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a b s t r a c t

Magnetic fields appear everywhere in the universe. From stars and galaxies, all the way to
galaxy clusters and remote protogalactic clouds, magnetic fields of considerable strength
and size have been repeatedly observed. Despite their widespread presence, however, the
origin of cosmic magnetic fields is still a mystery. The galactic dynamo is believed capable
of amplifying weak magnetic seeds to strengths like those measured in ours and other
galaxies. But the question is where do these seed fields come from? Are they a product
of late, post-recombination, physics or are they truly cosmological in origin? The idea
of primordial magnetism is attractive because it makes the large-scale magnetic fields,
especially those found in early protogalactic systems, easier to explain. As a result, a host of
different scenarios have appeared in the literature. Nevertheless, early magnetogenesis is
not problem-free, with a number of issues remaining open and a matter of debate. We
review the question of the origin of primordial magnetic fields and consider the limits
set on their strength by the current observational data. The various mechanisms of pre-
recombination magnetogenesis are presented and their advantages and shortcomings are
debated. We consider both classical and quantum scenarios, that operate within as well
as outside the standard model, and also discuss how future observations could be used
to decide whether the large-scale magnetic fields we see in the universe today are truly
primordial or not.
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1. Introduction

Observations have well established the widespread presence of magnetic fields in the universe [1–7]. In fact, as the
technology and the detection methods improve, it seems that magnetic fields are everywhere. The MilkyWay, for example,
possesses a coherent B-field of µG strength over the plain of its disc. These fields are a very important component of
the interstellar medium, since they govern the gas-cloud dynamics, determine the energy of cosmic rays and affect star
formation. Similar magnetic fields have also been detected in other spiral and barred galaxies. Cosmic magnetism is not
confided to galaxies only however. Observations have repeatedly verified B-fields of µG order strength in galaxy clusters
and also in high-redshift protogalactic structures. Recently, in particular, Kronberg et al. and Bernet et al. reported organized,
strong B-fields in galaxies with redshifts close to 1.3 [8,9]. Also, Wolfe et al. have detected a coherent magnetic field of
approximately 100 µG in a galaxy at z ≃ 0.7 [10]. All these seem to suggest that magnetic fields similar to that of the
Milky Way are common in remote, high-redshift galaxies. This could imply that the time needed by the galactic dynamo
to build up a coherent B-field is considerably less than what is usually anticipated. On the other hand, the widespread
presence of magnetic fields at high redshifts may simply mean that they are cosmological (pre-recombination) in origin.
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Although it is still too early to reach a conclusion, the idea of primordial magnetism gains ground, as more fields of micro-
Gauss strength are detected in remote protogalaxies. Further support may also come from very recent reports indicating
the presence of coherent magnetic fields in the low density intergalactic space, where typical dynamo mechanisms cannot
operate, with strengths close to 10−15 G [11–15]. The measurements of [12], in particular, are based on halos detected
around Active Galactic Nuclei (AGN) observed by the Fermi Gamma-Ray Space Telescope. Complementary studies seem
to limit the strength of these B-fields between ∼10−17 and ∼10−14 G [15]. Analogous lower limits were also reported by
[11,14,13], after measuring radiation in the GeV band (γ -rays) produced by the interaction of TeV photons from distant
blazars with those of the Cosmic Microwave Background (CMB). If supported by future surveys, these measurements will
render considerable credence to the idea of primordial magnetism. It is possible, however, that the matter will not settle
unless unequivocal magnetic imprints are found in the CMB spectrum [16].

Among the attractive aspects of cosmological magnetic fields, is that they can in principle explain all the large-scale
fields seen in the universe today [17–22]. Nevertheless, early magnetogenesis is not problem-free. The galactic dynamo
needs an initial magnetic field in order to operate. Such seed fields must satisfy two basic requirements related to their
coherence scale and strength [23–29]. The former should not drop below 10 kpc, otherwise it will destabilize the dynamo.
The latter typically varies between 10−12 and 10−22 G. It is conceivable, however, that in open, or dark-energy dominated,
Friedmann–Robertson–Walker (FRW) cosmologies the minimum required magnetic strength could be pushed down to
∼10−30 G [30]. Producing magnetic seeds that comply with the above mentioned specifications, however, has so far proved
a rather difficult theoretical exercise. There are problems with both the scale and the strength of the initial field. Roughly
speaking, magnetic seeds generated between inflation and recombination have too small coherence lengths. The reason
is causality, which confines the scale of the B-field within the size of the horizon at the time of magnetogenesis. This is
typically well below the dynamo requirements. If we generate the seed at the electroweak phase transition, for example,
the size of the horizon is close to that of the Solar System. Assuming that some degree of turbulence existed in the
pre-recombination plasma, one can increase the coherence scale of the initial field by appealing to a mechanism that in
hydrodynamics is known as ‘inverse cascade’. In magnetohydrodynamics (MHD), the process results from the conservation
of magnetic helicity and effectively transfers magnetic energy from small to successively larger scales. The drawback is
that inverse cascade seems to require rather large amounts of magnetic helicity in order to operate efficiently [31–34].
Inflation can solve the scale problem, since it naturally creates superhorizon-sized correlations. There, however, we have
a serious strength issue. Magnetic fields that were generated during a period of typical de Sitter-type inflation are thought
to be too weak to seed the galactic dynamo [35]. The solution to the strength problem is usually sought outside the realm
of classical electromagnetic theory, or of conventional FRW cosmology. There is a plethora of articles that do exactly that,
although mechanisms operating within standard electromagnetism and the Friedmann models have also been reported in
the literature.

The aim of this review is to present the various mechanisms of early magnetogenesis, outline their basic features and
discuss their advantages and weaknesses. The next section starts with a brief overview of the observation techniques that
have established the ubiquitous presence of large-scale magnetic fields in the universe. We then provide the limits on
cosmological B-fields, imposed by primordial nucleosynthesis and the isotropy of the CMB. Section 3 sets the mathematical
framework for the study of large-scale magnetic fields in relativistic cosmological models. There, for completeness, we also
outline the typical magnetic effects on structure formation and how the latter could have backreacted on the B-field itself.
In section four we discuss cosmic magnetogenesis within the realm of standard electrodynamics and within the limits of
conventional Friedmannian cosmology. After a brief review of the FRW dynamics, we explain why it is theoretically difficult
to generate and sustain astrophysically relevant B-fields in thesemodels. More specifically, why inflationarymagnetic fields
in FRW cosmologies are generally expected to have residual strengths less than 10−50 G (far below the current galactic
dynamo requirements) at the epoch of galaxy formation. At the same time, it is also pointed out that the standard picture
can change when certain general relativistic aspects of the magnetic evolution are accounted for. More specifically, it is
shown that curvature effects can in principle slow down the standard ‘adiabatic’ magnetic decay and thus lead to B-fields
with residual strengths much stronger than previously anticipated.

In Section 5 we describe the generation of magnetic fields by nonlinear and out-of-equilibrium processes, which are
believed to have taken place in the early universe. We begin by analyzing several mechanisms of magnetogenesis that could
have operated during the reheating epoch of the universe, namely parametric resonance, generation of stochastic electric
currents and the breaking of the conformal invariance of the electromagnetic field by cosmological perturbations. Then,
we address the generation of magnetic fields during cosmological phase transitions. It is believed that at least two of such
phase transitions have occurred in the early universe: the EW (Electroweak) and the QCD (Quantum Chromodynamical).
In general, the problem with the (post-inflationary) early universe magnetogenesis is that the generated B-fields have high
intensity but very short coherent scale (in contrast to what happens during inflation), which amounts to performing certain
line averages to obtain the desired large-scale intensities. This procedure generally results in weak magnetic fields. To a
certain extent, the uncertainty in the obtained residual magnetic values reflects our limited knowledge of the dissipative
processes operating at those times. Thus, better understanding of the reheating physics is required, if we are to make more
precise predictions. Phase transitions, on the other hand, are better understood. Note, however, that despite the fact that
the EW phase transition in the standardmodel is a second order process, extensions to other particle physics models treat it
as first order. The QCD phase transition, on the other hand, was recently established to be a smooth cross-over [36]. To the
best of our knowledge, however, no work on primordial magnetogenesis in this scenario has been reported in the literature.
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Section 6 provides an overview of magnetic generation mechanisms operating outside the standard model. In all
scenarios themagnetic fields are created in the very early universe, during inflation. Then, subhorizon quantum fluctuations
in the electromagnetic field become classical superhorizon perturbations, manifesting themselves as current-supported
magnetic fields during the subsequent epochs of standard cosmology. In order to overcome the problem of not creating
strong enough magnetic seeds, which is known to plague standard electrodynamics, different theories are explored.
There are two basic classes of models, depending on whether electrodynamics is linear or nonlinear. In the first case,
magnetic fields of astrophysically relevant strengths are usually achieved after breaking the conformal invariance of
electromagnetism. This can be achieved by coupling the electromagnetic with a scalar field (as it naturally happens with the
dilaton in string cosmology), by introducing dynamical extra dimensions, through quantum corrections leading to coupling
with the curvature tensor, by inducing symmetry breaking, or by means of trace anomaly. When dealing with nonlinear
electrodynamics, on the other hand, the conformal invariance ofMaxwell’s equations is naturally broken in four dimensions.
Recall that the concept of nonlinear electrodynamics was first introduced by Born, in his search for a classical, singularity-
free theory of the electron. Another example is provided by the description of virtual electron pair creation, which induces
a self-coupling of the electromagnetic field. Linear and nonlinear models of electrodynamics are discussed in detail and the
parameter space, for which strong enough magnetic seeds are generated, is determined.

Finally, in Section 7, we briefly summarize the current state of research on primordial magnetogenesis and take look at
the future expectations.

2. Magnetic fields in the universe

Magnetic fields have long established their ubiquitous presence in the universe. They are a major component of the
interstellar medium, contributing to the total pressure, affecting the gas dynamics, the distribution of cosmic rays and star
formation. It also seems very likely that large-scale magnetic fields have played a fundamental role during the formation of
galaxy clusters. Despite our increasing knowledge, however, many key questions related to the origin and the role of these
fields remain as yet unanswered.

2.1. Large-scale magnetic fields in the universe

Most galaxies, including theMilkyWay, carry coherent large-scalemagnetic fields ofµG order strength. Analogous fields
have also been detected in galaxy clusters and in young, high-redshift protogalactic structures. In short, the deeper we look
for magnetic fields in the universe, the more widespread we find them to be.

2.1.1. Detection and measuring methods
The key to magnetic detection is polarized emission at the optical, the infrared, the submillimeter and the radio

wavelengths. Optical polarization is due to extinction along the line of sight, caused by elongated dust grains aligned by
the interstellar magnetic field. The net result is that the electromagnetic signal has a polarization direction parallel to the
intervening B-field. This physical mechanism is sometimes referred to as the Davis–Greenstein effect [37]. Although optical
polarization is of limited value, it has unveiled the magnetic structure in the spiral arms of the Milky Way and in other
nearby galaxies [38–41].

Most of our knowledge about galactic and intergalactic magnetic fields comes from radio wave signals. The intensity of
synchrotron emission is ameasure of the strength of the totalmagnetic field component in the sky plane. Note that polarized
emission is due to ordered B-fields and unpolarized comes from turbulent ones. The Zeeman splitting of radio spectral lines
is the bestmethod to directlymeasure the field strength in gas clouds of our galaxy [42], OHmasers in starburst galaxies [43]
and in dense HI clouds in distant galaxies on the line of sight towards bright quasars [10]. The drawback is that the Zeeman
effect is very weak and canmainly be used for detecting interstellar magnetic fields. This is due to the small line shift, which
given by (e.g. see [21])

∆ν

ν
= 1.4g

B
ν
, (2.1.1)

and is extremely difficult to observe at large distances. Note that in the above the B-field is measured in µG and the line
frequency in Hz. Also, the parameter g represents the Landé factor that relates the angular momentum of an atom to its
magnetic moment.

When polarized electromagnetic radiation crosses a magnetized plasma its orientation is changed by Faraday rotation.
The latter is caused by the left and right circular polarization states traveling with different phase velocities. For linearly
polarized radiation, the rotation measure (RM) associated with a source at redshift zs is (cf., e.g., [44])

RM (zs) ≃ 8 × 105
 zs

0

neB∥(z)
(1 + z)2

dL(z) (rad/m2), (2.1.2)
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where ne is the electron density of the intervening plasma (in cm−3), B∥ is the magnetic intensity along the line of sight (in
µG) and dL is the distance traveled by the radio signal. The latter is given by

dL (z) = 10−6 1 + z
H0

√
1 + Ω0z

dz Mpc, (2.1.3)

with H0 and Ω0 representing the present values of the Hubble constant of the density parameter respectively.1 As the
rotation angle is sensitive to the sign of the field direction, only ordered B-fields can give rise to Faraday rotation. Multi-
wavelength observations determine the strength and the direction of the line of sight magnetic component. Then, the total
intensity and the polarization vectors yields the three-dimensional picture of the field and allow us to distinguish between
its regular, anisotropic and random components.

Some novel detection methods try to exploit the effects that an intervening magnetic field can have upon the highly
energetic photons emitted by distant active sources [45–48]. Using such techniques, together with data from state-of-the-
art instruments (like the Fermi Gamma-Ray Space Telescope for example), three independent groups have recently reported
the detection of intergalactic magnetic fields with strengths close to 10−15 G (see Section 2.1.2 next).

2.1.2. Galactic and extragalactic magnetic fields
The strength of the totalmagnetic field in galaxies can be determined from the intensity of the total synchrotron emission,

assuming equipartition between themagnetic energy density and that of the cosmic rays.2 This seems to hold on large scales
(both in space and time), though deviations occur locally. Typical equipartition strengths in spiral galaxies are around 10µG.
Radio-faint galaxies, like the M31 and M33, have weaker total fields (with B ∼ 5 µG), while gas-rich galaxies with high
star-formation rates, such as the M51, M83 and NGC6946, have magnetic strengths of approximately 15 µG. The strongest
fields, with values between 50 and 100 µG, are found in starburst and merging galaxies, like the M82 and NGC4038/39
respectively [51].

Spiral galaxies observed in total radio emission appear very similar to those seen in the far-infrared. The equipartition
magnetic strength in the arms can be up to 30 µG and shows a low degree of polarization. The latter indicates that the
fields are randomly oriented there. On the other hand, synchrotron radio emission from the inter-arm regions has a higher
degree of polarization. This is due to stronger (10–15µG) andmore regular B-fields, oriented parallel to the adjacent optical
arm. The ordered fields form spiral patterns in almost every galaxy, even in ringed and flocculent galaxies. Therefore, the
magnetic lines do not generally follow the gas flow (which is typically almost circular) and dynamo action is needed to
explain the observed radial magnetic component. In galaxies with massive bars, however, the field lines appear to follow
the gas flow. As the gas rotates faster than the bar pattern of the galaxy, a shock occurs in the cold gas. At the same time, the
warm gas is only slightly compressed. Given that the observed magnetic compression in the spiral arms and the bars is also
small, it seems that the ordered field is coupled to the warm diffuse gas and is strong enough to affect its flow [7].

