposition (1.2.6). In a sense the once contracted Bianchi identities act as the field equations for the Weyl tensor,
determining the part of the spacetime curvature that depends on the matter distribution at other points. Eq. (1.2.10) splits
into a set of two propagation and two constraint equations, which govern the dynamics of the electric and magnetic Weyl
components (see Section 1.3.6).

1.2.3. Matter fields
With respect to the fundamental observers, the energy–momentum tensor of a general (imperfect) fluid decomposes

into its irreducible parts as2

Tab = ρuaub + phab + 2q(aub) + πab, (1.2.11)
where ρ = Tabuaub is the matter energy density, p = Tabhab/3 is the effective isotropic pressure of the fluid, namely the
sum between the equilibrium pressure and the associated bulk viscosity, qa = −ha

b Tbcuc is the total energy–flux vector, and
πab = h〈a

chb〉
dTcd is the symmetric and trace-free anisotropic stress tensor.3

The 4-velocity ua is generally arbitrary and a velocity boost of the form ua → ũa induces changes in the dynamical
quantities, given explicitly in Appendix A.2. When the fluid is perfect, however, there is a unique hydrodynamic 4-velocity,
relative to which qa, πab are identically zero and the effective pressure reduces to the equilibrium one. As a result,

Tab = ρuaub + phab. (1.2.13)
If we additionally assume that p = 0, we have the simplest case of pressure-free matter, namely ‘dust’, which includes
baryonicmatter (after decoupling) and cold darkmatter. Otherwise,weneed to determine p as a function ofρ andpotentially
of other thermodynamic variables. In general, the equation of state takes the form p = p (ρ, s), where s is the specific entropy.
Finally, for a barotropic medium we have p = p (ρ) (see Section 1.3.4 for further discussion).

Expression (1.2.11) describes any type of matter, including electromagnetic fields, scalar fields, etc. (see Sections 1.3.2
and 2.6.1). Since R = 4Λ − T, with T = Ta

a, Einstein’s equations are recast into

Rab = Tab −
1
2
Tgab + Λgab. (1.2.14)

The successive contraction of the above, assuming that Tab is given by Eq. (1.2.11), leads to a set of algebraic relations that
will prove useful later

Rabu
aub

=
1
2

(ρ+ 3p) − Λ, (1.2.15)

ha
bRbc u

c
= −qa, (1.2.16)

ha
chb

dRcd =
1
2

(ρ− p)hab + Λhab + πab. (1.2.17)

2 For a multi-component medium, or when allowing for peculiar velocities, one needs to account for the differing 4-velocities of the matter components
and the fundamental observers (see Section 2.4).

3 Angled brackets denote the symmetric and trace-free part of spatially projected second-rank tensors and the projected part of vectors according to

S〈ab〉 = h〈a
chb〉

dScd = h(a
chb)

dScd −
1
3

hcdScdhab and V〈a〉 = ha
bVb, (1.2.12)

respectively (with S〈ab〉h
ab

= 0). The reader is referred to the Appendix (see Appendix A.1 there) for more details on covariant decomposition.
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1.3. Covariant relativistic cosmology

There are various physical choices in cosmology for the fundamental 4-velocity field that defines the 1 + 3 splitting of
spacetime. Some possibilities include the frame in which the dipole of the CMB anisotropy vanishes and the local rest-frame
of the matter (these are generally assumed to coincide when averaged on sufficiently large scales). In specific situations, it
may be appropriate to choose the frame that simplifies the physics (for example, for a perfect-fluid cosmology itmakes sense
to adopt the rest-frame of the fluid), and we shall make several choices for ua throughout this review. Once ua is specified,
its integral curves define the worldlines of the fundamental observers introduced in Section 1.2.1.

1.3.1. Kinematics
The observers’ motion is characterised by the irreducible kinematical quantities of the ua-congruence, which emerge

from the covariant decomposition of the 4-velocity gradient

∇bua = σab + ωab +
1
3

Θhab − Aaub, (1.3.1)

whereσab = D〈bua〉,ωab = D[bua],Θ = ∇
aua = Daua and Aa = u̇a = ub

∇bua are, respectively, the shear and the vorticity tensors,
the volume expansion (or contraction) scalar, and the 4-acceleration vector. The latter represents non-gravitational forces
and vanishes whenmatter moves under gravity alone. By construction we have σabua

= 0 = ωabua
= Aaua. Also, on using the

orthogonally projected alternating tensor εabc (with ε̇abc = 3u[aεbc]dAd), one defines4 the vorticity vectorωa = εabcω
bc/2 (with

ωab = εabcω
c). We note that the tensor vab = Dbua = σab + ωab + (Θ/3)hab describes the relative motion of neighbouring

observers. In particular, va = vabχb monitors the relative velocity between the observers’ worldlines, with χa representing
the relative position vector between the same two flow lines (e.g. see [41,42] for details). The volume scalar determines
the average separation between neighbouring observers and is also used to introduce a representative length scale (a) by
means of the definition ȧ/a = Θ/3. The effect of the vorticity is to change the orientation of a given fluid element without
modifying its volume or shape. The shear, on the other hand, changes the shape but leaves the volume unaffected.

The non-linear covariant kinematics are determined by a set of propagation and constraint equations, which are purely
geometrical in origin and essentially independent of the Einstein equations. Both sets emerge after applying the Ricci
identities

2∇[a∇b]uc = Rabcdu
d, (1.3.2)

to the fundamental 4-velocity vector defined in (1.2.1). Substituting in from (1.3.1), using decompositions (1.2.6) and (1.2.8)
and the auxiliary relations (1.2.15)–(1.2.17), the timelike and spacelike parts of the resulting expression lead to a set of three
propagation and three constraint equations. The former contains Raychaudhuri’s formula

Θ̇ = −
1
3

Θ2
−

1
2

(ρ+ 3p) − 2(σ2
− ω2) + DaAa + AaA

a
+ Λ, (1.3.3)

for the time evolution of Θ; the shear propagation equation

σ̇〈ab〉 = −
2
3

Θσab − σc〈aσ
c
b〉 − ω〈aωb〉 + D〈aAb〉 + A〈aAb〉 − Eab +

1
2
πab, (1.3.4)

which describes kinematical anisotropies; and the evolution equation of the vorticity

ω̇〈a〉 = −
2
3

Θωa −
1
2

curl Aa + σabω
b. (1.3.5)

Note that σ2
= σabσ

ab/2 and ω2
= ωabω

ab/2 = ωaω
a are, respectively, the scalar square magnitudes of the shear and

the vorticity, while Eab is the electric component of the Weyl tensor (see Section 1.2.2). Also, curl va = εabcDbvc for any
orthogonally projected vector va, which means that Dbωab = curlωa.

The spacelike component of (1.3.2) leads to a set of three complementary constraints. These are the shear or (0,α)
constraint

Dbσab =
2
3
DaΘ + curlωa + 2εabcAbωc

− qa, (1.3.6)

the vorticity-divergence identity

Daωa = Aaω
a, (1.3.7)

4 The sign conventions are such that Eω = −E∇ × Ev/2 in the Newtonian limit and agree with those in the majority of the related articles. Note that in [44]
the vorticity tensor (ωab) and the orthogonally projected volume element (εabc) have opposite signs, relative to the ones defined here. The reader should
have this in mind when comparing the equations of the two papers.
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and the magnetic Weyl equation

Hab = curlσab + D〈aωb〉 + 2A〈aωb〉. (1.3.8)

Raychaudhuri’s formulae (see [40] and also [47,48] for recent reviews) is the key to the study of gravitational collapse,
as it describes the evolution of the average separation between two neighbouring observers. For this reason Eq. (1.3.3) has
been at the core of all the singularity theorems (see [45,49] and references therein). Negative terms in the right-hand side of
(1.3.3) lead to contraction and positive resist the collapse, which means that conventional (non-phantom) matter is always
attractive unless p < −ρ/3.

1.3.2. Electromagnetic fields
The Maxwell field is determined by the antisymmetric electromagnetic (Faraday) tensor Fab, which relative to a

fundamental observer decomposes into an electric and a magnetic component as [42,50]

Fab = 2u[aEb] + εabcB
c. (1.3.9)

In the above, Ea = Fabub and Ba = εabcFbc/2 are respectively the electric and magnetic fields experienced by the observer
(with Eaua

= 0 = Baua). The Faraday tensor also determines the energy–momentum tensor of the Maxwell field according
to

T(em)
ab = −FacF

c
b −

1
4
FcdF

cdgab, (1.3.10)

in Heaviside-Lorentz units. The above expression combines with (1.3.9) to give the irreducible decomposition for T(em)
ab ,

relative to the ua-frame

T(em)
ab =

1
2

(E2 + B2)uaub +
1
6

(E2 + B2)hab + 2P(aub) + Πab. (1.3.11)

Here E2 = EaEa and B2 = BaBa are the square magnitudes of the two fields, Pa = εabcEbBc is the electromagnetic Poynting
vector andΠab = −E〈aEb〉 −B〈aBb〉. Expression (1.3.11) allows for a fluid description of the electromagnetic field andmanifests
its generically anisotropic nature. In particular, the Maxwell field corresponds to an imperfect fluid with energy density
(E2 + B2)/2, isotropic pressure (E2 + B2)/6, anisotropic stresses given by Πab and an energy–flux vector represented by Pa.
Eq. (1.3.11) also ensures that T(em) a

a = 0, in agreement with the trace-free nature of the radiation stress–energy tensor.
We follow the evolution of the electromagnetic field by means of Maxwell’s equations. In their standard tensor form

these read

∇[cFab] = 0 and ∇
bFab = Ja, (1.3.12)

where (1.3.12)(a) reflects the existence of a 4-potential and Ja is the 4-current that sources the electromagnetic field. With
respect to the ua-congruence, the 4-current splits into its irreducible parts according to

Ja = µua + Ja, (1.3.13)

with µ = −Jaua representing the charge density and Ja = ha
bJb the orthogonally projected current (i.e. Jaua

= 0).
Relative to a fundamental observer, each one of Maxwell’s equations decomposes into a timelike and a spacelike

component. The timelike parts of (1.3.12)(a), (b) lead to a set of two propagation equations

Ė〈a〉 = −
2
3

ΘEa + (σab + εabcω
c) Eb + εabcA

bBc
+ curl Ba − Ja, (1.3.14)

Ḃ〈a〉 = −
2
3

ΘBa + (σab + εabcω
c) Bb

− εabcA
bEc − curl Ea, (1.3.15)

while their spacelike components provide the constraints

DaEa + 2ωaBa = µ and DaBa − 2ωaEa = 0. (1.3.16)

Expressions (1.3.14)–(1.3.16) are 1 + 3 covariant versions of Ampère’s law, Faraday’s law, Coulomb’s law and Gauss’ law
respectively. Therefore, in addition to the usual ‘curl’ and ‘divergence’ terms, the covariant form of (1.3.14) and (1.3.15)
contains terms generated by the relative motion of the neighbouring observers. Also, according to (1.3.16), the magnetic
vector is not solenoidal unless ωaEa = 0.
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1.3.3. Conservation laws
The twice contracted Bianchi identities guarantee the conservation of the total energy momentum tensor, namely that

∇
bTab = 0. This constraint splits into a timelike and a spacelike part, which respectively lead to the energy and the

momentum conservation laws. When dealing with a general imperfect fluid, the former is

ρ̇ = −Θ(ρ+ p) − Daqa − 2Aaqa − σabπab, (1.3.17)

while the latter satisfies the expression

(ρ+ p)Aa = −Dap − q̇〈a〉 −
4
3

Θqa − (σab + ωab)q
b
− Dbπab − πabA

b. (1.3.18)

When the fluid is perfect, the energy–momentum tensor is given by (1.2.13) and the above reduce to
ρ̇ = −Θ(ρ+ p) and (ρ+ p)Aa = −Dap, (1.3.19)

respectively. It follows, from (1.3.19)(b), that the sum ρ+p describes the relativistic total inertial mass of themedium. Then,
when the inertial mass is zero (i.e. for ρ + p → 0), consistency demands that the pressure gradients must also vanish. For
a barotropic fluid the latter immediately implies zero density gradients as well. Also, if the ‘phantom divide’ is crossed [51,
52], the inertial mass becomes negative and the acceleration antiparallel to the force that caused it.5

The energy momentum tensor of the electromagnetic field obeys the constraint ∇
bT(em)

ab = −FabJb, with the Faraday
tensor given by (1.3.9) and the quantity in the right-hand side representing the Lorentz 4-force. Thus, for charged matter
the conservation of the total energy–momentum tensor Tab = T(m)

ab + T(em)
am leads to the formulae

ρ̇ = −Θ(ρ+ p) − Daqa − 2Aaqa − σabπab + EaJ
a (1.3.20)

for the energy density, and

(ρ+ p)Aa = −Dap − q̇〈a〉 −
4
3

Θqa − (σab + ωab)q
b
− Dbπab − πabA

b
+ µEa + εabcJ

bBc, (1.3.21)

for the momentum density. We note the electromagnetic terms in the right-hand side of the above, the effect of which
depends on the electrical properties of the medium (see Section 2.5.1). The last two terms in the right-hand side of (1.3.21),
in particular, represent the more familiar form of the Lorentz force.

The antisymmetry of the Faraday tensor (see Eq. (1.3.9)) and the second of Maxwell’s formulae (see Eq. (1.3.12)(b)) imply
∇

aJa = 0 and the conservation of the 4-current. Then, on using decomposition (1.3.13), we arrive at the covariant charge-
density conservation law

µ̇ = −Θµ− DaJa − AaJa. (1.3.22)

Hence, in the absence of spatial currents, the evolution of the charge density depends entirely on the volume expansion (or
contraction) of the fluid element.

1.3.4. Equilibrium thermodynamics
In relativistic thermodynamics the physical state of a medium is monitored by means of the energy momentum tensor

(Tab), the particle flux vector (Na) and the entropy flux vector (Sa) (e.g. see [61]). For isolated systems, the former of these
three ‘primary variables’ satisfies the conservation law∇

bTab = 0. The entropy flux, on the other hand, obeys the second law
of thermodynamics and, provided the particle number does not change, Na satisfies the particle number conservation law.
Written in covariant terms, these read

∇
aSa ≥ 0 and ∇

aNa = 0, (1.3.23)

respectively. For a system in equilibrium (or for a perfect fluid) there is no entropy production, which implies that
∇

aSa = 0. (1.3.24)

Moreover, all three of the aforementioned primary variables can be expressed in terms of a unique timelike 4-velocity field,
according to

Tab = ρuaub + phab, Sa = Sua and Na = nua, (1.3.25)

where S = −Saua and n = −Naua are the entropy and particle densities respectively. Note that the last two of the above
combine to give

Sa = sNa, (1.3.26)

with s = S/n representing the specific entropy (the entropy per particle) of the system.

5 Phantom cosmologies violate the dominant energy condition (i.e. have ρ + p < 0) and generally lead to future ‘big rip’ singularities (see [51,52] and
also [53–58]). On the other hand, finite-time (sudden) future singularities can arise even when the standard energy conditions are observed [59,60].
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Applying the conservation law ∇
bTab = 0 to the energy–momentum tensor (1.3.25)(a), leads to the familiar energy

and momentum density conservation laws of a perfect fluid (given in Section 1.3.3 by expressions (1.3.17) and (1.3.18)
respectively). On the other hand, substituting (1.3.25)(c) into the left-hand side of (1.3.23)(b) provides the conservation
equation of the particle number

ṅ = −Θn. (1.3.27)

Similarly, inserting (1.3.26) into entropy conservation law (1.3.24) and then using Eqs. (1.3.23)(b) and (1.3.25)(c) we arrive
at

ṡ = 0. (1.3.28)

This ensures that the specific entropy of the system does not change along the fluid motion, which is another way of saying
that the flow is adiabatic. When the spatial gradients of the specific entropy also vanish, we have ∇as = Das − ṡua = 0 and
the medium is said to be isentropic. Note that an isentropic fluid has a barotropic equation of state and vise versa [62].

An additional thermodynamic scalar is the temperature (T) of the system, which satisfies the Gibbs equation

T ds = d
(
ρ

n

)
+ p d

(1
n

)
, (1.3.29)

with df = dxa∇af (e.g. see [63,62]). Of the five thermodynamic scalars (ρ, p, n, s and T), two are needed as independent
variables. Selecting the energy density and the specific entropy as our independent quantities, the equation of state of a
(perfect) fluid acquires the form p = p(ρ, s). Then,

ṗ =

(
∂p

∂ρ

)
s

ρ̇+

(
∂p

∂s

)
ρ

ṡ, (1.3.30)

which (for ṡ = 0) gives

c2s ≡

(
∂p

∂ρ

)
s

=
ṗ

ρ̇
, (1.3.31)

namely the square of the adiabatic sound speed. In addition to (1.3.30), the above given equation of state also leads to

Dap =

(
∂p

∂ρ

)
s

Daρ+

(
∂p

∂s

)
ρ

Das, (1.3.32)

thus connecting the spatial gradients of the pressure to perturbations in the energy density and the specific entropy of the
system. Consequently, when applied to adiabatic and then to isentropic systems, the relations (1.3.31) and (1.3.32) combine
to give

Dap =

(
ṗ

ρ̇

)
Daρ+

(
∂p

∂s

)
ρ

Das and Dap =

(
ṗ

ρ̇

)
Daρ, (1.3.33)

respectively. At this point we note that, according to the standard thermodynamic nomenclature, we distinguish between
adiabatic and isentropic perturbations. The former are characterised by ṡ = 0, while the latter demand that the specific
entropy is a spacetime invariant. Although the two concepts are distinct, it is not uncommon for cosmologists to say adiabatic
and imply isentropic [64].

1.3.5. Spatial curvature
When the fluid flow is irrotational, the rest-space tangent planes of the fundamental observers mesh together to form

spacelike hypersurfaces orthogonal to their worldlines. These are normal to the ua-congruence and define the hypersurfaces
of simultaneity for all the comoving observers. In the presence of vorticity, however, Frobenius’ theorem forbids the
existence of such integrable hypersurfaces (e.g. see [49,65]). Then the observers’ rest-spaces no longer mesh together
smoothly. The projected Riemann tensor is defined by

Rabcd = ha
qhb

shc
fhd

pRqsfp − vacvbd + vadvbc, (1.3.34)

where vab = Dbua is the relative flow tensor between two neighbouring observers (see Section 1.3.1). On using Eqs. (1.2.5)–
(1.2.15) and decompositions (1.2.6), (1.2.8), we find [66]

Rabcd = −εabqεcdsE
qs

+
1
3

(
ρ−

1
3

Θ2
+ Λ

)
(hachbd − hadhbc) +

1
2

(hacπbd + πachbd − hadπbc − πadhbc)

−
1
3

Θ [hac(σbd + ωbd) + (σac + ωac)hbd − had(σbc + ωbc) − (σad + ωad)hbc]

− (σac + ωac)(σbd + ωbd) + (σad + ωad)(σbc + ωbc). (1.3.35)
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This provides an irreducible decomposition of the projected Riemann tensor. If ωa = 0, then Rabcd is the 3-Riemann tensor
of the hypersurfaces of simultaneity orthogonal to ua. In analogy to 4-dimensions, the projected Ricci tensor and Ricci scalar
are respectively defined by

Rab = hcdRacbd = Rc
acb and R = habRab. (1.3.36)

The algebraic symmetries of Rabcd are given by

Rabcd = R[ab][cd] (1.3.37)

and

Rabcd − Rcdab = −
2
3

Θ (hacωbd + ωachbd − hadωbc − ωadhbc) − 2 (σacωbd + ωacσbd − σadωbc − ωadσbc) . (1.3.38)

It follows from the above that Rabcd = Rcdab in the absence of vorticity. In that case, the spatial Riemann tensor possesses
all the symmetries of its 4-dimensional counterpart.

Contracting (1.3.35) on the first and third indices we arrive at what is usually referred to as the Gauss–Codacci formula

Rab = Eab +
2
3

(
ρ−

1
3
Θ2

+ σ2
− ω2

+ Λ

)
hab +

1
2
πab −

1
3

Θ(σab + ωab) + σc〈aσ
c
b〉 − ωc〈aω

c
b〉 + 2σc[aω

c
b], (1.3.39)

while a further contraction leads to the generalised Friedmann equation

R = habRab = 2
(
ρ−

1
3

Θ2
+ σ2

− ω2
+ Λ

)
. (1.3.40)

Finally, one may combine Eqs. (1.3.39) and (1.3.40) to obtain

Rab =
1
3

Rhab + Eab +
1
2
πab −

1
3

Θ(σab + ωab) + σc〈aσ
c
b〉 − ωc〈aω

c
b〉 + 2σc[aω

c
b], (1.3.41)

where all terms on the right, with the exception of the first, are trace-free.
It should be noted that thematter variables used in this section represent the total fluid. For example, when dealing with

a mixture of pressure-free dust and isotropic radiation ρ = ρ(d)
+ ρ(γ) and πab = 0, in the presence of an electromagnetic

field (see Section 1.3.2) we have ρ = ρ(m)
+ ρ(em)

= ρ(m)
+ (E2 + B2)/2, πab = π

(m)
ab + Πab, etc.

1.3.6. Weyl curvature
The 1 + 3 splitting of the once contracted Bianchi identities (see Eq. (1.2.10) in Section 1.2.2) leads to a set of two

propagation and two constraint equations that monitor the evolution of the long range gravitational field, namely tidal
forces and gravity waves. In particular, on using the decomposition (1.2.8), the timelike component of (1.2.10) leads to [44]

Ė〈ab〉 = −ΘEab −
1
2

(ρ+ p)σab + curlHab −
1
2
π̇ab −

1
6

Θπab −
1
2
D〈aqb〉 − A〈aqb〉

+ 3σ〈a
c
(
Eb〉c −

1
6
πb〉c

)
+ εcd〈a

[
2AcHb〉

d
− ωc

(
Eb〉

d
+

1
2
πb〉

d
)]

(1.3.42)

and

Ḣ〈ab〉 = −ΘHab − curl Eab +
1
2

curlπab + 3σ〈a
cHb〉c −

3
2
ω〈aqb〉 − εcd〈a

(
2AcEb〉

d
−

1
2
σc

b〉q
d
+ ωcHb〉

d
)

. (1.3.43)

Taking the time derivatives of the above, one arrives at a pair of wavelike equations for the electric and the magnetic parts
of the Weyl tensor, showing how curvature distortions propagate in the form of gravitational waves like ripples in the
spacetime fabric. These waves are also subjected to a set of constraints, which emerge from the spacelike component of the
decomposed Eq. (1.2.10) and are given by

DbEab =
1
3
Daρ−

1
2
Dbπab −

1
3

Θqa +
1
2
σabq

b
− 3Habω

b
+ εabc

(
σb

dH
cd

−
3
2
ωbqc

)
(1.3.44)

and

DbHab = (ρ+ p)ωa −
1
2

curl qa + 3Eabωb
−

1
2
πabω

b
− εabcσ

b
d

(
Ecd +

1
2
πcd

)
, (1.3.45)

respectively [44]. The above expressions are remarkably similar to Maxwell’s formulae, which explains the names of
Eab and Hab. In fact, the Maxwell-like form of the free gravitational field underlines the rich correspondence between
electromagnetism and general relativity and it has been the subject of theoretical debate for decades (see [67–70] for a
representative list).
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1.4. The Friedmann–Lemaitre universe

In the previous sections we have considered general inhomogeneous and anisotropic cosmological spacetimes with
imperfect total energy–momentum tensor. However, the current observational evidence (principally the CMB) and our
theoretical prejudice (the Copernican principle), strongly support a universe that is homogeneous and isotropic on
cosmological scales, namely a Friedmann–Lemaitre–Robertson–Walker (FLRW) universe.

1.4.1. The FLRW metric
The geometry of the simplest non-static, non vacuum solution of the Einstein field equations is described by the

Robertson–Walker line element. In suitable (comoving) coordinates the latter takes the form

ds2 = −dt2 + a2(t)
[
dr2 + f 2K (r)(dθ2 + sin2 θdφ2)

]
, (1.4.1)

where a is the scale factor and fK depends on the geometry of the 3-D hypersurfaces. The scale factor defines a characteristic
length scale and leads to the familiar Hubble parameter H = 3ȧ/a, which determines the rate of the (isotropic) expansion.
The isotropy of the 3-space means that the latter has curvature equal to R = 6K/a2, with the curvature index K normalised
to ±1 when it is not zero. Then,

fK(r) =


sin r for K = +1,
r for K = 0,
sinh r for K = −1.

(1.4.2)

When K = +1 the 3-space is closed with spherical geometry and finite total volume. Alternatively, we have flat Euclidean
3-D hypersurfaces for K = 0 and open, hyperbolic, ones when K = −1. In either of these two cases the 3-space is unbounded
unless nontrivial topologies are employed.

1.4.2. FLRW cosmologies
The high symmetry of the Friedmann models means that all kinematical and dynamical variables are functions of time

only and any quantity that represents anisotropy or inhomogeneity vanishes identically. Thus, in covariant terms an FLRW
model has Θ = 3H(t) 6= 0, σab = 0 = ωa = Aa, Eab = 0 = Hab, where H = ȧ/a is the familiar Hubble parameter. The isotropy
of the Friedmann models also constrains their matter content, which can only have the perfect-fluid form (with ρ = ρ(t)
and p = p(t)). In addition, due to the spatial homogeneity, all orthogonally projected gradients (e.g. Daρ, Dap, etc) are by
definition zero. Thesemean that the only nontrivial equations are the FLRWversion of Raychaudhuri’s formula, the equation
of continuity and the Friedmann equation. These follow from expressions (1.3.3), (1.3.17) and (1.3.40) and are given by

Ḣ = −H2
−

1
6

(ρ+ 3p) +
1
3

Λ, ρ̇ = −3H(ρ+ p) (1.4.3)

and

H2
=

1
3
ρ−

K

a2
+

1
3

Λ, (1.4.4)

respectively. Note that the isotropy of the FLRWmodels and Eq. (1.3.35) imply that the associated 3-Riemann tensor is given
by Rabcd = (K/a2)(hachbd − hadhbc). Introducing the density parameters Ωρ = ρ/3H2, ΩΛ = Λ/3H2 and ΩK = −K/(aH)2, the
Friedmann equation takes the form

1 = Ωρ + ΩK + ΩΛ. (1.4.5)

Thus, in the absence of a cosmological constant, the 3-space is flat (i.e. K = 0) when the matter density takes the critical
value ρ = ρc = 3H2 and the Friedmann equation reduces to K/a2 = H2(Ωρ − 1). In that case Ωρ = 1 ensures Euclidean
3-D hypersurfaces, while Ωρ > 1 leads to spherical and Ωρ < 1 to hyperbolic spatial geometry. One may also combine Eqs.
(1.4.3)(a) and (1.4.4) to obtain an alternative form for the Raychadhuri equation with an explicit 3-curvature dependence,
namely

Ḣ = −
1
2

(ρ+ p) +
K

a2
. (1.4.6)

After a little algebra, expression (1.4.3)(a) takes the alternative form

qH2
=

1
6

(ρ+ 3p) −
1
3

Λ, (1.4.7)

where q = −äa/ȧ2 = −[1 + (Ḣ/H2)] is the dimensionless deceleration parameter. When the latter is negative the universe
accelerates, whichmeans that in exact FLRWmodelswith vanishingΛweneed to violate the strong energy condition (i.e. set
ρ+ 3p < 0) to achieve accelerated expansion.
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The expansion rate also defines a representative length scale, the Hubble radius,

λH = H−1. (1.4.8)

Inmost FLRWmodels the scale-factor evolution (see Section 1.4.4) ensures that the Hubble length effectively coincides with
the particle horizon (dH ∝ t). In that case, the Hubble radius determines the regions of causal contact.

The scale factor of an FLRW spacetime with non-Euclidean spatial geometry also defines the curvature scale (λK = a) of
themodel. This is the threshold atwhich any departures fromEuclidean flatness in the geometry of the spatial hypersurfaces
start becoming important (e.g. see [71]). Scales smaller than the curvature length are termed subcurvature, while those
exceeding λK are referred to as supercurvature. The former are essentially immune to the effects of spatial geometry,
which become prominent only on supercurvature lengths. However, the dynamics of fluctuations is sensitive to the spatial
geometry on all scales, through its effect on the expansion rate (via the Friedmann equations). The relation between the
curvature scale and the Hubble radius is determined by Eq. (1.4.4). In the absence of a cosmological constant, the latter
takes the form(

λK

λH

)2

= −
K

1 − Ωρ
. (1.4.9)

Therefore, for K = −1 we find that λK > λH always, with λK → ∞ as Ωρ → 1 and λK → λH for Ωρ → 0. In practice,
this means that supercurvature scales in spatially open FLRW cosmologies are never causally connected.When dealing with
closed models, on the other hand, expression (1.4.9) shows that λK > λH when Ωρ < 2 and λK ≤ λH if Ωρ ≥ 2. We finally
note that the importance of spatial geometry within a comoving region is always the same, since the curvature scale simply
redshifts with the expansion.

1.4.3. Luminosity distance
The luminosity distance of an object at redshift z is DL = a0(1 + z)r0, where a0 and r0 are the current values of the

scale factor and of the object’s radial distance (e.g. see [72]). The latter is determined by integrating the line element
dt = (a/

√
1 − Kr2)dr of a null geodesic. Assuming a spatially flat FLRWmodel, the result reads

r0 = a−1
0

∫ z

0
H−1dx, (1.4.10)

and it is easily integrated through the various epochs of the expansion. In view of the recent supernovae observations,
however, it helps to express the above in terms of kinematical quantities, and particularly in terms of the deceleration
parameter. Following Section 1.4.2 and recalling that dz = −(1 + z)Hdt, we have [73]∫ H0

H
H−1dH = ln

(
H0

H

)
= −

∫ z

0
(1 + q)d[ln(1 + x)], (1.4.11)

which substituted into Eq. (1.4.10) leads to

a0r0 = H−1
0

∫ z

0
e−

∫ x
0 (1+q)d[ln(1+y)]dx. (1.4.12)

Consequently, expressed in terms of the kinematical parameters of a spatially flat Friedmannmodel, the luminosity distance
of an object at redshift z is given by6

DL = (1 + z)H−1
0

∫ z

0
e−

∫ x
0 (1+q)d[ln(1+y)]dx. (1.4.13)

When compared with the measured luminosity distance from remote type Ia supernovae, the above expression indicated
that our universe has recently entered a phase of accelerating expansion [73,75].

1.4.4. Scale-factor evolution in FLRW cosmologies

The K = 0 case: To close the (1.4.3) system one needs to introduce an equation of state for the matter component. Before
doing so, we will first briefly refer to the de Sitter universe. This is an exponentially expanding K = 0 model, containing
no matter and having a positive cosmological constant. Applied to the de Sitter space, expression (1.4.4) reduces to H =√

Λ/3 = constant. The latter integrates immediately, giving a ∝ e
√

Λ/3t and thus guaranteeing the exponential nature of the
expansion.

6 For further discussion, extending to FLRW models with K 6= 0, and for expressions of the luminosity distance in terms of higher order derivatives of
the scale factor, the reader is referred to [74].
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Inwhat followswewill consider barotropic perfect fluids,mainly in the formof non-relativistic dust or isotropic radiation
(with p = 0 and p = ρ/3 respectively).Whenw = p/ρ is the constant barotropic index of the cosmicmedium, the continuity
equation (see (1.4.3)(b)) gives

ρ = ρ0

(
a0
a

)3(1+w)

. (1.4.14)

Substituting this result into the Friedmann equation, assuming Euclidean spatial sections (i.e. K = 0), w 6= −1 and setting
the cosmological constant to zero, we arrive at the following expression for the scale factor

a = a0

(
t

t0

)2/3(1+w)

, (1.4.15)

having normalised our solution so that a(t = 0) = 0. When dealing with non-relativistic matter with w = 0 (e.g. baryonic
‘dust’ or non-baryonic cold dark matter), we have what is known as the Einstein–de Sitter universe with a ∝ t2/3.
Alternatively, we obtain a ∝ t1/2 in the case of relativistic species (e.g. isotropic radiation) and a ∝ t1/3 for a stiff medium
with w = 1. An additional special case is that of matter with zero gravitational mass, which corresponds to w = −1/3 and
leads to ‘coasting’ expansion with a ∝ t. Solution (1.4.15) does not apply to amediumwithw = −1 (and therefore with zero
inertial mass – see Eq. (1.3.19)(b)). In that case, (1.4.14) guarantees that ρ = ρ0 = constant, which when substituted into
(1.4.4) leads to H = H0 = constant and subsequently to exponential expansion (inflation) with a ∝ eH0(t−t0). Note that during
a phase of exponential (de Sitter-type) expansion, the Hubble radius remains constant, while the particle horizon increases
in the usual manner (see Section 1.4.2).
The K = +1 case: The equation of continuity does not depend on the curvature of the 3-space, which means that expression
(1.4.14)monitors the evolution of thematter density irrespective of themodel’s spatial curvature.When the FLRWspacetime
has non-Euclidean spatial geometry it helps to parametrise the scale-factor evolution in terms of the conformal time (η—
defined by η̇ = 1/a). Then, for K = +1, Λ = 0 and w 6= −1/3 relations (1.4.3) and (1.4.4) combine to give

a = a0

{ sin[(1 + 3w)η/2 + C]

sin[(1 + 3w)η0/2 + C]

}2/(1+3w)

, (1.4.16)

where (1 + 3w)η/2 + C ∈ (0,π). Normalising so that a(η → 0) → 0, the η = π/(1 + 3w) threshold corresponds to the
moment of maximum expansion when a = amax = a0{sin[(1+3w)η0/2]}

−2/(1+3w). For non-relativistic matterw = 0 and the
above solution reduces to a ∝ sin2(η/2) [72], while we obtain a ∝ sinη if radiation dominates. When w = −1/3 one can no
longer use solution (1.4.16). Instead, Eq. (1.4.3)(a) leads immediately to the familiar coasting-expansion phase with a ∝ t.
Expressions (1.4.3)(b), (1.4.4) also provide the relation between scale factor and proper time in the w = −1 case. Just like in
spatially flat models, Eq. (1.4.3)(b) ensures that ρ = ρ0 = constant and then (1.4.4) leads to a(1 +

√
3/ρ0H) ∝ e

√
(ρ0/3) t .

The Einstein universe corresponds to a static K = +1model with positive cosmological constant. In such an environment
the density of the matter component is also constant, while Eqs. (1.4.3)(a), (1.4.4) and (1.4.6) reduce to the constraints

ρ+ 3p = 2Λ,
1
a2

=
1
3

(ρ+ Λ) and
1
a2

=
1
2

(ρ+ p), (1.4.17)

respectively. The Einstein universe has long been known to be unstable under homogeneous perturbations, though its
stability to inhomogeneous distortions is less straightforward (see Section 3.7.2).
The K = −1 case:Applied to FLRWcosmologieswith hyperbolic spatial geometry, zero cosmological constant andw 6= −1/3,
the analysis described above leads to the following (ever expanding) evolution law for the scale factor

a = a0

{ sinh[(1 + 3w)η/2 + C]

sinh[(1 + 3w)η0/2 + C]

}2/(1+3w)

, (1.4.18)

where now (1 + 3w)η/2 + C > 0. Not surprisingly, the above can be also obtained from (1.4.16), after the trigonometric
functions are replaced with their hyperbolic counterparts. Assuming pressure-free ‘dust’ and normalising as before, we
find a ∝ sinh2(η/2) [72]. On the other hand, solution (1.4.18) implies a ∝ sinhη for a open FLRW universe dominated by
relativistic species. We finally note that, similarly to the K = +1 case, the system (1.4.3) and (1.4.4) ensures that a ∝ t when
w = −1/3 and a(1 +

√
3/ρ0H) ∝ e

√
(ρ0/3) t for w = −1.

A special model with open spatial geometry is the vacuumMilne universe. Similarly to thew = −1/3 case, the absence of
mattermeans that (1.4.3)(a) integrates to give a coasting scale factor of the general form a ∝ t. Here, however, the Friedmann
equation – see expression (1.4.4) – guarantees that a = t.

We finally point out that, in the absence of a cosmological constant and after introducing the transformation y = a(1+3w)/2,
withw 6= −1/3, Raychaudhuri’s equation (see expression (1.4.3)(a) in Section 1.4.2) reduces to a simple harmonic-oscillator
of the form

y′′
= −K

(1 + 3w
2

)2

y, (1.4.19)



C.G. Tsagas et al. / Physics Reports 465 (2008) 61–147 77

Table 1
The non-tilted Bianchi spacetimes classified into two group classes and ten group types (see [82])

Group class Group type n1 n2 n3 FLRW as special case

A(a = 0)



I
II
VI0
VII0
VIII
IX

0
+

0
0
−

+

0
0
+

+

+

+

0
0
−

+

+

+

K = 0
−

−

K = 0
−

K = +1

B(a 6= 0)


V
IV
VIh
VIIh

0
0
0
0

0
0
+

+

0
+

−

+

K = −1
−

−

K = −1

with primes indicating conformal time derivatives [76]. This expression is particularly useful when addressing spatially
closed or open FLRW models, with Λ = 0 and w 6= −1/3. For instance, it is straightforward to verify that for K = ±1 the
above given equation leads immediately to solutions (1.4.16) and (1.4.18) respectively.

1.5. The Bianchi universes

Despite the success of the Friedmann–Lemaitre models, the structure that we observe today, means that our universe is
neither homogeneous nor isotropic, at least on certain scales and to a certain extent. To follow the (late time) evolution of the
universe on these scales one needs models with more degrees of freedom than the FLRW ones. The spatially homogeneous
and anisotropic Bianchi models have long been used to understand the observed level of isotropy in our universe and also
to probe the nature of the initial singularity. Here, we will briefly consider members of the Bianchi family that contain the
FLRWmodels as special cases, referring the reader to review articles and monographs for further details [77–85].

1.5.1. Classification of Bianchi cosmologies
Time is essentially the only dynamical coordinate in the Bianchi spacetimes, the spatial homogeneity of which has

‘removed’ all the inhomogeneous degrees of freedom and has reduced Einstein’s equations to a set of ordinary differential
equations. Despite this, the Bianchi family provides a rich set of models where one can study the fully nonlinear theory. We
generally distinguish between two differents kinds of Bianchi cosmologies. The non-tilted (or orthogonal) models, with the
flow-lines of the fluid normal to the hypersurfaces of homogeneity and the tilted models where this is no longer true. In the
latter case the ‘peculiar’ velocity of the matter enters the equations as an additional dynamical variable (see Section 5.1).

The literature contains three basic ways of classifying the orthogonal Bianchi models, all based on the commutation laws
of the associated tetrad basis vectors.7 Thus, one may use the tetrad {ea, a = 0, 1, 2, 3}, so that e0 is the normal vector to
the hypersurfaces of homogeneity and

[ea, eb] = γc
abec, (1.5.1)

with the commutation functions γa
bc = γa

bc(t) treated as dynamical variables themselves [77]. The spatial commutators
γαβγ , with α,β, γ = 1, 2, 3, are then decomposed into the time-dependent pair nαβ and aα that satisfy the condition

nαβa
β

= 0. (1.5.2)

Choosing the tetrad so that nαβ is a diagonalisable matrix (i.e. nαβ = diag(n1, n2, n3)) and aα = (a, 0, 0), the above reduces to
n1a = 0. Consequently, one can immediately define two major classes of Bianchi spacetimes. Those with a = 0 are known
as class A models and those with a 6= 0 are termed class B. Further classification is achieved by the signs of the eigenvalues
of nαβ. When dealing with the class B models one may also introduce the scalar h, which satisfies the constraint

a2 = hn2n3. (1.5.3)

This means that the h-parameter is well defined only in class B models with n2n3 6= 0. The general Bianchi classification
is given in Table 1, showing that h < 0 in type VIh and h > 0 in VIIh. We finally note that some Bianchi groups allow for
subspaces of higher symmetry, like isotropic or locally rotationally symmetric models. As a result, the FLRW universes may
sometimes appear as special cases in certain Bianchi cosmologies.

7 This means classifying the Lie algebras of the Killing vector fields and therefore the associated group of the G3-isometries (see [77,82] for details).
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1.5.2. Bianchi I cosmologies
The simplest anisotropically expanding cosmologies, which are also the simplest generalisation of the spatially flat FLRW

universe, are the non-tilted Bianchi I models. These are class A spacetimes (see Table 1), with Euclidean 3-geometry and line
elements of the form

ds2 = −dt2 + X2(t)dx2 + Y2(t)dy2 + Z2(t)dz2, (1.5.4)

in comoving coordinates.8 The above allows for different expansion rates along the three spatial directions, with the average
scale factor and the mean Hubble parameter given by a =

3√XYZ and H = Θ/3 = ȧ/a respectively. The spatial homogeneity
of the Bianchi I spacetimes ensures that all invariants depend on time only. The flow lines of the fundamental observers are
irrotational geodesics and all spatial gradients vanish identically. Therefore, in covariant terms, all Bianchi I cosmologies are
characterised by

ωa = 0 = Aa = Hab = Rab, (1.5.5)

which means that the only nonzero quantities are the volume scalar, the shear tensor and the electric part of the Weyl
field. Also, because of their generic anisotropy, the Bianchi I spacetimes can support imperfect fluids with non-vanishing
anisotropic pressure (i.e. πab 6= 0 though qa = 0). For example, the type-I models are natural hosts of large-scale magnetic
fields [86].

As with the FLRW case, the 1 + 3 covariant formulae monitoring the evolution of the Bianchi I cosmologies are obtained
from the general expressions given in Section 1.3. Thus, applied to a type-I environment and in the absence of a cosmological
constant, Eqs. (1.3.3), (1.3.17) and (1.3.40) reduce to

Ḣ = −H2
−

1
6

(ρ+ 3p) −
2
3
σ2, ρ̇ = −3H(ρ+ p) − σabπ

ab (1.5.6)

and

H2
=

1
3

(
ρ+ σ2

)
, (1.5.7)

where the latter can be seen as the Bianchi I analogue of the Friedmann equation. Also note that, on using the density
parameter Ωρ defined in Section 1.4.2, relation (1.5.7) takes the form

1 = Ωρ + Σ, (1.5.8)

withΣ = σ2/3H2 providing ameasure of themodel’s shear anisotropy. Similarly, in a Bianch I spacetime, expressions (1.3.4),
(1.3.41) and (1.3.42) reduce to

σ̇ab = −2Hσab − σc〈aσ
c
b〉 − Eab +

1
2
πab, Eab = Hσab − σc〈aσ

c
b〉 −

1
2
πab (1.5.9)

and

Ėab = −3HEab −
1
2

(ρ+ p)σab −
1
2

(π̇ab + Hπab) + 3σ〈a
c
(
Eb〉c −

1
6
πb〉c

)
, (1.5.10)

respectively. We also note that Eqs. (1.5.9)(b) recasts (1.5.9)(a) into

σ̇ab = −3Hσab + πab. (1.5.11)

The latter ensures that, in the absence of anisotropic pressures, the shear depletes as a−3, where a is the average (over the
three spatial directions) scale factor.

Once an equation of state for the matter is introduced, the set (1.5.6)–(1.5.11) governs the dynamics of a Bianchi I
spacetime fully. In the special case of matter in the perfect-fluid form with p = wρ, expression (1.5.6)(b) integrates
to ρ ∝ a−3(1+w). Following (1.5.7), this means that the shear will dominate the early expansion, no matter how small
the anisotropy may be today (unless the matter component has w = 1—stiff fluid). These shear dominated early stages
correspond to the vacuum Kasner regime, in which case equation (1.5.7) leads to a ∝ t1/3. The line element of the Kasner
solution has the form

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (1.5.12)

where p1 + p2 + p3 = 1 = p21 + p22 + p23 (e.g. see [87–89]). Together, these conditions guarantee that either exactly one of
the three exponents is negative or two of them are zero. In the former case the spacetime expands in two directions and
contracts along the third, with a cigar-like initial singularity. In the latter case we have motion (expansion) in one direction

8 For a discussion on the classification of the Bianchimodels in twomajor classes (A and B) on the basis of their structures constants the reader is referred
to [77,82].
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only, which corresponds to a pancake-type singularity.9 Note that the total volume always increases with time, since the
average scale factor grows as (recall that a ∝ t1/3). Given that kinematics dictate the Kasner phase, it is not surprising that
the exponents of (1.5.12) are determined by the model’s shear anisotropy according to [82]

p1 =
1
3

(1 − 2Σ+) and p2,3 =
1
3

(1 + Σ+ ±
√
3Σ−), (1.5.13)

withΣ± = σ±/H. Note thatσ+ = (σ2+σ3)/2 andσ− = (σ2−σ3)/2
√
3,whereσ2 andσ3 are the two independent components

of the shear tensor (recall that σαβ = diag(σ1,σ2,σ3) and σ1 + σ2 + σ3 = 0—see also [82] for more technical details and
further references).

1.5.3. Bianchi VIIh cosmologies
Themost general Bianchi spacetimes that contain the open FLRWuniverse as a special case are the type-VIIh cosmologies

(see Table 1). The late-time attractors of this class B family is, for a broad range of initial data and matter properties, the
Lukash plane-wave solution. These vacuum spacetimes are self-similar equilibrium points and have a line element of the
form10

ds2 = −dt2 + t2dx2 + t2re2rx
[
(Ady + Bdz)2 + (Cdy + Adz)2

]
. (1.5.14)

Note that r is a constant parameter in the range 0 < r < 1, A = cos v, B = f−1 sin v, C = −f sin v and v = k(x + ln t). Also, f
and k are constants related to r by

k2(1 − f 2)2

f 2
= 4r(1 − r) and r2 = hk2, (1.5.15)

where h is the associated group parameter. Note that r determines the amount and the nature of the model’s anisotropy.
When r → 1, in particular, the anisotropy vanishes and (1.5.14) reduces to the metric of the empty Milne universe. At the
r → 0 limit, on the other hand, the anisotropy is maximised [90,91].

Due to the absence of matter and given its irrotational nature, the Lukash spacetime is covariantly chracterised by the
irreducible sets

ρ = 0 = p = qa = πab and Aa = 0 = ωa, (1.5.16)

which imply that the only nonzero quantities areΘ , σab, Eab and Hab. Note that theWeyl components have equal magnitudes
and are orthogonal to each other (i.e. E2 = H2 and EabHab

= 0, respectively), in line with the Petrov-type N nature of
the solution. The absence of matter means that the Lukash universe is Ricci flat, although the curvature of the 3-space
(i.e. the 3-Ricci tensor) is nonzero. Setting the cosmological constant to zero, the kinematics of the model is governed by the
propagation formulae [91]

Ḣ = −H2
−

2
3
σ2, σ̇ab = −3Hσab − R〈ab〉, (1.5.17)

which are supplemented by the constraints

H2
=

1
3

(
σ2

−
1
2

R

)
and Hab = curlσab. (1.5.18)

The evolution of the Weyl field, on the other hand, is monitored by the set

Ėab = −3HEab + curlHab + 3σc〈aE
c
b〉, Ḣab = −3HHab − curlHab + 3σc〈aH

c
b〉. (1.5.19)

The average kinematic anisotropy ismeasured bymeans of the shear parameter defined by the dimensionless, expansion
normalised parameterΣ = σ2/3H2

= (1−r)/(1+2r) [91]. Thismeans thatΣ remains constant during themodel’s evolution
and lies between zero and unity. Also, minimum anisotropy corresponds to Σ → 0 and maximum to Σ → 1, ensuring that
the shear of the Lukash model is always bounded. On using the Σ-parameter, Eqs. (1.5.17)(a) and (1.5.18)(a) are recast into

Ḣ = −3H2(1 + 2Σ) and R = 6H2(Σ − 1), (1.5.20)

respectively. The former leads to the power-law evolution a ∝ t1/(1+2Σ) of the average scale factor and the latter ensures
that the spatial sections are open. Thus, when the shear is at its minimum, we approach a ∝ t and the Milne universe. At
the Σ → 1 limit, on the other hand, we find the familiar Kasner solution (i.e. a ∝ t1/3 — see Section 1.5.2). Note that for
maximum shear anisotropy the 3-curvature vanishes, whereas the Weyl field tends to zero at both limits [90,91]. Finally,
the deceleration parameter of the Lukash universe is q = 2Σ , with 0 < q < 2.

9With the exception of the (p1, p2, p3) = (0, 0, 1) triplet, which corresponds to a flat spacetime, the initial singularity cannot be eliminated by any
coordinate transormation [88].
10 Self-similar Bianchi solutions, vacuum or with a non-tilted perfect fluid, have been studied in [90].
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1.5.4. Bianchi IX cosmologies
The type-IX model is a class A spacetime and the only Bianci cosmology that contains the closed FLRW universe as a

special case (see Table 1). The model is well known for its oscillatory behaviour with chaotic characteristics and with the
matter becoming dynamically negligible as it approaches the initial singularity [92]. The spacetime metric has the form

ds2 = −dt2 + X2(t)(cosψdθ+ sinψ sin θdφ)2 + Y2(t)(sinψdθ− cosψ sin θdφ)2 + Z2(t)(dψ+ cos θdφ)2, (1.5.21)

parametrised by the Euler angles with 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Allowing H to assume all real values and
therefore permitting a contracting epoch, the generalised Friedmann equation of the model reads

H2
=

1
3

(
ρ+ σ2

−
1
2

R

)
. (1.5.22)

A key feature of the type-IX cosmologies is that their spatial curvature changes sign during the model’s evolution. In
particular, the associated 3-Ricci scalar is given by [82]

R = −
1
2

[
n21 + n22 + n23 − 2(n1n2 + n2n3 + n3n1)

]
, (1.5.23)

where n1,2,3 > 0 according to Table 1. Alternatively, one may express R in terms of the individual scale factors as [93]

R =
2(X2Y2

+ X2Z2 + Y2Z2) − (X4
+ Y4

+ Z4)

2(XYZ)2
. (1.5.24)

The right-hand side in both of the above expressions can take either sign. In fact, R is predominantly negative and becomes
positive only when themodel approaches isotropy (i.e. for n1 = n2 = n3 or X = Y = Z). Since an expansionmaximum occurs
when the curvature is positive (see Eq. (1.5.22)), onemay argue that themodel cannot recollapse while still anisotropic [94].

The past attractor of the Bianchi-IX spacetimes is the so-called Mixmaster oscillatory singularity. A qualitative analysis
shows that the model approaches the initial singularity through a sequence oscillatory eras. Each era consists of alternating
Kasner phases, with ametric given by (1.5.12) and the negative exponent shifting between two of the directions [87,88]. This
means that distances along the associated two axes oscillate, while those in the third decrease. As themodel passes through
the different eras, the ‘decreasing axis’ bounces from one direction to the next, with the process asymptotically acquiring a
random character [95]. The chaotic behaviour of the type-IX model was suggested as a way of achieving sufficient ‘mixing’
between the three spatial directions that could remove the horizon problem [92]. As it eventually turned out, however, this
mechanism does not work.

1.5.5. Isotropisation of Bianchi cosmologies
Bianchi cosmologies have been traditionally studied qualitatively, primarily bymeans of dynamical systemmethods [82,

83]. These techniques have revealed an interesting property of many Bianchi models, namely their “intermediate
isotropisation”. The latter occurs because a number of Bianchi-type spacetimes have phase planeswhere the FLRW solutions
are acting as saddle points. This means that these models can isotropise and therefore look very much like a Friemdann
universe, over an extended period of their evolution, despite the fact that they start off and end up quite unlike the FLRW
spacetimes.

Another issue is whether the Bianchi models show any tendency to isotropise, either at early or at late times. Following
[96], the set of Bianchi models, with conventional matter, that isotropise asymptotically to the future is of zero measure. It
has been shown, however, that Bianchi cosmologies tend towards isotropy at late times when a cosmological constant is
present. Taken at face value, this implies that inflation should smooth the anisotropy of these models out. Nevertheless,
the existing results apply primarily to non-tilted Bianchi types and also seem to depend on the amount of the initial
anisotropy.

1.5.6. Kantowski–Sachs cosmologies
These are spatially homogeneous spacetimes that do not belong to the Bianchi family [97,98]. The Kantowski–Sachs class

of models have local rotational symmetry, with metrics which in comoving coordinates read [44,84]

ds2 = −dt2 + A2(t)dr2 + B2(t)
[
dθ2 + f 2(θ) dφ2

]
, (1.5.25)

where f (θ) = sin θ. Note that in general the function f (θ) obeys an expression of the form (1.4.2) – see Section 1.4.1 – inwhich
case one refers to Kantowski–Sachs-like metrics [99]. However, only the K = +1 model falls outside the Bianchi family.
Those with zero and negative spatial curvature reduce to axisymmetric type-I and type-III cosmologies respectively [81].
Note that, in the Bianchi classification of Section 1.5.1, the missing type-III spacetime corresponds to the VI−1 model [82].
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2. Inhomogeneous relativistic cosmologies

The simplest inhomogeneous cosmologies are spherically symmetric, like the Lemaitre–Tolman–Bondi (LTB) model. The
latter has closed spatial sections andmatter in the formof irrotational dust. The LTB universe possesses a centre of symmetry,
in fact it can allow for up to two such centres, but it is not isotropic about an arbitrary observer; an inevitable consequence of
the model’s spatial inhomogneity [81]. There also exist inhomogenoeus solutions of the EFE without symmetries, with the
Szekeres quasi-spherical model probably being the most celebrated (see [81] for an extended discussion and references).
An additional class of cosmologies without (global) symmetry are the so called Swiss–Cheese models, obtained by cutting
and pasting segments of spherically symmetric spacetimes (see [44]). The universe we live in is also believed to be free of
symmetries.

2.1. The gauge problem in cosmology

It has long been known that the study of cosmological perturbations is plagued by what is known as the gauge problem,
reflecting the fact that in perturbation theory we deal with two spacetime manifolds [100–104]. The first is the physical
spacetime,W , that corresponds to the real universe and the second, denoted here byW , is a fictitious idealisedmathematical
model.

2.1.1. Gauge freedom
In most cosmological studies the idealised, background, spacetime is represented by the homogeneous and isotropic

FLRW models. To proceed, one needs to establish a one-to-one correspondence, namely a gauge φ : W → W , between
the two spacetimes. Such a point-identification map is generally arbitrary, although particular ones may be more suitable
for specific cases. When a coordinate system is introduced in W , the gauge carries it to W and vice versa. As a result, a
smooth spacetime is defined into the real universe. Any change in φ : W → W , keeping the background coordinates
fixed, is known as a gauge transformation. This introduces a coordinate transformation in the physical spacetime but also
changes the event in W which is associated with a given event of W . Gauge transformations are therefore different from
coordinate transformations which merely relabel events. The gauge problem stems from our inherent freedom to make
gauge transformations. Although, the gauge freedom is usually expressed as a freedom of coordinate choice in W , it should
be understood that it generally changes the point-indentification between the two spacetimes.

In the study of cosmological perturbations we consider the realistic universe and define perturbations by specifying
the map φ : W → W between the W and its fictitious counterpart. However, although we can always perturb away
form a given background spacetime, recovering the smooth metric from a given perturbed one is not a uniquely defined
process. This is a problem because it is always possible to choose an alternative background and therefore arrive at different
perturbation values (see also [104]). Selecting an unperturbed spacetime from a given lumpy one corresponds to a gauge
choice. Determining the best gauge is known as the fitting problem in cosmology and there is no unique answer to it [105].

2.1.2. Gauge dependence
By definition, the perturbation of any quantity is the difference between its value at some event in the real spacetime and

its value at the corresponding, through the gauge, event in the background. Then, even scalar quantities that have nonzero
and position-dependent background values, will lead to gauge-dependent perturbations. Following [106,107], we consider
an one parameter family of 4-manifoldsWε = W(ε) embedded in a 5-manifoldM. Each one of these 4-manifolds represents
a realistic spacetime, perturbed relative to the background manifold W̄ . We define a point-identification map between W̄
and Wε, by introducing in M a vector field XA (with A = 0, . . . , 4), which is everywhere transverse to the embeddings Wε.
Points lying along the same integral curves of XA, which are parametrised by ε for convenience, will be regarded as the ‘same’.
Thus, selecting a specific vector field XA corresponds to a choice of gauge. If Qε is some geometrical quantity defined on Wε,
for small εwe have

h̄ε(Qε) = Q̄ + εL̄XQε + O(ε2), (2.1.1)
where an overbar refers ro quantities evaluated in W̄ , LX is the Lie derivative along XA and h̄ε is the pullback of Wε to W̄ .
The quantity δQ = h̄ε(Qε) − Q̄ = εL̄XQε is what we usually call linear perturbation of Q̄ and it clearly depends on our gauge
choice [106,107].

According to (2.1.1), even quantities that behave like scalars under coordinate changes will not remain invariant under
gauge transformations. To see this from a different, less technical, point of view we will follow [104]. Consider the familiar
density perturbation δρ = ρ− ρ, where ρ is the matter density. In the right-hand side of the above we have the difference
in the value of the matter density between two corresponding points in the background and the real spacetime. A gauge
transformationwill generally change this correspondence and therefore the perturbation value. Thismeans that the value of
δρ is entirely gauge-dependent and therefore arbitrary. For instance, one can select the gauge so that the surfaces of constant
background density are the surfaces of constant real density, thus setting δρ to zero [104].11

11With this gauge choice the fluid flow lines are not orthogonal to the surfaces of constat density and comoving observers will still measure a nonzero
density variation.
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2.2. Covariant and gauge-invariant perturbations

One way of addressing the gauge problem is by completely fixing the point-identification map between the background
and the real spacetimes. However, determining the best gauge for a given physical problem is not a trivial task and it might
lead to spurious, gauge-dependent, results. Alternatively, we may only partially fix the gauge (leaving some residual gauge
freedom and always keeping track of its consequences) or employ gauge-invariant variables [103,104].

2.2.1. Criteria for gauge invariance
Gauge-independent quantities must remain invariant under gauge transformations between the idealised and the

realistic spacetimes. According to the Stewart and Walker lemma, the simplest cases are scalars that are constant in the
background universe or tensors that vanish there [106]. In both cases the mapped quantity is also constant and gauge
changes are irrelevant because they all define the same perturbation. The only other possibility are tensors that can be
written as linear combinations of products of the Kronecker deltas with constant coefficients. The same general criteria also
apply to second order perturbations, but this time the Stewart andWalker requirements must be satisfied by the first-order
variables [108].

Most cosmological applications deal with FLRW models. One would therefore like to know which quantities satisfy
this criterion on Friedmannian backgrounds. Since the only invariantly defined constant is the cosmological constant and
because constant products of the Kronecker deltas do not occur naturally, the only remaining option is to look for quantities
that vanish in FLRW environments. Given the symmetries of the Friedmann models, any variable that describes spatial
inhomogeneity or anisotropy must vanish there and therefore its linear perturbation should remain invariant under gauge
transformations.

2.2.2. Gauge-invariant inhomogeneities
Covariantly, spatial inhomogeneities in the distribution of any physical quantity are described by the orthogonally

projected gradient of the quantity in question. For the purposes of structure formation the key variable is the comoving
fractional gradient in the energy density of the matter given by [104]

∆a =
a

ρ
Daρ. (2.2.1)

The above, which monitors density variations as measured by a pair of neighbouring fundamental observers (see [104] and
also Section 3.1.1 here), is identically zero in spacetimes with homogeneous spatial sections. Indeed, by definition we have

Daρ = ha
b
∇bρ = ha

0
∇0ρ+ ha

α
∇αρ = 0, (2.2.2)

since ha
0

= 0 in a comoving frame and ∇αρ = 0 because ρ = ρ(t). The vanishing of Daρ in spatially-homogeneous models,
like the Friedmann universes, guarantees that∆a satisfies the Stewart andWalker lemma [106]. Consequently,∆a describes
density inhomogeneities within perturbed almost-FLRW spacetimes in a gauge independent way.

The density gradient can be supplemented by a number of auxiliary variables that describe spatial inhomogeneities
in other physical quantities. Here, for the sake of economy, we will only introduce a variable for the volume-expansion
gradients and for those in the magneic energy density. Following [104,109], these are defined as

Za = aDaΘ and Ba =
a

B2
DaB

2, (2.2.3)

respectively. Both vanish in spatially homogeneous spacetimes and therefore they also complywith the Stewart andWalker
criterion for gauge invariance. For the rest of this section, we will analyse the behaviour of these quantities in different
cosmological environments and then, in Section 3, we will use them to study the evolution of perturbed almost-FLRW
universes.

2.3. Inhomogeneous single-fluid cosmologies

It is broadly accepted that the present large-scale structure of the universe is the result of Jeans-type instabilities, where
small inhomogeneities in the initial density distribution of the cosmicmedium grow gravitationally to form the galaxies and
the voids seen in the universe today. Here, we will present the main equations governing the nonlinear evolution of density
inhomogeneities, within single-fluid cosmologies, in a covariant and gauge-invariant manner.

2.3.1. Imperfect fluids
Consider a general spacetime filled with a single imperfect fluid. Spatial inhomogeneities in the matter density, as

measured by a pair of neighbouring observers, are monitored by the orthogonally projected dimensionless comoving
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gradient ∆a = (a/ρ)Daρ. Taking the covariant derivative of the above and using the energy and momentum conservation
laws, respectively given by (1.3.17) and (1.3.18), we obtain

∆̇〈a〉 =
p

ρ
Θ ∆a −

(
1 +

p

ρ

)
Za +

aΘ

ρ

(
q̇〈a〉 +

4
3

Θqa

)
−

a

ρ
DaDbqb +

aΘ

ρ
Dbπab −

(
σb

a + ωb
a

)
∆b

−
a

ρ
Da

(
2Abqb + σbcπbc

)
+

aΘ

ρ
(σab + ωab) q

b
+

aΘ

ρ
πabA

b
+

1
ρ

(
Dbqb + 2Abqb + σbcπbc

)
(∆a − aAa) . (2.3.1)

In the right-hand side of the above we notice a number of agents which act as sources of density perturbations. Hence, even
if ∆a is initially zero, it will not generally remain so. One of the key sources of density inhomogeneities is Za, the volume
expansion gradient, the nonlinear evolution of which is obtained by taking its time derivative and then using the associated
expression of the Raychaudhuri equation. The result is

Ż〈a〉 = −
2
3

ΘZa −
1
2
ρ∆a −

3
2
aDap − a

[1
3

Θ2
+

1
2

(ρ+ 3p) − Λ

]
Aa + aDaDbAb

−

(
σb

a + ωb
a

)
Zb − 2aDa

(
σ2

− ω2
)

+ 2aAbDaAb − a
[
2
(
σ2

− ω2
)

− DbAb − AbAb

]
Aa. (2.3.2)

2.3.2. Perfect fluids
When dealing with a perfect fluid, a choice of frame can be made in which the fluid appears isotropic, i.e. there is

no energy–flux or anisotropic pressure and the associated variables vanish identically (i.e. qa = 0 = πab). This choice
considerably simplifies Eq. (2.3.1), meaning that perfect-fluid density inhomogeneities evolve as

∆̇〈a〉 =
p

ρ
Θ ∆a −

(
1 +

p

ρ

)
Za −

(
σb

a + ωb
a

)
∆b. (2.3.3)

There is no change in the propagation equation of the expansion gradients, whichmaintains the algebraic formof (2.3.2). The
only difference the perfect fluid makes, is that ∆a is now monitored by (2.3.3) and the 4-acceleration is given by (1.3.19)(b)
instead of (1.3.18). If the medium is also barotropic (i.e. for p = p(ρ)), the pressure gradients are directly related to those in
the density by Dap = c2sDaρ, where c2s = ṗ/ρ̇ is the adiabatic sound speed (see Section 1.3.4).

2.3.3. Covariant conserved quantities
In the metric-based perturbative formalism, the curvature perturbation on uniform density hypersurfaces is conserved

for the adiabatic growing mode on super-Hubble scales, and the geometric interpretation of this can be understood via the
perturbation of the expansion e-folds, N = ln a, using the so-called “separate universe” picture [110]. A covariant version of
this result is based on defining an appropriate spatial-gradient quantity, and leads to a simple geometric nonlinear conserved
quantity for a perfect fluid [111].

Along each worldline of the perfect fluid, we define the generalised, covariant local e-fold function

α =
1
3

∫
Θ dτ, (2.3.4)

where τ is proper time. Applying the commutation law (A.31) to the above scalar, as well as the density of the fluid, gives12

1
3
DaΘ = LuDaα− α̇Aa, (2.3.5)

where Lu is the Lie derivative along ua. Then, the projected gradient of the energy–density conservation law (see Eq.
(1.3.19)(a)) leads to

Lu(Daρ) + 3(ρ+ p)Lu(Daα) + ΘDa(ρ+ p) = 0. (2.3.6)

Defining the auxiliary projected vector ζa = Daα− (α̇/ρ̇)Daρ, we can simplify expression (2.3.6) into

Luζa = −
Θ

3(ρ+ p)
Γa, (2.3.7)

with Γa = Dap − (ṗ/ρ̇)Daρ. For isentropic perturbations, Γa vanishes identically (see expression (1.3.33) in Section 1.3.4)
and the above guarantees that

Luζa = 0. (2.3.8)

In other words, ζa is a conserved quantity in the isentropic/barotropic case on all scales and at all perturbative orders.

12 Using the Lie derivative along ua , simplifies the identity (A.31) to Da ḟ = Lu(Daf ) − ḟ Aa .
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Fig. 3. In a multi-component system, the 4-velocity u
(i)
a of the i-th fluid makes a hyperbolic angle β(i) with the fundamental 4-velocity field ua , normal

to the hypersurfaces of homogeneity S(t). The unit vectors ea and e
(i)
a are orthogonal to ua and u

(i)
a respectively. Following definition (2.4.2), the peculiar

velocity of the i-th species is v(i)a = v(i)ea , with v2
(i) = v

(i)
a va

(i) .

2.4. Inhomogeneous multi-fluid cosmologies

During its evolution the universe goes through epochs where the matter is better described by a mixture of several
fluids, rather than a single component. This brings about the need for studies of inhomogeneous multi-component systems
(see [112,113] for non-covariant treatments). When studying the effects of inhomogeneities on the CMB, for example,
one usually considers a mixture of radiation, baryonic matter and neutrinos (e.g. see [114] and Section 4 here). Studies
of nonlinear gravitational collapse also require the use of a multi-fluid description, in order to incorporate the effects of
peculiar velocities (see Section 5.1 for more details).

2.4.1. 4-velocity fields
Consider spacetime filledwith amixture of different fluids. Suppose that ua is the 4-velocity of the fundamental observers

and u(i)
a that of the i-th fluid component (i.e. u(i)

a ua
(i) = −1). The tensors projecting orthogonal to ua and u(i)

a are

hab = gab + uaub and h(i)
ab = gab + u(i)

a u(i)
b , (2.4.1)

respectively. The relation between ua and u(i)
a is determined by the Lorentz boost

u(i)
a = γ(i)

(
ua + v(i)

a

)
, (2.4.2)

where v(i)
a ua

= 0. Here, γ(i) = (1 − v2(i))
−1/2 is the Lorentz-boost factor and v(i)

a is the peculiar velocity of the i-th component
relative to ua. For non-relativistic peculiar motions γ(i) ' 1.

The boost relation can also be recast in terms of the hyperbolic, tilt, angle β(i) between the two 4-velocity vectors (see
Fig. 3). Noting that coshβ(i)

= −u(i)
a ua

= γ(i) and sinhβ(i)ea = γ(i)v(i)
a = ha

bu(i)
b , where v(i)

a = v(i)ea, expression (2.4.2)
reads [115]

u(i)
a = coshβ(i)ua + sinhβ(i)ea. (2.4.3)

In addition, v(i) = tanhβ(i), which means that when the tilt angle is small (i.e. for β(i) � 1) we have v(i) ' β(i) and non-
relativistic peculiar velocities.

2.4.2. Multi-component perfect fluids
The non-equilibrium state of a material medium is described by its energy momentum tensor Tab, its particle flux vector

Na and by the entropy flux vector Sa. The former two are conserved (∇bTab
= 0 = ∇aNa) and the last obeys the second

law of thermodynamics (∇aSa ≥ 0—see [61] and also Section 1.3.4 here). When the strong energy condition holds, the
energy–momentum tensor of a fluid has a unique timelike eigenvector uE

a, normalised so that uE
au

a
E = −1. One may also

define a unitary timelike vector parallel to Na by uN
a = Na/

√
−NaNa. Provided that the fluid is perfect (or in equilibrium)

all three vectors uE
a, uN

a and Sa are parallel and define a unique hydrodynamic 4-velocity vector (the rest-frame of the fluid
flow). This is the only frame the energy–momentum tensor of the matter assumes the perfect-fluid form (see expression
(1.2.13)).

When dealing with an imperfect fluid there is no a uniquely defined hydrodynamic 4-velocity. Then, the energy
momentum tensor and the particle flux vector decompose as

Tab = ρuaub + phab + 2q(aub) + πab and Na = nua + Na, (2.4.4)

respectively. Here Na = ha
bNb is the particle drift and recall that n = −Naua is the particle number density. Also, the total

energy–flux vector in Eq. (2.4.4)(a) is given by

qa = Qa +
1
n

(ρ+ p)Na, (2.4.5)
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with Qa representing the associated heat flux. In the case of an imperfect medium two frames are of special status. The first,
which has ua ≡ uE

a and zero total energy flux, is known as the energy – or Landau – frame [88]. There, following (2.4.5),
the comoving observers see a nonzero particle drift equal to Na = −[n/(ρ+ p)]Qa. The alternative option is the Eckart – or
particle – frame with ua ≡ uN

a [116]. Here, the observers see no particle drift and therefore qa = Qa.
Consider a mixture of perfect fluids, where the i-th component has energy density ρ(i), isotropic pressure p(i) and moves

along the timelike 4-velocity field u(i)
a . Relative to this frame, the energy–momentum tensor and the particle flux of the

individual species respectively read

T(i)
ab = ρ(i)u(i)

a u(i)
b + p(i)h(i)

ab and N(i)
a = n(i)u(i)

a , (2.4.6)

with h(i)
ab given by (2.4.1)(b) and n(i) representing the number density of each component in their own rest frame.With respect

to the ua-frame, however, the above become

T(i)
ab = ρ̂(i)uaub + p̂(i)hab + 2u(aq̂

(i)
b) + π̂

(i)
ab and N(i)

a = n̂(i)ua + N̂ (i)
a , (2.4.7)

respectively. The former corresponds to the energy–momentum tensor of an imperfect fluid with

ρ̂(i)
= γ2

(i)

(
ρ(i)

+ p(i)
)

− p(i), p̂(i)
= p(i)

+
1
3

(
γ2

(i) − 1
) (
ρ(i)

+ p(i)
)
, (2.4.8)

q̂(i)
a = γ2

(i)

(
ρ(i)

+ p(i)
)
v(i)
a , and π̂

(i)
ab = γ2

(i)

(
ρ(i)

+ p(i)
) (

v(i)
a v(i)

b −
1
3
v2(i)hab

)
. (2.4.9)

Similarly, expression (2.4.7)(b) is that of an imperfect fluid with particle number density and particle drift given by

n̂(i)
= γ(i)n(i) and N̂ (i)

a = n̂(i)v(i)
a , (2.4.10)

respectively. When dealing with non-relativistic peculiar velocities, we may ignore terms quadratic in v(i) and therefore set
γ(i) to unity. Then, expressions (2.4.8) and (2.4.9) reduce to ρ̂(i) = ρ(i), p̂(i) = p(i), q̂(i)

a = (ρ(i) + p(i))v(i)
a and π̂(i)

ab = 0 [117]. Also,
(2.4.10) simplify to n̂(i)

= n(i) and N̂ (i)
a = n(i)v(i)

a . From now on we will always assume that v(i) � 1, unless stated otherwise.

2.4.3. Conservation laws of the total fluid
Measured relative to the ua-frame the total fluid has an effective energy density ρ = Σiρ

(i), pressure p = Σip(i), energy
flux qa = Σiq̂(i)

a and

Tab = ρuaub + phab + 2u(aqb). (2.4.11)

The latter is conserved which means that ∇
bTab = 0. Assuming an effective equation of state of the form p = p(ρ, s), where

s is the associated specific entropy, we have

Dap =
c2s ρ

a
∆a +

p

a
Ea, (2.4.12)

where c2s = (∂p/∂ρ)s and Ea = (a/p)(∂p/∂s)ρDas are the square of the effective sound speed and the effective entropy
perturbation respectively. Therefore, the momentum–density conservation law of the total fluid reads

(ρ+ p)Aa = −
c2s ρ

a
∆a −

p

a
Ea − q̇〈a〉 −

4
3

Θqa −

(
σa

b
+ ωa

b
)
qb, (2.4.13)

while the effective total energy satisfies (1.3.17). We note that the expansion dynamics is determined by the total fluid and
spatial inhomogeneities in the volume expansion aremonitored via Eq. (2.3.2) with Dap and Aa given by (2.4.12) and (2.4.13)
respectively.

2.4.4. Conservation laws of the i-th fluid
Assuming amixture of interacting and non-comoving perfect fluids, the energy–momentum of the i-th species reads (see

Section 2.4.2)

T(i)
ab = ρ(i)uaub + p(i)hab + 2u(aq

(i)
b) , (2.4.14)

with q(i)
a = (ρ(i)

+ p(i))v(i)
a and v(i)

a representing the peculiar velocity of the component. The above satisfies the conservation
law

∇
bT(i)

ab = I(i)a , (2.4.15)

where the interaction term has
∑

i I
(i)
a = 0 due to the conservation of Tab =

∑
i T

(i)
ab . Setting I(i)

= −I(i)a ua and I(i)
a = ha

bI(i)a , the
timelike and spacelike parts of (2.4.15) give

ρ̇(i)
= −Θ

(
ρ(i)

+ p(i)
)

− Daq(i)
a − 2Aaq(i)

a + I(i) (2.4.16)
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and (
ρ(i)

+ p(i)
)
Aa = −

c2(i)s ρ(i)

a
∆(i)

a −
p(i)

a
E (i)
a − q̇(i)

〈a〉 −
4
3

Θq(i)
a −

(
σa

b
+ ωa

b
)
q(i)
b + I(i)

a , (2.4.17)

where c2(i)s = (∂p(i)/∂ρ(i))s(i) and E (i)
a = (a/p(i))(∂p(i)/∂s(i))ρ(i)Das(i) are respectively the square of the sound speed and

the entropy perturbation of the species in question. Also, following definition (2.2.1), ∆(i)
a = (a/ρ(i))Daρ

(i) describes
inhomogeneities in the density distribution of the i-th fluid component, relative to the ua-frame. Finally we note that∑

i I
(i)

= 0 =
∑

i I
(i)
a .

2.4.5. Nonlinear density perturbations in the i-th species
Taking the time derivative of ∆(i)

a and using the conservation laws (2.4.16) and (2.4.17), we arrive at the following
nonlinear expression

∆̇
(i)
〈a〉 =

p(i)

ρ(i)
Θ∆(i)

a −

(
1 +

p(i)

ρ(i)

)
Za +

aΘ

ρ(i)

(
q̇(i)

〈a〉 +
4
3
Θq(i)

a

)
−

a

ρ(i)
Da

(
Dbq(i)

b − I(i)
)

−

(
σb

a + ωb
a

)
∆

(i)
b −

2a
ρ(i)

Da

(
Abq(i)

b

)

+
aΘ

ρ(i)

(
σa

b
+ ωa

b
)
q(i)
b +

1
ρ(i)

(
Dbq(i)

b + 2Abq(i)
b − I(i)

) (
∆(i)

a − aAa

)
−

aΘ

ρ(i)
I(i)
a . (2.4.18)

When the interaction term is specified, the above describes the propagation of spatial inhomogeneities in the density
distribution of the i-th species. Recall that q(i)

a = (ρ(i)
+ p(i))v(i)

a and that the nonlinear evolution of Za is governed by Eq.
(2.3.2).

2.5. Inhomogeneous magnetised cosmologies

From the Earth and the nearby stars, to galaxies, galaxy clusters and remote high-redshift protogalaxies, magnetic fields
have been repeatedly observed [118–120]. Although the origin of cosmic magnetism is still a mystery, it appears that we
live in a magnetised universe [121].

2.5.1. The ideal MHD approximation
With the exception of any period of inflation and early reheating, the universe has been a good conductor throughout

its lifetime. As a result, B-fields of cosmological origin have remained frozen into the expanding cosmic fluid during most
of their evolution. This allows us to study the magnetic effects on structure formation within the limits of the ideal
magnetohydrodynamics (MHD) approximation. The latter is described by means of Ohm’s law, which has the covariant
form [122,123]

Ja = µua + ςEa, (2.5.1)

with ς representing the scalar conductivity of the medium. Note that the quantities on the right-hand side are measured
in the rest-frame of the plasma. Expression (2.5.1) splits the 4-current into a timelike part, due to the charge density, and a
spacelike part,

Ja = ςEa, (2.5.2)

from conduction. This form of Ohm’s law covariantly describes the resistive magnetohydrodynamic (MHD) approximation
in the single-fluid approach.13 Note the absence of the induced electric field from the above, reflecting the fact that the
covariant form of Maxwell’s formulae (see (1.3.14)–(1.3.16)) already incorporates the effects of relative motion. According
to (2.5.2), zero electrical conductivity implies that the spatial currents vanish, even when the electric field is non-zero. On
the other hand, non-zero spatial currents are compatible with a vanishing electric field as long as the conductivity of the
medium is infinite (i.e. for ς → ∞). Thus, at the ideal MHD limit, the electric field vanishes in the frame of the fluid and the
energy–momentum tensor of the residual magnetic field simplifies to [109]

T(B)
ab =

1
2
B2uaub +

1
6
B2hab + Πab, (2.5.3)

with Πab = −B〈aBb〉. This means that the B-field corresponds to an imperfect fluid with energy density ρB = B2/2, isotropic
pressure pB = B2/6 and anisotropic stresses represented by Πab. Similarly, Maxwell’s equations (see Section 1.3.2) reduce to
a single propagation formula,

Ḃ〈a〉 =

(
σab + εabcω

c
−

2
3

Θhab

)
Bb, (2.5.4)

13 Ohm’s law relates the induced 3-current with the electric field and it is generally given in the form of a propagation equation of the electric current.
For the fully nonlinear 1 + 3 covariant version of the generalised Ohm’s law in the case of a hot multi-component plasma the reader is referred to [124].
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and to the following three constraints

curl Ba + εabcA
bBc

= Ja, (2.5.5)

2ωaBa = µ, DaBa = 0. (2.5.6)

The right-hand side of (2.5.4) is due to the relative motion of the neighbouring observers and guarantees that the magnetic
forcelines always connect the same matter particles, namely that the field remains frozen-in with the highly conducting
fluid. Expression (2.5.5) provides a direct relation between the spatial currents, which are responsible for keeping the field
lines frozen-in with the matter, and the magnetic field itself (e.g. see [125]).

Contracting the magnetic induction Eq. (2.5.4) along Ba leads to the evolution law for the energy density of the field,
which takes the nonlinear form(

B2
)·

= −
4
3

ΘB2 − 2σabΠ
ab. (2.5.7)

This shows that in a highly conducting cosmic medium we have B2 ∝ a−4 always unless there is substantial anisotropy, in
which case the B-field behaves as a dissipative radiative fluid. Note that in a spatially homogeneous, radiation-dominated
universe with weak overall anisotropy, the shear term in the right-hand side of (2.5.7) means that the ratio B2/ρ(γ) is no
longer constant but displays a slow ‘quasi static’ logarithmic decay (see [126] and also [127,128]).

2.5.2. Conservation laws
Covariant studies of cosmic electromagnetic fields date back to thework of Elhers and Ellis (see also [129] for an analogous

approach), while the Newtonian version of the relativistic approach was recently given in [130]. Following [42], the energy
momentum tensor corresponding to a magnetised single perfect fluid of infinite conductivity is

Tab =

(
ρ+

1
2
B2
)
uaub +

(
p +

1
6
B2
)
hab + Πab, (2.5.8)

and the medium behaves as an imperfect fluid with effective density ρ + B2/2, isotropic pressure p + B2/6 and solely
magnetic anisotropic stresses represented byΠab. Applied to the above, and using theMHD form ofMaxwell’s equations, the
conservation law ∇

bTab = 0 splits into two expressions that respectively describe energy and momentum conservation14

ρ̇ = −(ρ+ p)Θ, (2.5.9)(
ρ+ p +

2
3
B2
)
Aa = −Dap − εabcB

b curl Bc
− ΠabA

b. (2.5.10)

Note the absence of magnetic terms in Eq. (2.5.9), since only the electric field contributes to (1.3.20). The magnetic energy
is separately conserved, as guaranteed by the magnetic induction equation (2.5.4). The second last term in (2.5.10), which
is often referred to as the magnetic Lorentz force, is always normal to the B-field lines and decomposes as

εabcB
b curl Bc

=
1
2
DaB

2
− BbDbBa. (2.5.11)

The last term in the above is the result of themagnetic tension. In so far as this tension stress is not balanced by the pressure
gradients, the field lines are out of equilibrium and there is a non-zero Lorentz force acting on the magnetised fluid.