Spiral dynamomodes can be identified from the pattern of polarization angles and Faraday rotationmeasures frommulti-
wavelength radio observations of galaxy discs [52], or from RM data of polarized background sources [53]. The discs of some
spiral galaxies show large-scale RM patterns, but many galaxy discs possess no clear patterns of Faraday rotation. Faraday
rotation in the direction of QSOs helps to determine the field pattern along the line of sight of an intervening galaxy [53,54].
Recently, high resolution spectra have unambiguously associated quasars with strongMgII absorption lines to large Faraday
rotation measures. As MgII absorption occurs in the haloes of normal galaxies lying along the line of sight to the quasars,
this implies that organized strong B-fields are also present in high-redshift galaxies [8–10].

Magnetic fields have also been detectedwithin clusters of galaxies, where X-ray observations have revealed the presence
of hot gas [5]. There are several indications that favor the existence of cluster magnetic fields. In particular, galaxy clusters
are known to have radio halos that trace the spatial distribution of the intracluster gas found in the X-ray observations. The
radio signals are due to synchrotron emission from relativistic electrons spiraling along the field lines. In addition, there
have been reports of Faraday rotation measurements of linearly polarized emissions crossing the intracluster medium.
The first detection of a cluster magnetic field was made in the Coma cluster [55]. The Very Large Array (VLA) was used
to compare Faraday rotation measures of radio sources within and directly behind the Coma cluster with radiation not
crossing the cluster. Since then, there have been more analogous detections. It turns out that the observed cluster field
strengths vary slightly with the type of cluster. In particular, themagnetic field strength depends onwhether we are dealing
with cooling flow or non-cooling flow clusters. Faraday observations indicate turbulent field strengths of µG order in non-
cooling flow clusters, such as the Coma. For cooling flow clusters, like the Hydra for example, the B-fields are of the order
of a few 10 µG [56]. In fact, the cool core region of the Hydra A cluster is associated with a magnetic field of 7 µG with
correlation length of 3 kpc. Non-cooling flow clusters like the Coma, on the other hand, have weaker fields of the order of
3µGbutwith larger correlation lengths (between10 and30 kpc) [57]. In general, themagnetic structure is not homogeneous

1 Conventionally, positive RM values indicate magnetic fields directed towards the observer and negative ones correspond to those pointing away.
2 Determining the magnetic strength from the synchrotron intensity requires information about the number density of the cosmic-ray electrons. The

latter can be obtained via X-ray emission, by inverse Compton scattering, or through γ -ray bremsstrahlung. When such data is unavailable, an assumption
must bemade about the relation between cosmic-ray electrons andmagnetic fields. This is usually the aforementioned principle of energy equipartition [49,
50].
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but is rather patchy on small scales (5–20 kpc), indicating the presence of tangled magnetic fields [56]. An alternative way
of determining the strength of cluster B-fields is to compare the radio synchrotron emission with inverse Compton X-ray
emission [5]. The former comes from spiraling electrons along the cluster magnetic field. The latter is mainly due to CMB
photons being upwardly scattered by the relativistic electrons of the intracluster gas.

In view of the accumulating observational evidence for magnetic presence on all scales up to that of a galaxy cluster,
the idea of a truly cosmological origin for cosmic magnetism gains ground. The potential detection of such primordial B-
fields in the intergalactic mediummay also change our understanding of the way structure formation has progressed. Note
that an intergalactic magnetic field ordered on very large scales would pick out a preferred direction, which should then
manifest itself in Faraday rotation measurements from distant radio sources. This puts an upper limit on any cosmological
intergalactic magnetic field of BIGM . 10−11 G [58]. Assuming that such a field has a characteristic scale, galaxy rotation
measures suggest a size of 1 Mpc and an upper limit of the order of 1 nG [44]. Indications of intergalactic magnetic fields
have come from observations of radio-galaxy groupings near the Coma cluster, suggesting the presence of B-fields with
strengths between 0.2 and 0.4 µG and a coherence scale close to 4 Mpc [59]. There is also evidence for an intergalactic
magnetic field around 0.3µG on scales of the order of 500 kpc, from excess rotationmeasures towards the Hercules and the
Perseus-Pisces superclusters [60,61]. In addition, intergalactic B-fields close to 30 nG and spanning scales of approximately
1 h−1 Mpc were recently suggested after cross-correlating the galaxy density field, obtained from the 6th Data Release of
the Sloan Digital Sky Survey, with a large sample of Faraday rotation measures supplied by the NRAO-VLA Sky Survey [62].

Additional reports of intergalactic magnetic fields have appeared within the last year, using techniques that exploit
the magnetic effects on the highly energetic photons emitted by distant sources (e.g. see [45–48]). More specifically, TeV-
energy photons from a distant AGNs interact with the low frequency photons of the extragalactic background and lead
to electron–positron pair creation. These produce (GeV-level) γ -rays through the inverse Compton scattering of the CMB
photons. Observation wise, the key point is that a magnetic presence, even a very weak one, can affect the profile of the
resulting γ -ray spectra. For instance, the B-field can cause the formation of an extended halo around the γ -ray images of
distant AGNs. Such halos were first reported by Ando and Kusenko, using combined data from the Atmospheric Cherenkov
Telescopes and Fermi Gamma-Ray Space Telescope [12]. Subsequent, complementary analysis indicated the presence of an
intergalacticmagnetic field with strength between 10−17 and 10−14 G [15]. In addition to halo formation, the B-field can also
reduce the observed flux of the secondary GeV photons by deflecting them into larger solid angles. Using observations of the
Fermi/Large Area Telescope and assuming that the original TeV photons were strongly beamed, a lower limit of ∼10−15 G
was imposed on the intergalactic magnetic field [11,14]. A similar lower limit of ∼10−16 Gwas also obtained assuming that
the blazar source radiated isotropically [13].

2.2. Limits on primordial magnetic fields

Any primordial magnetic field must comply with a number of astrophysical constraints, the most significant of which
come from Big-Bang Nucleosynthesis (BBN) and the isotropy of the CMB. The latter probes B-fields with coherence scales
larger than the particle horizon during nucleosynthesis, while the BBN limits apply in principle to all scales.

2.2.1. Nucleosynthesis limits
The main effects of a magnetic presence on the output of primordial nucleosynthesis are related with: (a) the proton-to-

neutron conversion ratio; (b) the expansion and cooling of the universe; and (c) the electron thermodynamics. Here we will
only provide a very brief summary of these effects. For a detailed review, the reader is referred to [20].

(a) In the early universe, the weak interaction is responsible for maintaining chemical equilibrium between protons and
neutrons. Themain effect of a strongmagnetic presence at the time of nucleosynthesis is to enhance the conversion rate
of neutrons into protons. As a result, the neutron-to-proton ratio would freeze-out at a lower temperature. This in turn
would lead to a less efficient production of 4He and of heavier elements [63,64]. In fact, the magnetic effect would be
catastrophic if B ≫ m2

p/e ∼ 1017 G at the time of nucleosynthesis.
(b) The temperature at which the proton-to-neutron ratio freezes out is determined by the balance between the timescale

of the weak interaction and the expansion rate of the universe [65]. Equilibrium is attained when Γn→p ∼ H , where
Γn→p is the cross-section of the interaction and H is the Hubble constant at the time. The latter is proportional to the
total energy density of the universe, where the B-field contributes aswell. Thus, a strongmagnetic presencewill increase
the value of the Hubble parameter. This would cause an earlier freeze-out of the proton-to-neutron ratio and result into
larger residual amounts of 4He [66,67].

(c) The magnetic presence will also change the phase-space volume of electrons and positrons, since their momentum
component normal to the B-field will become discrete (Landau levels). Therefore, the energy density, the number
density and the pressure of the electron gas augment, relative to their magnetic-free values [64]. The rise happens at the
expense of the background photons, which transfer energy to the lowest Landau level. This delays the electron–positron
annihilation, which in turn increases the photon-to-baryon ratio and finally leads to lower 3He and D abundances [68].

All of the above need to be accounted for when calculating the BBN limits on primordial magnetic fields. This is done
by means of numerical methods, which seem to conclude that the main magnetic effect on the light element abundances
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comes from the field’s contribution to the expansion rate of the universe (i.e. case (b)). The overall constraint on themagnetic
strength is B . 1011 G at the time of nucleosynthesis, which (roughly) translates to B . 7 × 10−7 G at the time of galaxy
formation [20].

2.2.2. Cosmic microwave limits
Observations of the CMB temperature anisotropies and polarization provide valuable tools to constrain cosmological

models. As such, they also play an important role in the diagnostic of early universe magnetic fields.
In comparison to the data of the angular power spectra of polarization, CEE

ℓ , and temperature polarization, CTE
ℓ , the

temperature angular power spectrum, CTT
ℓ , is known at higher precision. For example, the 7-year WMAP (Wilkinson

Microwave Anisotropy Probe) power spectrum is limited only by cosmic variance up to ℓ ≈ 548 [69]. Moreover, on smaller
scales, observations from CBI (Cosmic Background Imager) [70] and VSA (Very Small Array) [71], ACBAR (Arcminute Cosmology
Bolometer Array Receiver) [72] and the forthcoming SPT (South Pole Telescope) [73] missions will determine the CTT

ℓ to even
higher accuracies. The PLANCK satellite is expected to extend the region limited only by cosmic variance to ℓ ≈ 1500.

At the moment, the high isotropy of the Cosmic Microwave Background appears to exclude homogeneous cosmological
magnetic fieldsmuch stronger than∼10−9 G [74]. A similar limit is found for stochasticmagnetic fields aswell [75–78]. It has
been shown that the temperature angular power spectrum, CTT

ℓ , frommagnetically induced vector and scalar perturbations
increases slightly across all angles. The extra pressure that the B-field adds into the system can change the position and
the magnitude of the acoustic peaks, thus producing a potentially observable effect [79,80]. The presence of small-scale
magnetic fields appears to leave undamped features on small angular scales and may also lead to distinctive polarization
structures [81,82]. In addition, large-scale primordial fields could be related to the low-quadrupole moment problem [83].
Nevertheless, the magnetic signal remains subdominant to that from standard scalar perturbations until around ℓ ≈ 2000,
depending on the field strength and spectral index [84–88]. Magnetic fields also source tensor modes, which however are of
relatively low amplitude. The signal is similar to that of inflationary gravitationalwave, but probablyweaker in strength [89].
Therefore, the direct magnetic impact onto the CMB ⟨TT ⟩ correlation does not generally provide an ideal probe of primordial
magnetism. However, the CBI mission observed a weak increase of power on small scales, as compared to the concordance
model [71]. Provided this is real and not a statistical or systematic artifact, it could be partly explained by the presence of
a cosmological B-field [84,90]. Nucleosynthesis bounds, however, imply that a primordial field is unlikely to account for all
the increase.

Besides contributing to the CMB temperature fluctuations, a primordialmagnetic field also produces E-mode polarization
that can significantly change the angular power spectrum of the standard ΛCDM model [85]. However, the polarization
limits are not as strong as those coming from the temperature anisotropy. Due to the presence of both vector and tensor
perturbations, the magnetic field also leads to B-mode polarization. Moreover, B-modes are also induced in the scalar sector
by Faraday rotation if a magnetic field is present at decoupling [91–96]. Taking into account that in the standard picture
B-modes are produced only by lensed E-modes and by inflationary gravitational waves, in principle, the observation of
a distinct B-mode power spectrum would be the clearest indication of a primordial magnetic field. However, the CMB
polarization maps are poorly known, compared to the temperature ones. While we currently possess a power spectrum
CTE

ℓ , this is by no means cosmic-variance limited on any scale. The observations of the B-modes yield bounds consistent
with zero [97,98]. These are on relatively small scales, directly observing the region at which magnetic effects may come
to dominate. Nevertheless, we are far from the required accuracy, particularly for the B-modes. Given the limitations of the
power spectra, the non-Gaussianity of the temperaturemap is a reasonable place to look for further constraints onprimordial
magnetic fields [99–105]. Although up to now the observations are entirely consistentwith Gaussian initial conditions, there
are non-Gaussian features in the WMAP maps [106]. Also, the number of non-Gaussian features could well increase with
the next generation of CMB experiments.

2.2.3. Limits from gravitational waves
A strong limit on stochastic magnetic fields produced before nucleosynthesis has been derived in [107]. The anisotropic

stress of the magnetic field acts as a source term in the evolution equation of gravity waves. This causes the conversion
of magnetic field energy into gravity waves above a certain critical value of the magnetic field strength. In particular, the
field strength smoothed over a scale λ of magnetic fields generated during inflation must be smaller than Bλ ∼ 10−20 G for
spectral indices nB > −2, where nB = −3 corresponds to a scale invariant magnetic field energy spectrum. If the magnetic
field is produced by a causal mechanism, for example during the electroweak phase transition, nB > 2, its strength has to
be below 10−27 G in order not to loose all its energy density to gravitational waves.

Themagnetic strength limits asserted in [107] are the strongest reported in the literature, far more restrictive than those
coming fromnucleosynthesis or the CMB. However, analogous studies ofmagnetically produced gravitywaves have reached
different conclusions. It has been claimed, in particular, that the limits on cosmological magnetic fields set by the latest
LIGO S5 data lie close to those obtained by BBN and the CMB [108].

Finally, we should also note the possibility of constraining primordial B-fields using the ionization history of the post-
recombination universe and, in particular, the observed re-ionization depth. Thus, based on the 5-year WMAP data, upper
limits of nGauss order have been reported in the literature [109].
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3. Magnetic fields in cosmology

3.1. Relativistic magnetized cosmologies

Although the study of large-scale magnetic fields goes a long way back into the past, the first systematic attempts to
incorporated magnetism in cosmology appeared in the late 60s and the early 70s [110–113]. Next, we will provide the
basic background for the relativistic study of cosmological B-fields. For the details and a recent review the reader is referred
to [114–119].

3.1.1. The gravitational field
In the geometrical framework of general relativity, gravity is a manifestation of the non-Euclidean geometry of the

spacetime. The gravitational field is therefore described by the Riemann curvature tensor (Rabcd), which satisfies the Ricci
identities

2∇[a∇b]vc = Rabcdv
d, (3.1.1)

applied here to an arbitrary vector va (with ∇a representing the familiar covariant derivative operator). The Riemann tensor
also assumes the invariant decomposition

Rabcd =
1
2

(gacRbd + gbdRac − gbcRad − gadRbc) −
1
6
R (gacgbd − gadgbc) + Cabcd, (3.1.2)

and obeys the symmetries Rabcd = Rcdab and Rabcd = R[ab][cd]. Note that gab is the spacetime metric, Rab = Rc
acb is the Ricci

tensor, R = Ra
a is the associated Ricci scalar and Cabcd is the Weyl (or conformal curvature) tensor.3 The Ricci component of

the Riemann tensor determines the local gravitational field through the Einstein field equations

Rab −
1
2
Rgab = κTab − Λgab, (3.1.3)

where Tab is the energy–momentum tensor of all the matter fields involved, κ = 8πG and Λ the cosmological constant.4
The Weyl tensor, on the other hand, has to do with the long-range component of the gravitational field (i.e. tidal forces and
gravity waves), shares the same symmetries with Rabcd and it is also trace-free (i.e. C c

acb = 0).

3.1.2. Kinematics
We introduce a family of observers with worldlines tangent to the timelike 4-velocity field ua (i.e. uaua

= −1). These
are the fundamental observers that define the direction of time. Then, the tensor hab = gab + uaub projects orthogonal to
ua and into the observers’ instantaneous three-dimensional rest-space.5 Together, ua and hab introduce an 1+ 3 ‘threading’
of the spacetime into time and space, which decomposes physical quantities, operators and equations into their irreducible
timelike and space-like parts (see [120,121] for further details).