2.5.3. Nonlinear density perturbations of the magnetised fluid
In the presence of magnetic fields, the nonlinear evolution of spatial inhomogeneities in the density distribution of a

single, highly conducting perfect fluid is described by the expression

∆̇〈a〉 =
p

ρ
Θ∆a −

(
1 +

p

ρ

)
Za +

aΘ

ρ
εabcB

b curl Bc
+

2aΘB2

3ρ
Aa − (σba + ωba)∆b

+
aΘ

ρ
ΠabA

b. (2.5.12)

This is obtained after taking the projected time-derivative of definition (2.2.1) and then using relations (2.5.9) and (2.5.10).
Similarly, starting form (2.2.3)(a) and using (2.5.9) we arrive at the nonlinear evolution equation for the expansion gradients

Ż〈a〉 = −
2
3
ΘZa −

1
2
ρ∆a −

1
2
B2Ba +

3
2
aεabcB

b curl Bc
+ aDaDbAb + 2aAbDaAb

+

[1
2

R − 3
(
σ2

− ω2
)

+ DbAb + AbA
b
]
aAa − (σba + ωba)Zb

+
3
2
aΠabA

b
− 2aDa

(
σ2

− ω2
)
, (2.5.13)

14 One can also obtain the conservation laws (2.5.9) and (2.5.10) by taking the MHD limit of expressions (1.3.20) and (1.3.21) of Section 1.3.3 and then
substituting in the 3-current from constraint (2.5.5).
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where R is the Ricci scalar of the magnetised 3-D space orthogonal to the fluid motion. Finally, the non-linear propagation
formula monitoring spatial inhomogeneities in the magnetic energy density (see definition (2.2.3)(b)) is

Ḃ〈a〉 =
4ρ

3(ρ+ p)
∆̇〈a〉 −

4pΘ
3(ρ+ p)

∆a −
4aΘ

3(ρ+ p)
εabcB

b curl Bc
−

4
3
aΘ

[
1 +

2B2

3(ρ+ p)

]
Aa

− (σba + ωba)Bb
+

4ρ
3(ρ+ p)

(σba + ωba)∆b
−

4aΘ
3(ρ+ p)

ΠabA
b
−

2a
B2

Π bcDaσbc

−
2a
B2
σbcDaΠbc +

2
B2
σbcΠ

bcBa −
2a
B2
σbcΠ

bcAa. (2.5.14)

The above results from the time-derivative of (2.2.3)(b) by means of (2.5.7) and (2.5.13) and cannot be used when the
magnetised medium has p = −ρ.

2.6. Inhomogeneous scalar-field cosmologies

Scalar-field dominated universes have come into prominence primarily through the inflationary scenarios. Covariantly,
scalar-field cosmologies have been discussed in a series of papers by Madsen and Ellis [131–133] and more recently by
Vernizzi and Langlois [111,134].

2.6.1. Minimally coupled scalar fields
Consider a general, pseudo-Riemannian spacetime filled with a single scalar field (ϕ), which is minimally coupled to

gravity. The associated Lagrangian density is

Lϕ = −
√

−g
[1
2

∇aϕ∇
aϕ+ V(ϕ)

]
, (2.6.1)

where g is the determinant of the spacetime metric and V(ϕ) is the effective potential that describes the self-interaction of
the scalar field. The stress–energy tensor associated with (2.6.1) has the form

T
(ϕ)
ab = ∇aϕ∇bϕ−

[1
2

∇cϕ∇
cϕ+ V(ϕ)

]
gab. (2.6.2)

Applying the twice contracted Bianchi identities, namely the conservation law ∇
bTab = 0, to the above and assuming that

∇aϕ 6= 0 we arrive at the familiar Klein–Gordon equation

∇
a
∇aϕ− V ′(ϕ) = 0, (2.6.3)

where in this case the prime indicates differentiation with respect to ϕ. We note that when ∇aϕ = 0 expression (2.6.2)
reduces to T

(ϕ)
ab = −V(ϕ)gab. The latter ensures that ∇aV(ϕ) = 0, since ∇

bTab = 0, and ϕ behaves as an effective cosmological
constant rather than a dynamical scalar field.

2.6.2. Scalar-field kinematics
In order to achieve an 1+ 3 covariant fluid-description of scalar fields, one first needs to assign a 4-velocity vector to the

ϕ-field itself. Suppose that the 4-vector∇aϕ is timelike, namely that∇aϕ∇
aϕ < 0 over an open spacetime region. In this case

∇aϕ defines the normals to the spacelike hypersurfaces ϕ(xa) = constant and we define our 4-velocity field by [112,132]

ua = −
1
ϕ̇

∇aϕ, (2.6.4)

with ϕ̇ = ua
∇aϕ 6= 0. This means that ϕ̇2

= −∇aϕ∇
aϕ > 0 and uaua

= −1 as required. Also, the flow vector ua defines our
time direction and introduces a unique threading of the spacetime into time and space. Themetric of the 3-space orthogonal
to ua is represented by the projection tensor

hab = gab +
1
ϕ̇2 ∇aϕ∇bϕ, (2.6.5)

which satisfies the standard requirements hab = h(ab), habub
= 0, ha

a
= 3 and habhb

c = hac. In addition, hab defines the covariant
derivative operator Da = ha

b
∇b orthogonal to ua and therefore guarantees that

Daϕ = 0, (2.6.6)

always. This result is a key feature of covariant scalar-field cosmologies and, as we will see in the following sections, it
‘dominates’ the fluid description of the ϕ-field and essentially dictates all aspects of its evolution.
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The irreducible variables describing the kinematics of ua = −∇aϕ/ϕ̇ in a covariant manner are obtained in the usual way
by means of the decomposition (1.3.1). More specifically, starting from definition (2.6.4), using the Klein–Gordon equation
and the fact Daϕ = 0, we arrive at [135]

Θ = −
1
ϕ̇

[
ϕ̈+ V ′(ϕ)

]
, ωab = 0, σab = −

1
ϕ̇
ha

chb
d
∇c ∇dϕ+

1
3ϕ̇

[
ϕ̈+ V ′(ϕ)

]
hab (2.6.7)

and

Aa = −
1
ϕ̇
Daϕ̇. (2.6.8)

Hence, the 4-velocity field (2.6.4) is irrotational and ϕ̇ acts as an acceleration potential for the fluid flow. These expressions
provide the irreducible kinematical variables associatedwith aminimally coupled scalar field. The reader is referred to [132]
for a more general description of scalar-field kinematics, of which relations (2.6.7) and (2.6.8) emerge as a special case.

2.6.3. Scalar fields as perfect fluids
The introduction of the timelike velocity field (2.6.4) also allows for a dynamically convenient fluid-description of scalar

fields. In particular, by means of (2.6.4) the energy–momentum tensor (2.6.2) has perfect-fluid form15

T
(ϕ)
ab = ρ(ϕ)uaub + p(ϕ)hab, (2.6.9)

with

ρ(ϕ)
=

1
2
ϕ̇2

+ V(ϕ) and p(ϕ)
=

1
2
ϕ̇2

− V(ϕ). (2.6.10)

Clearly, if we demand a positive definite energy density for the field, then ϕ̇2
+ 2V(ϕ) > 0.

The two simplest cases correspond to a free scalar field with purely kinetic energy (i.e. V(ϕ) = 0), which has p(ϕ)
= ρ(ϕ)

and behaves like a stiff-matter component. If the field’s energy is purely potential, on the other hand, p(ϕ)
= −ρ(ϕ). Such an

(effective) equation of state is approximately achieved during the slow-rolling regime of the standard inflationary scenarios.
Then, the potential energy dominates over the kinetic, which means that ϕ̇2

� V(ϕ).
In general, either

p(ϕ)
= ρ(ϕ)

− 2V(ϕ), (2.6.11)

or p(ϕ)
= ϕ̇2

− ρ(ϕ). Therefore, minimally coupled scalar fields do not generally behave like barotropic media. Instead, the
ϕ-field may be regarded as bulk viscous fluid with the potential playing the role of bulk viscosity [131].

2.6.4. Conservation laws
When applied to the energy–momentum tensor of a minimally coupled scalar field, the twice-contracted Bianchi

identities lead to the familiar Klein–Gordon equation (see expression (2.6.3) in Section 2.6.1). Once the timelike 4-velocity
vector (2.6.4) is introduced, wemay use condition Daϕ = 0 to write ∇aϕ = −ϕ̇ua. Then, the Klein–Gordon equation acquires
its 1 + 3 covariant form

ϕ̈+ Θϕ̇+ V ′(ϕ) = 0. (2.6.12)

The above can also be seen as the energy conservation law associated with the perfect fluid description of a minimally
coupled scalar field. Indeed, after substituting expressions (2.6.10) into the standard energy conservation equation we
immediately recover (2.6.12). On the other hand, the conservation of the momentum is given by expression (2.6.8). This
can be verified by inserting relations (2.6.10) into the familiar momentum conservation law of a single perfect fluid (see Eq.
(1.3.19)(b) in Section 1.3.3).

2.6.5. Nonlinear scalar-field perturbations
Taking the orthogonally projected gradients of Eq. (2.6.11), which can be seen as the equation of state of a minimally

coupled scalar field, we obtain

Dap
(ϕ)

= Daρ
(ϕ)

= ϕ̇Daϕ̇. (2.6.13)

This relation is guaranteed by our 4-velocity choice, which ensures that Daϕ = 0 always (see Eq. (2.6.6)) and therefore that
DaV(ϕ) = 0 as well. Introducing the variable ∆

(ϕ)
a = (a/ρ(ϕ))Daρ

(ϕ) that describes inhomogeneities in the (effective) energy
density of the ϕ-field, expression (2.6.13) leads to

aDap
(ϕ)

= ρ(ϕ)∆(ϕ)
a , (2.6.14)

15 A non-minimally coupled scalar field corresponds to an imperfect medium [132].
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or, equivalently, ∆
(ϕ)
a = (aϕ̇/ρ(ϕ))Daϕ̇. From (2.6.13) follows that, despite its non-barotropic equation of state, in

hydrodynamic terms the scalar field behaves as an effective stiff fluid. The non-barotropic nature of the ϕ-field emerges
in the associated Γa-parameter (see Section 2.3.3), which does not vanish. Indeed, for a minimally coupled scalar field, we
find that

Γa = Dap
(ϕ)

−

(
ṗ(ϕ)

ρ̇(ϕ)

)
Daρ

(ϕ)
= −

2V ′(ϕ)

Θϕ̇
Daρ

(ϕ)
6= 0, (2.6.15)

unless of course V ′(ϕ) = 0. The aforementioned ‘duality’ in the nature of scalar fields represents a major departure from
conventional perfect-fluid behaviour and is reflected in the statement that scalar-field perturbations are ‘non-adiabatic’.

Setting ∆
(ϕ)
a = (a/ρ(ϕ))Daρ

(ϕ), Λ = 0 and using expression (2.6.14), we may adapt the system (2.3.1) and (2.3.2) to a
minimally coupled scalar field. To be precise, we obtain the propagation equations

∆̇
(ϕ)
〈a〉 =

p(ϕ)

ρ(ϕ)
Θ ∆(ϕ)

a −

(
1 +

p(ϕ)

ρ(ϕ)

)
Za −

(
σb

a + ωb
a

)
∆

(ϕ)
b , (2.6.16)

and

Ż〈a〉 = −
2
3

ΘZa − 2ρ(ϕ)∆(ϕ)
a − a

[1
3

Θ2
+

1
2

(ρ(ϕ)
+ 3p(ϕ))

]
Aa + aDaDbAb −

(
σb

a + ωb
a

)
Zb

− 2aDa

(
σ2

− ω2
)

+ 2aAbDaAb − a
[
2
(
σ2

− ω2
)

− DbAb − AbAb

]
Aa, (2.6.17)

respectively. Finally, combining (2.6.8) and (2.6.14) we arrive at the following expression for the 4-acceleration of the ua-
congruence defined in Section 2.6.2 (see Eq. (2.6.4) there)

a(ρ(ϕ)
+ p(ϕ))Aa = −ρ(ϕ)∆(ϕ)

a . (2.6.18)

The above, together with Eqs. (2.6.16) and (2.6.17), monitors the evolution of nonlinear density perturbations in scalar-field
dominated cosmologies.

3. Linear cosmological perturbations

3.1. Linearisation

Before linearising the full equations of the previous section, one needs to select the exact solution that will provide the
unperturbed background about which the nonlinear formulae will be linearised. Termswith nonzero unperturbed value are
assigned zero perturbative order, while those that vanish in the background are treated as first order perturbations [104,
136]. This guarantees that linear variables satisfy the criterion for gauge-invariance [106]. By definition, all the first-order
quantities are assumed weak relative to the background ones and of perturbative order O(ε) in a smallness parameter ε
(e.g. see [82]). When linearising, products of O(ε) variables are neglected.

Cosmological applications use the homogeneous and isotropic FLRW spacetime as the unperturbed zero-order model.
When dealing with a Friedmann–Lemaitre background, the only zero-order quantities are the matter energy density ρ,
isotropic pressure p and the volume expansion Θ = 3H. If the geometry of spatial sections is not Euclidean, these are
supplemented by the 3-Ricci scalar R.

3.1.1. Interpreting the inhomogeneity variables
To linear order, the inhomogeneity variables of Section 2.2.2 describe measurable spatial differences in the distribution

of the physical quantities in question. To show this, consider a connecting vector between two worldlines of ua (so that its
Lie derivative along ua vanishes). The projection of this vector perpendicular to ua defines a spatial vector χa, which connects
events on neighbouring worldlines that are simultaneous (as seen by ua — see Section 1.3.1). Then, χaua

= 0 and

χ̇〈a〉 =
1
3
Θχa + (σab + ωab)χ

b, (3.1.1)

which means that in a FLRW universe χa = aχ0
a (with χ0

a = constant) [44]. If we Taylor expand the density about some
worldline, then the density in the local rest space of ua at displacement χa has

ρ̃− ρ = χaDaρ, (3.1.2)

to leading order. Using the definition (2.2.1) and the fact that χa ∝ a in the FLRW background, the above translates into

δρ ∝ χa
0∆a, (3.1.3)

where δρ = (ρ̃−ρ)/ρ. In other words, the comoving fractional gradient∆a describes themeasurable local density variation
between two neighbouring fundamental observers. Moreover, ∆a closely corresponds to the familiar energy–density
contrast of the non-covariant studies.
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3.2. Single-fluid perturbations

3.2.1. Linear evolution equations
Consider an FLRW universe filled with a single barotropic perfect fluid (i.e. assume that p = p(ρ)). On this background

linear inhomogeneities in the energy density of the medium evolve according to

∆̇a = 3wH∆a − (1 + w)Za. (3.2.1)

The above is obtained from (2.3.3) after dropping its nonlinear terms and assuming a barotropic equation of state for the
cosmic fluid. Also the parameter w = p/ρ is the barotropic index of the fluid with

ẇ = −3H(1 + w)(c2s − w). (3.2.2)

This means that w = constant when c2s = w provided H 6= 0 and w 6= −1 (as happens during the radiation and dust eras, for
example). Within the same almost-FLRW environment expression (2.3.2) linearises to

Ża = −2HZa −
1
2
ρ∆a −

3
2
aDap − a

[
3H2

+
1
2
ρ(1 + 3w) − Λ

]
Aa + aDaDbAb, (3.2.3)

where ρ(1 + w)Aa = −Dap to linear order (see (1.3.19)(b)). Given the barotropic nature of the medium, we may define
c2s = dp/dρ as the square of the adiabatic sound speed. Then, the linearised conservation law for the momentum density
reads

a(1 + w)Aa = −c2s∆a. (3.2.4)

Solving this for Aa, substituting the result into the right-hand side of (3.2.3) and keeping terms of up to linear order, we
obtain

Ża = −2HZa −
1
2
ρ∆a −

c2s
1 + w

(
D2∆a +

K

a2
∆a

)
− 6ac2sH curlωa, (3.2.5)

where K = 0,±1 is the 3-curvature index of the FLRW background and D2
= DaDa is the orthogonally projected Laplacian

operator. Note that in deriving the above we have also used the linear commutation laws between the orthogonally
projected gradients of scalars and spacelike vectors (see Appendix A.3), as well as the zero-order Friedmann equation
ρ− 3H2

+ Λ = 3K/a2 (see Section 1.4.2).
The linear expansion of this model is determined by the associated expression of Raychaudhuri’s formula (1.3.3), written

in the form

qH2
=

1
6
ρ(1 + 3w) +

c2s
3a2(1 + w)

∆ −
1
3

Λ, (3.2.6)

on using (3.2.4). Note that q is the deceleration parameter of the perturbed spacetime (see Eq. (1.4.7) in Section 1.4.2) and
∆ = aDa∆a describes scalar density perturbations (see Section 3.2.2). When positive, the latter represents overdensities
and adds to the gravitational pull of the matter. In the opposite case, ∆ corresponds to an underdense region and tends to
accelerate the expansion.

Substituting (3.2.4) into the linearised counterpart of expression (1.3.4), we find that, to first order, the shear anisotropy
evolves as

σ̇ab = −2Hσab − Eab −
c2s

a2(1 + w)
∆〈ab〉, (3.2.7)

where ∆〈ab〉 represents anisotropies in the distribution of the density gradients (see Section 3.2.2). Finally, the rotational
behaviour of a perturbed FLRW universe, containing a single barotropic fluid, is monitored by the propagation equation of
the vorticity vector. Starting from (1.3.5) and using (3.2.4), together with the linearised commutation law (A.28), we arrive
at

ω̇a = −2
(
1 −

3
2
c2s

)
Hωa. (3.2.8)

Thus, kinematic vortices decay with the expansion unless the barotropic medium has an equation of state ‘stiffer’ than
w = 2/3 (e.g. see [137]).

The above propagation equations are supplemented by a set of three linear constraints (see (1.3.6)–(1.3.8) for the
nonlinear expressions), namely by

Dbσab =
2
3
DaΘ + curlωa, Daωa = 0 (3.2.9)

and

Hab = curlσab + D〈aωb〉. (3.2.10)
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When the right-hand side of (3.2.9)(a) vanishes, the shear is also transverse and describes pure-tensor perturbations, namely
gravitational waves (see Section 3.6 below). Also, following (3.2.9)(b) and (3.2.10),ωa is a linear solenoidal vector and in the
absence of rotation the magnetic Weyl component is fully determined by the shear.

Additional constraints between the kinematical and the dynamical quantities are obtained by the linearised
Gauss–Codacci formula (see Section 1.3.5), which takes the form

Rab =
1
3

Rhab − H(σab + ωab) + Eab, (3.2.11)

where

R = 2
(
ρ−

1
3

Θ2
+ Λ

)
, (3.2.12)

may be seen as the linear counterpart of Friedmann’s equation.

3.2.2. Three types of inhomogeneity
The comoving, orthogonally projected gradient∆a contains collective information about three types of inhomogeneities:

density perturbations (a scalar mode); vortices (a vector mode) and shape distortions. Noting that the latter is not a pure
tensor mode, but a combination of scalar and vector perturbations, we refer the reader to Appendix A.4 for details on the
covariant definition of pure scalar, vector and tensor modes. All the information is encoded in the dimensionless projected
gradient ∆ab = aDb∆a and it is decoded by splitting ∆ab into its irreducible components as

∆ab = ∆〈ab〉 + ∆[ab] +
1
3

∆hab, (3.2.13)

where ∆〈ab〉 = aD〈b∆a〉, ∆[ab] = aD[b∆a] and ∆ = aDa∆a [138]. The first of these variables describes variations in the
anisotropy pattern of the gradient field (e.g. pancakes or cigar-like structures). The second term in the right-hand side of
(3.2.13) is related to magnitude preserving changes of ∆a (i.e. vortex-like distortions), while ∆ monitors scalar variations in
the spatial distribution of the matter (i.e. overdensities or underdensities).

3.2.3. Density perturbations
Linearising the orthogonally projected gradients of (3.2.1) and (3.2.3) and then taking the trace of the resulting

expressions we find that

∆̇ = 3wH∆ − (1 + w)Z (3.2.14)

and

Ż = −2HZ −

[
1
2
ρ+

3Kc2s
a2(1 + w)

]
∆ −

c2s
1 + w

D2∆, (3.2.15)

respectively. This system governs the linear gravitational clumping of matter in a perturbed almost-FLRW universe filled
with a single perfect fluid. Note that in deriving Eq. (3.2.15) we have used the linear result Da curlωa = 0. Taking the time
derivative of (3.2.14), recalling expression (3.2.2) and using the background relations (1.4.4), (1.4.6), we arrive at [136]

∆̈ = −2
(
1 − 3w +

3
2
c2s

)
H∆̇ +

[(1
2

+ 4w − 3c2s −
3
2
w2
)
ρ+ (5w − 3c2s )Λ −

12(w − c2s )K

a2

]
∆ + c2sD

2∆. (3.2.16)

Thiswave-like equation,with extra terms due to gravity and the universal expansion,monitors the linear evolution ofmatter
aggregations in a almost-FLRW universe filled with a single barotropic perfect fluid.

In deriving expression (3.2.16) we have assumed that ẇ 6= 0. Although the equation of state of the cosmic medium
changes during the lifetime of the universe, it remains essentially constant throughout several cosmological epochs of
interest (e.g. w = 1/3 during the radiation era and w = 0 after equality). Setting w = constant means w = c2s (see (3.2.2))
and simplifies Eq. (3.2.16) to

∆̈ = −2
(
1 −

3
2
w
)
H∆̇ +

[1
2
ρ(1 − w)(1 + 3w) + 2Λw

]
∆ + c2sD

2∆, (3.2.17)

which is now independent of the background 3-curvature. On introducing the standard scalar harmonics Q(k), we may
expand the perturbed variable in a series of harmonics modes as ∆ = Σk∆

(k)Q(k), where Da∆
(k)

= 0 and k is the comoving
wavenumber of the associated mode (see Appendix A.4 for details). Then, expression (3.2.17) takes the form

∆̈(k)
= −2

(
1 −

3
2
w
)
H∆̇(k)

+

{
1
2

[ρ(1 − w)(1 + 3w) + 4Λw] −
k2c2s
a2

}
∆(k). (3.2.18)
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The last term in the right-hand side of the above demonstrates the competing effects of gravitational attraction and pressure
support, with collapse occurring when the quantity within the angled brackets in positive. Noting that λk = a/k is the
physical wavelength of the perturbed scalar mode, we conclude that gravitational contraction will take place only on scales
larger than the associated Jeans length, λk > λJ , where

λJ '
cs√

ρ(1 − w)(1 + 3w) + 4Λw
. (3.2.19)

The above means that when the cosmic medium has a ‘stiff ’ equation of state (i.e. for w = 1), the linear gravitational
aggregation of the perturbed matter component is only supported by a positive cosmological constant (see also (3.2.18)).
The Jeans scale also determines an associated Jeans mass. In the absence of a cosmological constant, the latter is given by

MJ ∝ ρbλ
3
J ' 1016

(
Ωb

Ω

) (
Ωh2

)−1/2
M�, (3.2.20)

which is approximately the mass of a supercluster of galaxies. Note that Ω , Ωb are respectively the total and the baryonic
density parameters, while H = 100 h km s−1 Mpc−1 (e.g. see [139]).

Setting K = 0 = Λ we will seek analytical solutions to Eq. (3.2.18). During the radiation era (i.e. when w = 1/3 = c2s ),
H = 1/(2t), ρ = 3/(4t2) and in a comoving frame we have

d2∆(k)

dt2
+

1
2t

d∆(k)

dt
−

1
2t2

[
1 −

1
6

(
k

aH

)2]
∆(k)

= 0, (3.2.21)

where k/aH = λH/λk and λH = 1/H = 2t. On super-Hubble scales, where k/aH � 1 and the pressure support is negligible,
the solution is

∆ = ∆1t + ∆2t
−1/2, (3.2.22)

with ∆1,2 = constant. Therefore, during the radiation era, large-scale matter aggregations grow as ∆ ∝ a2. Well inside the
horizon, k/aH � 1, pressure gradients support against gravitational collapse and the over-density oscillates according to

∆(k)
= ∆

(k)
1 sin

[
√
3

k

a0H0

(
t

t0

)1/2
]

+ ∆
(k)
2 cos

[
√
3

k

a0H0

(
t

t0

)1/2
]

, (3.2.23)

where ∆
(k)
1,2 = constant and the zero suffix corresponds to a given initial time.

After matter-radiation equality w = 0 = c2s and (for K = 0 = Λ) we have H = 2/(3t) and ρ = 4/(3t2). In these conditions
Eq. (3.2.18) leads to the following scale-independent evolution

∆ = ∆1t
2/3

+ ∆2t
−1, (3.2.24)

for the density contrast. Accordingly, matter aggregations in the post-recombination universe grow proportionally to
the scale factor. Not surprisingly this relativistic result is identical to the one obtained through a Newtonian treatment
(e.g. see [139–142]).

Beyond decoupling, the photons can no longer provide pressure support and gravitational attraction is only
counterbalanced by ordinary baryonic gas pressure. At the time of recombination the latter is p(b)

' n(b)kBTrec, while its
radiation counterpart is given by p(γ)

' n(γ)kBTrec (with kB representing Boltzmann’s constant). Because n(b)
' 10−8n(γ), the

pressure support drops drastically at decoupling and soon after recombination the Jeans mass reduces to

MJ ' 104
(

Ωb

Ω

) (
Ωh2

)−1/2
M�, (3.2.25)

which is close to that of a star cluster [139].

3.2.4. Isocurvature perturbations
One can define as isocurvature perturbations those occurring on hypersurfaces of uniform curvature, namely fluctuations

whichmaintain DaR = 0 at all times [104]. This should be distinguished from the definition typically found in the literature,
where the term isocurvature usually means distortions in multi-component systems with zero perturbation in the total
energy–density initially (e.g. see [143,144]).

Isocurvature fluctuations also require zero vorticity to guarantee the integrability of the 3-D hypersurfaces orthogonal
to ua. Then, the condition for isocurvature perturbations is obtained by linearising the orthogonally projected gradient of
(1.3.40). To be precise, using definition (2.2.1), (2.2.3)(a) we arrive at

aDaR = 2ρ∆a − 4HZa. (3.2.26)

WhenDaR = 0, the right-hand side of the above ensures that linear expansion gradients and those in the fluid are connected
by a simple algebraic relation. The projected comoving divergence of the latter translates into the following linear constraint
between the associated scalar variables

2HZ = ρ∆. (3.2.27)
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Assuming a spatially flat background, this is a self-maintained condition for pressure-free dust, but holds on large scales only
when the fluid has non-zero pressure [104]. In particular, propagating (3.2.26) along the observer’s worldline and keeping
up to linear order terms gives

(DaR)·
= −3HDaR +

4c2s H
a(1 + w)

D2∆a, (3.2.28)

since the vorticity has already been switched off. This result shows that the linear isocurvature condition is self-maintained
when the fluid is pressure-free or at long-wavelengths, where the Laplacian terms on the right-hand side of Eq. (3.2.28) can
be neglected.

Imposing the isocurvature condition (3.2.27) to the linear system (3.2.14) and (3.2.15), allows us to eliminate the
expansion inhomogeneities (i.e. the variable Z) from Eq. (3.2.14). The latter then acquires the simple form

∆̇(iso)
= −

3
2

(1 − w)H∆(iso), (3.2.29)

which monitors the linear evolution of isocurvature scalar/density perturbations on a spatially flat FLRW background filled
with a single perfect fluid. Thus, within our scheme, isocurvature perturbations can be defined and treated in single as well
as in multi-fluid cosmologies. Solving Eq. (3.2.29) shows that linear isocurvature modes always decay. In particular, we find
∆(iso)

∝ t−1/2 during the radiation era and ∆(iso)
∝ t−1 after equipartition.

3.2.5. Density vortices
Magnitude preserving changes in the distribution of the density gradient are monitored via the antisymmetric

orthogonally projected tensor ∆[ab]. To first order, the latter is directly related to the vorticity tensor according to ∆[ab] =

−3a2(1+w)Hωab, given that the orthogonally projected gradients of scalars do not commute in the presence of rotation (see
Appendix A.3). Similarly we find that Z[ab] = 3a2Ḣωab, which means that

Z[ab] = −
Ḣ

(1 + w)H
∆[ab], (3.2.30)

at the linear perturbative level. Thus, linearising the skew part of the orthogonally projected gradient of (3.2.1), and then
using the above and the background relations (1.4.3)(a) and (1.4.4) we obtain

Ẇa = −
1
2H

[
(1 − w)ρ−

2(1 − 3w)K

a2
− 2Λw

]
Wa, (3.2.31)

where Wa ≡ εabc∆
bc/2. Accordingly, whenw < 1/3, positive background 3-curvature tends to increase Wa, while a negative

curvature index will have the opposite effect. Also, for w > 0, the effect of a positive cosmological constant is to increase
vortex-like density perturbations.

Introducing the vector harmonic functions Q(k)
a (with Q̇(k)

a = 0 = DaQ(k)
a ), we may write Wa = ΣkW

(k)Q(k)
a with

DaW
(k)

= 0. Then, the k-th harmonic mode evolves as

Ẇ (k)
= −

1
2H

[
(1 − w)ρ−

2(1 − 3w)K

a2
− 2Λw

]
W (k). (3.2.32)

Setting K = 0 = Λ we find that W ∝ t−1/2 during radiation and W ∝ t−1 throughout dust. Therefore, linear vortices in the
density distribution of a perturbed FLRW universe decay with time on all scales.

3.2.6. Dissipative effects
So far we have treated the cosmic medium as a perfect fluid, ignored dissipation and have established a physical scale,

the Jeans length, that plays an important role in structure formation scenarios. There are other processes, however, which
can modify the purely gravitational evolution of matter perturbations. For baryons, the most important interaction is their
coupling to the pre-recombination photons. As the latter diffuse from high-density to low-density regions, they drag the
baryons along with them, erasing inhomogeneities in their distribution. This process, which is known as Silk damping, can
wipe out small-scale fluctuations in the baryonic component [145,146]. In particular, if `S is the scale associated with this
effect, the corresponding Silk mass is given by (e.g. see [139])

MS ∝ ρb`
3
S ' 6.2 × 1012

(
Ω

Ωb

)3/2 (
Ωh2

)−5/4
M�. (3.2.33)

The effect of photon free-streaming rises steeply aswe approach recombination and then ceases. Thus, before recombination,
subhorizon-sized baryonic perturbations on scales below `S are obliterated by Silk damping, those with masses betweenMS

and MJ oscillate like acoustic waves, while modes having M > MJ can grow. The latter, however, are of little cosmological
interest.
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In an analogous way, the free geodesic motion of the collisionless (dark matter) species erases any structure that tries to
form in their small-scale distribution. Therefore, the ideal fluid description of the dark component is a good approximation
on sufficiently large scales only. The dissipative process is known as free streaming (or Landau damping) and its full study
requires integrating the collisionless Boltzmann equation of the species in question (see Section 4). Nevertheless, one can
obtain an estimate of the effect by calculating the maximum distance traveled by a free-streaming particle. Following [139,
142], hot thermal relics (see Section 3.3.5 for a brief discussion on dark matter candidates), have

`FS ' 0.5
(

mDM

1 keV

)−4/3 (
ΩDMh

2
)1/3

Mpc, (3.2.34)

wheremDM is themass of the species in units of 1 keV. Thismeans that theminimum scale to survive collisionless dissipation
depends crucially on the particles’ mass. Applied to neutrinos with mν ' 30 eV, the above gives `FS ' 28Mpc and a
corresponding mass-scale of approximately 1015 M�. For much heavier candidate with, say, mDM ' 1 keV, free streaming
will wipe out perturbations on scales below `FS ' 0.5Mpc (or smaller than MFS ' 109 M�). Overall, the lighter the dark
matter is, the less power survives on small scales.

Cold thermal relics (CDM—see Section 3.3.5) have very small dispersion velocities and the values of their free-streaming
masses are very low. As a result, perturbations in the dark-matter component grow unimpeded by damping processes on all
scales of cosmological interest, although they suffer stagnation due to the Meszaros effect (see Section 3.3.4) until the time
of matter-radiation equality. After recombination, the potential wells of the collisionless species serve to boost the growth
of baryonic perturbations (see Section 3.3.5).

3.3. Multi-fluid perturbations

3.3.1. Linearised evolution equations for the i-th species
In the FLRW background all the members of the multi-component system are perfect fluids sharing the same 4-velocity

ua by construction. As a result, the effective flux terms, which depend on the peculiar velocities of the species vanish to zero
order. This ensures that these quantities are gauge invariant first-order perturbations. Then, Eq. (2.4.18) linearises to

∆̇(i)
a = 3w(i)H∆(i)

a −

(
1 + w(i)

)
Za +

3aH
ρ(i)

(
q̇(i)

〈a〉 + 4Hq(i)
a

)
−

a

ρ(i)
Da

(
Dbq(i)

b − I(i)
)

−
1
ρ(i)

I(i)∆(i)
a +

a

ρ(i)
I(i)Aa −

3aH
ρ(i)

I(i)
a , (3.3.1)

where w(i)
= p(i)/ρ(i) and q(i)

a = ρ(i)(1 + w(i))v(i)
a , with v(i)

a representing the peculiar velocity of each fluid relative to the
ua-frame. The associated momentum–density conservation law reads

aρ(i)
(
1 + w(i)

)
Aa = −c2(i)s ρ(i)∆(i)

a − p(i)E (i)
a + a

(
q̇(i)

〈a〉 + 4Hq(i)
a

)
+ aI(i)

a , (3.3.2)

with c2(i)s = ṗ(i)/ρ̇(i) to zero order. Using the above to eliminate the third term in the right-hand side of (3.3.1) and then
employing the linear part of (2.4.13) we obtain

∆̇(i)
a = 3

(
w(i)

− c2(i)s

)
H∆(i)

a − 3w(i)HE (i)
a −

(
1 + w(i)

)
Za −

a

ρ(i)
Da

(
Dbq(i)

b − I(i)
)

−
1
ρ(i)

I(i)∆(i)
a

+
a

ρ(1 + w)

[
3(1 + w(i))H −

1
ρ(i)

I(i)
] (

c2s ρ

a
∆a +

p

a
Ea + q̇a + 4Hqa

)
, (3.3.3)

where in the FLRW background w = (1/ρ)
∑

i ρ
(i)w(i) and c2s = [1/ρ(1+w)]

∑
i c

2(i)
s ρ(i)(1+w(i)). This is coupled to the linear

propagation equation of the expansion gradient, which depends on the total fluid and obeys

Ża = −2HZa −
1
2
ρ∆a −

3
2
c2s ρ∆a −

3
2
p Ea − a

[
3H2

+
1
2

(ρ+ 3p) − Λ

]
Aa + aDaDbAb, (3.3.4)

obtained from (2.3.2) by means of decomposition (2.4.12). Using the linearised part of Eq. (2.4.13), the linear commutation
laws between the projected gradients of scalars and recalling that ṡ = 0 in an FLRW spacetime, the above transforms to

Ża = −2HZa −
1
2
ρ∆a −

c2s
1 + w

(
D2∆a +

K

a2
∆a

)
−

w

1 + w

(
D2Ea +

K

a2
Ea

)

+
3a

ρ(1 + w)

[1
2
ρ(1 + w) −

K

a2

]
(q̇a + 4Hqa) −

a

ρ(1 + w)
DaDb (q̇b + 4Hqb) − 6ac2s HD

bωab. (3.3.5)

Expressions (3.3.3) and (3.3.5) are the basic members of a system of equations that monitors the linear evolution of density
inhomogeneities in an almost-FLRW universe filled with several interacting and non-comoving perfect fluids.
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3.3.2. Entropy perturbations in a multi-fluid system
In a fluid mixture, inhomogeneities in the effective total energy density (ρ) are related to those in densities of the

individual members by

∆a =
1
ρ

∑
i

ρ(i)∆(i)
a . (3.3.6)

Treating the whole multi-system as an effective single (total) fluid, we may combine (3.3.2) with the linear part of (2.4.13)
and the above to obtain

p Ea =
∑
i

p(i)E (i)
a +

∑
i

c2(i)s ρ(i)∆(i)
a − c2s

∑
i

ρ(i)∆(i)
a , (3.3.7)

which provides the total effective entropy perturbation of the multi-component system relative to the properties of its
members. Note that in the FLRW background all species share the same 4-velocity and the effective total sound speed
satisfies the relation

c2s =
1

ρ(1 + w)

∑
i

c2(i)s

[
ρ(i)

(
1 + w(i)

)]
, (3.3.8)

to zero order. Using the above we may recast expression (3.3.7) into the following linear expression

Ea =
1
p

∑
i

p(i)E (i)
a +

1
2ph

∑
i,j

h(i)h(j)
(
c2(i)s − c2(j)s

)
S(ij)
a , (3.3.9)

where h = ρ+ p, h(i)
= ρ(i)

+ p(i) and

S(ij)
a =

ρ(i)

h(i)
∆(i)

a −
ρ(j)

h(j)
∆(j)

a (3.3.10)

with S(ij)
a = −S(ji)

a . Accordingly, in a multi-component fluid the total effective entropy perturbation has one part coming
from the intrinsic entropy perturbations of the individual species and another due to their different dynamical behaviour.
Following (3.3.9), the latter vanishes if the species share the same sound speed or when S(ij)

a = 0.

3.3.3. Density perturbations in the i-th species
The scalar ∆(i)

= aDa∆(i)
a describes overdensities (or underdensities) in the matter distribution of the i-th fluid. Thus,

assuming no interactions and taking the comoving projected divergence of (3.3.3) we obtain

∆̇(i)
= 3

(
w(i)

− c2(i)s

)
H∆(i)

− 3w(i)HE (i)
−

(
1 + w(i)

)
Z −

a2

ρ(i)
D2

(
Daq(i)

a

)

+
3(1 + w(i))H

ρ(1 + w)

(
c2s ρ∆ + p E

)
+

3a2(1 + w(i))H

ρ(1 + w)
Da (q̇a + 4Hqa) , (3.3.11)

where E (i)
= aDaE (i)

a and E = aDaEa. In an analogous way Eq. (3.3.5) leads to the linear expression

Ż = −2HZ −
1
2
ρ∆ −

c2s
1 + w

(
D2∆ +

3K
a2

∆

)
−

w

1 + w

(
D2E +

3K
a2

E

)

−
a2

ρ(1 + w)

[
D2Da (q̇a + 4Hqa) +

3K
a2

Da (q̇a + 4Hqa)
]

+
3
2
a2Da (q̇a + 4Hqa) , (3.3.12)

since DaDbωab = 0 to first approximation. Also, in deriving the above we have used the first-order auxiliary result
aDaD2∆a = D2∆ + (2K/a2)∆ and an exactly analogous relation between the Laplacians of Ea and E .

Expressions (3.3.11) and (3.3.12) govern the linear evolution of matter aggregations in the density of the i-th species
provided the total flux vector qa =

∑
i q

(i)
a =

∑
i ρ

(i)(1 + w(i))v(i)
a is specified. Using the energy frame (i.e. setting qa =∑

i q
(i)
a = 0) the system (3.3.11) and (3.3.12) reduces to

∆̇(i)
= 3

(
w(i)

− c2(i)s

)
H∆(i)

− 3w(i)HE (i)
−

(
1 + w(i)

)
Z − a

(
1 + w(i)

)
D2v(i)

+
3(1 + w(i))H

1 + w

(
c2s ∆ + wE

)
(3.3.13)

and

Ż = −2HZ −
1
2
ρ∆ −

c2s
1 + w

(
D2∆ +

3K
a2

∆

)
−

w

1 + w

(
D2E +

3K
a2

E

)
, (3.3.14)

respectively. The peculiar motion of the species, relative to the ua-frame, is described by the scalar v(i)
= aDav(i)

a (not to
be confused with the magnitude of the peculiar velocity field — see Section 2.4.1). To linear order, the evolution of the
latter is obtained by combining the conservation laws for the momentum density of the i-th component (i.e. Eq. (3.3.2) with
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I(i)
a = 0) and that of the effective total fluid (the linear part of (2.4.13)). In particular, recalling that q(i)

a = ρ(i)(1 + w(i))v(i)
a , a

straightforward algebraic calculation leads to

v̇(i)
= −

(
1 − 3c2(i)s

)
Hv(i)

−
1

a(1 + w(i))

(
c2(i)s ∆(i)

+ w(i)E (i)
)

−
1

a(1 + w)

(
c2s ∆ + wE

)
. (3.3.15)

3.3.4. A radiation and dust universe
Consider a spatially flat FLRW background containing a mixture of radiation and dust. This is a good approximate

description of the pre-decoupling universe, if the radiation is identifiedwith the photons and the neutrinos,ρ(r)
= ρ(γ)

+ρ(ν),
while the pressureless component accounts for the nonrelativistic species, baryonic and cold dark matter, ρ(d)

= ρ(b)
+ ρ(c).

Neglecting the photon–baryon interaction terms we have ρ(r)
= ρ

(r)
0 (a0/a)4 and ρ(d)

= ρ
(d)
0 (a0/a)3, with the zero suffix

indicating a chosen initial time. The total energy of the mixture is ρ = ρ(r)
+ ρ(d), the total pressure is p = ρ(r)/3, the

effective total sound speed is c2s = 4ρ(r)/[3(4ρ(r)
+ 3ρ(d))] and the unperturbed background satisfies the condition 3H2

= ρ.
According to expressions (3.3.9) and (3.3.10) in Section 3.3.2, the total effective entropy perturbation of the above

described radiation-dust mixture is

Ea = −
4ρ(d)

3ρ(d) + 4ρ(r)

(
∆(d)

a −
3
4
∆(r)

a

)
. (3.3.16)

Consequently, imposing the condition of zero effective entropy perturbation corresponds to setting∆(d)
a = 3∆(r)

a /4 and vice-
versa. An additional special case emergeswhen neither∆(d)

a nor∆(r)
a vanishes, but the total energy density is homogeneously

distributed (i.e. ∆a = 0). Then, Eq. (3.3.6) guarantees that ρ(d)∆(d)
a = −ρ(r)∆(r)

a .
In what follows we will assume that the radiation field has a homogeneous density distribution (i.e. for ∆(r)

= 0), which
holds, for example, inside the sound horizon after averaging over acoustic oscillations, or on scales that are damped by
diffusion. We may then consider aggregations in the dust component only. Following (3.3.13)–(3.3.15) these are monitored
by the system

∆̇(d)
= −Z − aD2v(d), Ż = −2HZ −

1
2
ρ(d)∆(d) (3.3.17)

and

v̇(d)
= −Hv(d), (3.3.18)

given that c2s ∆ + wE = 0 to first order [117]. The latter is verified by first applying (3.3.9) to our two-component system,
which shows that E = −(ρ(d)h(r)/3ph)∆(d). Then, since ∆ = (ρ(d)/ρ)∆(d) and using the earlier given expression for the
effective sound speed of the total fluid, one can easily ensure that wE = −c2s ∆.

The system (3.3.17) and (3.3.18) monitors the linear evolution of overdensities in the matter distribution of the dust
component within a perturbed spatially flat FLRW universe filled with a mixture of radiation and dust, where the radiative
component is homogeneously distributed. Taking the time derivative of (3.3.17)(a), and using the linear commutation law
(D2v(d))·

= D2v̇(d)
− 2HD2v(d), the above system reduces to the scale independent equation [147]

∆′′(d)
= −

2 + 3a
2a(1 + a)

∆′(d)
+

3
2a(1 + a)

∆(d). (3.3.19)

Here primes indicate differentiation with respect to the scale factor and we have normalised the parameters so that a = 1
at the time of matter-radiation equality [117]. The general solution has the form [148]

∆(d)
= C1

(
1 +

3
2
a
)

− C2

[(
1 +

3
2
a
)
ln
(√

1 + a + 1
√
1 + a − 1

)
− 3

√
1 + a

]
, (3.3.20)

which shows that ∆(d) grows proportionally to the scale factor at late times in agreement with a single-fluid Einstein–de
Sitter model. Deep into the radiation era on the other hand, a � 1 and the density contrast is effectively constant (it grows
only logarithmically). This stagnation, or freezing-in, of matter perturbations prior to equality is generic to models with a
period of expansion that is dominated by relativistic particles and it is sometimes referred to as the Meszaros effect [147].
Finally, we note that the Newtonian analysis also leads to the same results (e.g. see [139,141,142]).

3.3.5. A CDM and baryon universe
It has long been known that purely baryonic scenarios cannot explain the structure observed in the universe today.

The main reason is the tight coupling between the photons and baryons in the pre-recombination era, which washes out
perturbations in the baryonic component. Dark matter, on the other hand, interacts only gravitationaly and therefore it is
not subjected to the photon drag. High energy physics provides a long catalogue of dark matter candidates. Thermal relics,
namely those kept in thermal equilibriumwith the rest of the universe until the time they decouple, typically classify as Hot
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Dark Matter (HDM) and Cold Dark Matter (CDM) species.16 CDM has small dispersion velocities by the time of decoupling
and does not suffer free-streaming dissipation.

Following Section 3.3.4, perturbations in the CDM component grow between equipartition and recombination by a factor
of arec/aeq = Teq/Trec ' 21 �h2, where h = H/100 km s−1 Mpc−1 is the rescaled, dimensionless Hubble parameter. After
decoupling the universe becomes effectively transparent to radiation and perturbations in the ordinary matter can start
growing, driven by the gravitational potential of the collisionless species. Applied to a mixture of CDM and non-relativistic
baryons, the system (3.3.13)–(3.3.15) leads to

∆̇(b)
= −Z − aD2v(b), Ż = −2HZ −

1
2
ρ∆ (3.3.21)

and

v̇(b)
= −Hv(b), (3.3.22)

where now ρ = ρ(c)
+ ρ(b) and ρ∆ = ρ(c)∆(c)

+ ρ(b)∆(b). Proceeding as in the previous section, the time derivative of
(3.3.21)(a) leads to

∆̈(b)
+ 2H∆̇(b)

=
1
2
ρ(c)∆(c). (3.3.23)

Note that the dark component dominates the baryonic one (i.e. ρ(b)
� ρ(c)) and, just after recombination, ∆(b)

� ∆(c).
Recalling that ∆(c)

∝ a after recombination (see Section 3.3.4) and also that ρ(c)
∝ a−3, we find [139,142]

∆(b)
= ∆(c)

(
1 −

arec
a

)
, (3.3.24)

which shows that ∆(b)
→ ∆(c) when a � arec. In other words, after decoupling, baryonic fluctuations fall in the potential

wells of the collisionless species and quickly catch up with perturbations in the dark-matter component. This result
demonstrates how the presence of the non-baryonic species accelerates the gravitational collapse of ordinary matter and
therefore the onset of structure formation.Moreover, because the dark-matter perturbation dominates the baryonic one, we
expect to see the baryonic fluctuations manifested as a small acoustic peaks in the large-scale correlation function of galaxy
surveys. Recent observations seem to confirm this, thus giving further support to dark-matter and to the CDM structure
formation scenarios [149,150].

Cold relics have been proposed since the early 1980’s in order to reproduce the small-scale structure of the universe
(see [151–155] and references therein). Although purely CDM models do not seem to agree with observation, CDM and
dark-energy, the latter as an effective cosmological constant, (i.e. ΛCDM scenarios) appear in very good agreement with the
current data [156].

3.4. Magnetised perturbations

3.4.1. The Alfvén speed
We assume a weakly magnetised, spatially flat FLRW background containing a sufficiently random magnetic field. This

means that 〈Ba〉 = 0, while 〈B2〉 6= 0 and 〈B2〉/ρ � 1 on all scales of interest.17 Therefore, the energy density of the
background B-field has only a time dependence (i.e. 〈B2〉 = B2(t)) and decays adiabatically as

B2 = −4HB2 ⇒ B2 ∝ a−4, (3.4.1)

according to expression (2.5.7). The relative strength of the field is measured by the dimensionless ratio β = B2/ρ, which is
used to define the Alfvén speed

c2a =
β

1 + w + β
. (3.4.2)

Provided w 6= −1, the above definition satisfies the constraint c2a < 1 always and for a weak magnetic field, with β � 1,
reduces to c2a = β/(1 + w).

16 Non-thermal relics, such as axions, magnetic monopoles and cosmic strings, remain out of equilibrium throughout their lifetime.
17 Even a random vector field will introduce a degree of anisotropy to the FLRW background. Nevertheless, it sounds plausible that a sufficiently weak

B-field can be adequately studied within almost-FLRWmodels. This has been verified by studies of perturbed magnetised Bianchi I universes [128].
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3.4.2. Magnetised density perturbations
Taking the comoving, orthogonally projected divergence of Eq. (2.5.12), using expression (2.5.10) and linearising we

arrive at the following equation [66]

∆̇ = 3w
(
1 −

2
3
c2a

)
H∆ − (1 + w)Z +

3
2
c2a(1 + w)HB − c2a(1 + w)HK, (3.4.3)

for the linear evolution of ∆. Note that K = a2R is the rescaled 3-Ricci tensor of the perturbed spacetime. Also, in deriving
the above we have kept up to c2a-order terms, given the weakness of the magnetic field. Finally, we have assumed that
ẇ = 0 to zero order. This means that w = c2s = constant in the background, as it happens during the radiation and dust
eras for example. Following (3.4.3), the field will generally act as a source of density perturbations even when there are no
such distortions present initially. Also, the magnetic field’s presence has a direct and an indirect effect on ∆. The former
results from the pressure part of the Lorentz force (see decomposition (2.5.11) in Section 2.5.2) and carries the effects of
the isotropic magnetic pressure. The latter comes from the tension component of the Lorentz force and is triggered by the
magnetic coupling to the spatial curvature of the perturbed model. Surprisingly, a positive 3-curvature perturbation causes
∆ to decrease, while a negativeK has the opposite effect. This rather counter-intuitive behaviour of themagneto-curvature
term in (3.4.3) is a direct consequence of the elasticity of the field lines (see also Eq. (3.4.4)).

Similarly, the linearised, orthogonally-projected, comoving divergences of (2.5.13) and (2.5.14) lead to [66]

Ż = −2
(
1 +

2
3
c2a

)
HZ −

1
2

(
1 −

4
3
c2a

)
ρ∆ +

1
4
c2a(1 + w)ρB −

1
2
c2a(1 + w)ρK

−
c2s

1 + w

(
1 −

2
3
c2a

)
D2∆ −

1
2
c2aD

2B (3.4.4)

and

Ḃ =
4

3(1 + w)
∆̇, (3.4.5)

respectively. The latter is a key linear result, ensuring that perturbations in the magnetic energy density evolve in step with
those in the density of the matter [157,158]. Finally, starting from the linear propagation equation of the 3-Ricci scalar we
obtain [66]

K̇ = −
4
3
c2aHK +

4c2s
(1 + w)

(
1 −

2
3
c2a

)
H∆ + 2c2aHB. (3.4.6)

The system (3.4.3)–(3.4.6) monitors the linear evolution of scalar inhomogeneities in the density distribution of the matter
in a weakly magnetised, spatially flat almost-FLRW universe.

3.4.3. Radiation era
During the radiation epoch the background dynamics are determined by the parameters w = 1/3 = c2s , H = 1/(2t) and

ρ = 3/(4t2). Also, the weakness of the magnetic field means that c2a = 3β/4, where β = B2/ρ = constant � 1. At the
same time, the expansion scale factor is a ∝ t1/2, which means that the Hubble radius at comoving proper time t is given
by λH ≡ 1/H = 2t. Then, recalling that physical wavelengths and comoving wavenumbers are related by λk = a/k, the
harmonically decomposed system (3.4.3)–(3.4.6) reads

∆̇(k)
=

1
2

(
1 −

1
2
β

)
t−1∆(k)

−
4
3

Z(k)
−

1
2
βt−1K(k)

+
3
4
βt−1B(k), (3.4.7)

Ż(k)
= −

(
1 +

1
2
β

)
t−1Z(k)

−
3
8

(1 − β)t−2

[
1 −

1
6

(
k

aH

)2 (
1 +

1
2
β

)]
∆(k)

−
3
8
βt−2K(k)

+
3
16
βt−2

[
1 +

1
2

(
k

aH

)2]
B(k), (3.4.8)

K̇(k)
= −

1
2
βt−1K(k)

+
1
2

(
1 −

1
2
β

)
t−1∆(k)

+
3
4
βt−1B(k), (3.4.9)

Ḃ(k)
= ∆̇(k). (3.4.10)

On super-Hubble scales k � aH. Then, since β � 1 always, the system (3.4.7)–(3.4.10) is essentially scale-independent
and has the power-law solution [66]

∆ = C0 + C1t
1−

1
3 β + C2t

−
1
2 +

5
6 β + C3t

−β, (3.4.11)

where the Cıs are constants that depend on the initial conditions. We note that in the absence of the magnetic field (i.e. for
β = 0), we recover the standard evolution of the density contrast in perturbed non-magnetised FLRW models (compare
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to solution (3.2.22) in Section 3.2.3). Thus, in the weak-field limit the main magnetic effect is to reduce the growth rate of
the dominant density mode. In addition, the field also decreases the rate of the standard decay mode and introduces a new
‘non-adiabatic’ decay mode.

Well below the Hubble radius, k � aH, the scale-dependent terms inside the brackets of Eq. (3.4.8) become important.
Thus, on sub-Hubble lengths the system (3.4.7)–(3.4.10) has the oscillatory solution [66]

∆(k)
= C0 + C1

√
2
πα

sin
(
αt1/2

)
+ C2

√
2
πα

cos
(
αt1/2

)
, (3.4.12)

withα = cs(k/a0H0)t
−1/2
0 (1+β/2). Therefore,well inside thehorizonmagnetisedmatter aggregations oscillate likemagneto-

sonic waves. The field’s presence tends to reduce the amplitude of the oscillation and increase its frequency [157,158]. In
both cases the effect of the B-field is proportional to to the ratio β = B2/ρ and its relative strength. As pointed out in [159],
the increased frequency of ∆(k) should bring the peaks of short-wavelength oscillations in the density of the radiation
component closer. This in turn could produce a potentially observable signature in the CMB. An additional magnetic effect
arises from the presence of a constant mode in solution (3.4.12). The latter suggests that, unlike the magnetic-free case
(e.g. see [139]), magnetic matter aggregations in the pre-equilibrium universe oscillate around a generally non-zero average
value.

3.4.4. Dust era
After the end of the radiation era, the unperturbed background is well approximated by w = 0 = c2s , H = 2/(3t),

ρ = 4/(3t2). Also, c2a = β and it is no longer constant but decreases with time according to β ∝ a−1
∝ t−2/3. Applying the

usual harmonic decomposition to the perturbation variables, and keeping up to β-order terms, the system (3.4.3)–(3.4.6)
reads

∆̇(k)
= −Z(k)

−
2
3
βt−1K(k)

+ βt−1B(k), (3.4.13)

Ż(k)
= −

4
3

(
1 +

2
3
β

)
t−1Z(k)

−
2
3

(
1 −

4
3
β

)
t−2∆(k)

−
2
3
βt−2K(k)

+
1
3
β

[
1 +

2
3

(
k

aH

)2]
t−2B(k), (3.4.14)

K̇(k)
= −

8
9
βt−1K(k)

+
4
3
βt−1B(k), (3.4.15)

Ḃ(k)
=

4
3

∆̇(k). (3.4.16)

After equipartition the dimensionless parameter β is no longer constant but decays in time.Without the weak and decaying
terms, the above has the following late-time solution [158,66]

∆(k)
= C+t

α+ + C−t
α− + C3t

−2/3
+ C4, (3.4.17)

with

α± = −
1
6

1 ± 5

√
1 −

32
75
β0

(
k

a0H0

)2
 . (3.4.18)

In the absence of the B-field (i.e. when β0 = 0), we immediately recover the standard non-magnetic solution with α+ = 2/3
and α− = −1 (see solution (3.2.24) in Section 3.2.3). Therefore, the main magnetic effect is to reduce the growth rate of
density perturbations by an amount proportional to its relative strength (i.e. to the ratio β0 = (B2/ρ)0). It should be noted
that the inhibiting role of the field was first observed in the Newtonian treatment of [160] and later in the relativistic studies
of [157,158]. According to (3.4.17) and (3.4.18), themagnetic impact is inversely proportional to the scale in question. Hence,
on large scales the introduction of the B-field simply adds the decaying t−2/3 mode to the standardmagnetic-free result. Note
also that∆ describes the directionally averaged gravitational clumping of thematter. Generally, the perturbations will grow
at different rates parallel and perpendicular to the magnetic field and so there will also be non-spherical evolution in the
shapes of these distortions.

After matter-radiation equality the magnetic field is essentially the sole source of pressure support. The associated
magnetic Jeans length is obtained by means of the following wave-like equation

∆̈(k)
= −

4
3

(
1 −

1
3
β

)
t−1∆̇(k)

+
2
3

{
1 −

8
3
β

[
1 +

1
6

(
k

aH

)2]}
t−2∆(k), (3.4.19)

obtained by taking the time derivative of (3.4.13), ignoring the 3-curvature effects and setting B(k)
0 = 4∆(k)

0 /3. The latter
condition guarantees that B(k)

= 4∆(k)/3 always (see Eq. (3.4.16)), while dropping the magneto-curvature terms from
(3.4.13) means that only the effects of the isotropic magnetic pressure are accounted for. When the factor in braces in the
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last term of Eq. (3.4.19) is positive, gravity prevails and the density contrast grows. This happens on scales larger than the
magnetic Jeans length

λJB =

√
4β

9 − 24β
λH. (3.4.20)

The latter is considerably smaller than the corresponding Hubble radius since β � 1, but for B-fields with current strengths
of the order of 10−7 G is intriguingly close to the size of a galaxy cluster (i.e. λJB ∼ 1 Mpc—see [66]).

3.5. Scalar-field perturbations

3.5.1. The effective fluid characteristics
In line with the fluid description of scalar fields, we may introduce the familiar dimensionless w-parameter. Thus, based

on Eq. (2.6.10) we define

wϕ =
p(ϕ)

ρ(ϕ)
=
ϕ̇2

− 2V(ϕ)

ϕ̇2 + 2V(ϕ)
. (3.5.1)

Then, provided that ρ(ϕ) > 0, we have ϕ̇2/2 + V(ϕ) > 0 and the familiar condition −1 ≤ wϕ ≤ 1 follows from V(ϕ) ≥ 0.
Taking the time derivative and using the Klein–Gordon equation, as seen in expression (2.6.12) we arrive at

ẇϕ = −3H(1 + wϕ)

(
ṗ(ϕ)

ṗ(ϕ)
− wϕ

)
. (3.5.2)

The above agrees with the evolution law of the w-parameter in conventional perfect-fluid cosmologies (see Eq. (3.2.2) in
Section 3.2.1), although in the scalar-field case the ratio

ṗ(ϕ)

ρ̇(ϕ)
= 1 +

2V ′(ϕ)

3Hϕ̇
, (3.5.3)

no longer represents an associated thermodynamic sound speed. According to expression (3.5.2), for H 6= 0 and wϕ 6= −1,
the w(ϕ)-parameter is time-invariant when ṗ(ϕ)/ρ̇(ϕ)

= w(ϕ). In that case, relations (3.5.1) and (3.5.3) combine to give the
evolution law V̇(ϕ) = −3H(1 + w(ϕ))V(ϕ) for the scalar-field potential. In the latter case it is straightforward to show that
ṗ(ϕ)/ρ̇(ϕ)

= w(ϕ)
= 1−2V(ϕ)/ρ(ϕ)

= constant. As expected, ṗ(ϕ)/ρ̇(ϕ)
= w(ϕ)

→ 1when V(ϕ) → 0 and ṗ(ϕ)/ρ̇(ϕ)
= w(ϕ)

→ −1
for ρ(ϕ)

→ V(ϕ) (i.e. for ϕ̇ → 0).

3.5.2. Density perturbations
Aggregations in the effective energy density of aminimally coupled scalar field are described by the comoving divergence

∆(ϕ)
= aDa∆

(ϕ)
a , which to linear order is given by ∆(ϕ)

= (a2/ρ(ϕ))D2ρ(ϕ)
= (a2ϕ̇/ρ(ϕ))D2ϕ̇. At this perturbative level, the

comoving divergences of (2.6.16) and (2.6.17) read

∆̇(ϕ)
= 3w(ϕ)H∆(ϕ)

−

(
1 + w(ϕ)

)
Z, (3.5.4)

and

Ż = −2HZ −

[
1
2
ρ(ϕ)

+
3K

a2(1 + wϕ)

]
∆(ϕ)

−
1

1 + wϕ
D2∆(ϕ), (3.5.5)

respectively. Note that in deriving (3.5.5) and in order to express the 4-acceleration and its divergence with respect to the
density gradients, we have used expression (2.6.8). The later ensures that DaAa = −[1/a2(1+ wϕ)]∆ to first approximation.
According to Eq. (3.5.4), ∆ decouples from Z when w(ϕ)

→ −1 (see Section 3.5.3). For w(ϕ)
6= −1, on the other hand, the

time derivative of (3.5.4) gives the following wavelike equation for the k-th harmonic mode [135]

∆̈
(ϕ)
(k) = −2

(
1 − 3wϕ +

3ṗ(ϕ)

2ρ̇(ϕ)

)
H∆̇

(ϕ)
(k) +

3
2

(
1 + 8wϕ − 3w2

ϕ − 6
ṗ(ϕ)

ρ̇(ϕ)

)
H2∆

(ϕ)
(k) +

1
a2

[9
2
(1 − w2

ϕ)K − k2
]
∆

(ϕ)
(k) , (3.5.6)

where K = 0,±1. The above governs the evolution of linear inhomogeneities in the density distribution of a minimally
coupled scalar field in a perturbed FLRW universe. It becomes clear that to a very large extent this evolution is determined
by the effective equation of state of the ϕ-field, which in turn depends on the latter’s kinetic energy and potential.
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3.5.3. Standard slow-roll inflation
Standard inflation corresponds to approximately exponential de Sitter expansion, with H and ρ(ϕ) nearly constants.

This is achieved when the scalar field is rolling very slowly down its potential. For ϕ̇2
� V(ϕ) and |ϕ̈| � H|ϕ̇|, we have

w(ϕ)
= p(ϕ)/ρ(ϕ)

→ −1 (see Section 2.6.3). This means that as we approach the de Sitter regime, Eq. (3.5.6) no longer
depends on the background spatial curvature and the linear evolution of ∆(ϕ)

(k) is governed by

∆̈
(ϕ)
(k) = −5H∆̇

(ϕ)
(k) − 6H2

[
1 +

1
6

(
k

aH

)2]
∆

(ϕ)
(k) , (3.5.7)

where H ' constant. Thus, once the mode has crossed the Hubble radius and k � aH, the solution is (e.g. see [139])

∆(ϕ)
= C1 e−2Ht

+ C2 e−3Ht. (3.5.8)

Following Section 1.4.4, this means that during a phase of exponential, de Sitter-type expansion ∆(ϕ)
∝ a−2 (e.g. see [139]).

Therefore, any overdensities (or underdensities) that may exist in the spatial distribution of the inflaton field will decay
exponentially irrespective of their scale and the background curvature.18

We note that the above analysis applies to a slowly rolling scalar field, with w(ϕ)
' −1. When w(ϕ)

= −1, on the
other hand, the ϕ-field has zero kinetic energy and p(ϕ)

= −ρ(ϕ)
= −V(ϕ). In that case it is straightforward to show that

Dap(ϕ)
= −Daρ

(ϕ)
= −V ′(ϕ)Daϕ = 0, which means that there are no inhomogeneities in the effective energy density and

pressure of the field. This result is a direct consequence of our spacetime slicing, which guarantees that Daϕ = 0.

3.5.4. Coasting universe
When w(ϕ)

= −1/3 the effective gravitational mass of the ϕ-field vanishes. This leads to a ‘coasting’ FLRW universe with
a ∝ t and H = 1/t. During this phase of ‘minimal’ inflation Eq. (3.5.6) reduces to

∆̈
(ϕ)
(k) = −3H∆̇

(ϕ)
(k) +

1
a2

(4K − k2)∆
(ϕ)
(k) (3.5.10)

and has the solution

∆
(ϕ)
(k) = C+t

α+ + C−t
α− , (3.5.11)

with

α± = −1 ±
1
a0

√
a20 + (4K − k2)t20 (3.5.12)

and a0 = a(t0). Recall that when dealing with a coasting FLRW universe we have Ω = Ω0 constant and a0/t0 =
√
K/(Ω0 − 1)

(see Section 1.4.4). The nature of the above given solution is determined by the sign of the sum a20+(4K−k2)t20 , which in turn
depends on the background 3-curvature and the scale of the inhomogeneity [135]. Assuming a spatially flat unperturbed
model, expression (3.5.12) gives

α± = −1 ±

√
1 −

(
k

a0H0

)
. (3.5.13)

Following this, we find α+ ' 0 and α− ' −2 on super-Hubble lengths, which implies that superhorizon-sized
inhomogeneities remain constant. Well inside the horizon, on the other hand, solution (3.5.11) and (3.5.13) takes the
oscillatory form

∆
(ϕ)
(k) = C t−1 cos

[(
k

a0H0

)
ln t

]
, (3.5.14)

meaning that small-scale perturbations in the density of the ϕ-field fluctuate with decreasing amplitude. Finally, at the
k = aH threshold we find that ∆

(ϕ)
(k) decays as t−1.

3.6. Gravitational wave perturbations

Gravitational waves are propagating fluctuations in the geometry of the spacetime fabric, usually described as weak
perturbations of the background metric. Alternatively, one can monitor gravity-wave distortions covariantly by means of
the electric andmagnetic components of theWeyl tensor [162],which describe the free gravitational field (see Section 1.2.2).

18 The covariant variable corresponding to the coordinate-based canonical variable for quantisation of scalar field fluctuations, is given by [161]

va =
aϕ̇

3H

(∫
DaΘ dτ − Da

∫
Θ dτ

)
. (3.5.9)

This gradient variable corresponds to the variable v = aQ , where Q is the Mukhanov-Sasaki variable.
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3.6.1. Isolating tensor modes
Gravitationalwaves are covariantly described by the transverse degrees of freedom in the electric (Eab) andmagnetic (Hab)

parts of theWeyl tensor. The transversality is necessary to ensure that the pure tensormodes of the locally free gravitational
field have been isolated. The same condition is also imposed on the shear and any other orthogonally projected, traceless,
second-rank tensor thatmight be present. Thus,when studying the propagation of gravitational radiation in perturbed FLRW
models with perfect-fluid matter, we demand that (see Sections 1.2.2 and 1.3.1)

DbEab =
1
3
Daρ = 0, (3.6.1)

DbHab = ρ(1 + w)ωa = 0, (3.6.2)

Dbσab =
2
3
DaΘ + curlωa = 0, (3.6.3)

to linear order and at all times [163]. In our cosmological environment, this is achieved by switching the vorticity off and by
setting Daρ = 0 = Dap = DaΘ (for a barotropic medium it suffices to ensure that Daρ = 0 = DaΘ). These constraints, which
are self-consistent (i.e. preserved in time) at the linear perturbative level, guarantee that the 4-acceleration also vanishes to
first approximation. Then, the only nontrivial linear constraints left are

Hab = curlσab and R〈ab〉 = −Hσab + Eab, (3.6.4)

where curlσab = εcd〈aDcσb〉
d (see Eqs. (1.3.8) and (1.3.39) in Sections 1.3.1 and 1.3.5 respectively). Note that, according to

(3.6.4)(b), the linear condition DbEab = 0 = Dbσab guarantees that DbR〈ab〉 = 0 as well. When allowing for anisotropic
pressure, one needs to impose the additional constraint

Dbπab = 0. (3.6.5)

In the case of a magnetised, highly conductive environment, for example, we demand that DbΠab = (1/3)DaB2 − BbDbBa = 0
at all times [164,165].

3.6.2. Covariant description of the gravitational-wave energy density
In a perturbed FLRW universe, the energy density of gravitational radiation is determined by the pure tensor part (H TT

αβ,
with α,β = 1, 2, 3) of the metric perturbation, according to (e.g. see [166])

ρGW =
(H TT

αβ)
′(H

αβ
TT )′

2a2
, (3.6.6)

where a prime indicates differentiation with respect to conformal time (recall that c = 1 = 8πG throughout this review). In
a comoving frame, with ua

= δa0u
0, we have [167,168]

σαβ = a(H TT
αβ)

′ and σαβ = a−3(H
αβ
TT )′, (3.6.7)

so that [165]

ρGW = σ2, (3.6.8)

which provides a simple covariant expression for the energy density of gravitational-wave distortions in almost FLRW
universes.

3.6.3. Evolution of gravitational waves
In a FLRW spacetime the Weyl tensor vanishes identically, which means that Eab and Hab provide a covariant and gauge-

invariant description of perturbations in the free-gravitational field. Once the pure tensor modes have been isolated, we can
proceed to linearise the propagation equations (1.3.42) and (1.3.43) of Section 1.3.6. Around a Friedmannian background
filled with a single perfect fluid, the latter reduce to

Ėab = −3HEab −
1
2
ρ(1 + w)σab + curlHab (3.6.9)

and

Ḣab = −3HHab − curl Eab, (3.6.10)

respectively. Because the magnetic part of the Weyl tensor satisfies the constraint (3.6.4)(a) the linear evolution of Hab is
determined by that of the shear, which propagates according to (see expression (1.3.4) in Section 1.3.1)

σ̇ab = −2Hσab − Eab. (3.6.11)
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Furthermore, on using the commutation law between the orthogonally projected gradients of spacelike tensors (see
Appendix A.3) and the zero-order expression Rabcd = (K/a2)(hachbd − hadhbc) for the 3-Riemann tensor (see Section 1.3.5),
constraint (3.6.4)(a) leads to the auxiliary relation curlHab = (3K/a2)σab − D2σab. The latter transforms Eq. (3.6.9) into

Ėab = −3HEab −
1
2
ρ(1 + w)σab +

3K
a2
σab − D2σab, (3.6.12)

which together with (3.6.11) monitors the linear evolution of gravitational waves in perturbed FLRW universes.
Taking the time derivative of (3.6.11), using Eq. (3.6.12), the background Raychaudhuri and Friedmann formulae (see

(1.4.3)(a), (1.4.4) respectively) and keeping terms of up to linear order only, we arrive at the following wave-like equation
for the gravitationally induced shear

σ̈ab = −5Hσ̇ab −
1
2
ρ(1 − 3w)σab +

K

a2
σab + D2σab, (3.6.13)

with K = 0,±1. The above is no longer coupled to the propagation equation of the electric Weyl tensor, which means
that the shear wave-equation alone can describe the propagation of gravitational radiation in perturbed, perfect-fluid FLRW
cosmologies. We proceed by introducing the standard tensor harmonics Q(k)

ab , with Q(k)
ab = Q(k)

〈ab〉, Q̇
(k)
ab = 0 = DbQ(k)

ab and
D2Q(k)

ab = −(k/a)2Q(k)
ab . Then, setting σab =

∑
k σ(k)Q

(k)
ab , with Daσ(k) = 0, expression (3.6.13) provides the following wave

equation for the k-th shear mode.

σ̈(k) = −5Hσ̇(k) −

[1
2
ρ(1 − 3w) −

1
a2

(K − k2)
]
σ(k). (3.6.14)

It should be noted here that, in order to account for the different polarisation states of gravitational radiation, one expands
the pure-tensor perturbations in terms of the electric and themagnetic parity harmonics (see [169] and references therein).
Nevertheless, the coupling between the two states means that Eq. (3.6.14) still holds.

Assuming a spatially flat background and a radiation-dominated universe, we havew = 1/3,H = 1/(2t) and ρ = 3/(4t2).
Then, (3.6.14) simplifies to

σ̈(k) = −
5
2t
σ̇(k) −

(
k

a

)2

σ(k), (3.6.15)

with the last term vanishing on super-Hubble lengths (asymptotically). The above admits the solution

σ(k) = t−3/2
(

k

aH

) [
C1 sin

(
k

aH

)
+ C2 cos

(
k

aH

)]
+ t−3/2

[
C1 cos

(
k

aH

)
− C2 sin

(
k

aH

)]
, (3.6.16)

where k/aH ∝ t1/2. Therefore, the amplitude of gravitational waves on small scales in a radiation-dominated and spatially-
flat FLRW universe decays as a−2. On super-Hubble scales, on the other hand, k/aH � 1 and (3.6.16) is approximated by the
power law

σ(k) = C1t
−3/2

[
1 −

1
3

C2

C1

(
k

a0H0

)3 ( t

t0

)3/2
]

= σ0 +
2
3
σ̇0t0

[
1 −

(
t0
t

)3/2
]

. (3.6.17)

Consequently, when σ̇0 = 0 we have σ(k) = constant. On the other hand, for σ̇0 = −3σ0/2t0 we find σ(k) ∝ t−3/2
∝ a−3.

After equality, we have w = 0, H = 2/(3t) and ρ = 4/(3t2). In this environment, Eq. (3.6.14) takes the form

σ̈(k) = −
10
3t
σ̇ab −

2
3t2

[
1 +

2
3

(
k

aH

)2]
σ(k). (3.6.18)

Hence, on superhorizon scales,

σ(k) = C1 t
−1/3

+ C2 t
−2, (3.6.19)

implying that after equality large-scale gravitational wave perturbations decay as a−1/2.

3.7. Perturbed non-Friedmannian cosmologies

Current observational data strongly support the homogeneous and isotropic FLRW spacetimes as the best model for our
universe on very large scales. On the other hand, the presence of nonlinear structures, in the form of galaxies, galaxy clusters
and superclusters, shows that on the relevant scales the universe is neither homogeneous nor isotropic. For this reason and
also because we have no real information about the very early stages of our universe, it may be unwise to exclude a priori all
the non-FLRW cosmologies from our studies. Inwhat followswewill consider the stability of such unconventional universes
against linear perturbations.
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3.7.1. The Bianchi I universe
Bianchi models have been studied by several authors in an attempt to achieve better understanding of the observed

small amount of anisotropy in the universe. The samemodels have also been used to examine the role of certain anisotropic
sources during the formation of the large-scale structure we see in the universe today. Some Bianchi cosmologies, for
example, are natural hosts of large-scale magnetic fields and therefore their study can shed light on the implications of
cosmic magnetism for galaxy formation. The simplest Bianchi family that contains the flat FLRW universe as a special case
are the type-I spacetimes (see Table 1).

Using covariant techniques, the stability of the Bianchi I models against linear perturbations was studied in [170], for the
case of a single perfect fluid, and also in [128], where a magnetic field was also present. Assuming non-magnetised dust for
simplicity, Eqs. (2.3.1) and (2.3.2) linearise to

∆̇a = −Za − σab∆
b (3.7.1)

and

Ża = −
2
3

ΘZa −
1
2
ρ∆a − σabZ

b
− 2aDaσ

2, (3.7.2)

respectively. The above monitor the linear evolution of density inhomogeneities in the dust component on a Bianchi I
background. The system is obviously not closed and one also needs the propagation formula of the shear and the shear
constraint (see expressions (1.3.4) and (1.3.6) respectively). To first order and in the absence of fluid pressure, these are
respectively given by

σ̇ab = −
2
3

Θσab − σc〈aσ
c
b〉 − Eab (3.7.3)

and

Dbσab =
2
3a

Za + curlωa. (3.7.4)

The above immediately bring into play the electric component of theWeyl field, the linear evolution of which depends on its
magnetic counterpart (see Eq. (1.3.42) in Section 1.3.6), as well as the vorticity. The complexity of the mathematics means
that analytical progress can achieved in spacial cases only. In [170], for example, the perturbed model is assumed both
irrotational and axially symmetric. It was then possible to obtain analytical solutions for the two independent components
of the density contrast in the form of power series. Confining to early times, when t → 0, the latter converge to

∆1 = C1t
−2/3

+ C2t
−5/3 and ∆2,3 = C3t

10/3
+ C4t

1/3, (3.7.5)

with the Cs representing the integration constants. This result argues for growth along two of the directions that is faster
than the standard Einstein–de Sitter rate (compare to Eq. (3.2.24) in Section 3.2.3) and agrees qualitatively with the analysis
of [171].

In the magnetised study of [128] the anisotropic pressure of the B-field (see expression (2.5.3) in Section 2.5.1) adds
further complications to the system of (3.7.1) and (3.7.2). Treating themagnetic field as the sole source of anisotropy, makes
Ba a shear eigenvector and considerably simplifies the mathematics. Then, for magnetic strengths compatible with the high
isotropy of the CMB spectrum, one can obtain analytical solutions and establish the corrections to the FRW-related results
of Section 3.4. Following [128], the anisotropy of the background model brings about the tension properties of the B-field.
This happens through the general relativistic coupling between the field and the spatial curvature of the perturbed model
and makes the overall magnetic effect sensitive to the amount of the 3-curvature distortion.

3.7.2. The Einstein static universe
The possibility that our universe might have started out in an asymptotically static state, reminiscent of the

Eddington–Lemaître cosmology, has been discussed by several authors (e.g. see [172–176] and references therein). It is
therefore useful to investigate the stability of the family of the Einstein static spacetimes, which has long been known
to be unstable against homogeneous and isotropic perturbations [177]. In fact, the instability of this model is very well
established among the community, despite later work showing that the issue is not as clear cut as the Newtonian intuition
may suggest [178].

In an Einstein static background H = 0 = Ḣ and K = +1. Then, formulae (1.4.3) and (1.4.4) in Section 1.4.2 ensure that
ρ (and therefore p, w) is time invariant, Λ = (1 + 3w)ρ/2 and 1/a2 = (1 + w)ρ/2. In this environment expression (3.2.16)
reduces to [179]

∆̈ =
1
2

(1 + w)(1 + 3c2s )ρ∆ + c2sD
2∆, (3.7.6)

which monitors the linear evolution of scalar/density perturbations in a perturbed Einstein static universe. By employing
the standard scalar harmonics (see Section 3.2.3 for more details), the above decomposes into

∆̈(k)
=

1
2

(1 + w)
[
1 + (3 − k2)c2s

]
ρ∆(k), (3.7.7)
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and has a (neutrally) stable, oscillatory solution as long as (k2 − 3)c2s > 1. Recalling that in spatially closed models the
eigenvalue of a given mode and its comoving wavenumber are discrete and related by k2 = ν(ν+ 2), with ν = 1, 2, 3, . . . ,
we conclude that a perturbed mode is stable against gravitational collapse if [179]

[ν(ν+ 2) − 3] c2s > 1, (3.7.8)

to linear order. The first inhomogeneous mode has ν = 1 and therefore it does not satisfy the stability condition.
Nevertheless,this is simply a gauge mode reflecting our freedom to change the fundamental 4-velocity vector. Hence, all
physical modes have ν ≥ 2 and for them linear stability is guaranteed as long as c2s > 1/5.19

The physical explanation for this rather unexpected stability lies in the Jeans length of the Einstein static model [178].
Although there are always unstable modes in flat spaces, namely wavelengths larger than the associated Jeans scale, a
closed universe sets an upper limit to the allowed wavelengths. The above analysis shows that, for a sufficiently large sound
speed, all physical wavelengths fall below the Jeans scale. Noting that the linear stability of the Einstein static model does
not guarantee its overall stability [181], we point out that current data seem to favour a slightly closed universe [156].
Also, spatially closed static models violate the inflationary singularity theorems of [182–184] and therefore can avoid the
quantum-gravity era [185,172].

3.7.3. The Gödel universe
Gödel’s universe is an exact solution of the Einstein field equations that is both stationary and spatially

homogeneous [186]. The Gödel spacetime is also rotationally symmetric about each point and well known for its unusual
properties. The most intriguing among them is the existence of closed timelike curves, which violates global causality and
makes time travel a theoretical possibility.20 Although Gödel’s world is not a realistic model of the universe we live in, it has
been widely used to study and illustrate the effects of global vorticity within the realm of general relativity (e.g. see [189–
191] and references therein).