For example, splitting the covariant derivative of the observers’ 4-velocity, leads to the irreducible kinematic variables
of the motion. In particular, we arrive at

∇bua =
1
3

Θhab + σab + ωab − Aaub, (3.1.4)

where Θ = ∇
aua = Daua is the volume scalar, σab = D⟨bua⟩ is the shear tensor, ωab = D[bua] is the vorticity tensors and

Aa = u̇a = ub
∇bua is the 4-acceleration vector.6 The volume scalar describes changes in the average separation between

neighboring observes. When Θ is positive this separation increases, implying that the associated fluid element expands.
In the opposite case we have contraction. The volume scalar also defines a representative length scale (a) by means of
ȧ/a = Θ/3. In cosmological studies, a is commonly referred to as the ‘scale factor’. We use the shear to monitor changes
in the shape of the moving fluid under constant volume, while the vorticity traces its rotational behavior. Note that we can
replace the vorticity tensor with the vorticity vector ωa = εabcω

bc/2, where εabc represents the three-dimensional Levi-
Civita tensor. Finally, the 4-acceleration reflects the presence of non-gravitational forces and vanishes when the observers
worldlines are timelike geodesics.

The time evolution of the volume scalar, the vorticity vector and the shear tensor is determined by a set of three
propagation equations, supplemented by an equal number of constraints. Both sets are obtained after applying the Ricci
identities (see (3.1.1) in Section 3.1.1) to the fundamental 4-velocity field [120,121].

3 Unless stated otherwise, we consider a general four-dimensional (pseudo) Riemannian spacetime with a Lorentzian metric of signature (−, +, +, +).
Also, throughout this review, Latin indices take values between 0 and 3, while their Greek counterparts vary from 1 to 3.
4 We use the Heaviside–Lorentz units for the electromagnetic field in this section. Natural units, with c = 1 = kB = h̄ and energy as the fundamental

dimension, are used throughout this review.
5 By construction, hab is a symmetric space-like tensor, with ha

a
= 3 and habhb

c = hac . The projector coincides with the metric of the observers’
three-dimensional space in non-rotating spacetimes.
6 Overdots indicate (proper) time derivatives along the ua-field, while the gradient Da = ha

b
∇b defines the three-dimensional covariant derivative

operator. Round brackets denote symmetrization, square antisymmetrization and angled ones indicate the symmetric and traceless part of projected
tensors and vectors. For example, σab = D⟨bua⟩ = D(bua) − (Dcuc/3)hab and Ė⟨a⟩ = ha

bĖb — see Eq. (3.1.8).
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3.1.3. Matter fields
Analogous decompositions apply to the rest of the kinematical and dynamical variables. Thus, relative to the ua-frame,

the energy–momentum tensor of a general (imperfect) fluid splits as

T (m)
ab = ρuaub + phab + 2q(aub) + πab. (3.1.5)

Here, ρ = Tabuaub represents the energy density, p = Tabhab/3 the isotropic pressure, qa = −ha
bTbcuc the total energy flux

and πab = h⟨a
chb⟩

dTcd the anisotropic pressure of the matter, as measured by the fundamental observers [120,121]. When
dealing with a perfect fluid, both qa and πab vanish and the above reduces to

T (m)
ab = ρuaub + phab. (3.1.6)

The remaining degrees of freedom are determined by the equation of state, which for a barotropic medium takes the simple
p = p(ρ) form.

3.1.4. Electromagnetic fields
Magnetic and electromagnetic fields introduce new features to any cosmological model through their energy density

and pressure contributions and due to their generically anisotropic nature. TheMaxwell field is invariantly described by the
antisymmetric Faraday tensor. Relative to the fundamental observers introduced in Section 3.1.2, the latter decomposes as

Fab = 2u[aEb] + εabcBc, (3.1.7)

where Ea = Fabub and Ba = εabcF bc/2 are respectively the electric and magnetic components.
The inherit anisotropy of the electromagnetic field is reflected in the form of its energy–momentum tensor. The latter

has the invariant form T (em)
ab = −FacF c

b − (FcdF cd/4)gab, which relative to the ua-frame recasts to

T (em)
ab =

1
2


B2

+ E2 uaub +
1
6


B2

+ E2 hab + 2P(aub) + Πab (3.1.8)

with E2
= EaEa, B2

= BaBa, Pa = εabcEbBc and

Πab = −E⟨aEb⟩ − B⟨aBb⟩ =
1
3


E2

+ B2 hab − EaEb − BaBb. (3.1.9)

Comparing the above to (3.1.5) in Section 3.1.3, we conclude that the Maxwell field corresponds to an imperfect fluid with
energy density (E2

+ B2)/2, isotropic pressure (E2
+ B2)/6, energy flux given by the Poynting vector Pa and anisotropic

stresses represented by the symmetric and trace-free Πab-tensor. This fluid-like description of the Maxwell field has been
proved particularly helpful in many applications [114–119].

3.1.5. Conservation laws
In the case of charged matter, the total energy–momentum tensor is Tab = T (m)

ab + T (em)
ab , with the individual components

given by (3.1.5) and (3.1.8) respectively. The total stress tensor satisfies the familiar conservation law ∇
bTab = 0, while

the electromagnetic stress–energy tensor obeys the additional constraint ∇
bT (em)

ab = −FabJb, with the right-hand side
representing the Lorentz 4-force. Combining the two, we obtain the conservation laws of the total energy and momentum.
These are given by the continuity equation

ρ̇ = −Θ(ρ + p) − Daqa − 2Aaqa − σ abπab + EaJa, (3.1.10)

and by the Navier–Stokes equation

(ρ + p)Aa = −Dap − q̇⟨a⟩ −
4
3

Θqa − (σab + ωab)qb − Dbπab − πabAb
+ µEa − εabcBbJc, (3.1.11)

respectively [119]. Note that µ = −Jaua is the electric charge density and Ja = ha
bJb is the associated 3-current, so that

Ja = µua + Ja.
An additional conservation law is that of the 4-current, which satisfies the invariant constraint ∇

aJa = 0. The latter
translates into the conservation law for the charge density, given by [119]

µ̇ = −Θµ − DaJa − AaJa. (3.1.12)

3.2. Evolution of the electromagnetic field

The vector nature of the electromagnetic components and the geometrical approach to gravity that general relativity
introduces, mean that the Maxwell field is the only known energy source that couples directly to the spacetime curvature
through the Ricci identities as well as the Einstein Field Equations. Both sets are therefore necessary for the fully relativistic
treatment of electromagnetic fields.
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3.2.1. Maxwell’s equations
Wemonitor the evolution of the electromagnetic field using Maxwell’s equations. In their invariant form these read

∇[cFab] = 0 and ∇
bFab = Ja, (3.2.1)

with the first manifesting the existence of a 4-potential. Relative to the ua-frame, the above set splits into two pairs of
propagation and constraint equations. The former consists of

Ė⟨a⟩ = −
2
3

ΘEa + (σab + ωab) Eb
+ εabcAbBc

+ curl Ba − Ja, (3.2.2)

and

Ḃ⟨a⟩ = −
2
3

ΘBa + (σab + ωab) Bb
− εabcAbEc

− curl Ea, (3.2.3)

which may be seen as the 1 + 3 covariant analogues of the Ampere and the Faraday laws respectively. The constraints, on
the other hand, read

DaEa = µ − 2ωaBa and DaBa = 2ωaEa. (3.2.4)

These provide the 1 + 3 forms of Coulomb’s and Gauss’ laws respectively. Note that Eqs. (3.2.2)–(3.2.4) contain relative
motion effects, in addition to the standard ‘curl’ and ’divergence’ terms of their more traditional versions. This is an
essentially built-in property of the 1 + 3 formalism, which should be always kept in mind when applying the above
expressions.

3.2.2. The electromagnetic wave equations
Maxwell’s equations also provide the wave equation of the electromagnetic tensor. This can be obtained by applying the

Ricci identities to the Faraday tensor and takes the invariant form (e.g. see [118,122])

∇
2Fab = −2RabcdF cd

− 2R[a
cFb]c − 2∇[aJb], (3.2.5)

where∇
2

= ∇
a
∇a is the d’Alembertian and Rabcd, Rab are the Riemann and Ricci tensors respectively (see Section 3.1.1). The

above relation results from the vector nature of the electromagnetic components and from the geometrical interpretation
of gravity that general relativity advocates. The two guarantee that the Maxwell field is the only known source of energy
that couples directly to gravity through both the Einstein equations and the Ricci identities.

Expression (3.2.5), which clearly shows how spacetime curvature drives electromagnetic disturbances, can also provide
the wave equations of the individual components of the Maxwell field. Alternatively, one may obtain these relations using
the set (3.2.2)–(3.2.4) togetherwith the Ricci identities. Assumingmatter in the form of a single perfect fluid, we obtain [118]

Ë⟨a⟩ − D2Ea =


σab − εabcω

c
−

5
3

Θhab


Ėb

+
1
3

κρ(1 + 3w)Ea

+
1
3


σab + εabcω

c
−

4
3

Θhab


ΘEb

− σ⟨a
cσb⟩cEb

+ εabcEbσ cdωd

+
4
3


σ 2

−
2
3

ω2

Ea +

1
3

ω⟨aωb⟩Eb
+ AbAbEa −

5
2

εabcAbcurl Ec
+ D⟨aEb⟩Ab

+
2
3

εabcBbDcΘ + εabcBdDbσ cd
+ D⟨aωb⟩Bb

+
3
2

εabcBbcurlωc
+ 2D⟨aBb⟩ω

b

− 2εabcσ b
dD⟨cBd⟩

+ εabc ȦbBc
+

7
3
AbωbBa +

4
3
BbωbAa − 3AbBbωa

+ 3εabcAbσ cdBd − RabEb
− EabEb

+ HabBb
+

1
3

µAa − Daµ − J̇a − ΘJa, (3.2.6)

for the electric field, and

B̈⟨a⟩ − D2Ba =


σab − εabcω

c
−

5
3

Θhab


Ḃb

+
1
3

κρ(1 + 3w)Ba

+
1
3


σab + εabcω

c
−

4
3

Θhab


ΘBb

− σ⟨a
cσb⟩cBb

+ εabcBbσ cdωd

+
4
3


σ 2

−
2
3

ω2

Ba +

1
3

ω⟨aωb⟩Bb
+ AbAbBa −

5
2

εabcAbcurl Bc
+ D⟨aBb⟩Ab

−
2
3

εabcEbDcΘ − εabcEdDbσ cd
− D⟨aωb⟩Eb

−
3
2

εabcEbcurlωc
− 2D⟨aEb⟩ωb
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+ 2εabcσ b
dD⟨cEd⟩

− εabc ȦbEc
−

7
3
AbωbEa −

4
3
EbωbAa + 3AbEbωa

− 3εabcAbσ cdEd − RabBb
− EabBb

− HabEb
−

2
3

µωa + curlJa + 2εabcAbJc, (3.2.7)

for its magnetic counterpart. Here, Rab is the Ricci tensor of the observer’s three-dimensional rest-space, while Eab and Hab
are the electric and the magnetic parts of the Weyl tensor respectively (see [121] for details). Note the curvature terms in
the right-hand side of the above, which show explicitly how the different parts of the spacetime geometry can affect the
propagation of electromagnetic signals.

3.3. Cosmological magnetohydrodynamics

The evolution and the implications of cosmological electromagnetic fields depend on a number of parameters. A decisive
factor is the electrical properties of the medium that fills the universe, which in turn are determined by the specific form of
Ohm’s law.

3.3.1. Ohm’s law
The literature contains various expressions of Ohm’s law, which in principle is the propagation equation of the electric

3-current (e.g see [123–125]). For a single fluid at the limit of resistive MHD, Ohm’s law takes the simple form [126,127]
Ja = ςEa, (3.3.1)

with ς representing the electric conductivity of the matter. In highly conducting environments, ς → ∞ and the electric
field vanishes. This is the familiar ideal MHD approximation, where the electric currents keep the magnetic field frozen-in
with the charged fluid. At the opposite end, namely when the conductivity is very low, ς → 0. Then, the 3-currents vanish
despite the presence of nonzero electric fields.

3.3.2. The ideal MHD limit
At the ideal MHD limit Maxwell’s equations reduce to one propagation formula and three constraints. The former comes

from (3.2.3) and is the familiar magnetic induction equation

Ḃ⟨a⟩ = −
2
3

ΘBa + (σab + ωab) Bb. (3.3.2)

The constraints, on the other hand, are obtained from Eqs. (3.2.2) and (3.2.4). In particular, eliminating the electric field form
these relations, we arrive at

Ja = εabcAbBc
+ curl Ba, µ = 2ωaBa and DaBa = 0, (3.3.3)

respectively. Following (3.3.3)b, the inner product ωaBa corresponds to an effective charge density, triggered by the relative
motion of the B-field.

In the absence of the electric field, the electromagnetic energy–momentum tensor simplifies as well. To be precise,
expression (3.1.8) reduces to

T (B)
ab =

1
2
B2uaub +

1
6
B2hab + Πab, (3.3.4)

withΠab = −B⟨aBb⟩. This means that themagnetic field can be seen as an imperfect fluid with energy density given by B2/2,
isotropic pressure equal to B2/6, zero energy flux and anisotropic stresses given by

Πab =
1
3
B2hab − BaBb. (3.3.5)

At the MHD limit, the matter energy and that of the residual magnetic field are conserved separately, with the induction
equation (see formula (3.3.2) above) providing the conservation law of the magnetic energy. At the same time, the
momentum conservation law reads

ρ + p +
2
3
B2

Aa = −Dap − q̇⟨a⟩ −

4
3

Θqa − (σab + ωab)qb − Dbπab − πabAb
− εabcBbcurl Bc

− ΠabAb. (3.3.6)

When dealing with a perfect fluid with zero pressure, we may set p = 0 = qa = πab. Then, starting from (3.3.6), one can
show that AaBa

= 0 and recast the latter into the form
ρ + B2 Aa = −εabcBbcurl Bc

= −
1
2
DaB2

+ BbDbBa (3.3.7)

where in the right-hand sidewe have two expressions for the Lorentz force. Note that the first term in the last equality is due
to the field’s pressure, while the second carries the effects of the magnetic tension. The former reflects the tendency of the
field lines to push each other apart and the latter their elasticity and tendency to remain ‘straight’. As wewill explain below,
the majority of studies analyzing the magnetic effects on structure formation do not account for the tension contribution to
the Lorentz force.
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3.4. Magnetism and structure formation

Despite the widespread presence of large-scale magnetic fields in the universe, their role and implications during
structure formation are still not well understood. Here, we will briefly summarize the way B-fields could have altered the
linear and the mildly nonlinear stages of galaxy formation and also how the latter might have backreacted on the magnetic
evolution.

3.4.1. The linear regime
Scenarios ofmagnetized structure formation typicallyworkwithin the idealMHDapproximation, looking at the effects of

themagnetic Lorentz force on density inhomogeneities. The bulk of the available inhomogeneous treatments areNewtonian,
with the relativistic approaches being a relatively recent addition to the literature. Although the role of magnetism as a
source of density and vorticity perturbations was established early on [128–130], the complicated action of the B-field did
not allow for analytic solutions (with the exception of [131] for the case of dust). Full solutions were provided by means of
covariant techniques, which considerably simplified the mathematics [114–119].