Relative to a timelike 4-velocity field, tangent to the world lines of the fundamental observers, the kinematics of the
Gödel spacetime are covariantly described by [41,45]

Θ = 0 = Aa = σab = Hab and ωa, Eab 6= 0, (3.7.9)

where ∇bωa = 0 = Ėab = DcEab and ∇cEab 6= 0. Also, the stationary nature of the model means that all the propagation
equations have been transformed into constraints, some of which are trivial. In particular, the Gödel analogues of the
continuity, the Raychaudhuri and the Friedmann formulae (see Sections 1.3.1, 1.3.3 and 1.3.5) read

ρ̇ = 0,
1
2
ρ(1 + 3w) − 2ω2

− Λ = 0 (3.7.10)

and

ρ− ω2
+ Λ = 0, (3.7.11)

respectively (see also [192] for more technical details). We note that expressions (3.7.10)(b) and (3.7.11) combine to give
ρ(1 + w) = 2ω2 and p − ρ = 2Λ. The former of these relations shows that the vorticity provides a direct measure of the
model’s inertial mass. The latter ensures that the value of the cosmological constant depends on the equation of state of
the fluid that fills the Gödel spacetime. The amount of rotation also determines the radius, RG =

√
2 ln(1 +

√
2)/ω, of the

observers causal region. Using the above given relations, one can linearise the nonlinear formulae of Section 2.3 around a
Gödel background. More specifically, Eqs. (2.3.1) and (2.3.2) reduce to the system [192]

∆̇a = −(1 + w)Za + ωab∆
b, (3.7.12)

Ża = −
1
2
ρ∆a −

3
2
aDap + aDaDbAb + 2aDaω

2
+ ωabZb, (3.7.13)

with ρ(1 + w)Aa = −Dap. Assuming rigid rotation, we may ignore the second-last term in the right-hand side of (3.7.13).
Then, the orthogonally projected derivatives of the above combine to give the following wavelike equation [192]

∆̈(k)
=

[
ω2(1 + 3c2s ) −

(
kcs
a

)2]
∆(k), (3.7.14)

for the linear evolution of the k-th harmonicmode. Thus, for dust there is no pressure support andmatter aggregations grow
unimpeded.21 Otherwise, there is an effective Jeans length, equal to λJG = cs/ω

√
1 + 3c2s , below which the inhomogeneities

19 The same condition for the linear stability of the Einstein static universe was also obtained in [178] in the restricted case of conformal metric
perturbations. The stability of the radiation-filled model and the instability of the one containing pressureless dust was demonstrated in [180].
20 For additional examples of spacetimes with closed timelike curves the reader is referred to [187,188].
21 Gödel’s solution was originally given for dust (i.e. ρ 6= 0, p = 0 and Λ 6= 0). Nevertheless, by introducing the transformation ρ → ρ′

= ρ + p and
Λ → Λ′

= Λ + p, we can reinterpret the Gödel spacetime as a perfect-fluid model.
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oscillate [192]. The same type of neutral stability was also claimed for gravitational wave peturbations, while the evolution
of linear rotational distortions was found to depend on the amount of the shear anisotropy (see [192] for further discussion).

We point out that the value of the Jeans length is comparable to the radius of the smallest closed timelike curve
(see above). This means that the causal regions in Gödel models with nonzero pressure are stable against linear matter
aggregations. Also, expression (3.7.14) demonstrates how the vorticity of the Gödel universe contributes to the overall
gravitational pull. This result suggests that rotational energy has ‘weight’ and seems to favour the de Felice [193] and the
Barrabès et al. [194] interpretation of the Abramowicz–Lasota ‘centrifugal-force reversal’ effect [195].

The above analysis does not specifically address the stability of Gödel’s closed timelike curves, a issue recently considered
in [196]. The appearance of closed timelike curves in general relativistic Gödel-type cosmologies, namely in rigidly rotating
homogeneous spacetimes, can be avoided by introducing extramatter sources, higher-order terms in the Laplacian or string-
theory corrections [197–199]. This does not seem to be the case, however, in Gödel-type brane models [200].

3.7.4. The Lukash Bianchi VIIh universe
Themost general Bianchi universes that contain the spatially open FLRWmodel as a special subcase, are those of type VIIh.

The late-time asymptotes of the non-tilted Bianchi VIIh cosmologies evolve towards a vacuumplane-wave solution known as
the Lukash universe [201,202]. These spacetimes describe the most general effects of spatially homogeneous perturbations
on open Friedmann universes and the Lukash metric plays a guiding role in these investigations (see [80] and references
therein).

In the absence of matter, the plane-wave attractors of the Bianchi VIIh models are covariantly characterised by

Aa = 0 = ωa and Θ, σab, Eab, Hab 6= 0, (3.7.15)

with EabEab = HabHab and EabHab
= 0 [90,91]. Then, the Lukash analogues of the Raychaudhuri and Friedmann equations read

Θ̇ = −
1
3

Θ2
− 2σ2 and R = −

2
3

Θ2
+ 2σ2, (3.7.16)

respectively. We note that the 3-curvature scalar R is negative, thus guaranteeing the hyperbolic spatial geometry of the
model (e.g. see [90,91]). Also, despite the absence of matter fields, the Lukash metric is not Ricci flat and the associated
Gauss–Codacci formula is

R〈ab〉 = −
1
3

Θσab + σc〈aσ
c
b〉 + Eab. (3.7.17)

Using the dimensionless parameterΣ = 3σ2/Θ2 tomeasure the expansion anisotropy, one can also recast the Raychaudhuri
equation into the following alternative expression [91]

Θ̇ = −
1
3

Θ2(1 + 2Σ), (3.7.18)

where 0 < Σ < 1 in accord with R < 0 in (3.7.16)(b). Then, the average scale factor obeys a simple power-law evolution
with a ∝ t1/(1+2Σ). In the absence of shear effects, we recover the familiar a ∝ t evolution of theMilne universe. AsΣ → 1, on
the other hand, we approach the Kasner vacuum solution (i.e. a ∝ t1/3). Note that for maximum shear the spatial curvature
of the model vanishes, while only its isotropic part survives at the opposite end.

The nature of the Lukash solution makes it a good testing ground for studying the final stages of ever-expanding FLRW
cosmologies with positive gravitational mass (i.e. ρ+3p > 0). Allowing for a low-density, pressure-free matter component,
we may identify our fundamental 4-velocity field with that of the fluid. Then, linearising Eq. (1.3.4) around the Lukash
background and using (1.3.41), we find that shear perturbations are monitored by the system [91]

Σ̇ = −
4
3

Θ̄(1 − Σ̄)Σ − 3Θ̄−2R〈ab〉σ̄
ab (3.7.19)

and

Ṡ =
4
3

Θ̄(1 − S̄)S + 3Θ̄−2R〈ab〉σ̄
ab, (3.7.20)

where the overbars indicate zero order quantities. Here S = 1 − Σ by definition and overbars indicate quantities of zero
perturbative order. Expression (3.7.19) allows for a gauge-independent description of linear shear anisotropies at the Σ̄ → 0
limit, while Eq. (3.7.20) does the same as Σ̄ → 1 (i.e. when S̄ → 0). In the first instance the last term in the right-hand
side of (3.7.19) vanishes and therefore Σ ∝ a−4, meaning that any kinematic anisotropies that may occur will quickly
disperse. When Σ̄ → 1, on the other hand, the shear can increase further and therefore force the Lukash solution away
from the Bianchi VIIh family. In other words, the linear stability of the Lukash universe appears to depend on the amount of
the background shear anisotropy, something also seen in the study of linear vortices and gravitational wave perturbations
(see [91] and also [203]).
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4. Kinetic theory and the cosmic neutrino and microwave backgrounds

Kinetic theory provides a self-consistent description of a gas of particles and naturally includes the free-streaming
limit, where collisions are negligible, and the hydrodynamic limit, where collisions maintain tight-coupling and the gas
approaches fluid-like behaviour. In cosmology, only the free-streaming limit is appropriate for the neutrino background
for all times after decoupling (at temperature ∼1011 K). However, for the cosmic microwave background (CMB), Compton
scattering off electrons in the electron–baryon plasma prior to recombination (at temperature ∼3000 K) makes a fluid
description adequate on comoving scales larger than 30Mpc. On smaller scales, perturbations in the density of the radiation
are damped due to photon diffusion [146]. Kinetic theory provides a seamless description of the associated transitions from
ideal fluid behaviour, through that of an imperfect fluid to a free-streaming (collisionless) gas.

In this sectionwe review the 1+3-covariant formulation of relativistic kinetic theory and its application to the (massive)
neutrino background and the anisotropies and polarization of the CMB. Our emphasis is on the physics involved, but we do
include brief discussions of current observationswhere this is helpful. For textbook discussions on relativistic kinetic theory,
see Refs. [204–206].

4.1. Distribution functions and the Liouville equation

We consider a gas of identical particles each of mass m. The four-momentum of a particle pa can be decomposed into an
energy and three-momentum with respect to the velocity field ua as

pa
= Eua

+ λa
= Eua

+ λea , (4.1.1)

where λ =
√
E2 − m2 is the magnitude of the three-momentum and the projected vector ea is the propagation direction. For

massless particles, like photons,λ = E. In situationswhere the polarization (or helicity) is not important, we can describe the
gas by a scalar-valued one-particle distribution function f (xa, pa). The number of particles in a proper phase space element
d3xd3p is then fd3xd3p. For a given set of particles, their phase space volume is both Lorentz invariant (i.e. the same for all
observers) and, in the absence of collisions, constant along their path. Introducing an affine parameter τ, normalised such
that pa

= dxa/dτ, the collisionless evolution of the gas is described by the Liouville equation

df
dτ

= 0 , (4.1.2)

where the derivative is along the path in phase space. In the presence of collisions, the right-hand side should be replaced
by the appropriate Lorentz-invariant collision operator C[f ], which is a functional of f , to give a Boltzmann equation.

The 4-momentumof a free particle is parallel-transported so that pb
∇bpa

= 0.We canuse this to findhow the energy (orλ)
and direction propagate by projecting along and perpendicular to ua respectively. For λ,

dλ
dτ

= −E2Aae
a
− Eλ

(
σabe

aeb +
1
3
Θ

)
. (4.1.3)

In the Robertson–Walker limit, dλ/dτ = −EλH where H = Θ/3 is the Hubble parameter. The momentum thus redshifts as
the inverse of the scale factor, 1/a. For the direction,

de〈a〉

dτ
= −

E2

λ
sabA

b
− E

(
ωa

be
b
+ sabσbce

c
)
, (4.1.4)

where sab ≡ hab − eaeb is the screen-projection tensor which projects into the two-dimensional screen perpendicular to
the propagation direction ea in the local rest-space of ua. Note that the derivative on the left of Eq. (4.1.4) is the covariant
derivative along the particle’s path. The normalisation condition eaea = 1 is preserved since de〈a〉/dτ is perpendicular to ea.
In the Robertson–Walker limit, de〈a〉/dτ = 0, i.e. ea is as constant as the constraint eaua = 0 allows. In the real universe this
is no longer so and Eq. (4.1.4) then describes the action of gravitational lensing (see e.g. Ref. [207] for a recent review).

The distribution function depends on spacetime position, energy and direction. For the direction dependence, it is
convenient to expand in spherical multipoles as [208,209]

f (xa, pa) =

∞∑
l=0

FAl(x
a, E)eAl = F(E) + Fa(E)e

a
+ Fab(E)e

aeb + · · · , (4.1.5)

where the tensors FAl(E) = F〈a1...al〉(E) are projected (orthogonal to ua) symmetric and trace-free so are irreducible under the
action of three-dimensional rotations. The expansion (4.1.5) is equivalent to an expansion in spherical harmonics, but has
the advantage of being fully covariant. We can invert the expansion as follows:

FAl(E) =
1
∆l

∫
f e〈Al〉 dΩ where ∆l ≡

4π2l(l!)2

(2l + 1)!
, (4.1.6)

and we have used∫
e〈Al〉e

〈Bl′ 〉 dΩ = ∆lh
〈Bl〉
〈Al〉
δll′ = ∆lh

〈b1
〈a1

. . . hbl〉
al〉
δll′ . (4.1.7)
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For further details on the covariant multipole expansion, see e.g. Ref. [210].
The propagation equations for themultipole moments follows from substituting Eq. (4.1.5) into the Boltzmann equation,

using Eqs. (4.1.3) and (4.1.4), and extracting the irreducible terms. The result is

EḞ〈Al〉 − λ2
Θ

3
∂FAl
∂E

+
l + 1
2l + 3

λDaFaAl + λD〈alFAl−1〉 + lEFa〈Al−1ωal〉
a
−

[
λE
∂F〈Al−1

∂E
− (l − 1)

E2

λ
F〈Al−1

]
Aal〉

−
l + 1
2l + 3

[
(l + 2)

E2

λ
FaAl + λE

∂FaAl
∂E

]
Aa

−
l

2l + 3

[
3EFa〈Al−1 + 2λ2

∂Fa〈Al−1

∂E

]
σal〉

a

−
(l + 1)(l + 2)

(2l + 3)(2l + 5)

[
(l + 3)EFabAl + λ

2 ∂FabAl
∂E

]
σab

−

[
λ2
∂F〈Al−2

∂E
− (l − 2)EF〈Al−2

]
σal−1al〉 = CAl [f ], (4.1.8)

where CAl [f ] are the multipoles of the invariant collision term. The spacetime derivatives are all taken at fixed E (or λ). This
equation was first obtained in Ref. [209] (and in Ref. [208] for the massless case), but the form given here benefits from the
streamlined notation introduced in Ref. [46]. The original Boltzmann equation contains a spacetime derivative along the
particle path which, when split into multipoles, connects the derivative of FAl(E) along ua with the projected derivatives of
the l − 1 and l + 1 moments. This describes the generation of anisotropy from spatial inhomogeneities in the distribution
function. For a fluctuation of characteristic size a/k, the timescale for propagating anisotropy through ∆l = 1 is ∼a/(kv)
where v = λ/E is the magnitude of the particle’s 3-velocity. This is simply the time taken for a particle to traverse the
inhomogeneity. The terms in Eq. (4.1.8) containing derivatives with respect to E arise from the redshifting of the particle’s
energy. We see from Eq. (4.1.3) that the isotropic expansion, acceleration and shear source anisotropy at multipole l from l,
l± 1 and both l± 2 and l respectively. The remaining terms in Eq. (4.1.8) arise from the evolution of the particle’s direction:
vorticity, acceleration and shear source anisotropy at l from l, l ± 1 and both l ± 2 and l respectively.

4.1.1. Bulk properties
The stress–energy tensor of the gas of particles is determined from the one-particle distribution function by

Tab =

∫
f papb

d3p
E

. (4.1.9)

Note that d3p/E is the Lorentz-invariant volume element on the positive-energy mass shell papa = −m2. Decomposing Tab
into energy and momentum densities, isotropic pressure and anisotropic stress, as in Eq. (1.2.11), we have

ρ = ∆0

∫
∞

0
dλλ2EF, (4.1.10)

qa = ∆1

∫
∞

0
dλλ2E(λ/E)Fa, (4.1.11)

πab = ∆2

∫
∞

0
dλλ2E(λ/E)2Fab, (4.1.12)

p =
∆0

3

∫
∞

0
dλλ2E(λ/E)2F, (4.1.13)

where F is the monopole of the distribution function. The equations of motion for these quantities follow from integrating
Eq. (4.1.8) with λ2dλ and appropriate powers of the velocity-weight λ/E. For the energy and momentum densities,

ρ̇ = −Θ(ρ+ p) − Daqa − 2Aaqa − σabπab + ∆0

∫
∞

0
dλλ2C0[f ] (4.1.14)

q̇〈a〉 = −
4
3
Θqa + (ρ+ p)Aa − Dap − Dbπab − (ωa

b
+ σa

b)qb − Abπab + ∆1

∫
∞

0
dλ
λ3

E
Ca[f ], (4.1.15)

where C0[f ] is the monopole of the collision term. The gas can exchange energy and momentum through interactions with
external particles and/or fields, and these processes are described by the final terms in Eqs. (4.1.14) and (4.1.15). In their
presence, the stress-tensor is not conserved but instead has divergence

∇
bTab = ua∆0

∫
∞

0
dλλ2C0[f ] + ∆1

∫
dλ
λ3

E
Ca[f ] (4.1.16)

=

∫
C[f ]pa

d3p
E

, (4.1.17)

which is manifestly a 4-vector.
The propagation equations for the energy and momentum densities do not form a closed system even when there are

no interactions. For massive particles, the pressure is not simply related to ρ and so the equation of state is dynamical.
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Moreover, a propagation equation for the anisotropic stress is also needed to close the system. The required information is,
of course, contained in the original Boltzmann equation which can be recast as a two-dimensional, infinite closed hierarchy
for the moments of f integrated over energy with positive (integer) velocity-weights [209,211]. The integrated moments
contain all those that appear in the stress-tensor as a subset. The two-dimensional hierarchy simplifies in a number of
important special cases. For relativistic matter, λ ∼ E, the hierarchy becomes one-dimensional and this is appropriate for
the cosmological neutrino background at temperatures T � m. For tightly-coupled collisional matter, such as the CMB in
the pre-recombination era when Thomson scattering is efficient (see Section 4.3), anisotropies at multipole l are suppressed
by (v∗ktcoll/a)l, where a/k is the scale of inhomogeneity, tcoll is the collision time and v∗ is a typical particle speed. Finally,
for non-relativistic matter the hierarchy can be truncated at low velocity weight22 in which case only a small number of
moments need be propagated. The latter truncation scheme is used to study the effect of velocity dispersion on linear
structure formation in Refs. [211,212].

The other important bulk properties of the gas are the particle and entropy fluxes. We shall only consider the former
here; for relativistic thermodynamics, see e.g. Ref. [213]. The particle flux is given in terms of the distribution function by

Na =

∫
f pa

d3p
E

. (4.1.18)

The number density and particle drift evaluate to

n = ∆0

∫
∞

0
dλλ2F, (4.1.19)

Na = ∆1

∫
∞

0
dλλ2(λ/E)Fa. (4.1.20)

The propagation equation for n follows from integrating the l = 0 moment of Eq. (4.1.8) over λ2dλ:

ṅ = −Θn − DaNa − AaNa + ∆0

∫
∞

0
dλ
λ2

E
C0[f ], (4.1.21)

so that the divergence of the particle flux is

∇
aNa = ∆0

∫
∞

0
dλ
λ2

E
C0[f ] (4.1.22)

=

∫
C[f ]

d3p
E

. (4.1.23)

As for the stress-tensor, Eq. (4.1.21) is part of a two-dimensional infinite hierarchy of integrated moments [209]. With an
approximate truncation, this can be solved to determine the evolution of the particle flux.

We end by noting that if we chose the frame ua such that qa = 0 (the energy frame), the particle flux will generally not
vanish. Hence the energy and particle frame generally differ. An important exception is for linear CMB fluctuations, where
the energy-dependence of the dipole Fa(E) (and higher multipoles) factorises; see Section 4.3.

4.1.2. Linearisation around FLRW cosmologies
An important result due to Ehlers, Geren and Sachs [214] follows from the exact multipole equation (4.1.8): if there

exists a family of free-falling observers who measure freely-propagating self-gravitating radiation to be exactly isotropic in
some domain of a dust-dominated universe, the spacetime is exactly FLRW in that region. Of course, the CMB is not exactly
isotropic but the result can be shown to be stable in the sense that if a family of observers sees almost isotropic radiation,
the universe is close to FLRW [215] (but see Ref. [216] for a critique of the technical assumptions involved). Then, if we
accept the (spacetime) Copernican assumption, the currently observed isotropy of the CMB implies that the geometry of the
universe is well described by an almost-FLRWmodel (at least since recombination).

For an FLRW model, isotropy demands that the distribution function be isotropic and homogeneous, i.e. the only non-
zero multipole is the monopole, and this has vanishing projected gradient at fixed energy. According to the discussion in
Section 2.2.1, the l ≥ 1 multipoles and the projected derivative of the monopole are, therefore, gauge-invariant measures of
perturbations in the distribution function about an FLRW model. As for most covariant and gauge-invariant perturbations,
the variables do, however, depend on the choice of frame ua. This dependence is discussed further for massless particles in
Section 4.3.2. If we consider small departures from FLRW, the covariant and gauge-invariant variables will themselves be
small and we can safely ignore products between small quantities.

In an FLRW background, the Liouville equation (4.1.2) for collisionless matter reduces to

∂f

∂t
− Hλ

∂f

∂λ
= 0. (4.1.24)

22 This is accurate provided that the typical free-streaming distance per Hubble time is small compared to the size of the inhomogeneity.
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This is solved by f = f (aλ) where a is the Robertson–Walker scale factor, as follows also from noting that aλ is conserved
along the particle path. In the perturbed universe, it is convenient to introduce the comovingmomentum q ≡ aλ and energy
ε ≡ aE. It is q that is conserved in the background, while ε2 = q2 + a2m2 exactly. We can then write the distribution function
as f (xa, q, ea) or in terms of angular multipoles FAl(x

a, q).
Before proceeding, it is worth making the following remarks about the scale factor a in the perturbed universe. The scale

factor is defined by integrating ȧ/a = Θ/3 and, for a given choice of ua, is only defined up to a hypersurface. The initial
hypersurface on which a = const. should be chosen physically so as to ensure that ha ≡ Daa = 0 if the model is FLRW. The
exact propagation equation for ha follows from commuting the space and time derivatives to find

ḣ〈a〉 =
1
3
a (ΘAa + DaΘ) − σa

bhb + ωa
bhb. (4.1.25)

It follows that ḣa is well-defined at first-order, despite the first-order hypersurface ambiguity in both ha and a.
The multipole form of the Boltzmann equation (4.1.8) contains spacetime derivatives taken at fixed E (or λ). If instead

we take the derivative at fixed q, we have

∇aFAl |λ = ∇aFAl |q +

(1
a
ha −

1
3
Θaua

)
q
∂FAl
∂q

. (4.1.26)

Using this result in Eq. (4.1.8), and dropping terms that are second-order, we obtain the linearisedmultipole equations [211]

Ḟ〈Al〉 +
q

ε

l + 1
2l + 3

DbFbAl +
q

ε
D〈alFAl−1〉 + δl1

(1
a

q

ε
ha1 −

ε

q
Aa1

)
q
∂F

∂q
− δl2σa1a2q

∂F

∂q
=

a

ε
CAl [f ], (4.1.27)

where all spacetime derivatives are at fixed q. The l = 1 equation contains the first-order combination

Va(q) ≡ aDaF + haq
∂F

∂q
= aDaF|λ, (4.1.28)

which removes the hypersurface ambiguity of DaF and ha. The propagation equation for Va(q) follows from Eq. (4.1.27) for
l = 0. Taking the projected derivative and commuting time and spatial derivatives gives

V̇〈a〉 = −
a

3
q

ε
DaDbFb + ḣ〈a〉q

∂F

∂q
+ aDa

(
C0[f ]

E

)∣∣∣∣
λ

+ aAa
C0[f ]

E
, (4.1.29)

with all spacetime derivatives at fixed q except where stated otherwise. In the absence of collisions, this equation, together
with the l > 0 multipole equations, form a closed system (once supplemented with the usual kinematic equations) with
which one can propagate the perturbations to the distribution function directly. The collisionless form of these equations
is well known in the synchronous and Newtonian gauge [217] and are what is usually used to propagate massive neutrino
perturbations numerically [217–219].

The general strategy for solving Eq. (4.1.27) is to decompose the spatial dependence of FAl into scalar, vector and tensor
parts which evolve independently in linear theory. The essential idea is that the scalar component of FAl is obtained by
taking the PSTF part of l projected derivatives of some scalar field, the vector component by the PSTF part of l − 1 projected
derivatives of a (projected) divergence-free vector field, and the tensor component from the PSTF part of l − 2 derivatives
of a PSTF, divergence-free rank-2 tensor field. The decomposition is unique, although the tensor potentials are generally
not, provided the tensor field being expanded satisfies appropriate boundary conditions (for non-compact spaces) [107].
In general, for l > 2, a rank-l PSTF tensor can have higher-rank tensor contributions. However, in linear theory there are
no gravitational source terms for the higher-rank contributions and so, starting from an early epoch when interactions are
efficient in maintaining isotropy, the higher-rank contributions will not be present.

The tensor potentials for the scalar, vector and tensor contributions can be expanded in terms of sets of appropriate
harmonic functions that are complete in FLRW spaces. Given FLRW symmetry, a convenient choice is the eigenfunctions of
the (comoving) projected Laplacian a2D2. These can be chosen to be orthogonal, and this property will be inherited by the
tensors derived from them. In the following paragraphs we briefly summarise the properties of these harmonic functions,
bringing together and extending results in Refs. [167,220,221].
Scalar perturbations. For these we expand in terms of scalar-valued eigenfunctions satisfying

a2D2Q(0)
+ k2Q(0)

= 0, (4.1.30)

with Q̇(0)
= 0. These equations hold only at zero-order, i.e. the harmonic functions are defined on the FLRW background.

The superscript (0) denotes scalar perturbations, and, to avoid clutter, in this sectionwe suppress the index (k). The allowed
eigenvalues k2 depend on the spatial curvature of the background model. Defining ν2 = (k2 + K)/|K|, where 6K/a2 is the
curvature scalar of the FLRW spatial sections, the regular, normalisable eigenfunctions have ν ≥ 0 for open and flat models
(K ≤ 0). In Euclidean space, this implies all k2 ≥ 0. The k = 0 solutions are homogeneous and, therefore, do not appear in
the expansion of first-order tensors, for example ∆a ≡ aDaρ/ρ. In open models, the modes with ν ≥ 0 form a complete set
for expanding square-integrable functions, but they necessarily have k ≥

√
|K| and so cannot describe correlations longer

than the curvature scale [71]. Super-curvature solutions (with −1 < ν2 < 0) can be constructed by analytic continuation
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and Ref. [71] argues that these should be included in an expansion of a general random field. A super-curvature mode is
generated in some models of open inflation [222]. In closed models ν is restricted to integer values ≥ 1 [220,221] and there
are ν2 linearly-independent modes per ν. The mode with ν = 1 cannot be used to construct perturbations (its projected
gradient vanishes globally), while the modes with ν = 2 can only describe perturbations where all perturbed tensors with
rank> 1 vanish [103].

For the scalar contribution to a rank-l tensor, such as the l-th multipole of the distribution function FAl , we expand in
rank-l PSTF tensors Q(0)

Al
derived from the Q(0) via [210,223]

Q(0)
Al

=

(
−a

k

)l

D〈a1 . . .Dal〉Q
(0). (4.1.31)

The recursion relation for the Q(0)
Al

,

Q(0)
Al

= −
a

k
D〈alQ

(0)
Al−1〉

, (4.1.32)

follows directly. The factor al in the definition of theQ(0)
Al

ensures that Q̇(0)
Al

= 0 at zero-order. Themultipole equation (4.1.27)
also involves the divergence of Q(0)

Al
, for which we need the result [114,210]

DalQ(0)
Al

=
k

a

l

(2l − 1)

[
1 − (l2 − 1)

K

k2

]
Q(0)

Al−1
. (4.1.33)

When we discuss CMB polarization in Section 4.3, we shall also require the result that [224]

curlQ(0)
Al

= 0, (4.1.34)

where the curl of a general rank-l PSTF tensor is defined by

curl SAl = εbc〈alD
bSAl−1〉

c. (4.1.35)

In closed models, the Q(0)
Al

vanish for l ≥ ν, so only modes with ν > l contribute to rank-l tensors.
The decomposition of the distribution function into angular multipoles FAl , and the subsequent expansion in the Q(0)

Al
,

combine to give a normal mode expansion which involves the objects D〈Al〉Q
(0)eAl . For K = 0, with the Q(0) taken to be

Fourier modes, this is equivalent to the usual Legendre expansion Pl(k̂ ·e)where k̂ is the Fourier wavevector (e.g. Ref. [217]).
In non-flat models, the expansion is equivalent to the Legendre tensor approach, first introduced by Wilson [225]. The
advantage of handling the angular and scalar harmonic decompositions separately is that the former can be applied quite
generally for an arbitrary cosmological model. Furthermore, extending the normal-mode expansions to cover polarization
and vector and tensor modes in non-flat models is then rather trivial.
Vector perturbations. For these we use the PSTF rank-1 eigenfunctions of the Laplacian,

a2D2Q(±1)
a + k2Q(±1)

a = 0, (4.1.36)

that are divergence-free, DaQ(±1)
a = 0, and have vanishing time derivative, Q̇(±1)

a = 0. The superscript (±1) labels the two
possible parities (electric and magnetic) of the vector harmonics, e.g. Ref. [220]. We can always choose the parity states so
that

curlQ(±1)
a =

k

a

√
1 +

2K
k2

Q(∓1)
a , (4.1.37)

which ensures that both parities have the same normalisation. For vector modes we define ν2 = (k2 + 2K)/|K|. The regular,
normalisable eigenmodes have ν ≥ 0 for flat and open models, while for closed models ν is an integer ≥ 2.

We now differentiate the Q(±1)
a vectors l − 1 times to form PSTF tensors:

Q(±1)
Al

≡

(
−a

k

)l−1
D〈Al−1Q

(±1)
al〉

, (4.1.38)

which are constant in time. They satisfy the same recursion relation (4.1.32) as the scalar harmonics. For the projected
divergences, we have [226]

DalQ(±1)
Al

=
k

a

(l2 − 1)
l(2l − 1)

[
1 − (l2 − 2)

K

k2

]
Q(±1)

Al−1
. (4.1.39)

Finally, for polarization we shall require the result

curlQ(±1)
Al

=
1
l

k

a

√
1 +

2K
k2

Q(∓1)
Al

. (4.1.40)
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As for scalar perturbations, the Q(±1)
Al

vanish for l ≥ ν in closed models.
Tensor perturbations. Here we use the PSTF rank-2 eigenfunctions of the Laplacian,

a2D2Q(±2)
ab + k2Q(±2)

ab = 0, (4.1.41)

that are transverse, DbQ(±2)
ab = 0, and have vanishing time derivative, Q̇(±2)

ab = 0. The superscript (±2) labels the two possible
parity states for the tensor harmonics [169,220,227]. For our purposes, the states can be conveniently chosen so that

curlQ(±2)
ab =

k

a

√
1 +

3K
k2

Q(∓2)
ab . (4.1.42)

For tensor modes we define ν2 = (k2 + 3K)/|K|. The regular, normalisable eigenmodes have ν ≥ 0 for flat and open models,
while for closed models ν is an integer ≥ 3.

Following our treatment of scalar perturbations, we form rank-l PSTF tensors Q(±2)
Al

by differentiation:

Q(±2)
Al

≡

(
−a

k

)l−2
D〈Al−2Q

(±2)
al−1al〉

. (4.1.43)

The Q(±2)
Al

satisfy the same recursion relation (4.1.32) as the scalar harmonics but their projected divergences are [169]

DalQ(±2)
Al

=
k

a

(l2 − 4)
l(2l − 1)

[
1 − (l2 − 3)

K

k2

]
Q(±2)

Al−1
. (4.1.44)

Finally, for polarization we require

curlQ(±2)
Al

=
2
l

k

a

√
1 +

3K
k2

Q(∓2)
Al

. (4.1.45)

As before, in closed models, the Q(±2)
Al

vanish for l ≥ ν.
Combining the angular and spatial expansions gives a set of normal-mode functions going like D〈Al−2Q

(±2)
al−1al〉

eAl for
tensor modes. This generalises Wilson’s approach [225] for scalar perturbations to tensor modes. For the special case of
a flat universe, and working with circularly-polarized Fourier modes,23 the normal modes reduce to m = ±2 spherical
harmonics, Yl±2(e), when the Fourier wavevector lies along the z-axis. Similarly, for vector modes D〈Al−1Q

(±1)
al〉

eAl reduces to
m = ±1 spherical harmonics, Yl±1(e). In this limit, the normal-mode expansions are equivalent to those in the total angular
momentum method of Hu &White [228].

Quite generally, the normal-mode functions for constructing anisotropy from rank-m perturbations are Q(m)
Al

eAl . The
evolution of these quantities along the line of sight from some point R is governed by the recursion [225,229]

1
k

d
dχ

Q(m)
Al

eAl = Q(m)
Al+1

eAl+1 −
(l2 − m2)

(2l + 1)(2l − 1)

[
1 − (l2 − m − 1)

K

k2

]
Q(m)

Al−1
eAl−1 , (4.1.46)

where we have used the recursion relation (4.1.32) and the divergence result (4.1.33) suitably generalised to rank-m
perturbations. Here, χ is the comoving radial distance along the line of sight, so χ = 0 at R. The coupling of the lth normal
mode to l ± 1 induces a similar coupling between the anisotropy at multipoles l and l ± 1 (c.f. the advective coupling in Eq.
(4.1.8)). The solution for the l = m normal mode along the line of sight can be written in terms of the l ≥ m modes at R as

Q(m)
Am eAm

∣∣∣
χ

= 4π
∞∑
l=m

1
∆l

l!

(l − m)!

ν(ν2 + m + 1)(l−m)/2

l∏
n=0

√
ν2 + n2

Φν
l (x)

sinhm x

(
Q(m)

Al
eAl
)
χ=0

, (4.1.47)

where ν2 = [k2+(m+1)K]/|K|, x =
√

|K|χ and theΦν
l (x) are the ultra-spherical Bessel functions (see e.g. Refs. [221]).24 They

are the generalisation of spherical Bessel functions to K 6= 0 spaces – Φν
l (x) → jl(kχ) in the limit of a flat model – and we

see that Φν
l (x)/ sinh

m x give the radial dependence of the rank-m eigenfunctions Q(m)
Am .25 We have written Eq. (4.1.47) in a

form appropriate for K < 0; for closed models ν2 + n should be replaced by ν2 − n, where n is an integer, and the hyperbolic
functions by their trigonometric counterparts. For K > 0 the sum over l truncates at l = ν − 1. Note that Eq. (4.1.47)
is independent of the specific representation of the Q(m)

Am that we choose. Physically, it describes the linearised anisotropy
pattern generated at R from a first-order source in the Boltzmann equation of the formQ(m)

Am eAm acting at radial distanceχ. For
a given rank-m perturbation, the response to sources with l > m local angular dependence, i.e. of the form Q(m)

Al
eAl , follows

from differentiating Eq. (4.1.47) and using the recursion (4.1.46). In FLRW models, the sources for the scalar distribution
function are always of this form. We shall see meet examples of these projections in the integral solutions for the CMB
anisotropies in Sections 4.3.4–4.3.6.

23 Note that the (complex) Fourier modes are not parity states and the curl relations (4.1.37) and (4.1.42) do not hold directly.
24 Note that νx → kχ in the limit K → 0.
25 This agrees with the explicit constructions in Refs. [220,221] for the m ≤ 2 cases.
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4.2. Cosmic neutrino background

In this subsection we discuss briefly the perturbations of the cosmic neutrino background from the perspective of the
1 + 3-covariant kinetic theory developed above.

Flavour oscillations imply that at least two of the three neutrino mass eigenstates have non-zero masses. The inferred
squared-mass differences ∆m2

21 = 7.9 × 10−5 eV2 and |∆m2
31| = 2.2 × 10−3 eV2 imply that the summed masses

∑
i mi ≥

0.056 eV for the normal hierarchy (∆m2
31 > 0) and

∑
i mi ≥ 0.095 eV in the inverted hierarchy. All other things being

equal, the effect of non-zero neutrino masses is to suppress the matter perturbations on scales below the neutrino Jeans
scale (see e.g. Ref. [230] for a recent review and Refs. [231], [232] for early pioneering work). Combining their three-
year data with large-scale structure data, the WMAP team find

∑
i mi < 0.9 eV (95% confidence) via this route in a flat

universe [1]. Cosmology therefore places an important constraint on the absolute neutrino mass scale. Better constraints
can be obtained by including smaller scale measurements of the matter power spectrum from the (Lyman-α) absorption
spectra of distant quasars [233,234], although there are some apparent inconsistencies between the CMB and Lyman-α data
that may invalidate the conclusions on neutrino masses.

Neutrinos decouple at temperatures ∼1 MeV when they are ultra-relativistic. Since they were in thermal equilibrium
before this time, the distribution function in the FLRW limit is

f (q) ≈

[
exp

(
q

kBTdad

)
+ 1

]−1
, (4.2.1)

where we have set the chemical potential to zero. Here, Td is the temperature at neutrino decoupling when the scale factor
is ad. Note that when expressed in terms of the comoving momentum, the distribution function is time independent. Once
the neutrinos become non-relativistic (typical momentum λ � m), the distribution function starts to depart from Fermi-
Dirac form since it is the momentum not energy that redshifts with the expansion of the universe. Defining the neutrino
temperature Tν ≡ adTd/a, at redshift zero Tν is related to the CMB temperature by Tν = (4/11)1/3TCMB = 1.96K; the CMB
temperature is higher due to photon production at electron–positron annihilation.

The current neutrino temperature and the inferred mass differences imply that at least two of the mass eigenstates are
non-relativistic at the present epoch. Noting that the average momentum

〈λ〉 =
7π4

180ζ(3)
kBTν ≈ 3.15kBTν, (4.2.2)

the current upper limit of 0.3 eV for themass of any eigenstate implies that neutrinoswere relativistic at the timeof hydrogen
recombination. For this reason, light neutrinomasses only affect the CMB indirectly through changes to the angular-diameter
distance to last scattering. Their effect on the growth of small-scale matter perturbations is significant though [235] and is
the mechanism by which cosmological observations constrain the (summed) absolute neutrino mass.

In the following subsections we discuss the dynamics of scalar and tensor-mode neutrino perturbations. We include
the latter since it has the potentially observable consequence of damping sub-horizon gravitational waves during radiation
domination [236].

4.2.1. Scalar perturbations
For scalar perturbations we expand the multipoles FAl(q) in terms of the Q(0)

Al
:

FAl(q) = −
π

∆l

dF(q)
d ln q

∑
k

F(0)
l (q)Q(0)

Al
, l ≥ 1, (4.2.3)

where F(q) is the zero-order monopole of the distribution function, Eq. (4.2.1). Here, we have left the harmonic index (k)
implicit on the scalar harmonic functions and their coefficients. The momentum-dependent prefactor is chosen so that for
massless particles the F(0)

l are independent of q (see Eq. (4.2.8)) and

qa = ρ
∑
k

F(0)
1 Q(0)

a , (m = 0), (4.2.4)

πab = ρ
∑
k

F(0)
2 Q(0)

ab , (m = 0). (4.2.5)

In themassless case,
∑

k F
(0)
l Q(0)

Al
are proportional to themultipoles of the neutrino temperature anisotropy. For the gradient

of the monopole we use

Va(q) =
k

4
dF(q)
d ln q

∑
k

F(0)
0 (q)Q(0)

a , (4.2.6)

so that, on integrating over q,

∆a =
a

ρ
Daρ = −

∑
k

kF(0)
0 Q(0)

a , (m = 0), (4.2.7)

and hence
∑

k F
(0)
0 Q(0) is essentially δρ/ρ on hypersurfaces orthogonal to ua (up to a constant).
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After they decouple, the neutrino multipoles satisfy Eqs. (4.1.27) and (4.1.29) with vanishing collision terms. Expanding
in harmonics, we find [211]

Ḟ(0)
l (q) +

k

a

q

ε

{
l + 1
2l + 1

[
1 −

(
(l + 1)2 − 1

) K

k2

]
F(0)
l+1(q) −

l

2l + 1
F(0)
l−1(q)

}

+ 4δl0ḣ + δl1
4
3
k

a

(
q

ε
h +

ε

q
A
)

+ δl2
8
15

k

a
σ = 0, (4.2.8)

where the kinematic quantities are

ha = −
∑
k

khQ(0)
a , Aa =

∑
k

k

a
AQ(0)

a , σab =
∑
k

k

a
σQ(0)

ab . (4.2.9)

When most of the neutrinos are relativistic, we can set q = ε in Eq. (4.2.8) and we recover massless dynamics. On sub-
horizon scales, neutrinos are unable to cluster and free-streaming excites multipoles higher than l = 1. At late times, for
those species that are non-relativistic, free-streaming effectively turns off for k/a � Hε/q which defines the neutrino Jeans
length λJ ∼ v∗/H where v∗ is the typical thermal velocity. When free-streaming is not operating, the F(0)

l (q) are constant
for l > 2. During matter domination, the comoving Jeans length falls (as a−1/2) so that neutrinos start to cluster again at
late times for modes that are sub-Hubble at the non-relativistic transition once their thermal velocities have redshifted
sufficiently. For modes that are inside the Jeans length today, the clustered baryons and CDM have never felt the gravity of
clustered neutrinos. All other things being equal, increasing the neutrino mass increases the expansion rate by a constant
factor when neutrinos are very non-relativistic, and so structure formation is slowed down on small scales and the matter
power spectrum is suppressed by a constant factor proportional to the summed neutrino masses [237]. There is no such
effect on large scales since the enhanced expansion rate is mitigated by neutrino clustering. A comprehensive review of
neutrino scalar perturbations is given in Ref. [230].

We have focussed on the effects of massive neutrinos on matter clustering. However, if in the future it were possible
to detect the cosmic neutrino background directly, its anisotropies would open up a rich new source of cosmological
information. The power spectra of the anisotropies can easily be computed from the solution of Eq. (4.2.8) using themethods
described for the CMB in Section 4.3; see Ref. [238] for further details.