Magnetic fields generate and affect all three types of density inhomogeneities, namely scalar, vector and (trace-free)
tensor inhomogeneities. The former are those commonly referred to as density perturbations and represent overdensities or
underdensities in thematter distribution. Vector inhomogeneities describe rotational (i.e. vortex-like) density perturbations.
Finally, tensor-type inhomogeneities correspond to shape distortions. Following [114–119], the scalar

∆ =
a2

ρ
D2ρ, (3.4.1)

describes linear perturbations in the density (ρ) of the matter and corresponds to the more familiar density contrast δρ/ρ.
Note that positive values for ∆ indicate overdensities and negative ones underdensities. In a perturbed, weakly magnetized
and spatially flat Friedmann–Robertson–Walker (FRW) universe, the above defined scalar evolves according to7

∆̇ = 3wH∆ − (1 + w)Z +
3
2
c2a (1 + w)HB, (3.4.2)

where Z = a2D2Θ and B = (a2/B2)D2B2. The first of the last two variables describes linear inhomogeneities in the smooth
Hubble expansion and the second represents perturbations in the magnetic energy density. Then, to linear order,

Ż = −2HZ −
1
2

ρ∆ +
1
4
c2a (1 + w)ρB −

c2s
1 + w

D2∆ −
1
2
c2aD

2B (3.4.3)

and

Ḃ =
4

3(1 + w)
∆̇, (3.4.4)

respectively. In the above w = p/ρ is the (constant) barotropic index of the matter, H = ȧ/a is the background Hubble
parameter, c2s = ṗ/ρ̇ is the square of the adiabatic sound speed and c2a = B2/ρ(1 + w) is that of the Alfvén speed. We have
also assumed that B2

≪ ρ, given the relative weakness of the magnetic field.
Expression (3.4.2) verifies that B-fields are generic sources of linear density perturbations. Indeed, even when ∆ and

Z are zero initially, ∆̇ will generally take nonzero values due to the magnetic presence. Also, Eq. (3.4.4) shows that linear
perturbations in the magnetic energy density evolve in tune with those in the density of the matter (i.e. B ∝ ∆). This
means that a B-field residing in an overdense region of an Einstein–de Sitter universe will grow by approximately two to
three orders ofmagnitude (see solution (3.4.7) below). Note that the aforementioned growth occurs during the linear regime
of structure formation and is independent of the (nonlinear) increase in the field’s strength due to the adiabatic compression
of a protogalactic cloud (see Section 3.4.2 for more details). Finally, we should emphasize that only the pressure part of the
Lorentz force contributes to Eqs. (3.4.2) and (3.4.3). To account for the tension effects at the linear level, one needs to allow
for FRW backgrounds with non-Euclidean spatial geometry.8

The system (3.4.2)–(3.4.4) has analytical solutions in the radiation and the dust eras. Before equipartition, when w =

1/3 = c2s , H = 1/2t , ρ = 3/4t2 and c2a = 3B2/4ρ = constant, large-scale magnetized density perturbations obey a
power-law solution. In particular, keeping only the dominant growing and decaying modes one arrives at [116,119]

∆ = C1t−1/2+10c2a /9
+ C2t1−4c2a /9. (3.4.5)

7 Basic aspects of the FRW dynamics and evolution are discussed in Sections 4.1.1 and 4.1.2.
8 The Lorentz force splits according to εabcBbcurlBc

= (1/2)DaB2
− BbDbBa , with the former term carrying the effects of the magnetic pressure and the

latter those of the field’s tension (see Eq. (3.3.7) in Section 3.3.2). Given that DaBa = 0 at the ideal MHD limit, only the pressure part affects linear density
perturbations, unless FRW backgrounds with nonzero spatial curvature are involved.
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In the absence of the B-field, we recover the standard growing and decaying modes of ∆ ∝ t and ∆ ∝ t−1/2 respectively.
So, the magnetic presence has reduced the growth rate of the density contrast by 4c2a /9. Also, since B ∝ ∆ — see Eq. (3.4.4),
the above describes the linear evolution of the magnetic energy density perturbations as well.

Well inside the horizon we can no longer ignore the role of the pressure gradients. There, the k-mode oscillates like a
magneto-sonic wave with

∆(k) ∝ sin

cs


1 +

2
3
c2a


λH

λk


0


t
t0


, (3.4.6)

where λk = a/k is the perturbed scale and λH = 1/H the Hubble horizon [116,119]. Here, the magnetic pressure increases
the effective sound speed and therefore the oscillation frequency. The former makes the Jeans length larger than in non-
magnetized models. The latter brings the peaks of short-wavelength oscillations in the radiation density closer, leaving a
potentially observable signature in the CMB spectrum [79].

When dust dominates, w = 0 = c2s , H = 2/3t , ρ = 4/3t2 and c2a = B2/ρ ∝ t−2/3. Then, on superhorizon scales, the
main growing and decaying modes of the density contrast are [114,119]

∆ = C1tα1 + C2tα2 , (3.4.7)

with α1,2 = −[1 ± 5

1 − (32/75)(ca λH/λk)

2
0]/6. In the absence of the B-field we recover again the standard solution

with α1 = 2/3 and α2 = −1. Thus, as with the radiation era before, the magnetic presence slows down the growth rate
of density perturbations. In addition, the field’s pressure leads to a magnetically induced Jeans length, below which density
perturbations cannot grow. As a fraction of the Hubble radius, this purely magnetic Jeans scale is

λJ ∼ caλH . (3.4.8)

Setting B ∼ 10−9 G, which is the maximum homogeneous field allowed by the CMB [74], we find that λJ ∼ 10 kpc.
Alternative, magnetic fields close to 10−7 G, like those found in galaxies and galaxy clusters, give λJ ∼ 1 Mpc. The latter lies
intriguingly close to the size of a cluster of galaxies.

Overall, the magnetic effect on density perturbations is rather negative. Although B-fields generate this type of
distortions, they do not help them to grow. Instead, the magnetic presence either suppresses the growth rate of density
perturbations, or increases the effective Jeans length and therefore the domain where these inhomogeneities cannot grow.
The negative role of the B-field, which was also observed in the Newtonian treatment of [131], reflects the fact that only the
pressure part of the Lorentz force has been incorporated into the equations. When the tension component (i.e. the elasticity
of the field lines) is also accounted for, the overall magnetic effect can change and in some cases it could even reverse [117].

Magnetic fields also induce and affect rotational, vortex-like, density inhomogeneities. To linear order, these are
described by the vector Wa = −(a2/2ρ)εabcDbDcρ. Then, on an spatially flat FRW background,

Ẅa = −4HẆa −
1
2

ρWa +
1
3
c2aD

2Wa, (3.4.9)

after matter–radiation equality [116,119]. Defining λa = caλH as the ‘Alfvén horizon’, we may write the associated solution
in the form

W(k) = C1tα1 + C2tα2 , (3.4.10)

whereα1,2 = −[5±


1 − (48/9)(λa/λk)

2
0]/6. On scaleswell outside the Alfvén horizon, namely for λa ≪ λk, the perturbed

mode decays as W ∝ t−2/3. This rate is considerably slower than W ∝ t−1, the decay rate associated with magnetic-free
dust cosmologies. In other words, the B-field has reduced the standard depletion rate of the vortex mode. An analogous
effect is also observed on ωa, namely on the vorticity proper [116,119]. Hence, magnetized cosmologies rotate faster than
their magnetic-free counterparts. In contrast to density perturbations, the field seems to favor the presence of vorticity. This
qualitative difference should probably be attributed to the fact that the tension part of the Lorentz force also contributes to
Eq. (3.4.9).

In addition to scalar and vector perturbations, magnetic fields also generate and affect tensor-type inhomogeneities that
describe shape distortions in the density distribution [116]. An initially spherically symmetric inhomogeneity, for example,
will change shape due to the magnetically induced anisotropy. All these are the effects of the Lorentz force. Even when the
latter is removed from the system, however, the B-field remains active. Due to its energy density and anisotropic nature,
for example, magnetism affects both the local and the long-range gravitational field. The anisotropic magnetic pressure,
in particular, leads to shear distortions and subsequently to gravitational wave production. Overall, magnetic fields are a
very versatile source. They are also rather unique in nature, since B-fields are the only known vector sources of energy.
An additional unique magnetic feature, which remains relatively unexplored, is its tension. When we add to all these the
widespread presence of magnetic fields in the cosmos, it makes sense to say that no realistic structure-formation scenario
should a priori exclude them.
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3.4.2. Aspects of the nonlinear regime
The evolution of large-scale magnetic fields during the nonlinear stages of structure formation has been addressed

primarily bymeans of numerical methods. The reason is the high complexity of the nonlinear MHD equations, whichmakes
analytical studies effectively impossible, unless certain simplifying assumptions are imposed.

The simplest approximation is to assume spherically symmetric compression. Realistic collapse, however, is not isotropic.
In fact, when amagnetic field is present, its generically anisotropic naturemakes the need to go beyond spherical symmetry
greater. Anisotropic contraction can be analytically studied within the Zeldovich approximation [132,133]. The latter is
based on a simple ansatz, which extrapolates to the nonlinear regime a well-known linear result. The assumption is that
the irrotational and acceleration-free linear motion of the dust component, also holds during the early nonlinear stages of
galaxy formation. This approximation allows for the analytical treatment of the nonlinear equations, the solution of which
describe anisotropic (one-dimensional) collapse and lead to the formation of the well-known Zeldovich ‘pancakes’.

Suppose that a magnetic field is frozen into a highly conductive protogalactic cloud that is falling into the (Newtonian)
potential wells formed by the Cold Dark Matter (CMB) sector.9 Relative to the physical coordinate system {rα

}, the motion
of the fluid velocity is uα = 3Hrα + vα , where H = ȧ/a is the Hubble parameter of the unperturbed FRW background and
vα is the peculiar velocity of the fluid (with α = 1, 2, 3). Then, the magnetic induction equation reads [134]

Ḃα = −2HBα −
2
3

ϑBα + σαβBβ , (3.4.11)

where overdots now indicate convective derivatives (i.e.˙= ∂t + uβ∂β ). Also, ϑ = ∂αvα and σαβ = ∂⟨βvα⟩ are the peculiar
volume scalar and the peculiar shear tensor respectively.10 The former takes negative values (i.e. ϑ < 0), since we are
dealing with a protogalactic cloud that has started to ‘turn around’ and collapse. Note that the first term in the right-hand
side of (3.4.11) represents the background expansion, the second is due to the peculiar contraction and the last reflects the
anisotropy of the collapse. Introducing the rescaled magnetic field Bα = a2Bα , the above expression recasts into

B ′

α = −
2
3

ϑ̃Bα + σ̃αβBβ , (3.4.12)

with primes indicating differentiation with respect to the scale factor. Also ϑ = aHϑ̃ and σαβ = aHσ̃αβ , where ϑ̃ = ∂α ṽα

and σ̃αβ = ∂⟨β ṽα⟩ (with ṽα = ax′
α and vα = aHṽα). Relative to the shear eigenframe, σ̃αβ = (σ̃11, σ̃22, σ̃33) and expression

(3.4.12) splits into

B ′

1 = −
2
3

ϑ̃B1 + σ̃11B1, B ′

2 = −
2
3

ϑ̃B2 + σ̃22B2 (3.4.13)

and

B ′

3 = −
2
3

ϑ̃B3 + σ̃33B3. (3.4.14)

This system describes the second order evolution of a magnetic field, which is frozen-in with the highly conductive matter
of a collapsing protogalaxy, within the limits of the Zeldovich approximation.

In order to solve the set of Eqs. (3.4.13) and (3.4.14), we recall that in the absence of rotation and acceleration, the peculiar
volume scalar is given by

ϑ̃ =
λ1

1 + aλ1
+

λ2

1 + aλ2
+

λ3

1 + aλ3
. (3.4.15)

Similarly, the shear eigenvalues are

σ̃11 =
λ1

1 + aλ1
−

1
3

ϑ, σ̃22 =
λ2

1 + aλ2
−

1
3

ϑ (3.4.16)

and

σ̃33 =
λ3

1 + aλ3
−

1
3

ϑ (3.4.17)

where λ1, λ2 and λ3 are the eigenvalues of the initial tidal field and determine the nature of the collapse [135,136]. In
particular, one-dimensional collapse along, say, the third eigen-direction is characterized by λ1 = 0 = λ2 and by λ3 < 0.

9 The Newtonian theory is a very good approximation, since the scales of interest are well below the curvature radius of the universe and we are dealing
with non-relativistic matter.
10 When dealing with purely baryonic collapse, the Zeldovich ansatz only holds during the early stages of the nonlinear regime, when the effects of the
fluid pressure are negligible. Assuming that the contraction is driven by non-baryonic CDM, means that we can (in principle) extend the domain of the
Zeldovich approximation beyond the above mentioned mildly nonlinear stage.
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In that case, the pancake singularity is reached as a → −1/λ3. Spherically symmetric collapse, on the other hand, has
λ1 = λ2 = λ3 = λ < 0. Then, we have a point-like singularity when a → −1/λ.

Substituting, the above expressions into the right-hand side of Eqs. (3.4.13) and (3.4.14), we obtain the solutions

B1 = B0
1


(1 + a0λ2)(1 + a0λ3)

(1 + aλ2)(1 + aλ3)

 a0
a

2
, (3.4.18)

B2 = B0
2


(1 + a0λ1)(1 + a0λ3)

(1 + aλ1)(1 + aλ3)

 a0
a

2
(3.4.19)

and

B3 = B0
3


(1 + a0λ1)(1 + a0λ2)

(1 + aλ1)(1 + aλ2)

 a0
a

2
, (3.4.20)

with the zero suffix corresponding to a given time during the protogalactic collapse. Note that the ratios in parentheses
reflect the magnetic dilution due to the background expansion, while the terms in brackets monitor the increase in the
field’s strength caused by the collapse of the protogalactic cloud. According to the above solution, when dealing with
pancake collapse along the third eigen-direction, the B3-component decays as a−2, while the other two increase arbitrarily.
Alternatively, during a spherically symmetric contraction the B-field evolves as

B = B0


1 + a0λ
1 + aλ

2 a0
a

2
. (3.4.21)

Here, all the magnetic components diverge as we approach the point singularity (i.e. for a → −1/λ). Comparing the two
results, we deduce that the anisotropic (pancake) collapse leads to a stronger increase as long as λ3 < λ. The latter is always
satisfied, provided that the initial conditions are the same for both types of collapse, given that λ3 = ϑ̃/(1 − a0ϑ̃) and
λ3 = ϑ̃/(3 − a0ϑ̃) — see expression (3.4.15) above.

The above given qualitative analysis indicates that amagnetic field trapped in an anisotropically contracting protogalactic
cloud will increase beyond the limits of the idealized spherically symmetric scenario. Note that this type of amplification
mechanism appears to be the only alternative left if the galactic dynamo (see Section 4.2.1 below) fails to operate.
Quantitatively, the achieved final strength depends on when exactly the backreaction of the B-field becomes strong enough
to halt the collapse [25]. Thus, the longer the anisotropic collapse lasts, the stronger the residual B-field. The analytical study
of [134], in particular, showed that (realistically speaking) the anisotropy could add one or two orders of magnitude to the
magnetic strengths achieved through conventional isotropic compression. These results are in very good agreement with
numerical studies simulating shear and tidal effects on the magnetic evolution in galaxies and galaxy clusters [137–139].