4.2.2. Tensor perturbations
For tensor perturbations, we expand the FAl(q) as

FAl(q) = −
π

∆l

dF(q)
d ln q

∑
k

F(±2)
l (q)Q(±2)

Al
, l ≥ 2, (4.2.10)

where the sum over modes
∑

k includes the two parity states labelled with a superscript (±2). Expanding Eq. (4.1.27) in
harmonics gives [211]

Ḟ(±2)
l (q) +

k

a

q

ε

{
(l + 3)(l − 1)
(2l + 1)(l + 1)

[
1 −

(
(l + 1)2 − 3

) K

k2

]
F(±2)
l+1 (q) −

l

2l + 1
F(±2)
l−1 (q)

}
+ δl2

8
15

k

a
σ(±2)

= 0, (4.2.11)

where the shear σab =
∑

k(k/a)σ
(±2)Q(±2)

ab . The physics of Eq. (4.2.11) is straightforward: the anisotropic expansion due to
the shear of gravitational waves continually sources quadrupole anisotropy; advectionmoves this power up to higher lwith
∆l = 1 taking the typical thermal crossing time across the wavelength of the perturbation. For perturbations outside the
neutrino Jeans scale, advection is ineffective within an expansion time and the l > 2 multipoles become approximately
constant.

An important application of Eq. (4.2.11) is the damping of gravitational waves by neutrino free-streaming [236,239].
The evolution of cosmological gravitational waves was considered in Section 3.6 in terms of the shear. However, to make
contact with the metric-based literature, it is convenient to work with the transverse, trace-free metric perturbation
Hab = a2Hij(dxi)a(dxj)b, where

ds2 = a2
[
−dη2 + (γij + Hij)dxidxj

]
(4.2.12)

and γij the background (conformal) spatial metric. Note that Hij is gauge-invariant [103]. In terms of the metric, the shear
and the electric part of the Weyl tensor are (e.g. Ref. [107])

σab =
1
2

Ḣab (4.2.13)

Eab = −
1
4

1
a2

H ′′

ab +
K

2a2
Hab −

1
4
D2Hab, (4.2.14)

where primes denote the action of aua
∇a. The equation of motion for Hab follows from the shear propagation equation; we

find

H ′′

ab + 2
a′

a
H ′

ab −

(
a2D2

− 2K
)
Hab = 2a2πab. (4.2.15)
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After neutrinodecoupling, but during radiationdomination, the neutrino anisotropic stress is dynamically important for sub-
Hubble scales. Before decoupling, scattering keeps the neutrinos isotropic, while after matter-radiation equality, the role of
the neutrino stress is suppressed by the ratio fν of neutrino energy density to the total energy density. During radiation
domination, fν ≈ 0.405 is constant and the harmonic expansion of Hab evolves with conformal time as

H (±2)′′
+

2
η

H (±2)′
+ (k2 + 2K)H (±2)

=
6fν
η2

F(±2)
2 (4.2.16)

for massless neutrinos. (We have used the tensor-mode version of Eq. (4.2.5) to relate F(±2)
2 to the neutrino anisotropic

stress.) In the absence of anisotropic stress, the regular solution of Eq. (4.2.16) isH (±2)
∝ j0(kη) in a flat universe. Themetric

perturbation is thus constant outside the horizon but then decays as a after horizon crossing.
Quite generally, Eqs. (4.2.11) and (4.2.15) can be recast as an integro-differential using the following integral solution for

the F(±2)
l in the massless limit in a flat universe,

F(±2)
l = −4l(l − 1)

∫ η

dη′kσ(±2)(η′)
jl(k∆η)

(k∆η)2
, (4.2.17)

where ∆η ≡ η − η′.26 The lower limit of integration should be the end of neutrino decoupling, but it is harmless to
approximate this as η = 0. Combining the quadrupole solution with the harmonic expansion of Eq. (4.2.16) for K = 0,
gives [236]

H (±2)′′
+

2a′

a
H (±2)′

+ k2H (±2)
= −24fν(η)

(
a′

a

)2 ∫ η

0
dη′ H (±2)′(η′)

j2(k∆η)

(k∆η)2
, (4.2.18)

where we have used H (±2)′
= 2kσ(±2). Modes that enter the horizon well before matter-radiation equality, but well after

neutrino decoupling, have their amplitude damped by a factor ≈0.803 with essentially no phase shift, i.e. H (±2)(η) ≈

0.803H (±2)(0)j0(kη) during radiation domination [236]. However, the observational consequences of suchmodes is limited
since their wavelengths are too short to affect the CMB and too long for direct detection with laser interferometers. CMB
polarization is dominated by modes entering the horizon around recombination and the universe is not fully matter-
dominated at this epoch. The asymptotic results of Ref. [236] are not applicable in this limit and a full numerical solution of
Eq. (4.2.18) is required for accurate results. Both the phase shift and damping of the amplitude turn out to be important and
their interplay can both enhance or reduce the polarization power by a few percent depending on scale.27

4.3. Cosmic microwave background

Since the detection of anisotropies in the temperature of CMB radiation by COBE [240], the CMBhas played amajor role in
establishing quantitative constraints on the cosmological model. The small O(10−5) amplitude of these fluctuations means
they are well described by linear perturbation theory and the physics of the CMB is thus very well understood. For detailed
recent reviews, see Refs. [241–244].

The prediction of angular variations in the temperature of the radiation, due to the propagation of photons through
an inhomogeneous universe [102], followed shortly after the (definitive) discovery of the CMB in 1965 by Penzias and
Wilson [245]. Shortly after, polarization in the CMB was predicted in models with anisotropy in the expansion around the
time of recombination [246]. The detailed physics of CMB fluctuations in almost-FLRW models was essentially understood
by the early 1970s [146,247–250]formodels with only baryonicmatter; cold-dark-mattermodels were considered a decade
later [151,251]. Further important developments included the effect of spatial curvature [225], polarization [252,251] and
gravitational waves [253,254]. All of these works used the standard metric-based approach to cosmological perturbation
theory, but the physics of the CMB has also been studied extensively in the 1+ 3-covariant approach [114,169,210,215,223,
224,226,255–263]. This brings to the CMB the benefits described in Section 2, and in particular: (i) clarity in the definition
of the variables employed; (ii) covariant and gauge-invariant perturbation theory around a variety of background models;
(iii) provision of a sound basis for studying non-linear effects; and (iv) freedom to employ any coordinate system or tetrad.

In this subsection our main focus is on the linear theory of CMB anisotropies, but we present most of the basic 1 + 3-
covariant framework in a non-perturbative manner. The approach therefore provides a convenient starting point for non-
linear treatments of CMB fluctuations [259]. There are several non-linear effects that are expected to affect the CMB at
an important level on scales below a few arcminutes. These include gravitational lensing [264–267] (see, also, Ref. [268]
for a comprehensive review), various scattering effects either during [269] or after the universe reionized [270–272] (see
e.g. Ref. [273] for a review) and gravitational redshifting effects [274]. For polarization, the gravitational lensing effect may
even be the dominant contribution to the B-mode component [275,276] on all angular scales [277]. A complete non-linear
computation of the CMBanisotropies in almost-FLRWmodels is still lacking, but there has been someprogressmade recently
at second-order in perturbation theory [278,279]. (However, note that non-perturbative effects are known to be important
for gravitational lensing of the CMB [280]).

26 Unsurprisingly, the integral solution for massless neutrinos is the same as for the CMB in the absence of scattering; see Section 4.3.4.
27 For further discussion of this point, see the unpublished notes by Antony Lewis that accompany the CAMB code; they are available as

http://cosmologist.info/notes/CAMB.ps.gz.

http://cosmologist.info/notes/CAMB.ps.gz
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4.3.1. CMB observables
We are interested in both the total intensity and polarization properties of the CMB. Therefore, we describe the CMB

photons by a one-particle distribution function that is tensor-valued: fbc(xa, pa) [281]. It is a Hermitian tensor defined so
that the expected number of photons contained in a proper phase-space element d3xd3p, and with polarization state εa is
εa∗fabεbd3xd3p. The complex polarization 4-vector εa is orthogonal to the photonmomentum, εapa = 0 (adopting the Lorentz
gauge), and is normalised as ε∗aεa = 1. The distribution function is also defined to be orthogonal to pa so fabpa

= 0. We can
make a 1 + 3-covariant decomposition of the photon 4-momentum as

pa
= E(ua

+ ea), (4.3.1)

where, now, the magnitude of the momentum λ equals the energy E since photons are massless. For a photon in a pure
polarization state εa, the direction of the electric field relative to ua is sabεb where, recall, sab ≡ hab − eaeb is the screen
projection tensor.

The (Lorentz-gauge) polarization 4-vector is only unique up to constant multiples of pa, reflecting the remaining gauge
freedom, but the observed polarization vector sabεb is unique. As the residual gauge freedom also affects the distribution
function fab, it is sometimes convenient to work directly with the (screen-)projected polarization tensor,

Pab ∝ E3sa
csb

dfcd (4.3.2)

which governs the observable properties of the radiation field from the perspective of ua. It is unaffected by the residual
electromagnetic gauge freedom. The factor E3 is included in the definition of Pab so that it relates simply to the observed
Stokes brightness parameters for the radiation field. Decomposing Pab into its irreducible components,

Pab(E, e
d) =

1
2
I(E, ed)sab + Pab(E, e

d) +
1
2
iV(E, ed)εabce

c, (4.3.3)

defines the total intensity brightness, I, the circular polarization, V , and the linear polarization tensor Pab which is PSTF and
transverse to ea. The projected polarization tensor can, alternatively, be interpreted in terms of classical electromagnetic
fields: for quasi-monochromatic radiation with electric field R [Ea(t) exp(−iωt)], where ω is the angular frequency and the
complex representative Ea varies little over a wave period,

Pab
∝ 〈EaEb∗〉. (4.3.4)

Here, the angle brackets denote time averaging. The linear polarization is often described in terms of Stokes brightness
parameters Q and U (e.g. Ref. [282]) which, operationally, measure the difference in intensity between radiation transmitted
by a pair of orthogonal polarizers (for Q), and the same but after a right-handed rotation of the polarizers by 45 degrees
about the propagation direction ea (for U). If we introduce a pair of orthogonal polarization vectors (e1)a and (e2)a, which are
perpendicular to ua and ea, i.e. sab(ei)b = (ei)a for i = 1 and 2, and are oriented so that {ua, (e1)a, (e2)a, ea} form a right-handed
orthonormal tetrad, we have

Pab(ei)
a(ej)

b
=

1
2

(
Q U
U −Q

)
. (4.3.5)

The invariant 2P abPab = Q2
+ U2 is the magnitude (squared) of the linear polarization.

Since I(E, ec) and V(E, ec) are scalar functions on the sphere eaea = 1 at a point in spacetime, their local angular dependence
can be handled by an expansion in PSTF tensor-valued multipoles, as in Eq. (4.1.5):

I(E, ec) =

∞∑
l=0

IAl(E)e
Al , (4.3.6)

V(E, ec) =

∞∑
l=0

VAl(E)e
Al . (4.3.7)

For Pab, we use the fact that any STF tensor on the sphere can be written in terms of angular derivatives of two scalar
potentials, PE and PB, as (e.g. Ref. [275])

Pab =
(2)

∇
〈a

(2)
∇b〉 PE + εc〈a

(2)
∇b〉

(2)
∇c PB, (4.3.8)

where (2)
∇a and εab = εabcec are the covariant derivative and alternating tensor on the two-sphere. The scalar fields PE and PB

are even and odd under parity respectively, and define the electric and magnetic parts of the linear polarization. Expanding
PE and PB in PSTF multipoles in the usual way, and evaluating the angular derivatives, we can write [224,227]

Pab(E, e
c) =

∞∑
l=2

[EabCl−2(E)e
Cl−2 ]

TT
−

∞∑
l=2

[ed1ε
d1d2

(aBb)d2Cl−2(E)e
Cl−2 ]

TT. (4.3.9)

Here, TT denotes the transverse (to ea), trace-free part: for a general second-rank tensor Fab

[Fab]
TT

= scas
d
bFcd −

1
2
sabs

cdFcd. (4.3.10)
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Eq. (4.3.9) can be inverted to determine the PSTF tensors EAl and BAl as

EAl(E) = Ml
2∆l

−1
∫

dΩe〈Al−2Pal−1al〉(E, e
c), (4.3.11)

BAl(E) = Ml
2∆l

−1
∫

dΩebε
bd

〈aleAl−2Pal−1〉d(E, e
c), (4.3.12)

where Ml ≡
√
2l(l − 1)/[(l + 1)(l + 2)]. The multipole expansion in Eq. (4.3.9) is the coordinate-free version of the tensor

spherical harmonic expansion introduced to the analysis of CMB polarization in Ref. [275]. An alternative expansion,
whereby Q ± iU is expanded in spin-weighted spherical harmonics (e.g. Ref. [283]), is also commonly employed [276]. The
expansion (4.3.9) is also equivalent to that introduced in the 1970s by Dautcourt & Rose [284].

In observational cosmology, the CMBanisotropy is usually expressed in terms of thermodynamic equivalent temperature,
i.e. the distribution function I(E, ea)/E3 divided by ∂fPl/∂TCMB, where fPl(E/TCMB) is the Planck function at the average CMB
temperature.28 Ignoring spectral distortions, the linear-theory CMB anisotropy and polarization brightness are independent
of energywhen expressed as thermodynamic temperatures. This is because the linear perturbations in fab inherit the spectral
dependence of ε∂fPl/∂ε.29 For the CMB, it follows that we can integrate over energy without loss of information so we define
bolometric multipoles

IAl = ∆l

∫
∞

0
dE IAl(E) (4.3.13)

for l ≥ 0. The normalisation is chosen so that the three lowestmultipoles give the radiation energy andmomentumdensities
and anisotropic stress respectively (c.f. Eqs. (4.1.10)–(4.1.12)):

I = ρ, Ia = qa, Iab = π
(γ)
ab . (4.3.14)

We define EAl , BAl and VAl similarly. The fractional anisotropy in the CMB temperature, δT(ea), is then related to the IAl by

δT(e
c) =

π

I

∫
∞

0
dE I′(E, ea) (4.3.15)

=
π

I

∞∑
l=1

∆l
−1IAle

Al (4.3.16)

to first order, where I′(E, ea) is the brightness anisotropy.
For theories, such as single-field inflation, that predict initial perturbations that are very close to being Gaussian

distributed (see Ref. [286] for a recent review), the CMB fluctuations should also be Gaussian distributed where linear
theory applies. If we further assume that the statistical properties of the fluctuations are invariant under the isometries
of the background cosmological model (i.e. translations and rotations for FLRW), the CMB power spectra fully characterise
the statistics of the CMB anisotropies and polarization.30 The temperature power spectrum is defined in terms of the IAl
by [210]:(

π

I

)2
〈IAl I

Bl′ 〉 = ∆lC
T
l δ

l′

l h
〈Bl〉
〈Al〉

. (4.3.17)

where h〈Bl〉
〈Al〉

≡ h〈b1
〈a1

. . . hbl〉
al〉
. The angle brackets denote a statistical average over the ensemble of fluctuations. Eq. (4.3.17) is

entirely equivalent to the usual definition of the anisotropy power spectrum in terms of the variance of alm with δT(e) =∑
l>0 almYlm(e). The temperature correlation function evaluates to

〈δT(e
c)δT(e

′c)〉 =

∞∑
l=1

(2l + 1)
4π

CT
l Pl(cos θ), (4.3.18)

where θ is the angle between the directions e and e′, and Pl is a Legendre polynomial. In deriving Eq. (4.3.18) we used the
result e〈Al〉e′

〈Al〉
= (2l + 1)∆lPl(cos θ)/(4π).

The power spectra for the polarization are defined similarly, but, since we choose our conventions for the power spectra
to conform with Ref. [276], it it is necessary to include an additional factor of Ml/

√
2 for each factor of the polarization. For

example, for E-modes(
π

I

)2
〈EAlE

Bl′ 〉 =
l(l − 1)

(l + 1)(l + 2)
∆lC

E
l δ

l′

l h
〈Bl〉
〈Al〉

. (4.3.19)

28 TCMB = 2.725K [285].
29 The spectral dependence follows from, for example, the form of the source terms in Eq. (4.1.27) formassless particles, and from the energy dependence

of the linearised scattering term in Eq. (4.3.41).
30 We shall not be concerned here with spectral distortions in the CMB, which are an important probe of the energetics of the universe. For a recent

review of this topic, and future prospects, see e.g. Ref. [287].



C.G. Tsagas et al. / Physics Reports 465 (2008) 61–147 119

Unfortunately, the definitions of the polarization power spectra given in Ref. [276] differ from those in Ref. [275] by factors
of

√
2; see Ref. [288] for details. For a parity-symmetric ensemble, B-mode polarization is uncorrelated with the E-mode

and the temperature anisotropies. The correlation functions of linear polarization are most simply expressed in terms of the
Stokes parameters. For two propagation directions e and e′, define Stokes parameter Q̄ , Ū and Q̄ ′ and Ū′ using the direction of
the tangent to the spherical geodesic connecting e and e′ to define the (e1)a basis vectors at the two points. Then the non-zero
correlation functions assuming parity symmetry are [288–290]

〈Q̄Q̄ ′
〉 =

1
2
∑
l

2l + 1
4π

[CE
l (d

l
2 2 + dl

2−2)(θ) + CB
l (d

l
2 2 − dl

2−2)(θ)]

〈ŪŪ′
〉 =

1
2
∑
l

2l + 1
4π

[CE
l (d

l
2 2 − dl

2−2)(θ) + CB
l (d

l
2 2 + dl

2−2)(θ)], (4.3.20)

where dl
mn are the reduced Wigner functions and the Stokes parameters are expressed in thermodynamic temperature, i.e.

Q(ea) = (π/I)
∫
dE Q(E, ea). The correlation properties of the linear polarization tensor Pab(ec) ≡ (π/I)

∫
dEPab(E, ec) are

easily expressed in terms of these results. For example,31

2〈Pab(e
c)P ab(e′c)〉 =

1
2
(1 + cos2 θ)〈Q̄Q̄ ′

〉 + cos θ〈ŪŪ′
〉. (4.3.21)

The geometric factors (1+cos2 θ) and cos θ appear due to the contractions between the (e1)a basis vectors at the two points.
These would not be present if, instead, we parallel-transported Pab(ec) on the 2-sphere to the point e′ and performed the
contraction there.

4.3.2. Transformation properties under change of frame
The phase-space volume element d3xd3p is Lorentz-invariant and so εa∗fabεb is a Lorentz scalar for any polarization 4-

vector εa. It follows that fab is properly covariant under Lorentz transformations. To see the implications of this for the
observed polarization, consider a new velocity field ũa

= γ(ua
+va), where va is the projected relative velocity in the ua frame

and γ is the associated Lorentz factor. For a given photon with 4-momentum pa, the energy and propagation directions in
the ũa frame are given by the Doppler and aberration formulae:

Ẽ = γE(1 − eava), (4.3.22)

ẽa = [γ(1 − ebvb)]
−1(ua

+ ea) − γ(ua
+ va). (4.3.23)

Note that ẽa is a projected vector relative to ũa. The screen projection tensor for a given null direction transforms to

s̃ab = sab +
2γ
Ẽ

p(asb)cv
c
+
γ2

Ẽ2
papbscdv

cvd. (4.3.24)

For any vector orthogonal to pa, for example the 4-polarization εa,

s̃acs
c
bε

b
= s̃abε

b (paεa = 0). (4.3.25)

From this it follows that the screen-projected direction of polarization transforms as

sabε
b
7→ s̃abε

b
= s̃ac(s

c
bε

b), (4.3.26)

and the observed polarization tensor by [224]

Ẽ−3P̃ab(Ẽ, ẽ
c) = E−3 s̃d1a s̃d2b Pd1d2(E, e

c). (4.3.27)

Under this transformation law the intensity, circular polarization and linear polarization do not mix. Moreover, I(E, ec)/E3
and V(E, ec)/E3 are frame-invariant for a given null direction, and the transformation law forPab(E, ec) follows that for Pab(ec).
The degree of linear polarization [2Pab(E, ec)P ab(E, ec)]1/2/I(E, ec) is invariant under changes of frame. The transformation
law for Pab(E, ec) ensures that the tetrad components of Pab(E, ec)/E3, and hence the Stokes parameters divided by E3, are
invariant if the polarization basis vectors are transformed as

(ẽi)
a
= s̃ab(ei)

b, (4.3.28)

for i = 1, 2. An alternative way of viewing Eq. (4.3.28) is to note that, in terms of components on an orthonormal tetrad in
the ua frame and its Lorentz-boosted counterpart in the ũa frame, the basis vector e1 at direction e is parallel-propagated
along the geodesic connecting e and ẽ on the 2-sphere to obtain ẽ1 [291].

31 This result corrects Eq. 2.20 of Ref. [224].
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Under changes of frame, multipoles with different lmix because of Doppler and beaming effects. Using the invariance of
I(E, ea)/E3, the multipoles IAl(E) and the energy-integrated IAl transform as

ĨAl(Ẽ) = ∆−1
l

∑
l′

∫
dΩ γ(1 − ebvb)IBl′ [γ

−1Ẽ/(1 − ecvc)]e
Bl′ ẽ〈Al〉, (4.3.29)

ĨAl =
∑
l′

∆−1
l′ IBl′

∫
dΩ [γ(1 − ebvb)]

2eBl′ ẽ〈Al〉, (4.3.30)

where the PSTF ẽ〈Al〉 is with respect to ũa. The transformation of the energy-dependent multipoles is non-local in energy and
therefore a little messy; expansions in terms of va can be found in Ref. [291]. The transformation of the energy-integrated
multipoles are somewhat simpler: to first order in the relative velocity [224],

ĨAl = h̃〈Bl〉
〈Al〉

IBl + (l − 2)vbIbAl −
l(l + 3)
(2l + 1)

v〈al IAl−1〉. (4.3.31)

An equivalent result holds for VAl . The linear polarization is more complicated since E and B mix. To first-order in va,

ẼAl = h̃〈Bl〉
〈Al〉

EBl −
l(l + 3)
(2l + 1)

v〈alEAl−1〉 +
(l − 2)(l − 1)(l + 3)

(l + 1)2
vbEbAl +

6
(l + 1)

vbε
bc

〈alBAl−1〉c, (4.3.32)

B̃Al = h̃〈Bl〉
〈Al〉

BBl −
l(l + 3)
(2l + 1)

v〈alBAl−1〉 +
(l − 2)(l − 1)(l + 3)

(l + 1)2
vbBbAl −

6
(l + 1)

vbε
bc

〈alEAl−1〉c. (4.3.33)

In an almost-FLRW model the polarization is a first-order quantity, as are physically-defined relative velocities. It follows
that the E and B-mode multipoles are frame-invariant in linear theory.

4.3.3. Radiative transfer
The phase-space volume element d3xd3p is conserved along a photon path and the polarization 4-vector εa is parallel-

transported. It follows that fab is also parallel-propagated in phase space if there are no collisions (see e.g. Ref. [292] for a
rigorous discussion). The observed polarization tensor is given by Eq. (4.3.2); multiplying by E3 and taking the derivative in
phase space gives [224]

L[E−3Pab(E, e
c)] = 0, (4.3.34)

where the Liouville operator L acts on transverse tensors Aab = [Aab]
TT, like Pab, as

L[Aab(E, e
c)] ≡ sd1a sd2b pe

∇eAd1d2(E, e
c). (4.3.35)

Physically, this means the observed polarization tensor is propagated as parallel as its projection properties allow. If we now
include collisions, we obtain the exact Boltzmann equation

L[E−3Pab(E, e
c)] = Kab(E, e

c), (4.3.36)

where Kab(E, ec) is the fully projected (with sab) form of the invariant collision tensor. If we change frame to ũa
≡ γ(ua

+ va),
the projected collision tensor transforms like Pab/E3, i.e.

K̃ab(Ẽ, ẽ
c) = s̃d1a s̃d2b Kd1d2(E, e

c). (4.3.37)

This result is useful since the scattering tensor is often simplest to evaluate in some preferred frame, picked out by the
physics of the scattering process. The scattering tensor in a general frame then follows from the transformation (4.3.37).

The Liouville operator L preserves the irreducible decomposition of the polarization tensor (Eq. (4.3.3)), so that

L[E−3Pab(E, e
c)] =

1
2

d
dλ

[E−3I(E, ec)]sab + L[E−3Pab(E, e
c)] +

1
2
i
d
dλ

[E−3V(E, ec)]εabde
d. (4.3.38)

If we propagate the (transverse) polarization basis vectors (ei)a according to

sabp
c
∇c(ei)

b
= 0, (4.3.39)

then all four Stokes brightness parameters (divided by E3) are constant along the photon path when there are no collisions.
For the CMB, the dominant collisional process over the epochs of interest for the formation of anisotropies and

polarization (around recombination and reionization) is Compton scattering. To an excellent approximation we can ignore
the effects of Pauli blocking, induced scattering, and electron recoil in the rest frame of the scattering electron, so that the
scattering may be approximated by classical Thomson scattering in the electron rest frame with no change in the photon
energy. Furthermore, we can neglect the small velocity dispersion of the electrons due to their finite temperature and so
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consider scattering off a cold gas of electrons with proper number density ñe in the electron rest frame.32 Denoting the
rest frame by ũa, the exact projected collision tensor in the Thomson limit in that frame is [224]33 (see also Ref. [296] for
Klein–Nishina corrections)

Ẽ2K̃ab(Ẽ, ẽ
c) = ñeσT

{1
2
s̃ab

[
−Ĩ(Ẽ, ẽc) + Ĩ(Ẽ) +

1
10

Ĩd1d2(Ẽ)ẽ
d1 ẽd2 −

3
5

Ẽd1d2(Ẽ)ẽ
d1 ẽd2

]

+

[
−P̃ab(Ẽ, ẽ

c) −
1
10

[Ĩab(Ẽ)]
TT

+
3
5

[Ẽab(Ẽ)]
TT
]

+
1
2
iε̃abd1 ẽ

d1

[
−Ṽ(Ẽ, ẽc) +

1
2
Ṽd2(Ẽ)ẽ

d2

]}
, (4.3.40)

where σT is the Thomson cross section. This expression for the scattering tensor follows from inserting the multipole
decomposition of the polarization tensor into the Kernel for Thomson in-scattering (e.g. Ref. [282]), and integrating over
scattering directions. An expression equivalent to Eq. (4.3.40) appears to have been first derived in Ref. [284].

Some general observations follow from Eq. (4.3.40) [224,228,284]. It is written in irreducible form with the first set of
terms on the right affecting the total intensity, the second set the linear polarization and the third the circular polarization.
In each case, scattering out of the phase-space element is described by−ñeσTPab. For I, in-scattering couples to themonopole
and quadrupole in total intensity, and to the E-mode quadrupole. Comparison with Eq. (4.1.14) and (4.1.15) show that there
is no change in energy density in the electron rest frame due to Thomson scattering, but there is momentum exchange if the
radiation has a dipole moment. Linear polarization is generated by in-scattering of the quadrupoles in total intensity and
E-mode polarization. Comparison with Eq. (4.3.9) shows that in the electron rest-frame, the polarization is generated purely
as an E-mode quadrupole. The transformations (4.3.32) and (4.3.33) show that this is generally not true in some other frame.
Finally, we see that circular polarization is fully decoupled from total intensity and linear polarization. In consequence, in
any frame the circular polarization will remain exactly zero if it is initially.

The scattering tensor (4.3.40) is first-order in small quantities about an FLRW background. Transforming to a general
frame ua, and keeping only first-order terms, we find

E2Kab(E, e
c) = neσT

{1
2
sab

[
−I(E, ec) + I(E) − ecvcE

4 ∂

∂E

(
I(E)

E3

)
+

1
10

Id1d2(E)e
d1ed

2
−

3
5

Ed1d2(E)e
d1ed2

]

+

[
−Pab(E, e

c) −
1
10

[Iab(E, e
c)]TT +

3
5

[Eab(E, e
c)]TT

]
+

1
2
iεabd1e

d1

[
−V(E, ec) +

1
2
Vd2(E)e

d2

]}
, (4.3.41)

where ne is the electron density relative to ua.
The Boltzmann equation (4.3.36) can bewritten inmultipole form by expressing Pab(E, ec) as amultipole expansion using

Eqs. (4.3.6), (4.3.7) and (4.3.9), and decomposing the resulting equation into multipoles. This leads to four sets of multipole
hierarchies for IAl(E), EAl(E), BAl(E), and VAl(E). In linear theory, those for IAl(E) and EAl(E) are coupled by Thomson scattering,
and, generally, those for EAl(E) and BAl(E) are coupled by advection (see below). The exact equations for total intensity and
circular polarization follow Eq. (4.1.8) but with, for example, FAl(λ) replaced by IAl(E)/E

3, E = λ and the collision multipoles

E2CAl [f ] = neσT

[
−IAl(E) + I(E)δl0 − va1E

4 ∂

∂E

(
I(E)

E3

)
δl1 +

( 1
10

Ia1a2(E) −
3
5

Ea1a2(E)
)
δl2 + · · ·

]
. (4.3.42)

Themultipole equations for EAl(E) andBAl(E) aremore involved than those for the intensity or circular polarization and only
the linearised equations (about FLRW) have been calculated to date [224]. (The l = 2 equation was given in an orthonormal
tetrad in Ref. [284] under the assumption that the higher multipoles vanish.) In linear form, for the E-mode polarization

ĖAl(E) −
1
3
ΘE4

∂

∂E
[E−3EAl(E)] + D〈alEAl−1〉(E) +

(l + 3)(l − 1)
(l + 1)(2l + 3)

DbEbAl(E) −
2

(l + 1)
curlBAl(E)

= −neσTEAl(E) −
1
10

neσT[Ia1a2(E) − 6Ea1a2(E)]δl2, (4.3.43)

and for the B-mode

ḂAl(E) −
1
3
ΘE4

∂

∂E
[E−3BAl(E)] + D〈alBAl−1〉(E) +

(l + 3)(l − 1)
(l + 1)(2l + 3)

DbBbAl(E) +
2

(l + 1)
curl EAl(E)

= −neσTBAl(E). (4.3.44)

The E and B-modemultipoles are coupled by the curl termswhere, recall, the curl of a PSTF tensor is defined by Eq. (4.1.35). In
a general almost-FLRW cosmology, B-mode polarization is generated only by advection of the E-mode. This does not happen

32 An important exception of relevance for secondary anisotropies in the CMB is Compton scattering in hot intra-cluster gas – the Sunyaev–Zel’dovich
effect [270] (see Ref. [273] for a review) – where the electron temperatures can be ∼O(10) keV. The low-frequency decrement in total intensity of the CMB
in the direction of clusters is proportional to the electron temperature. Finite temperature effects for polarization are considered in Refs. [293–295] and
can give up to ∼ O(10)% corrections to the results for cold intra-cluster gas at the spectral peak of the signal.
33 This corrects two sign errors in the right-hand side of Eq. 3.7 of Ref. [224]. There, the term involving Ẽab in the first line and Ĩab in the second have the

wrong sign.
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if the perturbations about FLRW are curl-free, as is the case for scalar perturbations. We thus have the important result that
linear scalar perturbations do not generate B-mode polarization [275,276]; see also Sections 4.3.4 and 4.3.5.

The equations for the energy-integratedmultipoles follow from integrating Eqs. (4.1.8), (4.3.43) and (4.3.44) over energy.
In linear form,

ĖAl +
4
3
ΘEAl +

(l + 3)(l − 1)
(l + 1)2

DbEbAl +
l

(2l + 1)
D〈alEAl−1〉 −

2
(l + 1)

curlBAl

= −neσT

[
EAl +

( 1
10

Ia1a2 −
3
5

Ea1a2

)
δl2

]
, (4.3.45)

ḂAl +
4
3
ΘBAl +

(l + 3)(l − 1)
(l + 1)2

DbBbAl +
l

(2l + 1)
D〈alBAl−1〉 +

2
(l + 1)

curl EAl = −neσTBAl . (4.3.46)

For the circular polarization,

V̇Al +
4
3
ΘVAl + DbVbAl +

l

(2l + 1)
D〈alVAl−1〉 = −neσT

(
VAl −

1
2
Va1δl1

)
, (4.3.47)

and for the total intensity

İAl +
4
3
Θ IAl + DbIbAl +

l

(2l + 1)
D〈al IAl−1〉 +

4
3
IAa1δl1 +

8
15

Iσa1a2δl2

= −neσT

[
IAl − Iδl0 −

4
3
Iva1δl1 −

( 1
10

Ia1a2 −
3
5

Ea1a2

)
δl2

]
. (4.3.48)

The monopole moment does not vanish in a homogeneous background so we use its projected gradient to characterise the
perturbation in the radiation energy density. Defining ∆a ≡ aDaI/I for the radiation, the projected gradient of the l = 0
moment of Eq. (4.3.48) gives

∆̇a +
a

I
DaDbIb + 4ḣa = 0, (4.3.49)

where, to linear order, 3ḣa = a(3HAa +DaΘ) from Eq. (4.1.25). The above equation also follows from integrating Eq. (4.1.29)
with λ3 dλ and noting that the linear Thomson collision term has no monopole.

Eq. (4.3.45)–(4.3.49) provide a complete description of the linear evolution of the CMB anisotropies and polarization in
general almost-FLRW models. In particular, they are valid for all types of perturbation since no harmonic expansion has
been made. We also see that the highest rank of the source terms is two so that only scalar, vector and tensor modes can
be excited. In the following subsections we give integral solutions of the multipole equations for scalar, vector and tensor
modes and briefly discuss the physics of each.We shall not consider circular polarization any further since it is not generated
by Thomson scattering.

4.3.4. Scalar perturbations
Following the discussion in Section 4.1.2, we expand the PSTF multipoles in the harmonic tensors Q(0)

Al
defined in Eq.

(4.1.31):

IAl = I
∑
k

(
l∏

n=0
κ(0)
n

)−1

I(0)l Q(0)
Al

, l ≥ 1, (4.3.50)

EAl = I
∑
k

(
l∏

n=0
κ(0)
n

)−1

E (0)
l Q(0)

Al
, l ≥ 2, (4.3.51)

where, for later convenience, we have introduced

κ
(m)
l ≡ [1 − (l2 − 1 − m)K/k2]1/2, l ≥ m, (4.3.52)

with κ(0)
0 = 1. It follows from Eq. (4.1.34) that curl EAl = 0 and so the B-mode of polarization is not excited by advection (or,

as always, Thomson scattering) for scalar perturbations so we need not include it. For the projected gradient of the radiation
energy density I, we expand as

∆a ≡
aDaI

I
= −

∑
k

kI(0)0 Q(0)
a . (4.3.53)

In scalar harmonic form, the linearised multipole equations now become

İ(0)l +
k

a

[
(l + 1)
(2l + 1)

κ
(0)
l+1I

(0)
l+1 −

l

(2l + 1)
κ

(0)
l I(0)l−1

]
+ 4ḣδl0 +

4
3
k

a
Aδl1 +

8
15

k

a
κ

(0)
2 σδl2

= −neσT

[
I(0)l − I(0)0 δl0 −

4
3
vδl1 −

( 1
10

I(0)2 −
3
5

E (0)
2

)
δl2

]
(4.3.54)
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for l ≥ 0 and, for E-mode polarization,

Ė (0)
l +

k

a

[
(l + 3)(l − 1)
(2l + 1)(l + 1)

κ
(0)
l+1E

(0)
l+1 −

l

(2l + 1)
κ

(0)
l E (0)

l−1

]
= −neσT

[
E (0)
l +

( 1
10

I(0)2 −
3
5

E (0)
2

)
δl2

]
. (4.3.55)

In deriving these, we have used Eqs. (4.1.31) and (4.1.33). The kinematic quantities that enter Eq. (4.3.54) have been mode-
expanded following Eq. (4.2.9) with va =

∑
vQ(0)

a for the relative velocity of the electron–baryon plasma. These multipole
equations hold for a general FLRW model and are fully equivalent to those obtained in Ref. [229] using the total-angular
momentum method.

Note that in closedmodels, theQ(m)
Al

necessarily vanish globally for l ≥ ν, so the same is true of the IAl and EAl from a given
harmonic mode. Power thus streams up the hierarchy as far as the l = ν−1multipole, but is then reflected back down. This
is enforced in Eqs. (4.3.54) and (4.3.55) by κ(m)

ν = 0. That there is a maximummultipole, hence minimum angular scale, that
can arise from projection of a given harmonic mode is due to the focusing of geodesics in closed FLRWmodels.

Early computer codes to compute the CMB anisotropy integrated a carefully truncated version of themultipole equations
directly. A major advance was made in Ref. [218] where the Boltzmann hierarchy was formally integrated thus allowing
a very efficient solution for the CMB anisotropy. This procedure was implemented in the CMBFAST code34 and, later, in
parallelised derivatives such as CAMB [262].35

The integral solution for the total intensity for general spatial curvature is [224,229,297]

I(0)l = 4
∫ tR

dt e−τ

{[
−

k

a
σk +

3
16

neσT(κ
(0)
2 )−1

(
I(0)2 − 6E (0)

2

)] [1
3
Φν

l (x) +
1

(ν2 + 1)
d2

dx2
Φν

l (x)

]

−

(
k

a
A − neσTv

) 1
√
ν2 + 1

d
dx

Φν
l (x) −

[
ḣ −

1
4
neσTI

(0)
l

]
Φν

l (x)

}
. (4.3.56)

Here, τ ≡
∫
neσTdt is the optical depth back along the line of sight and, recall, x =

√
|K|χwith χ the comoving radial distance

(or, equivalently, conformal look-back time) along the line of sight and Φν
l (x) are the ultra-spherical Bessel functions with

ν2 = (k2 + K)/|K| for scalar perturbations. The geometric factors Φν
l /3 + (ν2 + 1)−1d2Φν

l /dx2 and (ν2 + 1)−1/2dΦν
l /dx arise

from the projections of Q(0)
ab eaeb and Q(0)

a ea respectively, at x back along the line of sight. Source terms of these forms enter
the Boltzmann equation through the shear and the quadrupole dependence of Thomson scattering, for Q(0)

ab eaeb, and the
acceleration and baryon velocity, for Q(0)

a ea. Their angular projections follow from Eq. (4.1.46) and (4.1.47).
The integral solution for the E-mode polarization is [224,229,297]

E (0)
l = −

l(l − 1)
(ν2 + 1)

∫ tR
dt neσTe−τ(κ

(0)
2 )−1

(3
4
I(0)2 −

9
2

E (0)
2

)
Φν

l (x)

sinh2x
. (4.3.57)

The geometric term Φν
l (x)/ sinh

2 x now arises from the projection of source terms that go like [Q(0)
ab ]

TT; see the form of the
linear-polarization source terms in the scattering tensor (4.3.41). Eqs. (4.3.56) and (4.3.57) are valid in an open universe. For
closed models one should replace the hyperbolic functions by their trigonometric counterparts, and ν2 + n by ν2 − nwhere
n is an integer.

Since we are working in linear theory, the coefficients I(0)l and E (0)
l will depend linearly on the primordial perturbation

φ(k). Introducing transfer functions, TT
l (k) and TE

l (k), we can write

I(0)l = TT
l (k)φ(k), E (0)

l =
Ml
√
2
TE
l (k)φ(k), (4.3.58)

where the normalisation for polarization is to account for the additional l-dependent factors in Eq. (4.3.19). Note that the
symmetry of the background model ensures that transfer functions depend only on the magnitude of the wavenumber
k. The choice of φ(k) is one of convention. For the adiabatic, growing-mode initial conditions that follow from single-
field inflation, the convenient choice is the (constant) curvature perturbation R(k) on comoving hypersurfaces. For models
with isocurvature fluctuations, the relative entropy gradient is appropriate. More generally, in models with mixed initial
conditions having N degrees of freedom per harmonic mode, the transfer functions generalise to N functions per l and k.