4. Magnetogenesis in conventional FRWmodels

In order to operate successfully, the galactic dynamo needs magnetic seeds that satisfy two specific requirements. The
first refers to the (comoving) coherence length of the initial B-field and the second is related to its strength. The scale must
not drop below ∼10 kpc. The strength typically varies between ∼10−12 and ∼10−22 G, depending on the efficiency of
the dynamo amplification. At first, these requirements may seem relatively straightforward to fulfill. Nevertheless, within
classical electromagnetism and conventional FRW cosmology, magnetic seeds with the aforementioned desired properties
are very difficult to produce.

4.1. The Friedmann models

Current observations, primarily the isotropy of the CMB, strongly support a universe that is homogeneous and isotropic
on cosmological scales. In other words our universe seems to be described by the simplest cosmological solution of the
Einstein field equations, the FRW models. Before proceeding to discuss the magnetic evolution on FRW backgrounds, it
helps to summarize some basic features of these models.

4.1.1. The FRW dynamics
The high symmetry of the Friedmann models means that all kinematical and dynamical variables are functions of time

only, while every quantity that represents anisotropy or inhomogeneity vanishes identically. Thus, in covariant terms, an
FRW model has Θ = 3H(t) ≠ 0, σab = 0 = ωa = Aa, Eab = 0 = Hab, where H = ȧ/a is the familiar Hubble parameter.
The isotropy of the Friedmann models also constrains their matter content, which can only have the perfect-fluid form
(with ρ = ρ(t) and p = p(t)). In addition, due to the spatial homogeneity, all orthogonally projected gradients (e.g. Daρ,
Dap, etc.; see Section 3) are by definition zero. This means that the only nontrivial equations left, are the FRW version of
Raychaudhuri’s formula, the equation of continuity and the Friedmann equation. These are given by [121]

Ḣ = −H2
−

1
6

κ(ρ + 3p) +
1
3

Λ, ρ̇ = −3H(ρ + p) (4.1.1)
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and

H2
=

1
3

κρ −
K
a2

+
1
3

Λ, (4.1.2)

respectively. Note that K = 0, ±1 is the 3-curvature index. The latter is associated to the Ricci scalar (R) of the spatial
sections by means of the relation R = 6K/a2 [121].

In FRW spacetimes with non-Euclidean spatial geometry, the scale factor also defines the curvature scale (λK = a) of the
model. This marks the threshold at which the effects of spatial curvature start becoming important (e.g. see [140]). Lengths
smaller than the curvature scale are termed subcurvature, while those exceeding λK are referred to as supercurvature. The
former are essentially immune to the effects of spatial geometry, with the latter dominating on supercurvature lengths. The
relation between the curvature scale and the Hubble radius is determined by Eq. (4.1.2). In the absence of a cosmological
constant, the latter reads

λK

λH

2

= −
K

1 − Ωρ

, (4.1.3)

where λH = H−1 and Ωρ = κρ/3H2 are the Hubble radius and the density parameter respectively. Hence, hyperbolic
3-geometry (i.e. K = −1) ensures that λK > λH always, with λK → ∞ as Ωρ → 1 and λK → λH for Ωρ → 0. In practice,
this means that supercurvature scales in spatially open FRW cosmologies are always outside the Hubble radius.11 This is not
the case in closed models, where λK > λH when Ωρ < 2 and λK ≤ λH if Ωρ ≥ 2. Finally, we note that, since the curvature
scale simply redshifts with the expansion, the importance of spatial geometry within a comoving region does not change
with time.

4.1.2. Scale-factor evolution in FRW models
In order to close the system (4.1.1), one needs to introduce an equation of state for thematter. Here, wewill only consider

barotropic perfect fluids, mainly in the form of non-relativistic ‘dust’ or isotropic radiation (with p = 0 and p = ρ/3
respectively). When w = p/ρ is the (constant) barotropic index of the medium, the continuity equation (see (4.1.1)b) gives
ρ ∝ a−3(1+w). Then, setting K = 0 = Λ and normalizing so that a(t = 0) = 0, we obtain

a = a0


t
t0

2/3(1+w)

, (4.1.4)

when w ≠ −1. For non-relativistic matter with w = 0 (e.g. baryonic dust or non-baryonic cold dark matter), we have the
Einstein–de Sitter universe with a ∝ t2/3. Alternatively, a ∝ t1/2 in the case of relativistic species (e.g. isotropic radiation)
and a ∝ t1/3 for a stiff medium with w = 1. When w = −1/3, which corresponds to matter with zero gravitational mass,
the above leads to ‘coasting’ expansion with a ∝ t . Solution (4.1.4) does not apply to the w = −1 case. There, both ρ and H
are constant to ensure de Sitter-type inflation with a ∝ eH0(t−t0).

When the FRW spacetime has non-Euclidean spatial geometry it helps to use conformal rather than proper time. Then,
for K = +1, Λ = 0 and w ≠ −1/3 Eqs. (4.1.1) and (4.1.2) combine to [121]

a = a0


sin[(1 + 3w)η/2]
sin[(1 + 3w)η0/2]

2/(1+3w)

, (4.1.5)

where η is the conformal time (with η̇ = 1/a). Also, (1+ 3w)η/2 ∈ (0, π) and we have normalized so that a(η → 0) → 0.
For non-relativistic matter w = 0 and the above solution reduces to a ∝ sin2(η/2) [142], while we obtain a ∝ sin η
if radiation dominates. When w = −1/3 one can no longer use solution (4.1.5). Instead, Eq. (4.1.1)a leads immediately
to the familiar coasting-expansion phase with a ∝ t . Finally, in the w = −1 case, expression (4.1.1)b ensures that
ρ = ρ0 = constant and (4.1.2) leads to a(1 +

√
3/ρ0H) ∝ e

√
(ρ0/3) t .

Applied to FRW cosmologies with hyperbolic spatial geometry, zero cosmological constant and w ≠ −1/3, the same
analysis leads to

a = a0


sinh[(1 + 3w)η/2]
sinh[(1 + 3w)η0/2]

2/(1+3w)

, (4.1.6)

where now (1 + 3w)η/2 > 0 [121]. Assuming pressure-free dust and normalizing as before, we find a ∝ sinh2(η/2) [142].
On the other hand, solution (4.1.6) implies a ∝ sinh η for a open FRW universe dominated by relativistic species. We
finally note that, similarly to the K = +1 case, the system (4.1.1), (4.1.2) ensures that a ∝ t when w = −1/3 and
a(1 +

√
3/ρ0H) ∝ e

√
(ρ0/3) t for w = −1. A special spacetime with open spatial geometry is the vacuum Milne universe,

where the absence of matter guarantees that a = t .

11 In Friedmann universes with hyperbolic spatial sections, the particle horizon can exceed the Hubble scale (e.g. see [141]). This means that wavelengths
larger than the curvature radius of an open FRW cosmology can be causally connected, despite the fact that they always lie outside the Hubble length. Here,
to keep things simple, we will treat the Hubble scale as our causal horizon as well.
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4.2. Late vs early time magnetogenesis

The various mechanisms of magnetogenesis have been traditionally classified into those operating at late times, that is
after recombination, and the ones that advocate an early (pre-recombination) origin for the B-field. In either case, the aim
of the proposed scenarios is to produce the initial magnetic fields that will successfully seed the galactic dynamo.

4.2.1. The galactic dynamo paradigm
The belief that some kind of nonlinear dynamo action is responsible for amplifying and sustaining the galactic magnetic

fields has long roots in the astrophysical community [23–25]. Dynamos provide the means of converting kinetic energy into
magnetic energy and the reader is referred to [29] for a recent extended review. Nevertheless, one can get a quick insight of
how themechanism in principle works by looking at themagnetic induction equation. In the Newtonian limit and assuming
resistive MHD, the latter reads

Ḃα = −
2
3

ϑBα +

σαβ + ωαβ


Bβ

− ς−1curlJα, (4.2.1)

where overdots indicate convective derivatives (see also Section 3.4.2) and α, β =1,2,3. Contracting the above along the
magnetic field vector and recalling that curl Bα = Jα , leads to

B2·
= −

4
3

ϑB2
+ 2σαβBαBβ

+ 2ς−1∂αFα − 2ς−1J2, (4.2.2)

with Fα = εαβµBβJµ representing the magnetic Lorentz force. The latter contributes to the kinetic energy of the fluid via
the Navier–Stokes equation (see expression (3.1.11) in Section 3.1.5). Following (4.2.2), the action of the Lorentz force can in
principle enhance the magnetic energy at the expense of the fluid’s kinetic energy. The amplification can happen provided
that the dissipative effects, carried by the last term on the right-hand side of Eq. (4.2.2), are subdominant. The first term,
on the other hand gives the magnetic increase caused by the adiabatic galactic collapse (typically ϑ . 0 in gravitationally
bounded systems), while the second conveys the effects of the shearing stresses (see Section 3.4.2).

Dynamos are typically powered by the differential rotation of the galaxy. The latter combines with the small-scale
turbulent motion of the ionized gas, causing the exponential increase of the large-scale mean B-field in the plane of the
galactic disc. The growth continues until it reaches saturation, which typically occurswhen B ∼ 10−6 G and the backreaction
of the magnetic stresses suppresses any further increase. The amplification factor, however is quite sensitive to the specific
parameters of the dynamo model. This sensitivity leads to serious uncertainties regarding the total amount of magnetic
amplification and has been the subject of ongoing discussions.

The pattern and the orientation of the galactic magnetic field, especially of those seen in spiral galaxies, seem to support
the dynamo idea. On the other hand, the detection of strong magnetic fields in high-redshift protogalactic structures has
raised a number of question regarding the role of dynamos [8,9]. In any case, the galactic dynamo needs the presence of an
initial magnetic seed in order to operate. These seeds must satisfy certain requirements regarding their coherence length
and strength. The minimum required scale for the magnetic seed is comparable to the size of the smallest turbulent eddy.
This lies close to 100 pc at the time the host galaxy is formed, which translates to a comoving length of approximately
10 kpc before the collapse of the protogalactic cloud. The strength of the seed field, on the other hand, varies, depending
on the efficiency of the dynamo amplification and on the cosmological model it operates in [26–29]. Typically, the required
values range between 10−12 and 10−22 G. It is conceivable, however, that the lower limit could be brought down to 10−30 G in
spatially open or dark-energy dominated FRWuniverses [30]. Note that, in the absence of the dynamo, protogalactic collapse
(spherically symmetric or anisotropic— see Section 3.4.2) seems the only alternativemeans ofmagnetic amplification. Then,
B-seeds as strong as 10−9 Gmay be needed in order to meet the observations. So, provided that galactic dynamos work, the
question is where do the initial magnetic seeds come from?

4.2.2. Late time magnetogenesis
Post-recombination mechanisms of magnetic generation appeal to astrophysical processes and battery-type effects. It

has been proposed, in particular, that the Biermann-battery mechanism can produce seed B-fields, which the dynamo could
subsequently amplify on galactic scales and to the observed strengths. The Biermann effect [143], which was originally
discussed in the stellar context, exploits differences between the electron and the ion acceleration that are triggered by
pressure gradients. These will first give rise to electric currents and subsequently lead to magnetic fields by induction.

The literature contains several alternative scenarios using battery-type mechanisms to generate magnetic seed fields in
the post-recombination era. Supernovae explosions of the first stars, for example, could eject into the interstellar medium
B-fields that could seed the galactic dynamo [144,145]. Active galaxies and Active Galactic Nuclei (AGN) can also channel
away jets of magnetized plasma [146,147]. Thermal-battery processes operating in (re-)ionization fronts can also lead to
magnetic seeds that can sustain the dynamo [148,149]. Analogous results could be achieved through turbulent motions or
shocks developed in collapsing protogalactic clouds [150,151].

Nevertheless, while Biermann-battery effects can produce the seed fields that the dynamo will subsequently amplify to
the observed strengths, the whole process operates on galactic scales. For this reason, it is less straightforward to invoke
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the Biermann mechanism when trying to explain the magnetic fields found in galaxy clusters. To a certain extent, this
also weakens the overall position of the Biermann battery as a likely candidate for generating the galactic magnetic fields.
Indeed, the possibility that the galactic and the cluster B-fields have a different origin seems rather unlikely, in view of their
similarities.

4.2.3. Early time magnetogenesis
The idea that cosmic magnetism might have pre-recombination origin is attractive because it makes the widespread

presence of magnetic fields in the universe easier to explain. Especially the origin of the fields observed in high-redshift
protogalactic condensations. However, generating cosmological B-fields that will also successfully seed the galactic dynamo
is not a problem-free exercise.

In the early 1970s, Harrison proposed that battery-type effects, operating during the radiation era, could generate B-
fields with strengths capable of sustaining the galactic dynamo [152]. The mechanism is based on conventional physics and
does not need any new postulates. The disadvantage in Harrison’s idea is that it requires significant amounts of primordial
vorticity. The latter is essentially absent from the standard cosmological model. Note that the possibility of simultaneously
generating both vorticity and magnetic fields in the late radiation era was recently investigated in [153,154].

An alternative approach is to generate the magnetic seeds during phase transitions early in the radiation era (see
Section 5 below). There are problems, however, primarily related to the coherence length of the initial B-field. The difficulties
arise because the size of the post-inflationary magnetic seeds, namely those created between inflation and (roughly)
recombination is typically too small and will destabilize the dynamo. The reason is causality, which confines the scale of
the field within that of the horizon at the time of magnetogenesis. For example, B-fields produced during the electroweak
phase transition have coherence lengths of the order of the astronomical unit. The size of the magnetic field can increase
if the host plasma has some degree of MHD turbulence. In such environments ‘‘cascade’’ processes are known to occur,
whereby certain ideally conserved quantities flow from larger towards smaller scales (direct cascade) or the other way
around (inverse cascade). In three-dimensional MHD turbulence, the total (kinetic plus magnetic) energy cascades toward
smaller scales, where it is dissipated by viscosity and resistivity. However, the other important ideal invariant, themagnetic
helicity, inverse cascades towards larger scales. The magnetic helicity is defined by the integral [155]

HM =
1
V


AaBadV , (4.2.3)

where Aa is the electromagnetic vector potential (recall that Ba = curl Aa) and is equivalent to the Chern–Simon number
of particle physics [32]. Besides being an ideal invariant, the magnetic helicity is also asymptotically conserved within the
resistive MHD approximation. Physically, HM describes the topology of the field lines, that is their degree of withering and
twisting [156]. Asmentionedbefore,magnetic helicity inverse cascades and evolves fromsmaller to larger scales [155],while
its conservation has profound effects in the operation of MHD dynamos [157]. The aforementioned inverse cascade effect
makes primordial helicity very important, because it allows the magnetic energy to shift from smaller to larger scales, as
the system tries to minimize its energy while conserving magnetic helicity. For example, Pouquet et al. carried out a study
in which nonhelical kinetic energy and maximally helical magnetic energy were injected into the plasma at a constant
rate [158]. The outcome was a well defined wave of magnetic energy and helicity, propagating from smaller to larger
scales. Similar results were also obtained in the case of steady turbulence [31–34,159–161] and for freely decaying MHD
turbulence [162].