We shall express the CMB power spectra in terms of the power spectrum of the φ(k) and, since we discuss higher-rank
perturbations later, we shall sketch the derivation for rank-m perturbations in which case the φ(±m)

(k) are the coefficients of
the expansion of the PSTF tensor φAm in terms of the Q(±m)

Am .36 It is always possible to choose the Q(m)
Am such that

〈φ
(±m)
(k) φ

(±m)∗
(k) 〉 = fφ(k)δkk′ , (4.3.59)

34 http://www.cmbfast.org.
35 http://camb.info/.
36 The derivation here follows that given by Antony Lewis in the unpublished CAMB notes available as http://cosmologist.info/notes/CAMB.ps.gz.

http://www.cmbfast.org
http://camb.info/
http://cosmologist.info/notes/CAMB.ps.gz
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with no correlations between the opposite parity modes, for perturbations that are statistically isotropic, homogeneous
and parity-invariant; see Ref. [298] for further details, and, e.g. Ref. [224] for specific constructions for scalar and tensor
perturbations. Here, the symbolic delta-function enforces

∑
k′ A

(±m)
(k′) δkk′ = A(±m)

(k) , and fφ(k) depends only on the magnitude of
the wavenumber k. The power spectrum of φAm is proportional to fφ(k) and here we define it so that

〈φAmφ
Am 〉 =

∑
k

fφ(k)Q
(±m)
Am (Q(±m)Am)∗

=
∑
k

fφ(k)
1
V

∫
dV Q(±m)

Am (Q(±m)Am)∗

≡

∫
νdν

(ν2 + 1)
Pφ(k). (4.3.60)

Here, we have used statistical homogeneity to replace the correlator by an integral over a spatial volume V that we shall let
tend to all space. Note that for scalar modes the integration measure νdν/(ν2 +1) = d ln k, but this is not the case for higher
rank perturbations. For non-flat models there is no universal convention for the definition of Pφ(k) form > 0 but, of course,
any ambiguity is removed when a definite physical model for the generation of fluctuations is considered. For example, for
m = 2 and using the (gauge-invariant) metric perturbation Hab for φab,

PH (k) ∝
(ν2 + 4)
ν2

tanh(πν/2) (4.3.61)

for the minimal scale-invariant open inflation model of Ref. [299]. Forming the power spectra from Eq. (4.3.17) and (4.3.19),
we now have

(2l + 1)∆l

π2 CXY
l =

∑
k

(
l∏

n=m

κ(m)
n

)−2

TX
l (k)T

Y
l (k)fφ(k)Q

(±m)
Al

(Q(±m)Al)∗

=
∑
k

( l∏
n=m

κ(m)
n

)−2

TX
l (k)T

Y
l (k)fφ(k)

(
−a

k

)l−m 1
V

∫
dV DAl−mQ(±m)

al−m+1...al
(Q(±m)Al)∗


=
∑
k

( l∏
n=m

κ(m)
n

)−2

TX
l (k)T

Y
l (k)fφ(k)

(
a

k

)l−m 1
V

∫
dV Q(±m)

al−m+1...al
DAl−m(Q(±m)Al)∗


=

2l−m(l + m)!(l − m)!

(2l)!
∑
k

[
(κ(m)

m )−2TX
l (k)T

Y
l (k)fφ(k)

1
V

∫
dV Q(±m)

Am (Q(±m)Am)∗

]
, (4.3.62)

where we have integrated by parts and made repeated use of the divergence relations for the Q(m)
Al

, e.g. Eq. (4.1.33). Here,
XY is equal to TT, TE, EE and BB only, by parity. If we now compare Eqs. (4.3.60) and (4.3.62), we see that

CXY
l =

π

4
(l + m)!(l − m)!

2m(l!)2

∫
νdν

(ν2 + 1)
(κ(m)

m )−2TX
l (k)T

Y
l (k)Pφ(k), (4.3.63)

where, recall, κ(0)
0 = 1. In closed models, we replace ν2 +1 by ν2 −1 and the integral becomes a discrete sum over integer ν.

The simple physics of CMB anisotropies for scalar perturbations is more apparent if we integrate the shear and
acceleration terms in Eq. (4.3.56) by parts. We then find

1
4
I(0)l −

(
a

k
σ̇ + A

)
δl0 −

1
3
σδl1 =

∫ tR
dt e−τ

{
neσT

[1
4
I(0)0 −

(
a

k
σ̇ + A

)]
Φν

l (x) + neσT(v − σ)
1

√
ν2 + 1

d
dx

Φν
l (x)

+
3
16

neσT(κ
(0)
2 )−1

(
I(0)2 − 6E (0)

2

) [1
3
Φν

l (x) +
1

(ν2 + 1)
d2

dx2
Φν

l (x)

]
+ 2Φ̇Φν

l (x)

}
, (4.3.64)

where Φ is the scalar potential for the Weyl tensor,

Eab =
∑
k

(
k

a

)2

ΦQ(0)
ab , (4.3.65)

which plays the role of the (conformally-invariant) Newtonian potential. We have written Eq. (4.3.64) in such a form that
the combination of terms on the left-hand side (which are evaluated at R) are independent of the choice of ua, as are each
set on the right-hand side. In deriving Eq. (4.3.64) we have used the linearised σ̇ab, Ėab equations and the shear constraint
of Section 1.3.1. As we can evaluate Eq. (4.3.64) in any frame, it is convenient to choose the conformal Newtonian gauge in
which the velocity field ua has zero shear and vorticity. In this frame, the linearised σ̇ab equation becomes a constraint that
determines the acceleration:

D〈aAb〉 = Eab −
1
2
πab. (4.3.66)
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In harmonic form, this is A = −Φ + ρa2π/2, where πab =
∑

k ρπQ(0)
ab . In terms of the usual conformal Newtonian metric

(e.g. Ref. [217])

ds2 = a2[−(1 + 2ΨN)dη2 + (1 + 2ΦN)γijdxidxj], (4.3.67)

where γij is the conformal spatial metric in the FLRW background, Aa = DaΨN or, in harmonics, A = −ΨN . Note also that
the conformally-invariant Weyl potential 2Φ = −ΦN + ΨN and ΦN = −ΨN in the absence of anisotropic stress. If we further
approximate to the case of sharp last scattering, which is valid for k−1

� 50Mpc, and ignore reionization and the anisotropic
nature of Thomson scattering, the temperature anisotropy in the Newtonian gauge reduces to

[1
4
I(0)l + ΨNδl0

]
R

=

(
I(0)0

4
+ ΨN

)
Φν

l (x∗) + vN
1

√
ν2 + 1

d
dx

Φν
l (x)

∣∣∣∣
x∗

+ 2
∫ tR

t∗
Φ̇Φν

l (x) dt, (4.3.68)

where, e.g. t∗ is the time at last scattering. The temperature anisotropy can now be interpreted in terms of projections of
three terms at last scattering: (i) the intrinsic temperature variations I(0)0 /4 (recall, I(0)0 is related to the projected gradient of
the energy density of the CMB); (ii) the Newtonian potentialΨN , which appears because of gravitational redshifting; and (iii)
Doppler shifts of the form eavaN , where vaN is the baryon velocity relative to the zero-shear ua. The integrated (Sachs–Wolfe)
term in Eq. (4.3.68) contributes when the Weyl potential evolves in time, such as when dark energy starts to dominate
the expansion dynamics at low redshift, and arises because of the net blueshift accrued as a photon traverses a decaying
potential well.

On comoving scales ∼30 Mpc or greater, photon diffusion due to the finite mean-free path to Thomson scattering can be
ignored. In this limit, the dynamics of the source terms in Eq. (4.3.68) can be reduced to that of a driven oscillator [300]. To
see this, note from Eq. (4.3.48) that in the limit of tight-coupling, Ia = 4Iva/3 and that IAl = EAl = 0 for l ≥ 2. The CMB is
therefore isotropic in the baryon rest-frame and the linearisedmomentum evolution for the combined photon–baryon fluid
gives

v̇a +
HR

(1 + R)
va +

1
4(1 + R)

∆a

a
+ Aa = 0, (4.3.69)

wherewe have ignored baryon pressure. Here, R ≡ 3ρ(b)/(4ρ(γ)), which scales as a, and∆a is the fractional comoving density
gradient for the CMB. The evolution of ∆a was given in Eq. (4.3.49) which now becomes

∆̇a + 4ḣa +
4
3
aDaDbvb = 0. (4.3.70)

Switching to conformal time and combining Eqs. (4.3.69) and (4.3.70), we find

∆′′

a +
HR

(1 + R)
∆′

a −
1

3(1 + R)
a2DaDb∆b = −4h′′

a −
4HR

(1 + R)
h′

a +
4
3
a3DaDbAb, (4.3.71)

whereH = aH is the conformal Hubble parameter. This equation is valid in any frame; it describes a driven oscillator whose
free oscillations are at frequency kcs, where the sound speed c2s = 1/[3(1 + R)], and are damped by the expansion of the
universe acting on the baryon velocity. If we now specialise to the Newtonian frame, we can express the driving terms on
the right in terms of ΦN and ΨN . We use Eq. (4.1.25) and the zero-shear Ėab equation and shear constraint to find

aD〈aḣb〉 = (a2D〈aDb〉ΦN)
·, (4.3.72)

or ḣ = Φ̇N in harmonics. Finally, we recover the standard harmonic form of the oscillator equation in the Newtonian frame:

∆′′
+

HR

(1 + R)
∆′

+
k2

3(1 + R)
∆ = −4Φ′′

N −
4HR

(1 + R)
Φ′

N −
4
3
k2ΨN. (4.3.73)

For adiabatic initial conditions, the cosine solution is excited and all modes with k
∫ η∗ cs dη = nπ are at extrema of their

oscillation at last scattering. This gives a series of acoustic oscillations in the temperature power spectrum [301], of which
the first five have now been observed by a combination of sub-orbital experiments and theWMAP satellite [19]. An example
of the CMB power spectra in a ΛCDMmodel is shown in Fig. 4, computed with the CAMB code [262]. The acoustic peaks are
a rich source of cosmological information. Their relative heights depends on the baryon density (i.e. R) and matter density
since these affect themidpoint of the acoustic oscillation and the efficacy of the gravitational driving in Eq. (4.3.73) [300]. The
angular position of the peaks depends on the type of initial condition and the angular diameter distance to last scattering.
Moreover, the general morphology of the spectra is related to the distribution of primordial power with scale, i.e. the power
spectrum Pφ(k). For current constraints from the CMB see Ref. [302].

On smaller scales photon diffusion becomes important. The breakdown of tight-coupling has two important effects on
the CMB. First, the acoustic oscillations are exponentially damped and this gives the rapid decline of CT

l at high l apparent
in Fig. 4. Second, anisotropies can start to grow in the CMB intensity and this produces linear polarization on Thomson
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Fig. 4. Power spectra produced by adiabatic scalar perturbations (left) and tensor perturbations (right) for a tensor-to-scalar ratio r = 0.20 and optical
depth to reionization of 0.08. The power spectrum of the B-modes produced by gravitational lensing of the scalar E-mode polarization is also shown on the
left.

scattering. To first-order in the ratio of the mean-free time to the expansion time or the wavelength of the perturbation, the
polarization is an E-mode quadrupole:

Eab ≈
8
45

I

neσT

(
σab + D〈avb〉

)
, (4.3.74)

which follows quite generally from Eqs. (4.3.45) and (4.3.48). For scalar perturbations, the polarization thus traces the
projected derivative of the baryon velocity relative to the Newtonian frame. The peaks in the CE

l spectrum thus occur at
the minima of CT

l as the baryon velocity oscillates π/2 out of phase with ∆. This behaviour can be seen in Fig. 4. The large-
angle polarization from recombination is necessarily small by causality, but a large-angle signal is generated by re-scattering
at reionization [303,304].

4.3.5. Vector perturbations
Vector modes describe vortical motions of the cosmic fluids. They have received considerably less attention than scalar

and tensor modes mainly because they are not excited during inflation. Furthermore, due to conservation of angular
momentum, the vorticity of radiation decays as 1/a and matter as 1/a2 so that vector modes are generally singular.37
Vector modes are important inmodels with sources, such asmagnetic fields (see Ref. [66] for a recent review) or topological
defects [305].

The CMB anisotropies from vector modes were first studied comprehensively in Ref. [221]; the full kinetic theory
treatment was developed in the total-angular-momentum method in Refs. [228,229]. Here we shall extend the 1 + 3-
covariant treatment of Ref. [226] to general spatial curvature.

We expand the radiation anisotropies and polarization in the PSTF derivatives of the vector harmonics as

IAl = I
∑
k

(
l∏

n=1
κ(1)
n

)−1

I(±1)
l Q(±1)

Al
, l ≥ 1, (4.3.75)

EAl = I
∑
k

(
l∏

n=1
κ(1)
n

)−1

E (±1)
l Q(±1)

Al
, l ≥ 1, (4.3.76)

BAl = I
∑
k

(
l∏

n=1
κ(1)
n

)−1

B(±1)
l Q(±1)

Al
, l ≥ 1, (4.3.77)

where the sum over harmonics,
∑

k, includes a sum over the two parity states of vector harmonics labelled ±1. For non-
scalar perturbations, B-mode polarization is produced from E-modes by advection so wemust now includeBAl . Substituting
in Eq. (4.3.48), we find

İ(±1)
l +

k

a

[
l(l + 2)

(l + 1)(2l + 1)
κ

(1)
l+1I

(±1)
l+1 −

l

(2l + 1)
κ

(1)
l I(±1)

l−1

]
+

4
3
k

a
κ

(1)
1 A(±1)δl1 +

8
15

k

a
κ

(1)
1 κ

(1)
2 σ

(±1)δl2

= −neσT

[
I(±1)
l −

4
3
κ

(1)
1 v(±1)δl1 −

( 1
10

I(±1)
2 −

3
5

E (±1)
2

)
δl2

]
, (4.3.78)

37 It is possible to construct solutions with compensating singular vortices in the neutrinos and radiation that leave the perturbations to the spacetime
geometry non-singular (e.g. Ref. [226]), but these are rather contrived.
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for l ≥ 1. Here, v(±1) and σ(±1) are the harmonic expansions of the baryon peculiar velocity and shear respectively:

va =
∑
k

v(±1)Q(±1)
a , σab =

∑
k

k

a
σ(±1)Q(±1)

ab . (4.3.79)

The l = 1 moment Ia is generated from the projected gradient of the photon energy density by advection. For vector
perturbations, ∆a is non-vanishing in a general gauge. Indeed, the linearised identity

curl Daρ = −2ρ̇ωa (4.3.80)

relates the curl of ∆a for any species to the vorticity and the time evolution of that species. Of course, if the frame is chosen
to be hypersurface orthogonal, ωa = 0 and ∆a = 0 for vector perturbations. However, in general we have a non-zero ∆a

with √
1 +

2K
k2

∆(±1)
= −

8
3
a

k
Θω(∓1), (4.3.81)

where∆a = −
∑

k k∆
(±1)Q(±1)

a andωa =
∑

k(k/a)ω
(±1)Q(±1)

a . Note that since∆a andωa are related by a curl, Eq. (4.3.81) links
the coefficients of vector harmonics of opposite parity. In Eq. (4.3.78), it should be understood that the quantity I(±1)

0 ≡ ∆(±1);
it can be considered a source term since it is algebraic in the vorticity.

The integral solution for the vector-mode anisotropies in a general almost-FLRWmodel is [229]

I(±1)
l =

4l
√
ν2 + 2

∫ tR
dt e−τ

{[
k

a

(1
4
∆(±1)

− A(±1)
)

+ neσTv
(±1)

]
Φν

l (x)

sinh x

−

[
k

a
σ(±1)

+
3
16

neσT
(
κ

(1)
1 κ

(1)
2

)−1 (
I(±1)
2 − 6E (±1)

2

)] 1
√
ν2 + 2

d
dx

(
Φν

l (x)

sinh x

)}
. (4.3.82)

This is valid for l ≥ 1 in an open universe; the equivalent result for K > 0 follows from the usual replacements of ν2 + n
with ν2 − n and hyperbolic functions by their trigonometric counterparts. The geometric terms Φν

l (x)/ sinh x arise from the
projection of sources going like eaQ(±1)

a along the line of sight (see Eq. (4.1.47)). The terms involving the derivative of this
function arise from shear and scattering sources going like eaebQ(±1)

ab , as follows from Eq. (4.1.46). If we integrate the shear
term by parts in Eq. (4.3.82) we find

1
4
I(±1)
l −

1
3
κ

(1)
1 σ

(±1)δl1 =
l

√
ν2 + 2

∫ tR
dt e−τ

{[
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a

(1
4
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)
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]
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l (x)

sinh x

+ neσT
(
v(±1)

− σ(±1)
) Φν

l (x)

sinh x
+

3
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neσT
(
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(1)
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(1)
2

)−1 (
I(±1)
2 − 6E (±1)

2

) 1
√
ν2 + 2

d
dx

(
Φν

l (x)

sinh x

)}
. (4.3.83)

Each term in this expression can be shown to frame-invariant. We see that the anisotropy is sourced at last scattering by
the baryon velocity in a zero-shear frame (i.e. by the Doppler effect) and by anisotropic Thomson scattering. There is also an
integrated effect which involves

k

a

(1
4
∆(±1)

− A(±1)
)

− σ̇(±1)
= −

2√
1 + 2K/k2

Ḣ(∓1), (4.3.84)

where the vector-mode contribution to the magnetic part of the Weyl tensor is

Hab =
∑
k

(
k

a

)2

H(±1)Q(±1)
ab , (4.3.85)

and we have used Eq. (4.3.81), the vorticity propagation equation and the magnetic Weyl equation. The integrated
contribution to the vector-mode temperature anisotropies is similar to the scalar-mode ISW effect, but involves the gravito-
magnetic part of the Weyl curvature rather than gravito-electic. Eq. (4.3.83) extends the analysis of Ref. [226] to non-
flat models; the velocity source term and the integrated contribution are consistent with the gauge-invariant analysis of
Ref. [221] though the (small) anisotropic scattering term is not included there.

The polarization multipole equations for vector modes are

Ė (±1)
l +

k

a

[
(l − 1)l(l + 2)(l + 3)

(l + 1)3(2l + 1)
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−

2
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( 1
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3
5

E (±1)
2

)
δl2

]
, (4.3.86)

Ḃ(±1)
l +

k

a

[
(l − 1)l(l + 2)(l + 3)

(l + 1)3(2l + 1)
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l+1B
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l B(±1)
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+

2
l(l + 1)

k

a

√
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2K
k2

E (∓1)
l

= −neB
(±1)
l . (4.3.87)
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Note here how the curl couplings between E and B-modes in Eqs. (4.3.45) and (4.3.46) lead to a coupling between the E (±1)
l

and B(∓1)
l . If we choose the primordial perturbation variable φ(±1)

(k) so that the radiation anisotropies I(±1)
l are linear in them

(for example, φ(±1)
(k) = σ

(±1)
(k) +v(±1)

(k) ),B(±1)
l will be linear in the primordial perturbation of the opposite parity, φ(∓1)

(k) . It follows
that, if the primordial fluctuations are parity-symmetric in the mean, there will be no correlations between BAl and either
of EAl or IAl .

The integral solutions for the polarization are [229]

E (±1)
l = −

3l(l − 1)
4(l + 1)

1
(ν2 + 2)

∫ tR
dt neσTe−τ(κ

(1)
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(1)
2 )−1

[ (
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2 − 6E (±1)

2

)
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( 1
sinh x

d
dx

Φν
l (x) +

cosh x

sinh3 x
Φν

l (x)
)]

, (4.3.88)

B(±1)
l =

3l(l − 1)
4(l + 1)

ν

(ν2 + 2)

∫ tR
dt neσTe−τ(κ

(1)
1 κ

(1)
2 )−1

(
I(∓1)
2 − 6E (∓1)

2

) Φν
l (x)

sinh x
, (4.3.89)

in an open universe. Examples of CMB power spectra from vector modes are given in Figure 2 of Ref. [226].

4.3.6. Tensor perturbations
The imprint of tensor perturbations, or gravitational waves, is implicit in the original work of Sachs and Wolfe [102],

although the first detailed calculations for temperature were reported in Ref. [253] and for polarization in Ref. [254].
Other important milestones include constraints on the gravitational wave background from the large-angle temperature
anisotropy from COBE [306–308], the introduction of the E-B decomposition (whichwas already implicit in the earlywork of
Dautcourt and Rose [284]) and the realisation that B-mode polarization is a particularly sensitive probe of tensormodes [275,
276], and constraints from theWMAPdata [302]. The effect of tensormodes on the CMB from the 1+3-covariant perspective
is discussed in Refs. [169,224].

For tensor perturbations we expand the temperature and polarization multipoles in the Q(±2)
Al

:

IAl = I
∑
k

(
l∏

n=2
κ(2)
n

)−1

I(±2)
l Q(±2)

Al
, l ≥ 2, (4.3.90)

EAl = I
∑
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l∏
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)−1

E (±2)
l Q(±2)

Al
, l ≥ 2, (4.3.91)

BAl = I
∑
k

(
l∏

n=2
κ(2)
n

)−1

B(±2)
l Q(±2)

Al
, l ≥ 2, (4.3.92)

where implicit in the sum over harmonics,
∑

k, is a sum over the parity states labelled±2. As for vectormodes, wemust now
include the B-mode polarization. The linearised multipole hierarchy for the temperature anisotropies, Eq. (4.3.48), becomes
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, (4.3.93)

for l ≥ 2, where σab =
∑

k(k/a)σ
(±2)Q(±2)

ab . For the polarization, we have
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, (4.3.94)

Ḃ(±2)
l +

k

a

[
(l + 3)2(l − 1)2

(2l + 1)(l + 1)3
κ

(2)
l+1B

(±2)
l+1 −

l

(2l + 1)
κ

(2)
l B(±2)

l−1

]
+

4
l(l + 1)

k

a

√
1 +

3K
k2

E (∓2)
l = −neB

(±2)
l . (4.3.95)

Note, again, how the curl couplings between E and B-modes in Eqs. (4.3.45) and (4.3.46) lead to a coupling between the E (±2)
l

and B(∓2)
l so there will be no correlations between BAl and either of EAl or IAl for fluctuations that are parity-invariant in the

mean.
The integral solution for the tensor contribution to the intensity anisotropy in a general almost-FLRWmodel is [224,229]

I(±2)
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sinh2x
, (4.3.96)
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in an open universe. The sources for the tensor-mode Boltzmann equation are of the form Q(±2)
ab eaeb and the projection of

these at x along the line of sight gives rise to the geometric factor l(l − 1)Φν
l (x)/ sinh

2x; see Eq. (4.1.47). The solution for the
polarization is

E (±2)
l =

−3Ml
2

8[(ν2 + 1)(ν2 + 3)]1/2
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dt neσTe−τ(κ

(2)
2 )−1
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2

)
φνl (x), (4.3.97)

B(±2)
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−3Ml
2
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2 − 6E (∓2)

2

)
ψνl (x), (4.3.98)

where the geometric terms φνl (x) and ψνl (x) are

φνl (x) =
d2

dx2
Φν

l (x) + 4 coth x
d
dx

Φν
l (x) − (ν2 − 1 − 2 coth2 x)Φν

l (x), (4.3.99)

ψνl (x) = −2ν
[ d
dx

Φν
l (x) + 2 coth xΦν

l (x)
]

(4.3.100)

in an open universe. The results for K > 0 follow from the usual replacements.
We relate the radiationmultipoles to the gauge-invariant primordial metric perturbationHab of Section 4.2.2 via transfer

functions

I(±2)
l = TT

l (k)H
(±2)
(k) , E (±2)
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Ml
√
2
TE
l (k)H

(±2)
(k) , B(±2)

l =
Ml
√
2
TB
l (k)H

(∓2)
(k) , (4.3.101)

where is should be noted that B(±2)
l are linear in H (∓2)

(k) . The primordial tensor power spectrum is defined so that

〈HabH
ab

〉 =

∫
νdν

(ν2 + 1)
PH (k), (4.3.102)

and the non-vanishing CMB power spectra from tensor modes are then given by Eq. (4.3.63) with m = 2.
Examples of CMB power spectra from tensor modes are shown in the right-hand panel of Fig. 4. CMB anisotropies are

produced by the anisotropic expansion of gravitational waves along the line of sight after last-scattering. Since gravitational
waves damp away once they become sub-Hubble, with amplitude falling as 1/a, the CMB spectra fall away rapidly above
l ∼ 100 (corresponding to the horizon size at recombination). Gravitational waves produce roughly equal power in E- and
B-mode polarization, but with a somewhat sharper projection between linear scales k and angular scales l for E-modes than
B [228]. As for scalar perturbations, reionization produces additional large-angle polarization.

The ratio of primordial tensor modes to curvature perturbations is set to r = 0.20 in Fig. 4, corresponding to the
current upper limit on tensor modes from a combination of WMAP temperature and E-mode polarization data, and
distance measures from the baryon acoustic oscillations in large-scale structure data and supernovae [302]. The constraint
comes mainly from the (large-angle) temperature anisotropies. Simple inflation models naturally produce a background of
gravitational waves with an almost scale-invariant power spectrum [309]

PH (k) =
16
π

(
H

mPl

)2
, (4.3.103)

where H is the Hubble parameter during inflation andmPl = 1.22× 1019 GeV/c2 is the Planck mass. The current upper limit
on tensor modes implies H < 1.2 × 1014 GeV and so an energy scale of inflation Einf < 2.2 × 1016 GeV. The B-mode of
polarization is yet to be observed and the constraints B-modes place on gravitational waves are not yet competitive with
the temperature anisotropies. However, because of cosmic variance from the dominant scalar perturbations, the constraint
on tensor modes from the temperature anisotropies will not improvemuch as instruments get more sensitive but that from
B-modes will. Ratios r ∼ 10−2 are targets for a new generation of sensitive B-mode surveys from ground and balloon-borne
platforms. Ultimately, the detection of tensormodes via the B-mode polarizationmay only be limited by our ability to control
instrumental systematic effects (e.g. [310,311]) and clean out foreground contaminants [312] and secondary processes such
as gravitational lensing [313,314].

4.3.7. Cosmic microwave background in other cosmological models
Anisotropies in the CMB in other cosmological models have been considered by a number of authors. A very general

approach to constrain departures from FLRWsymmetrieswith the CMBwas pioneered by Ref. [255], subsequently improved
in Ref. [256], and applied to COBE data in Ref. [257] (with an erratum in Ref. [315]). The idea was to use observational
constraints on the FAl plus the 1 + 3-covariant dynamical equations to constrain the geometry in a model-independent
way. Given that we can only measure the anisotropies here and now, assumptions about the size of temporal and spatial
derivatives are required to extract useful constraints. For the large-angle anisotropies, the above papers assumed the
expansion-normalised derivatives of the multipoles were bounded by the multipoles themselves. This is indeed the case
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for almost FLRW models, but examples are known where the assumption is violated and an isotropic CMB observed now
can still be accompanied by large spacetime anisotropy [316].

The CMB has also been investigated extensively in models with a subset of FLRW symmetry. Spatially-homogeneous
but (globally-)anisotropic models were considered in the pioneering work of Collins & Hawking [317] and its subsequent
extensions (e.g. Ref. [318]). Bianchi models that can be considered small perturbations of FLRW are particularly well studied
and the anisotropies have a rich phenomenology due to geodesic focusing and spiralling. Constraints on global rotation and
shear in these early papers were superseded by analysis based on the COBE data [319,320] for Bianchi VIIh models. More
recently, a curious correlation has been found between the anisotropy template in thismodel and theWMAP data [321]. The
result is statistically-significant, and removal of the correlated pattern can explain a number of anomalous features in the
WMAP data. However, the cosmological parameters required are at odds with those needed to explain the CMB anisotropy
on smaller scales and, moreover, the predicted polarization anisotropy has now been computed and it exceeds the WMAP
polarization observations on large angular scales [322].

Spherically-symmetric models have also received considerable attention. They provide a useful analytic model of the
secondary anisotropies due to non-linear gravitational effects (such as the imprint of a forming cluster of galaxies) [274,
323] and a simple way of relaxing the Copernican assumption.

5. Beyond the linear regime

Linear perturbation theory is a good approximation only at the initial stages of gravitational collapse, when the density
contrast is well below unity. Most of the observed structures in the universe, however, have density contrasts well in excess
of unity. The density within a cluster of galaxies, for example, is between 102 and 103 times greater than the average density
of the universe, while that of a galaxy is about 105 times larger. To understand the evolution of these objects we need to go
beyond the limits of the linear regime.

5.1. Nonlinear peculiar kinematics

In an unperturbed, idealised Friedmann universe, comoving particles have velocities that follow Hubble’s law. When
perturbations are present, however, the Hubble flow is distorted and matter acquires ‘peculiar’ velocities. The dipole
anisotropy of the CMB seems to suggest that our Local Group is moving with respect the smooth Hubble flow, which defines
the frame where the CMB dipole vanishes, at a speed of approximately 600 km/s (e.g. see [139]). Such, rather large, velocity
perturbations can have important implications for any nonlinear structure formation scenario. After recombination and on
scales well inside the Hubble length, one can use the Newtonian theory to study peculiar velocities. As we are successively
probing significant fractions of the Hubble radius, however, the need for a relativistic treatment increases.

5.1.1. 1 + 3 peculiar-velocity decomposition
When studying peculiar motions one needs to define the associated velocities relative to a preferred reference frame.

The latter is not comoving with the fluid, since there are no peculiar velocities relative to the matter frame by construction.
Following [324–326], we choose our reference velocity field (ua) to be both irrotational and shear-free. Then, we assume the
presence of matter moving with 4-velocity

ũa = γ(ua + va), (5.1.1)

where va is the peculiar velocity of the fluid (with uava = 0) and γ = (1 − v2)−1/2 is the Lorentz-boost factor (see also
Section 2.4.1). The uava = 0 condition guarantees that ũa is also timelike (i.e. that ũaũa

= −1), irrespective of the value
of the γ-factor. Here, however, we will be dealing with non-relativistic peculiar motions, which means that v2 � 1 and
consequently that γ ' 1. The instantaneous rest space of the ‘tilded’ observer is defined by means of the tensor

h̃ab = gab + ũaũb, (5.1.2)

which projects orthogonal to ũa.38 When the ua-frame has σab = 0 = ωab, it corresponds to Bardeen’s quasi-Newtonian gauge
(see [103]) and is related to the comoving (Lagrangian) reference system via the transformation laws given in Appendix A.2.

The peculiar kinematics are covariantly determined by the irreducible variables of themotion, obtained by decomposing
the gradient of the va-field. To simplify the equations we choose as our time direction the one along ũa. Then, D̃a = h̃b

a∇b

defines the associated orthogonally projected covariant derivative operator and the projected gradient of the peculiar
velocity splits as

D̃bva =
1
3

Θ̂ h̃ab + σ̂ab + ω̂ab, (5.1.3)

38 The peculiar velocity field is orthogonal to ua by construction but does not lie in the rest frame of the ‘tilded’ observers, even for non-relativistic peculiar
velocities. Indeed, following (5.1.1) and (5.1.2), we find that ũava = γv2 6= 0 and that h̃abvb = va + γv2ũa 6= va .



C.G. Tsagas et al. / Physics Reports 465 (2008) 61–147 131

with Θ̂ = D̃ava, σ̂ab = D̃〈bva〉 and ω̂ab = D̃[bva]. In analogy with Dbua (see Section 1.3.1), the tensor D̃bva describes the relative
motion of neighbouring peculiar flow lines, while Θ̂ , σ̂ab and ω̂ab represent the volume expansion (or contraction), the shear
and the vorticity of the peculiar motion respectively. Thus, a region that has ‘decoupled’ from the background expansion
and is collapsing has Θ̂ < 0.

5.1.2. Nonlinear peculiar motions
In cosmological studies, it helps to identify the preferred 4-velocity field, that is the reference ua-frame of the previous

section, with the one setting the CMB dipole to zero. Then, an observer moving with the matter (i.e. with the ũa-frame of
Section 5.1.1) monitors its motion using the nonlinear evolution equation of the peculiar velocity field

v̇〈a〉 = Ãa − A〈a〉 −
1
3

(Θ̃ − Θ̂)v〈a〉 − (σ̃ab − σ̂ab)v
b
− (ω̃ab − ω̂ab)v

b, (5.1.4)

with v̇〈a〉 = h̃a
b
v̇b, A〈a〉 = h̃a

b
Ab and v〈a〉 = h̃a

b
vb, and that of its projected gradients. The latter, which is obtained by applying

the Ricci identity to va (see [326] for the technical details), reads

h̃b
d
h̃a

c (
D̃dvc

)·

= D̃bv̇a −
1
9

Θ̃Θ̂ h̃ab −
1
3

[
Θ̃(σ̂ab + ω̂ab) + Θ̂(σ̃ab + ω̃ab)

]
− σ̂caσ̃

c
b − σ̂caω̃

c
b + ω̂caσ̃

c
b + ω̂caω̃

c
b

+ v̇〈a〉Ãb −
1
3

Θ̃ Ãav〈b〉 − Ãa(σ̃
c
b + ω̃c

b)vc + ÃaD̃bv
2
− h̃a

c
h̃b

d
Rcsdqv

sũq, (5.1.5)

where Ãa = ˙̃ua = ũb
∇bũa is the 4-acceleration of the ‘tilded’ observers. Note the Riemann-curvature term in the right-hand

side of the above, which couples the geometry of the spacetime with both ũa and va. As we will see next, the latter coupling
has profound implications for the kinematics of peculiar motions.

The trace, the symmetric trace-free component and the skew part of the above lead to the propagation equations of Θ̂ ,
σ̂ab and ω̂ab respectively [326]. Thus, the time evolution of the volume scalar is monitored by

˙̂Θ = −
1
3

Θ̃Θ̂ − σ̃abσ̂
ab

+ ω̃abω̂
ab

+ D̃av̇
a
+ Ãav̇

a
+ q̃av

a
+

[1
2

(ρ̃+ 3p̃) − Λ

]
v2

−

(
σ̃ab − ω̃ab +

1
3

Θ̃ h̃ab

)
Ãavb + ÃaD̃av

2, (5.1.6)

which is the Raychaudhuri analogue of the peculiar flow and shares several close analogies with its standard counterpart
(compare to Eq. (1.3.3) in Section 1.3.1).39 There are differences, however, and the main one is in the role played by the
matter fields. According to the seventh term in the right-hand side of (5.1.6), the total gravitational mass of the system
tends to increase the average separation between two neighbouring peculiar flow lines. A positive cosmological constant,
on the other hand, brings the aforementioned flow lines closer together.

Taking the symmetric trace-free and the antisymmetric parts of (5.1.5) leads to the respective propagation formulae of
the shear and the vorticity. Following [326], we have

h̃〈b
d
h̃a〉

c
˙̂σcd = −

1
3

(
Θ̃σ̂ab + Θ̂σ̃ab

)
− σ̂c〈aσ̃

c
b〉 − σ̂c〈aω̃

c
b〉 + ω̂c〈aσ̃

c
b〉 + ω̂c〈aω̃

c
b〉 + D̃〈bv̇a〉 + Ã〈ah̃b〉

cv̇c −
1
3

Θ̃ Ã〈ah̃b〉
cvc

− Ã〈a(σ̃
c
b〉 + ω̃c

b〉)vc + Ã〈aD̃b〉v
2
+ v2Ẽab − ε̃cd〈av

cH̃d
b〉 −

1
2
v2π̃ab −

1
2
q̃〈ah̃b〉

cvc, (5.1.7)

for the ‘peculiar shear’, and

h̃[b
dh̃a]

c ˙̂ωcd = −
1
3

(
Θ̃ω̂ab + Θ̂ω̃ab

)
− σ̂c[aσ̃

c
b] − σ̂c[aω̃

c
b] + ω̂c[aσ̃

c
b] + ω̂c[aω̃

c
b] + D̃[bv̇a] − Ã[ah̃b]

cv̇c −
1
3

Θ̃ Ã[ah̃b]
cvc

− Ã[a(σ̃
c
b] + ω̃c

b])vc + Ã[aD̃b]v
2
− ε̃cd[av

cH̃d
b] −

1
2
q̃[ah̃b]

cvc, (5.1.8)

for the peculiar vorticity. When compared to their conventional analogues (see Eqs. (1.3.4) and (1.3.5) in Section 1.3.1),
these expressions show a high degree of complexity. Among others, the coupling between spacetime geometry and peculiar
velocity seen in (5.1.5), has led to a extra (magnetic) Weyl effects on both the shear and the vorticity.

39We remind the reader that in this section overdots denote time-derivatives along ũa and angled brackets projection orthogonal to ũa . Also, ‘tilded’
quantities are measured in the matter (ũa) frame.
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5.1.3. The case of dust
To this point, the peculiar velocity field is arbitrary and va has not been associated with any particular matter source. The

system (5.1.4)–(5.1.8) is completely general and γ ' 1 is the only restriction imposed so far.
Consider now an almost-FLRW spacetime with a family of observers having a non-relativistic peculiar velocity relative

to the comoving frame, which is irrotational and shear-free. This defines the covariant analogues of the quasi-Newtonian
cosmologies (see also Section 5.1.1). In what follows we will identify the quasi Newtonian frame with the reference 4-
velocity field ua and align ũa with a non-relativistic (dust) component; a picture that reflects the post-recombination
universe. In that case p̃ = 0 = π̃ab = Ãa and, given that q̃a = 0 in the matter frame, expressions (5.1.4) and (5.1.6)–(5.1.8)
reduce to

v̇a = −A〈a〉 −
1
3

(Θ̃ − Θ̂)v〈a〉 − (σ̃ab − σ̂ab)v
b
− (ω̃ab − ω̂ab)v

b, (5.1.9)

˙̂Θ = −
1
3

Θ̃Θ̂ − σ̃abσ̂
ab

+ ω̃abω̂
ab

+ D̃av̇
a
+

(1
2
ρ̃− Λ

)
v2, (5.1.10)

˙̂σab = −
1
3

(
Θ̃σ̂ab + Θ̂σ̃ab

)
− σ̂c〈aσ̃

c
b〉 − σ̂c〈aω̃

c
b〉 + ω̂c〈aσ̃

c
b〉 + ω̂c〈aω̃

c
b〉 + D̃〈bv̇a〉 + v2Ẽab − ε̃cd〈av

cH̃d
b〉 (5.1.11)

and

˙̂ωab = −
1
3

(
Θ̃ω̂ab + Θ̂ω̃ab

)
− σ̂c[aσ̃

c
b] − σ̂c[aω̃

c
b] + ω̂c[aσ̃

c
b] + ω̂c[aω̃

c
b] + D̃[bv̇a] − ε̃cd[av

cH̃d
b], (5.1.12)

respectively. Following (5.1.11), the effect of electric (the tidal) part of theWeyl field on the shear anisotropy of the peculiar
motion is of higher perturbative order, compared to that of itsmagnetic counterpart. Thiswillmake a differencewhen taking
the second-order limit of the above named expressions around a quasi-Newtonian background.

5.2. The mildly nonlinear regime

Linear perturbation theory provides an adequate description of the early stages of galactic collapse when the distortions
from homogeneity and isotropy are still relatively small. As the perturbations grow stronger, however, the linear
approximation brakes down and one needs to incorporate nonlinear effects. During the transition from the linear to the
fully nonlinear regime, a period which one might call the “mildly nonlinear era”, one can monitor the perturbed quantities
by means of the second-order equations instead of the fully nonlinear ones.

5.2.1. Second order evolution
Assuming an Einstein–de Sitter background, the linear relations between the quasi-Newtonian reference system and the

matter frame are Θ̃ = Θ + Θ̂, σ̃ab = σ̂ab and ω̃ab = ω̂ab. Also to first order, ρ̃ = ρ, Ẽab = Eab and H̃ab = 0, while Aa can be
shown to derive from a potential [325]. Then, Eq. (5.1.9) reduces to the linear expression

v̇a = −
1
3

Θva − D̃aφ, (5.2.1)

where φ is the peculiar gravitational potential. Following [325], the above accepts a single growing mode with va ∝ a1/2

and has the same linear evolution in both the quasi-Newtonian and the matter frames. Given that, it helps to describe the
peculiar motions by means of the rescaled velocity field Va = a−1/2va, which remains constant to leading order both in the
reference and the matter frame (see [325,326] and also Section 5.2.2).