Although helical magnetic fields can enhance their original length, inflation seems to be the only effective solution to the
scale problem faced by fields generated during the early radiation era. The reason is that inflation can naturally generate
correlations on superhorizon lengths. There are still problems, however, this time with the magnetic strength. In particular,
B-fields that has survived a period of standard de Sitter inflation are typically to weak to sustain the galactic dynamo.

4.3. Typical inflation produced magnetic fields

Inflation is known to produce long-wavelength effects frommicrophysical processes that operate well inside the Hubble
radius. For this reason, inflation has long been seen as the best candidate for producing large-scale, cosmological magnetic
fields. Here, we will look at scenarios operating within standard electromagnetic theory and conventional FRW models.
Alternative approaches are given in Section 6.

4.3.1. Quantum-mechanically produced magnetic seeds
The inflationary paradigm provides the dynamical means of producing long-wavelength electromagnetic fluctuations,

by stretching subhorizon-sized quantum mechanical fluctuations to superhorizon scales. Roughly speaking, quantum
fluctuations in the Maxwell field are excited inside the horizon and cross the Hubble horizon approximately

N = N(λ) = 45 + ln(λ) +
2
3

ln


M
1014


+

1
3


TRH
1010


, (4.3.1)
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e-folds before the end of the de Sitter phase [163]. In the above λ is the comoving scale of the mode (measured in Mpc and
normalized to coincidewith themode’s current physical length),M is the scale of inflation and TRH is the reheat temperature
(both measured in GeV). Assuming that ρ is the energy density of the electromagnetic mode, then

dρ
dk

∼ H3, (4.3.2)

at the first horizon crossing. Once outside the Hubble radius, the aforementioned quantum-mechanically excitedmodes are
expected to freeze-out as classical electromagnetic waves. The latter, which initially appear like static electric andmagnetic
fields, can subsequently lead to current-supportedmagnetic fields. This happens after themodeshave re-entered thehorizon
in the radiation era, or later during the dust dominated epoch. Note that, after the secondhorizon crossing, the currents of the
highly conductive plasma will also eliminate the electric component of the Maxwell field, leaving the universe permeated
by a large-scale B-field of primordial origin.

The fast expansion of the de Sitter phase means that, by the end of inflation, the initial electromagnetic quantum
fluctuations have achieved correlation lengths much larger than the current size of the observable universe. Thus, inflation
produced B-fields have no scale problem whatsoever. Nevertheless, magnetic seeds that have survived a period of de Sitter
expansion are generally too weak to sustain the dynamo. In particular, the typical strength of the residual B-field (in today’s
values) is less than 10−50 G [35]. To understand why and how this happens, we first need to consider the linear magnetic
evolution on FRW backgrounds.

4.3.2. The adiabatic magnetic decay
The evolution of large-scale electromagnetic fields on FRWbackgrounds depends on the electric properties of themedium

that fills the universe. Here, we will consider the two limiting cases of poorly and highly conductive matter. For any
intermediate case, one needs a model for the electrical conductivity of the cosmic medium.

In poorly conductive environments, ς → 0 and the electric currents vanish despite the presence of nonzero electric
fields (see Ohm’s law (3.3.1) in Section 3.3). Then, the wave equation (3.2.7) linearizes to

B̈a − D2Ba = −5HḂa +
1
3

κρ(1 + 3w)Ba − 4H2Ba − RabBb, (4.3.3)

where H = ȧ/a is the Hubble parameter of the unperturbed model. To simplify the above we introduce the rescaled
magnetic field Ba = a2Ba and employ conformal, rather than proper, time [35]. Then, on introducing the harmonic splitting
Ba =


n B(n)Q

(n)
a —with DaB(n) = 0, expression (4.3.3) takes the compact form12

B ′′

(n) + n2B(n) = −2KB(n), (4.3.4)

with the primes denoting conformal time derivatives and K = 0, ±1 [118]. The above describes the linear evolution of
the rescaled magnetic field on a Friedmannian background with any type of spatial curvature. Note the magneto-curvature
term on the right-hand side of (4.3.4), which results form the direct coupling between the B-field and the geometry of the
3-space. The interaction is monitored by the Ricci identities and reflects the fact that we are dealing with an energy source
of vector nature within a geometrical theory of gravity. We will discuss the implications of this interaction, which is largely
bypassed in the literature, for the evolution of large-scale magnetic fields in Section 4.4.

When the FRW host has Euclidean spatial hypersurfaces, the 3-curvature index is zero (i.e. K = 0) and expression (4.3.4)
assumes the Minkowski-like form

B ′′

(n) + n2B(n) = 0. (4.3.5)

The latter accepts the oscillatory solution

B(n) = C1 sin(nη) + C2 cos(nη), (4.3.6)

with the integration constants depending on the initial conditions. Then, recalling that B(n) = a2B(n), the above given
solution translates into

B(n) =

a0
a

2 
B(n)
0 sin(nη0) +

1
n


B′ (n)
0 + 2


a′

a


0
B(n)
0


cos(nη0)


sin(nη)

+

a0
a

2 
B(n)
0 cos(nη0) −

1
n


B′ (n)
0 + 2


a′

a


0
B(n)
0


sin(nη0)


cos(nη). (4.3.7)

12 We use pure-vector harmonics that satisfy the constraints Q̇
(n)
a = 0 = DaQ

(n)
a and the associated Laplace–Beltrami equation, namely D2Q

(n)
a =

−(n/a)2Q(n)
a . Following [164], the (comoving) eigenvalues depend on the background spatial curvature according to n2

= ν2
+ 2K , where ν represents

the associated wavenumber. Also, n has a continuous spectrum, with n2
≥ 0, when K = 0, −1 and a discrete one, with n2

≥ 2, if K = +1 (see [169] for
further details).
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This guarantees an adiabatic (B(n) ∝ a−2) depletion for themagnetic field, irrespective of the equation of state of thematter,
as long as the background spacetime is a spatially flat FRWmodel and the electrical conductivity remains very poor.

The adiabatic magnetic decay is also guaranteed in highly conductive environments, namely at the ideal MHD limit.
There, ς → ∞ and, according to Ohm’s law — see Eq. (3.3.1) in Section 3.3, the electric field vanishes in the frame of the
fluid. As a result, when linearized around a FRW background, Faraday’s law (see Eq. (3.2.3) in Section 3.1) reduces to

Ḃa = −2HBa. (4.3.8)

The latter ensures that Ba ∝ a−2 on all scales, regardless of the equation of state of the matter and of the background
3-curvature.

The universe is believed to have been a very good electrical conductor throughout its classical Big-Bang evolution, at
least on subhorizon scales. During inflation, on the other hand, the conductivity is expected to be very low. However, as
the universe leaves the inflationary phase and starts reheating, its conductivity grows. So, by the time we have entered the
radiation era, the currents have eliminated the electric fields and frozen their magnetic counterparts in with the matter.13
These arguments essentially guarantee that the set (4.3.5) and (4.3.8)monitors the evolution of cosmologicalmagnetic fields
throughout the universe’s lifetime. This in turn has led to thewidespread belief that the adiabatic decay rate of cosmological
magnetic fields holds at all times, unless classical electromagnetism is modified or the FRW symmetries are abandoned. As
we will see in Section 4.4, however, this is not necessarily the case.

4.3.3. The residual magnetic field
The immediate implication of (4.3.7) is that magnetic fields that survived a period of typical de Sitter-type inflation

have been drastically diluted by the accelerated expansion of the universe. Together with (4.3.8), this means that B-fields
of primordial origin are too weak to be of astrophysical relevance today. To demonstrate the dramatic magnetic depletion
during the de Sitter phase we follow [35]. As a first step, recall that the relative energy density stored in the n-th magnetic
mode at the (first) horizon crossing is (ρB/ρ)HC ≃ (H/MPl)

2. Here, ρB = B2
(n), ρ is the energy density of the background

universe andMPl is the Planckmass. During inflation the total energy density is dominated by that of the vacuum (i.e.ρ ≃ M4,
with M representing the energy scale of the adopted inflationary scenario). Consequently, the relative strength of the n-th
magnetic mode at horizon crossing is (ρB/ρ)HC ≃ (M/MPl)

4. Also, throughout inflation the universe is believed to be a
very poor electrical conductor. This means that any magnetic field that may be present at the time decays adiabatically
(see solution (4.3.7) in Section 4.3.2). As a result, B2

(n) = (B2
(n))HCe

−4N by the end of inflation, with N = ln(aIN/aHC )
representing the number of e-folds between horizon crossing and the end of the de Sitter era. This number depends on
the scale of the mode in question and, in typical inflationary scenarios, is given by Eq. (4.3.1). Using the latter and recalling
that (ρB/ρ)RH = (ρB/ρ)IN(TRH/M)4/3 is the relative change of the magnetic energy density between the end of inflation
proper and that of reheating, we find that [35]

ρB

ργ


RH

≃ 10−104λ−4, (4.3.9)

at the onset of the radiation era. Note that ργ ≃ ρRH ≃ T 4
RH represents the energy density of the relativistic species and λ is

the current (comoving) scale of the B-field. Also, the above ratio is independent of the energy scale of the adopted inflationary
scenario and of the associated reheat temperature. Moreover, given that ρB, ργ ∝ a−4 throughout the subsequent evolution
of the universe, the same ratio remains unchanged until the time of galaxy formation.

Once the scale of the magnetic mode is given, we can use (4.3.9) to evaluate the residual strength of any primordial B-
field that underwent an era of (typical) de Sitter inflation. For example, in order to operate successfully, the galactic dynamo
requires magnetic seeds with a minimum coherence scale of approximately 10 kpc. Substituting this scale into Eq. (4.3.9)
and recalling that ργ ≃ 10−51 GeV4 today, we find that the correspondingmagnetic field has strength of∼10−53 G [35]. This
value is well below the galactic dynamo requirements, which leads to the conclusion thatmagnetic fields that have survived
a period of standard, de Sitter-type inflationary expansion are (for all practical purposes) astrophysically irrelevant.

4.4. Magnetic amplification in conventional FRW models

The ‘‘negative’’ results of the previous section have been widely attributed to the conformal invariance of Maxwell’s
equations and to the conformal flatness of the Friedmannian spacetimes. The two have been thought to guarantee an
adiabatic decay rate for all large-scale magnetic fields at all times. This, in turn, has led to the widespread perception
that inflation produced B-fields are astrophysically unimportant, unless standard electromagnetism is modified or the FRW
symmetries are abandoned.

13 Causality ensures that the post-inflationary currents are confined within the horizon. This means that outside the Hubble radius the low conductivity
assumption still holds.
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4.4.1. Superadiabatic amplification
Strictly speaking, however, the adiabatic magnetic depletion seen in solution (4.3.7) of Section 4.3 has only been

proved on Friedmannian backgrounds with Euclidean spatial sections. Although it is true that all three FRW universes are
conformally flat, they are not the same. There are differences in their 3-curvature, which mean that only the spatially flat
model is globally conformal to the Minkowski space. For the rest, the conformal mappings are local [165,166]. Another
way of putting it is that, when dealing with spatially curved Friedmann universes, the conformal factor is no longer the
cosmological scale factor but has an additional spatial dependence. All these imply that the wave equation of the rescaled
magnetic field (Ba = a2Ba) takes the simpleMinkowski-like form (4.3.5), which guarantees an adiabatic decay for the actual
B-field, only on FRW backgrounds with zero 3-curvature. In any other case, there is an additional curvature-related term
(see expressions (4.3.3) and (4.3.4) in Section 4.3), reflecting the non-Euclidean spatial geometry of the host spacetime. As a
result, when linearized around an FRWbackgroundwith nonzero spatial curvature, themagnetic wave equation reads [118]

B ′′

(n) +

n2

± 2

B(n) = 0, (4.4.1)

with the plus and the minus signs indicating the spatially closed and the spatially open model respectively. Recall that in
the former case the eigenvalue is discrete (with n2

≥ 2), while in the latter it is continuous (with n2
≥ 0). In either case, the

curvature-related effects fade away as we move down to successively smaller scales (i.e. for n2
≫ 2).

According to (4.4.1), on FRW backgrounds with spherical spatial hypersurfaces, the B-field still decays adiabatically. The
curvature term only modifies the frequency of the magnetic oscillation in accord with the solution [167]

B(n) =


C1 sin


n2 + 2 η


+ C2 cos


n2 + 2 η

 a0
a

2
. (4.4.2)

Overall, the adiabatic decay rate of the B-field remains. Also, as expected, the smaller the scale the less important the role
of the background 3-geometry.

The standard picture, and the adiabatic decay law, changeswhen the background FRWmodel has open spatial sections. In
particular, the hyperbolic geometry of the three-dimensional hypersurfaces alters the nature of themagnetic wave equation
on large enough scales (i.e. when 0 < n2 < 2). These wavelengths include what we may regard as the largest subcurvature
modes (i.e. those with 1 ≤ n2 < 2) and the supercurvature lengths (having 0 < n2 < 1). Recall that eigenvalues with
n2

= 1 correspond to the curvature scale with physical wavelength λ = λK = a (see Section 4.1.1).
Following [167–169], we introduce the scale parameter k2 = 2 − n2, with 0 < k2 < 2. Then, k2 = 1 indicates the

curvature scale, the range 0 < k2 < 1 corresponds to the largest subcurvaturemodes and their supercurvature counterparts
are contained within the 1 < k2 < 2 interval. In the new notation and with K = −1, Eq. (4.4.1) reads

B ′′

(n) − k2B(n) = 0, (4.4.3)

while its solution leads to

B(k) = C1 sinh(|k|η) + C2 cosh(|k|η). (4.4.4)

Written with respect to the actual magnetic field, the above takes the form

B(k) =
1
2


B(k)
0 +

1
|k|


B′ (k)
0 +


a′

a


0
B(k)
0


a
a0

−2

e|k|(η−η0)

+
1
2


B(k)
0 −

1
|k|


B′ (k)
0 +


a′

a


0
B(k)
0


a
a0

−2

e−|k|(η−η0). (4.4.5)

Magnetic fields that obey the above evolution laws can experience superadiabatic amplification without modifying
conventional electromagnetism and despite the conformal flatness of the FRWhost.14 For instance, throughout the radiation
and the dust eras (as well as during reheating), the scale factor of a FRW universe with hyperbolic spatial geometry evolves
as a ∝ sinh(η) and a ∝ sinh2(η/2) respectively (see solution (4.1.6) in Section 4.1.2). Focusing on the curvature scale,
for simplicity, we may set |k| = 1 in (4.4.4). It is then clear that, on that scale, the magnetic mode never decays faster
than B(1) ∝ a−1 [168]. In other words, large-scale B-fields are superadiabatically amplified throughout the post-inflationary
evolution of an open Friedmann universe.

Although in the above examples we only considered the cases of radiation and dust, the amplification effect is essentially
independent of the type of matter that fills the universe. In particular, B-fields in open FRWmodels containing a barotropic

14 Superadiabatic amplification does not imply amplification per se, but decay at a slower than the adiabatic pace. The concept was originally introduced
in gravitational wave studies [170,171].
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medium with p/ρ ≠ −1/3 are superadiabatically amplified on large scales [169].15 This means that the mechanism also
operates during reheating (when p = 0) and also throughout a phase of slow roll inflation, namely in spatially open FRW
models with a false vacuum equation of state (i.e. when p = −ρ). In the latter case, the background scale factor evolves
as [121]

a = a0


1 − e2η0

1 − e2η


eη−η0 , (4.4.7)

where η, η0 < 0. Substituting the above into Eq. (4.4.5), we find that near the curvature scale (i.e. for |k| → 1) the magnetic
evolution is given by

B(1) = C3

1 − e2η

 a0
a


+ C4e−η

a0
a

2
, (4.4.8)

with C3, C4 depending on the initial conditions [167,168]. This result also implies a superadiabatic type of amplification for
theB-field, since the dominantmagneticmodenever decays faster thanB(1) ∝ a−1. The adiabatic decay rate is only recovered
at the end of inflation, as η → 0−. It should be noted that themagnetogeometrical interaction triggering the above described
effect is possible because, when applied to spatially curved FRW models, inflation does not lead to a globally flat de Sitter
space. Although the inflationary expansion dramatically increases the curvature radius of the universe, it does not change
its spatial geometry. Unless the universe was perfectly flat from the beginning, there is always a scale where the 3-curvature
effects are important. It is near and beyond these lengths that primordial B-fields are superadiabatically amplified.

Themagnitude of the residualmagnetic field is calculated in away analogous to that given in Section 4.3.3. Now, however,
there is an additional parameter due to the non-Euclidean geometry of the FRWbackground. In particular, near the curvature
scale — where B ∝ a−1, we find that

rRH =


ρB

ργ


RH

≃ 10−54


M
1014

4  TRH
1010

−2

λ−2, (4.4.9)

at the beginning of the radiation era [169]. Note that, in deriving the above, we also used the auxiliary relation (ρB/ρ)RH =

(ρB/ρ)IN(M/TRH)4/3. The latter provides the relative change in the energy density of the (superadiabatically amplified)
magnetic field between the end of inflation and that of reheating. Comparing (4.4.9) to expression (4.3.9), one can see
that the (superadiabatic) magnetic amplification is already substantial by the end of reheating, despite its dependence
on the energy scale of the inflationary model and of the corresponding reheat temperature. Moreover, large-scale B-fields
are superadiabatically amplified during the subsequent evolution of the universe. This means that on scales close to the
curvature radius of our background model, the ratio r = ρB/ργ is no longer constant but increases as r ∝ a2 ∝ T−2.
Consequently, recalling that λK = λH/

√
1 − Ω is the curvature scale of a spatially open FRW cosmology, we obtain

B0 ∼ 10−13


M
1014

2

(1 − Ω0)
1/2 G (4.4.10)

for the present strength of the residual B-field [169]. Therefore, the higher the energy scale of inflation the stronger the
superadiabatic amplification. On the other hand, the closer the density parameter to unity, the weaker the final field.

Currently, the WMAP reports indicate that 1 − Ω0 . 10−2 [172–174]. On these grounds, and provided that the universe
is spatially open, expression (4.4.10) gives

B0 ∼ 10−14 G, (4.4.11)

whenM ∼ 1014 GeV and 1−Ω0 ∼ 10−2 [169]. The last parameter choice implies a curvature radius of the order of 104 Mpc
at present. These lengths are far larger than 10 kpc, which is the minimummagnetic size required for the dynamo to work.
Nevertheless, once the galaxy formation starts, the field lines should break up and reconnect on scales similar to that of
the collapsing protogalaxy. According to (4.4.10), the above quoted magnetic strength will increase if the energy scale of
inflation is greater than 1014 GeV. On the other hand, the magnitude of the residual B-field will drop if the current curvature

15 Mathematically, the easiest way of demonstrating the amplification effect is by adopting the Milne universe as our background spacetime. The latter
corresponds to an empty spacetime with hyperbolic spatial geometry (see Section 4.1.2) and can be used to describe a low density open universe. There,
the scale factor evolves as a ∝ eη , which substituted into solution (4.4.5) leads to [168]

B(k) = C5

 a0
a

|k|−2
+ C6

 a0
a

−|k|−2
. (4.4.6)

Consequently, all magnetic modes spanning scales with 0 < k2 < 2 are superadiabatically amplified. Close to the curvature scale, that is for k2 → 1, the
dominant magnetic mode is B(1) ∝ a−1; a rate considerably slower than the adiabatic a−2-law. The latter is only restored at the k2 = 0 limit, namely on
small enough scales where the curvature effects are no longer important. Stronger amplification is achieved on supercurvature lengths, with B(k) ∝ a

√
2−2

at the homogeneous limit (i.e. as k2 → 2).
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scale of the universe is much larger than the Hubble horizon (i.e. for 1 − Ω0 ≪ 1). Nevertheless, the Ω-dependence in
Eq. (4.4.10) is relatively weak, which means that B-fields capable of seeding the galactic dynamo (i.e. with B0 & 10−22 G) are
possible evenwhen 1−Ω0 ∼ 10−18 (or lower —when the scale of inflation is higher than 1014 GeV). Overall, FRWuniverses
with hyperbolic spatial geometry seem capable of sustaining astrophysically important magnetic fields under a fairly broad
range of initial conditions.16

Large-scale, primordial magnetic fields with residual magnitudes like those quoted above are far stronger than any other
of their conventionally produced counterparts. Such strengths are usually achieved outside classical electromagnetism or
beyond the standard model (see Sections 5 and 6 below).17 Moreover, although magnetic seeds with strengths . 10−10 G
cannot affect primordial nucleosynthesis or the CMB spectrum, their strength lies within the galactic dynamo requirements
(see Section 4.2.1) and are therefore of astrophysical interest. Finally, we should also note very recent reports indicating
the presence of coherent magnetic fields in empty intergalactic space with strengths intriguingly close to those quoted
here [12–15].

5. Magnetogenesis in the standard model

In this section we review mechanisms of primordial magnetic field generation in the framework of the standard model
of particle physics and of nonlinear and out-of-equilibrium processes that may have happened in the very early universe. In
the first subsection we address magnetogenesis during reheating and in the second subsection we review magnetogenesis
due to the EW (electroweak) and QCD (quantum chromodynamical) phase transitions. Although the EW phase transition is
likely to have taken place during reheating, due to its importance and to the fact that it is framed in particle physics field as
well as the QCD transition, we treat it together with the latter, in a specific subsection.

5.1. Magnetogenesis during reheating

Accepting the inflationary paradigm, the reheating phase of the Universe was one of the richest epochs in its evolution.18
It is usually treated as the intermediate phase between the exponential expansion and the radiation dominated expansion,
during which almost all the matter that constitutes the Universe was produced. This period can be divided roughly into two
or three stages: preheating, heating and thermalization. Of these the most interesting ones are the first and the third. During
the first stage, the dominant effect is parametric particle creation. The importance of this process for reheating was first
realized in 1990 by Traschen and Brandenberger [176] and also by Dolgov and Kirilova [177] and later developed in Refs.
[178–181]. The thermalization process is a difficult and complex one. The interested reader is referred to specific works,
such as, e.g., [182], with references therein.

In few words, the process of reheating the Universe is due to the profuse creation of particles, caused by inflaton
oscillations around the minimum of the effective potential. Those particles self-interact and ultimately reach a state of
thermal equilibrium, when all (or almost all) the inflaton energy has been transformed into thermal energy of the created
elementary particles, with temperature Trh, the so-called reheating temperature. Being a strong out-of-equilibrium process
(and also turbulent, according to theoretical and numerical studies [183–188]), the reheating period is therefore a suitable
scenario for primordial magnetogenesis.

It is important to observe that, irrespective of themechanism thatmayhave generated themagnetic field during inflation,
the quantity r = ρB/ργ can bediluted during reheating because, during that phase, the radiation density increases by a factor
of at least e4N , with N being the number of e-foldings. So, unless the gauge field is also amplified by the same amount, r is
likely to decrease during reheating.

5.1.1. Parametric resonance
Although the conformal invariance of the gauge fields is the main drawback for their amplification by the expansion of

the universe, it also opens up the possibility of amplification by parametric resonance, if the conditions in the early universe
are favorable. In this sense, the preheating stage of reheating offers a suitable scenario ofmagnetic amplification, through its

16 If the results of [30] are taken at face value, the 1 − Ω0 difference can drop down to ∼10−34 (or even lower) and still produce magnetic fields able to
sustain the galactic dynamo (i.e. with B0 & 10−30 G). We also note that to these magnitudes one should add the magnetic amplification during the linear
and the nonlinear regime of structure formation — see Sections 3.4.1 and 3.4.2 respectively.
17 Primordial magnetic fields can be superadiabatically, or even resonantly, amplified through their interaction with cosmological gravitational waves
(see [175] and references therein). The former type of amplification is typically associated with highly conductive environments, but requires rather large
amounts of shear anisotropy to operate efficiently. Resonant amplification, on the other hand, occurs in media of poor electrical conductivity and can lead
to substantially strong B-fields with relativelyminimal shear anisotropy. Bothmechanisms are essentially nonlinear in nature and their detailed discussion
lies beyond the limits of this review.
18 The term ‘‘reheating’’ was coined in the first inflationarymodels, in which the Universe was hot before the onset of inflation, andwas ‘‘reheated’’ again,
after super-cooling during inflation.
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parametric resonance with a scalar field [189]. From the Lagrangian density of scalar electrodynamics conformally coupled
to gravity,

L = −
1

16π
FabF ab

− (∂a + ieAa) ΦĎ

∂a

− ieAaΦ − V

ΦĎΦ


, (5.1.1)

where Aa is the gauge potential, Fab = ∂aAb − ∂bAa and Φ a complex (i.e., charged) scalar field, we obtain the evolution
equation for the gauge field.Working in the Coulomb gauge (∇ ·A = 0) andwriting the homogeneous part of the scalar field
as Φ = exp [iΘ (t)] ρ (t) /

√
2, the evolution equation of the fluctuations in the spatial component of the gauge potential,

δA, reads

δ ¨A+HδȦ −
∇

2

a2
δA + 4πe2ρ2δA = 4πδj, (5.1.2)

where δj is a source term that can be non-null when statistical correlations of the electric currents are considered [190,191].
In Fourier space and in terms od conformal time, η with dη = dt/a (t), the homogeneous part of Eq. (5.1.2) is

δA′′

k + ω2
k (η) δA′′

k = 0, (5.1.3)

with ω2
k (η) = k2 + 4πe2a2 (η) ρ2 (η), and where the primes denote derivatives with respect to η. Expression (5.1.3)

describes a harmonic oscillator with time-dependent frequency, which during the oscillation of the complex scalar field
can be rewritten as a Mathieu-like equation. The solutions of that equation exhibit exponential increase, i.e., they are
proportional to eµkη (µk is the Floquet exponent) for some frequency intervals known as resonant bands. The features of
the parametric resonance depend strongly on the time evolution of the homogeneous scalar field, which in turn depends
on the form of V


ΦĎΦ


. For potentials of the form V = λn


ΦĎΦ

2n, Finelli and Gruppuso found that, for a quadratic
potential, parametric resonance is efficient when 4πe2ρ2

≫ λ1 and it is stochastic and broad, with the largest µk occurring
for small k [178]. For a quartic potential, Eq. (5.1.3) becomes a Lame equation [192]. The resonance features and µk depend
on e2/λ2 [192]. In particular modes with k2 ≪ λ2ρ̃

2
0 are resonant for 1/2π < e2/λ2 < 3/2π (ρ̃0 being the initial value of

ρ̃). For a symmetry breaking potential, i.e., V = m2ΦĎΦ + λ

ΦĎΦ

2 and in the case of m2 < 0, the gauge field acquires
an effective mass proportional to


m2/λ, a fact that can completely inhibit the resonance in an expanding universe. For a

general value ofm2, the gauge coupling affects the resonance structure of the scalar field and it is not possible to determine
the resonant bands for the imaginary part of the scalar field, as it would be the case if the charged scalar fields were not
coupled to the gauge field.

Another possible coupling is the one described by the Lagrangian density

L = −
1

16π
FabF ab

− ∂aφ∂aφ − V (φ) −
g
4
φFabF̃ ab, (5.1.4)

where φ may represent an axion or a general pseudo-Goldstone boson. If the scalar field performs coherent oscillations, the
evolution equation of the transverse circularly polarized photons, Ā±k, is again given by a Mathieu-like equation

δĀ′′

±k +

k2 ± 4πgφ′k


δĀ±k = 0. (5.1.5)

In this case the resonance occurs when k ∼ 4πgφω, with ω being the oscillation frequency of φ (which is very small). For
V = λφ4/4 and 4πgf = 1 (with f being the Peccei–Quinn symmetry scale), Ā±k grows linearly for k/ω ≪ 4πgf [189].

All the previous description did not take into account dissipation due to the presence of other charged fields, i.e., plasma
effects. When they are taken into account (basically in the form of electric conductivity), their effect on the magnetic field
depends on the wavelengths considered. For wavelengths larger than the plasma collision length, the equations acquire
a damping term proportional to the conductivity, 4πaςδA′

k, with a = a(η) being the scale factor of the universe and ς
the conductivity. If aς is constant (as is the case considered in the literature, where ς ∝ T ∝ 1/a [191]) and larger than
the Floquet exponent, the parametric resonance could be completely suppressed. For wavelengths shorter than the plasma
collision length, the plasma frequency changes as ω2

k (η) → ω2
k (η) + 4πe2n (η) /m, with n (η) being the number density

and m the mass of the plasma particles. This term plays the role of an effective mass that decays as a−3, thus allowing for
resonance, especially for large coupling constants.

Whether or not primordial magnetic fields are amplified by parametric resonance during preheating, depends on the
existence of an oscillating scalar or axion field, which the e.m. field is coupled to. If, for example, that charged scalar field is
the inflaton, themaximumamplifying factor obtained for the gauge field is∼1012, which is not enough to give theminimum
seed fields that can sustain a dynamo action [189].

Exponential growth of large-scale magnetic fields could also be achieved by considering the Lagrangian [35]

L =
R

16πG
−

1
4
FabF ab

−
β

2
RAaAa

+ Linflation, (5.1.6)
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with R the scalar curvature and β a real constant. From the action S =

d4xL, it is obtained that the evolution equation for

the Fourier components of the magnetic field is given by [193],

δB′′

k +

k2 + Θ (η)


δBk = 0, (5.1.7)

with

Θ (η) = 6β
a′′

a
. (5.1.8)

When the inflaton enters the oscillatory regime, the scalar curvature, given by

R =
8π
m2

pl


4V (φ) −

φ′2

a2


, (5.1.9)

also oscillates and this fact can lead to efficient amplification of themagnetic fluctuations. Considering V (φ) = (1/2)m2φ2,
we have that during reheating, the inflaton condensate evolves as

φ =
mpl

√
3πmt

sin (mt) , (5.1.10)

and therefore the scalar curvature as

R ≃
4
3t2

[1 − 3 cos (2mt)] . (5.1.11)

Defining Bk = a1/2Bk, Eq. (5.1.7) recasts into [193]

d2δBk

dz2
+ [Ck − 2q cos (2mt)] δBk = 0, (5.1.12)

with

Ck =
2
3
q +

k2

m2a2
, q = 12

β

m2t2
, (5.1.13)

when β > 0, and

Ck = −
2
3
q +

k2

m2a2
, q = 12

|β|

m2t2
, (5.1.14)

for β < 0. Parametric resonance occurs when q . 1 initially [193], but to get relevant growth of Bk one needs |β| & 1.
However, for |β| ≫ 1 the growth of the magnetic fluctuations is suppressed [194]. In the former case, as the superhorizon
δBk modes are exponentially suppressed during inflation, we do not expected to obtain high intensities from parametric
amplification. On the other hand, for sub-Hubble scales, the suppression is weaker and consequently magnetic fields can
be amplified during preheating. For the latter case, namely when β < 0, the amplification is mainly due to inflation rather
than parametric resonance. When finite electric conductivity is taken into account, a term of the form −ςeaδB ′

k is added
to the r.h.s of Eq. (5.1.7), which counteracts the parametric amplification of the fields. In summary, despite the exponential
growth of the magnetic fluctuations due to parametric resonance, the main amplification occurs during inflation [193].