The mildly nonlinear regime monitors the early proto-galactic collapse of a dust cloud that has decoupled from the
background expansion. On these grounds we may set Θ � Θ̂ . Then, on a quasi-Newtonian Einstein–de Sitter background,
the nonlinear system (5.1.9)–(5.1.12) leads to the second-order set [326]

v̇a = −A〈a〉 −
1
3

Θv〈a〉, (5.2.2)

˙̂Θ = −
1
3

Θ̂2
− 2σ̂2

+ 2ω̂2
+ D̃av̇

a
+

1
2
ρv2, (5.2.3)

˙̂σab = −
2
3

Θ̂σ̂ab − σ̂c〈aσ̂
c
b〉 + ω̂c〈aω̂

c
b〉 + D̃〈bv̇a〉, (5.2.4)

˙̂ωab = −
2
3

Θ̂ω̂ab − 2σ̂c[aω̂
c
b] + D̃[bv̇a]. (5.2.5)

Hence, at this perturbative level, both the electric and themagneticWeyl tensors have decoupled and the peculiar kinematics
evolve unaffected by the long-range gravitational field. The absence of the electric Weyl component in (5.2.4), in particular,
is a consequence of the two-frame approach. Next, wewill see the implications of this absence for the asymptotic final shape
of a collapsing overdensity.
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5.2.2. Rescaling the variables
For our purposes, the key linear result is that the peculiar velocity evolves as va ∝ a1/2. This then means that, to leading

order, the rescaled velocity field Va = a−1/2va remains constant (i.e. V̇a = 0) and that Va comes from a potential and it
is therefore non-rotating, namely that D̃[bVb] = 0 (see [325,326] for details). Hence, one can always assume that the linear
peculiar velocity of the dust component is both acceleration-free and irrotational. To fully exploit this linear resultwe rescale
our kinematical variables according to Θ̂ = a1/2Θ̄ , σ̂ab = a1/2σ̄ab and ω̂ab = a1/2ω̄ab, with Θ̄ = D̃aVa, σ̄ab = D̃〈bVa〉 and
ω̄ab = D̃[bVa]. Then, the system (5.2.2)–(5.2.5) also rescales to [326]

V̇a = −a−1/2A〈a〉 −
1
2

ΘV〈a〉, (5.2.6)

˙̄Θ = −
1
3
a1/2Θ̄2

− 2a1/2σ̄2
+ 2a1/2ω̄2

+ D̃aV̇
a
+

1
2
a1/2ρV2, (5.2.7)

˙̄σab = −
2
3
a1/2Θ̄σ̄ab − a1/2σ̄c〈aσ̄

c
b〉 + a1/2ω̄c〈aω̄

c
b〉 + D̃〈bV̇a〉, (5.2.8)

˙̄ωab = −
2
3
a1/2Θ̄ω̄ab − 2a1/2σ̄c[aω̄

c
b] + D̃[bV̇a]. (5.2.9)

5.3. The relativistic Zeldovich approximation

Most analytical models of nonlinear structure formation are based on the assumption of spherically symmetry [327]—
see also [139]. The spherical collapse scenario became popular because of its simplicity, but in reality it stops short from
explaining key features of the observed universe. Galactic collapse does not seem to proceed isotropically. Galaxy surveys
show complicated triaxial structures, which require non-spherical analysis if they were to be explained.

5.3.1. The Zeldovich ansatz
The Zeldovich approximation is not restricted to spherical symmetry and addresses the mildly nonlinear collapse of

protogalactic clouds. It applies to scales well within the Hubble radius, as they decouple from the background expansion and
‘turn around’. The approximationworks by extrapolating into thenonlinear regime the exact linear result of the acceleration-
free and irrotational motion of the dust component. This considerably simplifies the equations and allows for analytical
solutions.

When the Zeldovich ansatz V̇a = 0 = ω̄ab is applied to the second-order set (5.2.6)–(5.2.5), the motion of the collapsing
pressure-free matter is determined by the reduced pair

˙̄Θ = −
1
3
a1/2Θ̄2

− 2a1/2σ̄2
+

1
2
a1/2ρV2, (5.3.1)

˙̄σab = −
2
3
a1/2Θ̄σ̄ab − a1/2σ̄c〈aσ̄

c
b〉. (5.3.2)

Note the matter term in the right-hand side of (5.3.1). Given that Va is constant and that ρ ∝ a−3 for dust, the impact of the
backgroundmatter upon Θ̄ decays away. This means that the collapse is increasingly dominated by the kinematics and that
gravity becomes progressively less important. The situation is closely analogous to that seen in studies of silent universes
(e.g. see [328]), or during the Kasner regime of the Bianchi I cosmologies (see Section 1.5.2).

Referring the reader to [326] for the details of the relativistic analysis and also to [329] for the original (Newtonian)
covariant treatment of the Zeldovich approximation, we introduce the new ‘time’ variable τ (constructed so that τ̇ =

−a1/2Θ̄). The minus sign compensates for the fact that we are dealing with a collapsing region (i.e. Θ̄ < 0) and guarantees
that τ̇ > 0 always. Note that τ → ∞ as we approach the singularity, where Θ̄ → −∞. Then, the system (5.3.1) and (5.3.2),
the former without the matter term, transforms into the set

Θ̄ ′
=

1
3

Θ̄ + 2Θ̄−1σ̄2, (5.3.3)

σ̄′

ab =
2
3
σ̄ab + Θ̄−1σ̄c〈aσ̄

c
b〉, (5.3.4)

where primes indicating differentiation with respect to τ. Our last step is to assume the shear eigenframe, where σ̄ab =

diag(σ̄1, σ̄2, σ̄3) with σ̄3 = −(σ̄1 + σ̄2). Relative to this frame equations (5.3.3) and (5.3.4) lead to

Θ̄ ′
=

1
3

Θ̄ + 2Θ̄−1
(
σ̄2
1 + σ̄2

2 + σ̄1σ̄2
)
, (5.3.5)

σ̄′

1 =
2
3
σ̄1 +

1
3

Θ̄−1σ̄2
1 −

2
3

Θ̄−1 (σ̄1 + σ̄2) σ̄2, (5.3.6)

σ̄′

2 =
2
3
σ̄2 +

1
3

Θ̄−1σ̄2
2 −

2
3

Θ̄−1 (σ̄1 + σ̄2) σ̄1. (5.3.7)
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Fig. 5. Phase plane with Σ+ ≡ X and Σ− ≡ Y. The lines L1 , L2 and L3 that form the central triangle correspond to σi = −Θ̄/3 (i = 1, 2, 3), with the three
pancakes located at P1 , P2 and P3 where these lines intersect. The points F1 , F2 , F3 represent filamentary solutions and spindle-like singularities, while O
corresponds to spherically symmetric, isotropic collapse (see [326] and also [329]).

with the behaviour of σ̄3 determined from that of σ̄1 and σ̄2 [326]. The above second-order system provides a fully covariant
formulation of the Zeldovich approximation, which governs the small-scale evolution of pressure-free matter, as the latter
decouples from the background expansion and starts to turn around and collapse.

5.3.2. The Zeldovich pancakes
The question is whether or not the relativistic analysis also predicts that one-dimensional pancakes are the final

configurations of any generic overdensity. Given the qualitative nature of the question, one can employ a dynamical-systems
approach to look for the answer. To begin with, consider the dimensionless variables (see [326] and also [329])

Σ+ =
3
2

Θ̄−1 (σ̄1 + σ̄2) and Σ− =

√
3
2

Θ̄−1 (σ̄1 − σ̄2) , (5.3.8)

which measure the anisotropy of the collapse. Clearly, when both Σ+ and Σ− vanish, we are dealing with a spherically
symmetric collapse. On introducing Σ±, Eq. (5.3.5) transforms into

Θ̄ ′
=

1
3

Θ̄ +
2
3

Θ̄
(
Σ2

+
+ Σ2

−

)
, (5.3.9)

while expressions (5.3.6) and (5.3.7) become

Σ ′

+
=

1
3

[
1 − Σ+ − 2

(
Σ2

+
+ Σ2

−

)]
Σ+ +

1
3

Σ2
−

(5.3.10)

and

Σ ′

−
=

1
3

[
1 + 2Σ+ − 2

(
Σ2

+
+ Σ2

−

)]
Σ−, (5.3.11)

respectively. Thus, the evolution of Σ+ and σ− has decoupled from that of Θ̄ and the shape of the collapsing overdensity is
monitored by the subsystem (5.3.10) and (5.3.11). Technically speaking, the problem has been reduced to the study of the
planar dynamical system depicted in Fig. 5. Physically, this dimensional reduction means that the shape of the collapsing
dust cloud does not depend on the collapse timescale.

Referring to [326] for the technical details, we point out that the vertices P1, P2 and P3 of the triangle seen in Fig. 5 are
stationary points of the system (5.3.10) and (5.3.11) and also act as attractors. Each one of the three vertices corresponds
to an one-dimensional pancake solution, which is stationary along two directions and collapses along the third shear
eigendirection. Generic solutions are asymptotic to one of these pancakes (one for each eigendirection). The bisecting lines
C1, C2 and C3 intersect to the stationary point O that represents shear-free spherically symmetric collapse. Finally, where
the bisecting lines intersect the triangle, we have the stationary points F1, F2 and F3 that correspond to exact filamentary
solutions. The pancakes are stable nodes, the filaments are saddle points and the spherically symmetric collapse is a unstable
node. In other words, once the collapse sets in, the pancakes are the natural attractors for a generic overdensity. This result
is in disagreement with dynamical studies of silent universes, which argue for spindle-like rather than pancake singularities
(see [328] and also [330]). The reason for this difference appears to lie in the role of the tidal field. Silent universes allow
for a nonzero electric Weyl component, but set its magnetic counterpart to zero. In the presence of this “truncated” tidal
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field, the collapsing overdesnity appears to evolve towards a Kasner-type singularity where pancakes are a set of measure
zero. The analysis of peculiar velocities in Einstein–de Sitter models, however, has shown that the long-range gravitational
field has negligible input at second order. As a result, the relativistic equations have been reduced to the Newtonian ones
and pancakes have been reinstated as the natural attractors of generic protogalactic collapse, this time within the realm of
general relativity. This also appears in agreement with numerical simulations which also seem to favor pancake formation
over all other types of singularities [331].

5.4. Averaging and backreaction

The increasing complexity of the equations, as one moves beyond the linear regime, means that analytical studies of
nonlinear structure formation are always bound within the limits of certain approximations. So, a common feature in every
(local) nonlinear analytical work is that some effects are sidestepped in favour of others. The spherical collapse scenario
and the Zeldovich anzatz are probably the two best known examples. It therefore seems likely that only via a consistent
averaging method one can achieve a tractable, all inclusive (and nonlocal) nonlinear study.

5.4.1. Spatial averaging
The question of whether an inhomogeneous spacetime behaves on average like a homogeneous solution of Einstein’s

equations is a long-standing issue, directly related to the problem of averaging general-relativistic spacetimes [332,333].
The reason is the generic nonlinearity of general relativity and the difficulty of establishing a unique and unambiguous way
of averaging the spacetime metric, without throwing away crucial information during the process. This ongoing ambiguity
has lead a number of cosmologists to argue that the averaging problem may be crucial in our understanding of the recent
expansion of the visible universe. Thus, when it was recently suggested that structure formation may be responsible for the
acceleration of the expansion, averaging techniques were employed to study the dark energy problem in terms of kinematic
backreaction effects from spatial inhomogeneities [25–35]. Although the backreaction idea has been criticised, primarily
on the basis of currents observations [334–341], it is attractive in principle because it can solve the coincidence problem
without appealing to a cosmological constant, speculative quintessence fields, or nonlinear corrections to Einstein’s gravity.
For recent reviews on the backreaction question the reader is referred to [342,343].

General relativity has been applied to a range of averaging scales, depending on the scale of the physical system under
study. Cosmology applies to the largest astrophysical scales, which typically extend over a significant fraction of the Hubble
length (see [344] for a discussion and further references). Nevertheless, the major issue of defining a suitable averaging
process remains open. The literature containsmore than one averagingmethods that have been applied to cosmology [345–
349]. Herewewill follow the Buchert approach, which builds on the Newtonian theory (where spatial averaging is relatively
simple) before extending to general relativity by confining to scalar variables [347,348]. These averaged scalars become the
effective dynamical sources that an observer will expect to measure. In the averaged equations one isolates an explicit
source term, which is commonly referred to as the backreaction term. The latter quantifies the deviation from a given ‘fitting
model’ that usually coincides with the Friedmann spacetime. From our point of view, the Buchert scheme has an additional
advantage because it applies naturally to the 1 + 3 covariant formulae used here.

Following [347,348], the spatial averaging of an arbitrary scalar field φ = φ(xa), over a simply connected domain D is a
covariant operation, defined by the averaging operator

〈φ〉D = V−1
D

∫
D
φHd3xa, (5.4.1)

where the angled brackets indicate spatial averaging, VD is the volume of the domain in question and H =
√
det(hab). Since

the volume is time-dependent in principle, the average of the time derivative of a locally defined scalar generally differs
form the time derivative of the average. This non-commutativity between spatial averaging and temporal evolution can
be formulated in a simple mathematical rule. For a rest-mass preserving domain the commutation between the volume-
averaging and the time-averaging operators leads to

〈φ〉
·

D − 〈φ̇〉D = 〈Θφ〉D − 〈Θ〉D〈φ〉D, (5.4.2)

with Θ representing the local expansion rate. The right-hand side of the above generally introduces source terms in the
evolution equations which can be interpreted as the backreaction effects of the averaging process. Such backreaction terms
have recently been considered as a possible solution to the dark energy question.

5.4.2. The averaged equations
The first step is to write the average equations in the form of a chosen family of local equations, with any deviation

between the two sets treated as a backreaction effect. Here, we will write the averaged formulae in a Friedmann-type form.
To be precise, assuming irrotational dustmoving alongworldlines tangent to the 4-velocity ua-field and applying rule (5.4.2)



136 C.G. Tsagas et al. / Physics Reports 465 (2008) 61–147

to the continuity, the Friedmann and the Raychaudhuri equations we arrive at the system 40

〈ρ〉· + 〈Θ〉〈ρ〉 = 0, (5.4.3)

〈Θ〉
·
+

1
3

〈Θ〉
2
+

1
2

〈ρ〉 − Λ =
2
3

〈(Θ − 〈Θ〉)2〉 − 2〈σ2
〉, (5.4.4)

1
2

〈R〉 − 〈ρ〉 +
1
3

〈Θ〉
2
− Λ = −

1
3

〈(Θ − 〈Θ〉)2〉 + 〈σ2
〉, (5.4.5)

where the right-hand sides of (5.4.4) and (5.4.5) involve the identity 〈(φ− 〈φ〉)2〉 = 〈φ2
〉 − 〈φ〉

2. The above provides a (non-
closed) set of three effective Einstein equations for the spatially averaged scalars of non-rotating inhomogeneous universes
containing pressure-free matter [25,350]. Within this environment, Eqs. (5.4.4) and (5.4.5) are exact and there is no need
to assume that the inhomogeneity and the anisotropy are small perturbations. Note that, despite the non-commutativity
between spatial averaging and temporal evolution, the averaged continuity equation has retained the form of its local
counterpart. This means that 〈ρ〉 ∝ a−3

D , where aD is the average scale factor smoothed over the domain D and defined
so that ȧD/aD = 〈Θ〉/3. However, the averaging process has led to extra terms in the right-hand sides of both (5.4.4) and
(5.4.5), collectively given by the domain-dependent scalar

QD =
2
3

〈(Θ − 〈Θ〉)2〉 − 2〈σ2
〉 = −

2
3

(
〈Θ〉

2
− 〈Θ2

〉

)
− 2〈σ2

〉. (5.4.6)

We interpret this quantity, which in principle can be either positive or negative, as the kinematic backreaction of spatial
averaging upon pressure-free FRW models, since in its absence the averaged formulae recover the form of their local
counterparts.41 We also note that Eqs. (5.4.3)–(5.4.5) may be recast into the standard form of a spatially flat LFRW universe,
provided the (effective) density and pressure are given by ρeff = 〈ρ〉 − (QD + 〈R〉)/2 and peff = −QD/2 + 〈R〉/6
respectively [349]. Thus, given an effective equation of state, the set (5.4.3)–(5.4.5) is solvable and provides the scalar
characteristics of the inhomogeneous universe on a given spatial scale.

5.5. Backreaction and accelerated expansion

Themost striking feature of theΛCDMmodel is that 95% of thematter in the universe today is in some unknown form. In
fact, the bulk of the matter (approximately 70% of it) is in the form of dark energy, triggering the accelerated expansion.
Nevertheless, we have not actually measured the cosmic acceleration nor detected the dark-energy component of the
universe.Whatwehave observed, are cosmological parameters sensitive to the expansion history of the universe. The results
show that the Enstein–de Sitter model does not fit the current data (see [352] for an up-to-date discussion).

5.5.1. Conditions for acceleration
Observations also seem to indicate that the expansion of the universe started accelerating relatively recently; roughly at

the time galaxy formation was moving from its linear phase into the nonlinear regime. This coincidence has led a number
of cosmologists to suggest that cosmic acceleration could be the direct consequence of structure formation and of the fact
that, at least on certain scales, the universe does not obey the FLRW symmetries. These ideas have lead to what are now
known as ‘kinematic backreaction’ scenarios.

Following (5.4.4) and in the absence of a cosmological constant, the backreaction effects will cause a given domain of the
averaged universe to expand at an accelerated pace (i.e. with äD > 0) provided that

QD >
1
2

〈ρ〉. (5.5.1)

This means that QD needs to be positive, which implies that shear fluctuations must be superseded by those in the
volume expansion (see (5.4.6)). In the opposite case, QD will be negative and the domain will decelerate further instead
of accelerating. Condition (5.5.1) also implies that, if backreaction is to work, QD should decay slower than the average
density.

To examine the above condition further we introduce the dimensionless, domain-dependent parameters Ωρ =

3〈ρ〉/〈Θ〉
2, ΩR = −3〈R〉/2〈Θ〉

2 and ΩQ = −3QD/2〈Θ〉
2 and then recast expression (5.4.5) into

Ωρ + ΩR + ΩQ = 1. (5.5.2)

At the same time, condition (5.5.1) takes the form

ΩQ < −
1
4

Ωρ, (5.5.3)

40 The absence of rotation is necessary to guarantee the existence of flow-orthogonal hypersurfaces.
41 The fitting model does not always need to be the FRW spacetime. For example, in [351] the Buchert averaged formulae were written in Bianchi type-I

form to study analogous backreaction effects on anisotropic cosmological models.
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ensuring that QD is positive as required. Substituting this result into Eq. (5.5.2), the latter leads to the constraint

3
4

Ωρ + ΩR > 1, (5.5.4)

between the matter and the 3-curvature contribution to the effective Ω-parameter of the averaged universe. Note that Ωρ
is always positive, by construction, though ΩQ can take negative values as well.

It is conceivable that one can arrive to the same qualitative result, namely that the aforementioned backreaction effects
can lead to accelerated expansion, through a perturbative approach as well. In [27], contributions from super-Hubble
perturbations to the scale-factor evolution of a spatially flat FLRW background were claimed capable of accelerating the
expansion rate of the inhomogeneous model, provided the initial perturbation had the right sign (see also [335] for the
relevant counter-arguments).

5.5.2. Attractive aspects and caveats
The observed universe is full of nonlinear structures that, at least on certain scales, can seriously distort its perceived

homogeneity and isotropy. As yet, the implications of these nonlinearities have not been fully appreciated, since the
mathematical complexity of the problem has discouraged a systematic and in depth study. In this respect, spatial averaging
may provide an alternative approach. An advantage of the Buchert averaging scheme is that it encodes the nonlinear effects
mentioned above within scalars that are relatively simple to analyse (see [342] for recent review). It is not surprising
therefore that the method has been applied to study the backreaction idea by several authors. Different averaging schemes,
primarily that of Zalaletdinov [346], have also been employed with similar qualitative results [29,353,354]. The common
factor is that backreaction can substantially change the behaviour of the exact model and therefore potentially explain the
accelerated expansion of our universe without appealing to exotic matter fields, or introducing corrections to standard
gravity. Moreover, since the effects are triggered by the onset of structure formation, they can offer a natural answer to the
coincidence problem. All these make the backreaction idea attractive in principle.

However, current observations support a low density universe with Ωρ considerably less than unity. If accelerated
expansion is to be triggered solely by backreaction effects, condition (5.5.4) is only satisfied in models with a considerable
amount of negative (recall that 〈R〉 = −2〈Θ〉

2ΩR/3) spatial curvature [350,355]. In other words, condition (5.5.4) seems to
contradict the widespread belief that the 3-curvature of our universe is very small.

Even if we assume that the aforementioned backreaction effects are strong enough to supersede the ‘background’
kinematics, nothing guarantees that they will lead to accelerated expansion. The sign of the backreaction term, which will
decide which way the effects will go to, has yet to be decided. In fact, because of this sign-ambiguity, the same kinematic
backreaction term, which is now proposed as a conventional solution to the dark-energy problem, was earlier suggested as
an effective dark-matter source [356].

We may not have clear information on the sign of QD, but we can monitor its dynamical evolution by means of a
consistency/integrability condition. In particular, taking the time derivative of (5.4.5) and then using (5.4.3) and (5.4.4) one
arrives at

Q̇D + 2〈Θ〉QD = −〈R〉
·
−

2
3

〈Θ〉〈R〉. (5.5.5)

The above means that if 〈R〉 ∝ a−2
D , namely if the averaged spatial curvature behaves like its FRW counterpart, the

backreaction term will scale as QD ∝ a−6
D mimicking a ‘stiff ’ dilatonic fluid. Clearly, the same evolution law holds when

〈R〉 = 0 as well.42 In either case, the density term in (5.4.4) will quickly dominate the backreaction effects, even when
condition (5.5.4) is initially satisfied. Recall that 〈ρ〉 ∝ a−3

D , just like in the standard Einstein–de Sitter model. Therefore, a
change in the scale-factor dependance of the average 3-Ricci scalar seems necessary if the backreaction idea is towork [355].
Overall, if condition (5.5.1) holds, a typical Hubble volume would not correspond to a perturbative state near the LFRW
model [355].

6. Summary and outlook

Cosmology is now firmly a data-driven science. The principal drivers over the past fifteen years have been large
surveys of galaxy redshifts and hence their three-dimensional clustering, precision measurements of the CMB temperature
anisotropies and, recently, polarization, and measurements of the magnitude-redshift relation of distant supernovae.
Together, these have revolutionised our understanding of the constituents, geometry and initial conditions for the
observable universe.

General relativity, or its Newtonian approximation on sub-Hubble scales, appears to provide a satisfactory description of
the dynamics of the universe and its fluctuations. This is a considerable triumph for the theory since it extends the range of

42 As expected, when QD vanishes, 〈R〉 ∝ a−2
D and the averaged model behaves like its standard LFRW counterpart (see Eqs. (5.4.3)–(5.4.5)). Generally

speaking, however, the reduced system still describes inhomogeneous non-equilibrium states.
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scales overwhich it has passed observational tests bymany orders ofmagnitude. Bold theoretical predictions of the simplest
models, in which initially small, adiabatic and Gaussian fluctuations evolve passively under gravity and hydrodynamics on
an FRW background, have been impressively verified. The observed acoustic peaks in the CMB and galaxy clustering power
spectrum are a particularly noteworthy example. Our aim here has been to provide a comprehensive review of the dynamics
and perturbations of cosmological models that are based in general relativity, and to describe how a simple class of these
models provides an excellent and remarkably efficient description of current data. By uniformlyworkingwith 1+3-covariant
methods throughout, we hope to have presented a unified treatment of a range of topics in contemporary cosmology.

However, general relativity can only explain the observed structure and evolution of the universe by supplementing
the known particles of the standard model with additional components that have, as yet, not yielded to direct detection.
Cold dark matter is invoked to reconcile the rotation curves of galaxies with their distribution of luminous matter and the
observed clustering of galaxies with the small amplitude of CMB fluctuations. One ormore potential-dominated scalar fields
are invoked in the early universe to drive inflation and hence remove some of the fine-tuning issues that beset the standard
hot big-bang scenario. A further violation of the strong energy condition is required at late times to explain the observed
accelerated expansion. This requires that a further component dubbed dark energy – either a woefully small contribution
from the vacuum, or an additional, unclustered dynamical component – be introduced. Alternatives to CDM, a fundamental
inflaton field and dark energy are all being pursued actively. For example, in attempts to realise inflation in string/M theory,
the role of the inflaton can be played by scalar fields describing the geometry of the compactified dimensions (see Ref. [8] for
a recent review). Infra-red modifications to general relativity can lead to late-time acceleration without dark energy, but do
not address the problemofwhy the vacuumdoes not gravitate [357]. Introducing additional scalar, vector and tensor degrees
of freedom (not all of which are dynamical) yields a relativistic theory of gravity [358] which reduces to the phenomenology
of Milgrom’s modified Newtonian dynamics [359] on galactic scales and may therefore offer an alternative to CDM. Future
astronomical observations should be able to discriminate between some of these alternatives. For example, a detection
of CMB B-mode polarization may signal trouble for many string-theory scenarios of inflation [360]; gravitational lensing
observations may provide further support for a dominant, non-interacting, cold component (i.e. CDM) in galaxy clusters
and large-scale structures [361,362]; and accurately mapping out the expansion rate of the universe to high redshift with
future supernovae surveys and baryon acoustic oscillations, and the growth rate of structure with tomographic lensing
surveys, may distinguish between modifications of gravity or a physical dark energy component [363].
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Appendix A

A.1. 1 + 3 Covariant decomposition

The skew part of a projected rank-2 tensor is spatially dual to the projected vector Sa = εabcS[bc]/2, and any projected
second-rank tensor has the irreducible covariant decomposition

Sab =
1
3
Shab + εabcS

c
+ S〈ab〉, (A.1)

where S = Scdhcd is the spatial trace and S〈ab〉 = S(ab) − Shab/3 is the projected symmetruc and trace-free (PSTF) part of Sab. In
the 1 + 3 covariant formalism, all quantities are either scalars, projected vectors or PSTF tensors.

The projected derivative operator, Da = ha
b
∇b, further splits irreducibly into a 1 + 3 covariant spatial divergence

DaVa, DbSab, (A.2)

a spatial curl

curl Va = εabcDbVc, curl Sab = εcd(aDcSb)
d, (A.3)

and a 1 + 3 covariant spatial distortion

D〈aVb〉 = D(aVb) −
1
3
DcV

c hab, D〈aSbc〉 = D(aSbc) −
2
5
h(abDdSc)d. (A.4)

Note that, as a result of the commutation laws between projected covariant derivatives (see next section), the div curl
operation is not in general zero.
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The covariant irreducible decompositions of the derivatives of scalars, vectors and rank-2 tensors are given in exact
(nonlinear) form by

∇aψ = −ψ̇ua + Daψ, (A.5)

∇bVa = −ub

(
V̇〈a〉 + AcV

cua

)
+ ua

[1
3

ΘVb + σbcV
c
+ εbdeω

dVe
]

+
1
3
DcV

c hab −
1
2
εabc curl Vc

+ D〈aVb〉, (A.6)

and

∇cSab = −uc

(
Ṡ〈ab〉 + 2u(aSb)dA

d
)

+ 2u(a

[1
3

ΘSb)c + Sb)
d (σcd − εcdeω

e)

]
+

3
5
DdS〈a|d|hb〉c −

2
3
εdc(aSb)

d
+ D〈aSbc〉, (A.7)

respectively. The algebraic correction terms in Eqs. (A.6) and (A.7) arise from the relative motion of comoving observers, as
encoded in the kinematic quantities.

A.2. Transformations under a 4-velocity boost

Consider an observer moving with 4-velocity ũa relative to the ua-frame. The two motions are related by the
transformation

ũa = γ(ua + va), (A.8)

where γ = (1 − v2)−1/2 is the Lorentz-boost factor and va is the ‘peculiar’ velocity (with vaua
= 0). Note that for non-

relativistic peculiar motions v � 1 and γ ' 1. Also,

h̃ab = hab + γ2
(
v2uaub + 2u(avb) + vavb

)
, (A.9)

ε̃abc = γεabc + γ (2u[aεb]cd + ucεabd) v
d, (A.10)

are the relations between the fundamental algebraic tensors of the two frames.
The irreducible kinematic quantities, as measured in the ũa-frame, are defined by means of the decomposition (see

Eq. (1.3.1) in Section 1.3.1)

∇bũa =
1
3

Θ̃ h̃ab + σ̃ab + ε̃abcω̃
c
− Ãaũb. (A.11)

Using the above, the relation ∇aγ = γ3vb∇avb and expression (A.6) from Appendix A.1, we arrive at the following kinematic
transformation laws:

Θ̃ = γΘ + γ (Dav
a
+ Aava) + γ3W, (A.12)

Ãa = γ2Aa + γ2
[
v̇〈a〉 +

1
3

Θva + σabv
b
− εabcω

bvc +

(1
3

Θv2 + Abvb + σbcv
bvc
)
ua

+
1
3

(Dbv
b)va +

1
2
εabcv

b curl vc + vbD〈bva〉

]
+ γ4W(ua + va), (A.13)

ω̃a = γ2
[(

1 −
1
2
v2
)
ωa −

1
2

curl va +
1
2
vb
(
2ωb

− curl vb
)
ua +

1
2
vbω

bva

+
1
2
εabcA

bvc +
1
2
εabcv̇

bvca +
1
2
εabcσ

b
dv

cvd
]
, (A.14)

σ̃ab = γσab + γ
(
1 + γ2

)
u(aσb)cv

c
+ γ2A(a

[
vb) + v2ub)

]
+ γD〈avb〉 −

1
3
hab

[
Acv

c
+ γ2 (W − v̇cv

c)
]

+ γ3uaub

[
σcdv

cvd +
2
3
v2Acv

c
− vcvdD〈cvd〉 +

(
γ4

−
1
3
v2γ2

− 1
)
W
]

+ γ3u(avb)

[
Acv

c
+ σcdv

cvd − v̇cv
c
+ 2γ2

(
γ2

−
1
3

)
W
]

+
1
3
γ3vavb

[
Dcv

c
− Acv

c
+ γ2

(
3γ2

− 1
)
W
]

+ γ3v〈av̇b〉 + v2γ3u(av̇〈b〉) + γ3v(aσb)cv
c
− γ3ωbvcεbc(a

(
vb) + v2ub)

)
+ 2γ3vcD〈cv(a〉

(
vb) + ub)

)
, (A.15)

with

W ≡ v̇cv
c
+

1
3
v2Dcv

c
+ vcvdD〈cvd〉. (A.16)

Similarly, one can decompose the energy–momentum tensor of the matter with respect to the ũa-frame (see expression
(1.2.11) in Section 1.2.3). Then,

Tab = ρ̃ũaũb + p̃ h̃ab + 2q̃(aũb) + π̃ab, (A.17)
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and the transformed dynamic quantities are given by

ρ̃ = ρ+ γ2
[
v2(ρ+ p) − 2qava + πabv

avb
]
, (A.18)

p̃ = p +
1
3
γ2
[
v2(ρ+ p) − 2qava + πabv

avb
]
, (A.19)

q̃a = γqa − γπabv
b
− γ3

[
(ρ+ p) − 2qbvb + πbcv

bvc
]
va − γ3

[
v2(ρ+ p) − (1 + v2)qbv

b
+ πbcv

bvc
]
ua, (A.20)

π̃ab = πab + 2γ2vcπc(a

{
ub) + vb)

}
− 2v2γ2q(aub) − 2γ2q〈avb〉 −

1
3
γ2
[
v2(ρ+ p) + πcdv

cvd
]
hab

+
1
3
γ4
[
2v4(ρ+ p) − 4v2qcvc + (3 − v2)πcdv

cvd
]
uaub +

2
3
γ4
[
2v2(ρ+ p) − (1 + 3v2)qcvc + 2πcdv

cvd
]
u(avb)

+
1
3
γ4
[
(3 − v2)(ρ+ p) − 4qcvc + 2πcdv

cvd
]
vavb. (A.21)

Finally, relative to the ũa-frame, the Gravito-electric/magnetic field decomposes according to (see Eq. (1.2.9) in
Section 1.3.6),

Cab
cd

= 4
(
ũ[aũ

[c
+ h̃[a

[c)
Ẽb]

d]
+ 2ε̃abeũ[cH̃d]e

+ 2ũ[aH̃b]eε̃
cde, (A.22)

where Ẽab and H̃ab are respectively the Lorentz-boosted electric and magnetic components of the free gravitational field.
Then,

Ẽab = γ2
{
(1 + v2)Eab + vc

[
2εcd(aHb)

d
+ 2Ec(aub) + (uaub + hab)Ecdv

d
− 2Ec(avb) + 2u(aεb)cdH

deve
]}

, (A.23)

H̃ab = γ2
{
(1 + v2)Hab + vc

[
−2εcd(aEb)d + 2Hc(aub) + (uaub + hab)Hcdv

d
− 2Hc(avb) − 2u(aεb)cdE

deve
]}

. (A.24)

The transformation laws of the electric and magnetic Weyl components, may be compared to those of their Maxwell
counterparts, namely to

Ẽa = γ
(
Ea + εabcv

bBc
+ vbEbua

)
, (A.25)

B̃a = γ
(
Ba − εabcv

bEc + vbBbua

)
, (A.26)

where (see decomposition (1.3.9) in Section 1.3.2)

Fab = 2u[aEb] + εabcB
c
= 2ũ[aẼb] + ε̃abcB̃

c. (A.27)

Note that all the transformations are given explicitly in terms of irreducible quantities (i.e. irreducible in the original
ua-frame).

A.3. Covariant commutation laws

According to definition (1.2.2)(a), the orthogonally projected covariant derivative operator satisfies the condition Dahbc =

0. This means that we can use hab to raise and lower indices in equations acted upon by this operator. Following Frobenius’
theorem, however, rotating spaces do not possess integrable 3-D submanifolds (e.g. see [49,65]). Therefore, the Da-operator
cannot be used as a standard 3-D derivative in such spaces and it does not always satisfy the usual commutation laws (see
below and also [138]).

When acting on a scalar quantity the orthogonally projected covariant derivative operators commute according to

D[aDb]f = −ωab ḟ . (A.28)

The above is a purely relativistic result andunderlines thedifferent behaviour of rotating spacetimeswithin Einstein’s theory.
Similarly, the commutation law for the orthogonally projected derivatives of spacelike vectors reads

D[aDb]vc = −ωabv̇〈c〉 +
1
2

Rdcbav
d, (A.29)

where vaua
= 0 and Rabcd represents the Riemann tensor of the observer’s local rest-space. Finally, when dealing with

orthogonally projected tensors, we have

D[aDb]Scd = −ωabhc
ehd

f Ṡef +
1
2

(RecbaS
e
d + RedbaSc

e), (A.30)

with Sabua
= 0 = Sabub. Note that in the absence of rotation,Rabcd is the Riemann tensor of the (integrable) 3-D hypersurfaces

orthogonal to the ua-congruence For details on the definition, the symmetries and the key equations involving Rabcd, the
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reader is referred to Section 1.3.5. We also note that the above equations are fully nonlinear and hold at all perturbative
levels.

In general relativity, time derivatives do not generally commute with their spacelike counterparts. For scalars, in
particular, we have

Da ḟ − ha
b(Dbf )

·
= −ḟ Aa +

1
3

ΘDaf + Dbf
(
σb

a + ωb
a

)
, (A.31)

at all perturbative levels. Assuming an FLRW background, we find that the orthogonally projected gradient and the time
derivative of the first-order vector va commute as

aDav̇b = (aDavb)
· , (A.32)

to linear order. Similarly, when dealing with first-order spacelike tensors, we have the following linear commutation law

aDaṠbc = (aDaSbc)
· . (A.33)

A.4. Scalar, vector and tensor modes

In the coordinate-based approach, perturbations are decomposed from the start into scalar, vector and tensor modes,
using appropriate harmonics. The covariant approach does not depend on a priori splitting into harmonic modes and it
is independent of any Fourier-type decomposition. Instead, all the perturbative quantities are described as spatial vectors
Va = V〈a〉 or as spatial, symmetric and trace-free (PSTF) rank-2 tensors Sab = S〈ab〉 (higher-rank PSTF tensors are needed in
kinetic theory—see Section 4).

The scalarmodes are characterised by the fact that all vectors and tensors are generated by scalar potentials. For instance,
Va = DaV and Sab = D〈aDb〉S, (A.34)

for some V, S. This implies that curl Va = 0 = curl Sab.
For vector modes, all vectors are transverse (solenoidal) and proportional to ωa. Also, all tensors are generated by

transverse vector potentials. Thus,
DaVa = 0 and Sab = D〈aSb〉, (A.35)

where DaSa = 0. Vector modes are nonzero if and only if the vorticity is nonzero.
Tensor modes are characterised by the vanishing of all vectors and by the transverse traceless nature of all tensors. In

other words,

Va = 0 and DbSab = 0. (A.36)
This way no perturbative scalars or vectors can be formed.

We can expand these modes in harmonic basis functions (Fourier modes in the case K = 0). For example, for scalar
modes, the harmonics are time-independent eigenfunctions that satisfy the scalar Laplace–Beltrami equation. In other
words, Q̇(k)

= 0 and

D2Q(k)
= −

(
k

a

)2

Q(k), (A.37)

where k is the eigenvalue of the associated harmonic mode and D2
= DaDa. The latter takes continuous values when

K = 0,−1 and discrete ones for K = +1. In particular, k = ν ≥ 0 when the 3-space has Euclidean geometry and
k2 = ν2 + 1 ≥ 0 for hyperbolic spatial sections, with ν representing the comoving wavenumber of the mode in all cases.
Supercurvature modes have λ = a/k > a and in open FLRW models correspond to 0 ≤ k2 < 1. Those with k2 > 1, on
the other hand, span scales smaller than the curvature radius and are therefore termed subcurvature. Clearly, the k2 = 1
threshold indicates the curvature scale, with λ = λK = a (see also Section 1.4.2). Note that, although they are often ignored
(e.g. see [180]), supercurvature modes are necessary if we want perturbations with correlations lengths bigger than the
curvature radius [71]. Finally, when the 3-curvature is positive, k2 = ν(ν+ 2) and ν = 1, 2, . . . .

Appendix B. Notation

• Spacetime Geometry
Line element: ds2 = gabdxadxb = −dτ2, with c = 1.
4-velocity: ua

= dxa/dτ, 3-D projection tensor: hab = gab + uaub.
4-D permutation tensor: ηabcd, 3-D permutation tensor: εabc = ηabcdud.
Covariant derivative: ∇bTa = ∂Ta/∂xb − Γ c

abTc.
Time derivative: Ṫa = ub

∇bTa, 3-D covariant derivative: DbTa = hb
dha

c
∇d Tc.

Riemann tensor: Rabcd, Ricci tensor: Rab = Rc
acb, Ricci scalar: R = Ra

a.
3-Riemann tensor: Rabcd, 3-Ricci tensor: Rab = Rc

acb, 3-Ricci scalar: R = Ra
a.

3-curvature index: K = 0, ±1, with R = 6K/a2 (in FLRWmodels).
Weyl Tensor: Cabcd, electric Weyl: Eab = Cacbducud, magnetic Weyl: Hab = εa

cdCcdbe u
e/2.



142 C.G. Tsagas et al. / Physics Reports 465 (2008) 61–147

• Kinematics
Expansion scalar: Θ = ∇

aua = Daua, scale factor: a, with ȧ/a = Θ/3.
Conformal time: η, with η̇ = 1/a.
Vorticity tensor: ωab = D[bua], vorticity vector: ωa = εabcω

bc/2.
Shear tensor: σab = D〈bub〉 = D(bub) − (Dcuc)hab/3, 4-acceleration: Aa = ub

∇bua.
Hubble parameter: H = ȧ/a, deceleration parameter: q = −äa/ȧ2.

• Matter Fields
Field equations: Rab − (R/2)gab = Tab, with κ = 8πG = 1.
Matter energy–momentum tensor: Tab = ρuaub + phab + 2u(aqb) + πab.
Matter density: ρ = Tabuaub, isotropic pressure: p = Tabhab/3.
Barotropic index: w = p/ρ, adiabatic sound speed: c2s = ṗ/ρ̇.
Energy flux: qa = ha

bTbcuc, anisotropic pressure: πab = T〈ab〉 = T(ab) − (T/3)hab.
Particle flux vector: Na = nua + Na.
Particle number density: n = −Naua, particle drift: Na = ha

bNb.
Entropy flux: Sa = Sua (in equilibrium).
Entropy density: S = −Saua, specific entropy: s = S/n.

• Electromagnetism
Electromagnetic tensor: Fab, magnetic field: Ba = εabcFbc/2, electric field: Ea = Fabub.
Energy density: (B2 + E2)/2, isotropic pressure: (B2 + E2)/6.
Poynting vector: Pa = εabcEbBc, anisotropic pressure: Πab = −E〈aEb〉 − B〈aBb〉.
Alfvén speed: c2a = B2/(ρ+ p + B2).
Electric 4-current: Ja, electric 3-current: Ja = J〈a〉 = ha

bJb.
Charge density: µ = −Jaua, electrical conductivity: ς.

• Minimally coupled scalar fields
Scalar field: ϕ, with ϕ̇ = −∇a∇

aϕ > 0 and Daϕ = 0.
Potential: V(ϕ), with ∇a∇

aϕ− V ′(ϕ) = 0.
Energy density: ρ(ϕ)

= ϕ̇2/2 + V(ϕ), pressure: p(ϕ)
= ϕ̇2/2 − V(ϕ).

• Perturbations
Matter density gradients: ∆a = (a/ρ)Daρ, with ∆ab = aDb∆a and ∆ = ∆a

a.
Matter vortices: Wab = ∆[ab], with Wa = εabcW

bc/2.
Volume expansion gradients: Za = aDaΘ , with Zab = aDbZa and Z = Za

a.
Magnetic density gradients: Ba = (a/B2)DbB2 and Bab = aDbBa, with B = Ba

a.
Effective entropy perturbations: Ea, S(ij)

a , with S(ij)
a = −S(ji)

a .
Peculiar velocity: va, with vaua

= 0.
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