The possibility of further amplification by parametric resonance during reheating of a seed hypermagnetic field generated
during inflation,was investigated byDimopoulos et al. [195]. However the authors also concluded that the fields do not grow
substantially during preheating.

5.1.2. Magnetogenesis by stochastic electric currents
Another possibility to induce magnetic fields during reheating is tied to the fact that abrupt changes in the metric at

that stage may result in the abundant creation of charged particles. This could generate stochastic currents, which would
eventually decay into the Maxwell field [190,191]. As the inflaton is a gauge singlet, it will not decay directly into charged
species, so this mechanism assumes the existence of another field, a charged one, that is in its vacuum state during inflation.
It becomes a particle state by the gravitational field, due to the changes in the equation of state of the inflaton [196]. Spin
1/2 particles, such as the electrons, would be conformally invariant at the high energies prevailing during inflation, and
consequently are not created in large numbers. Therefore, we must seek for a minimally coupled charged scalar field, of
which none is included in the standard model but only in its supersymmetric extensions [197].

The scalar field can be decomposed into its real and imaginary parts as Φ = (φ1 + φ2) /
√
2, and the associated current

as

Ja = Ja1 + Ja2 , (5.1.15)
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where

J1k = ie (φ1∂kφ2 − φ2∂kφ1) (5.1.16)

and

J2k = −e2Ak

φ2
1 + φ2

2


. (5.1.17)

For a crude estimate of the field we can neglect J2k. Assuming that Ohm’s law holds, J i1 = ς (η) E i, where ς (η) is the electric
conductivity. Then, the equation of the magnetic field is

∂2
η + a (η) ς (η) ∂η − ∇

2 Ba
=

∇̄ × J̄1

a
. (5.1.18)

Because the current is stochastic, the induced field must be evaluated through its two-point correlation function,
Bi

xa

Bi′

x′a

= H−4


dyady′a

(2π)4
Dret xa, yaDret x′a, y′aNii′


ya, y′a , (5.1.19)

where the ‘‘noise kernel’’ Nii′ is the Hadamard two-point function

Nii′

ya, y′a

=


∇̄ × J̄1

i


xa

,

∇̄ × J̄1


i′

x′a , (5.1.20)

and Dret (xa, ya) is the retarded propagator of Eq. (5.1.18). We are interested in fields coherent over a scale λ, so the spatial
integral in Eq. (5.1.19) must be weighed by a window function, W (λ), that filters out frequencies higher than the one
associated to the field’s scale of coherence, λ−1. After weighing, the magnetic energy density stored today in a region of
size k−1 can be directly inferred, giving


B2

λ


tod ∼ e2

H4λ−4

ς2
0m

2
0
ln2

2
m0

H


m2

0

H2


1 + τ1/2

2
+ e

T 2
rh

H2
+ 2

m2
0

H2


1 + τ1/2

2 (5.1.21)

where m0 is the bare mass of the scalar field, Trh the reheating temperature of the universe (i.e., the temperature at the
beginning of radiation dominance), ς0 = e2Trh the electric conductivity at the beginning of radiation dominance, τ1/2 the
mean lifetime of the current and H the Hubble parameter, treated as time independent during inflation. Observe that the
field intensity depends very weakly on τ1/2. Assuming instantaneous reheating, Trh =


Hmpl an estimate of ⟨Bλ⟩tod on a

comoving galactic scale λgal ≃ 1 Mpc is

⟨Bλ⟩tod ∼ e3
H3/2λ−2

gal

m1/2
pl m0

≃ 10−51 G (5.1.22)

which is about 15 orders of magnitude weaker than the minimum required to feed the galactic dynamo.
Calzetta et al. have considered the effect of the ‘‘London current’’, Eq. (5.1.17) [198]. In this case the evolution equation

of the magnetic two-point function shows two kernels, a local and a non-local one. Of these, the local (non-dissipative)
one dominates over the non-local (dissipative) one by several orders of magnitude throughout reheating, which means that
dissipation in this system is not due to ordinary electric conductivity.

The equations for the magnetic field can be recast in the form a Langevin equation, which due to the local kernel looks
like the London equation for a superconducting medium:

d2

dτ 2
+ C2F 2 [z (τ )]


Bs (τ ) = F 2 [z (τ )] . (5.1.23)

Here F (z) = z1/2γ J3/2γ (z), C2
= ẽ2z−4/γ

0 , with ẽ2 = e223/γ−1Γ 2 [(2γ + 3) /2γ ] ln (∆/Υ ), γ being a parameter that
determines the temperature evolution during reheating, ∆ = g1/2Trh/H , (with 0 ≤ g ≤ 1 being a coupling constant of the
mass to the thermal bath and Trh being the reheating temperature), andΥ is the dimensionless wavenumber corresponding
to the original inflationary patch. Finally, J3/2γ (z) is a spherical Bessel function and Γ 2 (· · ·) a Gamma function.

Due to this current, the heavily amplified long-wavelength modes of the scalar field act as a Landau–Ginzburg order
parameter in a superconductor, and as in the Meissner effect, the photon acquires a time-dependent mass. This allows for
an exponential growth of theMaxwell field during reheating. The obtained intensities, however, are tooweak (∼10−53 G) to
seed the galactic dynamo. Besides, in this model the amplification is very sensitive to the details of the reheating scenario,
so it is not possible to obtain generally valid estimates for the resulting magnetic intensity.

5.1.3. Primordial magnetic fields from metric perturbations
Amplification of electromagnetic vacuum fluctuations can also be achieved by scalar perturbations in the metric

during the transition inflation–reheating, i.e., by breaking the conformal flatness of the background geometry, rather
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than the conformal invariance of the Maxwell field equations [193,199]. The main effect is due to superhorizon scalar
perturbations, specially by those modes that re-enter the horizon right after the end of inflation. These fluctuations create
an inhomogeneous background, in which the magnetic field evolves in a non-conformally invariant way: the mode–mode
coupling between electromagnetic andmetric fluctuationsmixes positive and negative frequencymodes of the former field,
thus breaking its conformal invariance.

The line element of a flat FLRWmodel with scalar metric perturbations, in the longitudinal gauge, reads [200,199]

dS2 = a2 (η)

− (1 + 2Φ) dη2

+ (1 − 2Φ) dxidxi

, (5.1.24)

with Φ

η, xi


representing the gauge invariant gravitational potential. To first order in the cosmological and e.m. perturba-

tions, δAi, the evolution equation of the Fourier transform of the latter is [199]

d2

dη2
δAi


k̄, η


+ k2δAi


k̄, η


− Ji


k̄, η


= 0, (5.1.25)

with Ji

k̄, η


being a source term that depends only on the Fourier transform of the metric perturbations and on their time

derivatives [199]. The resulting field strength depends on the power spectrum for super-Hubblemetric perturbations, which
is given by [199]

PΦ (k) = A2
S


k
kC

n−1

, (5.1.26)

where AS ≃ 5.10−5 sets the normalization at the COBE scale (λC ≃ 3000 Mpc). At decoupling, the field strength on a
coherence scale corresponding to a galaxy, kG, is

Bdec
kG | ≃

23/2 (2π)3/4 AS
√
3na2dec

kn/2maxk
3/2
G

k(n−1)/2
C

, (5.1.27)

where kmax is a cut-off that must be introduced in the case of a blue spectrum (n > 1) to avoid excessive primordial black
hole production, and that for negative tilt, is related to the minimum size of the horizon (kmax ≤ aIHI , I denoting the end of
inflation). Observe that Eq. (5.1.27) is a function of kmax, i.e., of the mechanism that generated the perturbations. The result-
ing magnetic field spectrum is thermal (Bk ∼ k3/2) in the low-momentum tail. The relation between the energy densities in
magnetic field and photons, for a suitable wavenumber kG, at decoupling turns out to be

ργ

ρB
(kG) ≃ 1.4 × 1036


kG
kmax

n

. (5.1.28)

The obtained intensities are upper limits, as dissipative effects were not taken into account when deriving expression
(5.1.27).

Scalar metric perturbations can grow exponentially during preheating [201,202], thus inducing strong enhancement of
magnetic fields. Let us consider the Lagrangian [193]

L =
R

16πG
−

1
4
FabF ab

−
1
2
∂aφ∂aφ − V (φ) −

1
2
∂aχ∂aχ −

1
2
g2φ2χ2, (5.1.29)

with V (φ) = (1/4) λφ4, φ being the inflaton and χ the scalar field it is coupled to. In this case metric perturbations are
expected to grow due to enhancement of the scalar field perturbations, and in turn the former would stimulate the growth
of magnetic field perturbations through gravitational scattering.

Assuming that on super-Hubble scales Φ depends only on time, and adopting the Coulomb gauge (A0 = 0, ∂ iAi = 0),
the Fourier component Ai (k) of the gauge potential reads

A′′

i (k, η) + k2Ai (k, η) = 2Φ ′A′

i (k, η) . (5.1.30)

Defining Ãi (k, η) = (1 − Φ) Ai (k, η), to eliminate the term in A′

i (k, η), Eq. (5.1.30) recasts into

Ã′′

i (k, η) + k2Ãi (k, η) = Φ ′′Ãi (k, η) , (5.1.31)

with its solution given in integral form by

Ãi (k, η) = Ã(0)
i (k, η) +

1
k

 η

η0

Φ ′′Ãi

k, η′


sin

k

η − η′


dη′. (5.1.32)

Decomposing the scalar fields as ϕ → ϕ + δϕ (where ϕ denotes either φ or χ ), the evolution equation for the Fourier
transformed metric perturbations reads

Φ̇ (k, η) + HΦ (k, η) = 4πG

φ̇ (k, η) δφ (k, η) + χ̇ (k, η) δχ (k, η)


. (5.1.33)
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When the fluctuations δχ (k, η), with low k, are excited during preheating, the corresponding metric and inflaton
perturbations, Φ (k, η) and δφ (k, η) respectively, grow on large scales and thus enhance the magnetic fluctuations [193].
However, with the increase of g2/λ, the long-wavelength modes δχ (k, η) are suppressed during inflation. Sub-Hubble
fluctuations, on the contrary, do not suffer from suppression and exhibit parametric amplification during reheating [203].
Therefore, themode–mode coupling between small-scalemetric perturbations and large-scalemagnetic fields in Eq. (5.1.30)
can enhance the latter. This model, however, has many uncertainties and complexities, which require further research
because they make it difficult to obtain reliable estimates for the final magnetic intensities.

5.2. Magnetogenesis in phase transitions

The actual state of the particles in our universe is the result of phase transitions that occurred in the early phases of
the expansion. At least two phase transitions are believed to have taken place in that epoch: the electroweak (EW — at
Tew ∼ 100 GeV) and the quantum chromodynamical (QCD — at TQCD ∼ 200 MeV). In the former case, the transition is from
a symmetric, high temperature phase with massless gauge bosons to the Higgs phase, in which the SU (2) × U (1) gauge
symmetry is spontaneously broken and all the masses of the model are generated.

In the QCD case, the transition is from a quark–gluon plasma to a confinement phase with no free quarks and gluons.
At the same energy scale, it is expected that the global chiral symmetry of QCD with massless fermions is spontaneously
broken by the formation of a quark pair condensate.

First order phase transitions occur via bubble nucleation. Domains of new phase of broken symmetry form, whose sizes
are at most of the order of the horizon at that time. As the horizons grow, different domains come into causal contact
and bubble walls collide with each other. Magnetogenesis occurs through violent processes that take place during these
collisions: reconnection ofmagnetic field lines carried by thewalls, MHD dynamos induced by the turbulent flows produced
by the collisions, etc. In every case, the question is whether the generated fields can explain the intensity and morphology
of the observedmagnetic fields, or to seed further amplificationmechanisms, such as turbulent dynamos that could operate
within galaxies. In general, the magnetic fields that are produced during phase transitions can be very strong, but typically
have very small coherence lengths.

Second order transitions occur in a smooth and regular way, with approximate local thermal equilibrium being
maintained throughout the process. In spite of this, magnetogenesis can also be possible as shown below.

It was recently proved [36] that the QCD transition in the hot universe was an analytic cross-over rather than a phase
transition. In this sense, the results on magnetogenesis obtained by considering the QCD transition as first order are invalid
and new research needs to be done. We shall therefore review in this section only the EW phase transition, which also
seems to provide a very suitable scenario for magnetogenesis, since it facilitates the separation between electric and
magnetic fields as classical fields. Besides, while the Standard Model predicts a smooth cross-over for this transition, its
extensions can give a strong first order phase transition, which is a fundamental ingredient for electroweak baryogenesis
and the generation of primordial magnetic fields.19 Supersymmetric extensions of the Standard Model have been the
most intensively studied [208–213], but it is also possible to get a strong transition from more generic two-Higgs doublet
models [214,215], from technicolor theories [216], etc. [217–220].

Phase transitions in the early universe lead to another class of mechanism for generating primordial magnetic fields,
based on the Kibble mechanism [221], i.e., on the generation of cosmic strings. If the vacuum manifold M of the broken
gauge theory that exhibits a phase transition has a nontrivial first homotopy group [222,223], then a cosmic string network
will form generically [221]. This network has a characteristic length scale ξ (t), which expands with the expansion of the
universe. Infinitely long strings and loops are formed, the smallest of the latter decaying away via gravitational radiation. The
result is a scaling solution, in which the string properties such as ξ (t) are proportional to the time passed [224–228]. This
means that, if cosmic strings can produce randomly oriented magnetic fields, these could be coherent by the Vachaspati
mechanism [229] over galactic scales at the time of galaxy formation, as required by the dynamo paradigm. In the last
subsection we review some works done on this mechanism.

Recently, a new mechanism of early magnetogenesis was proposed by Dolgov et al. [230], whereby ferromagnetic
domains of condensedW bosons would form in the broken phase of the standard electroweak theory. These domains could
create large-scale magnetic fields that would survive after the decay of the domains due to flux-freezing. Although the
authors do not give estimates for the produced fields, their work points towards a new direction that should be explored
further.

5.2.1. Magnetogenesis in the electroweak phase transition
In his seminal work of 1983 [231], Hogan was the first to propose a mechanism of magnetogenesis based on a small-

scale dynamo induced by a first order phase transition in the early universe. His aim, however, was not to explain the fields
observed in galaxies, but to study the effect of the induced fields on structure formation. The dynamo that Hogan proposed

19 In the Standard Model of particle physics, the electroweak phase transition is of first order if the Higgs boson mass hasmH < 72 GeV [204–206]. Also,
to suppress sphaleron processes in the broken phase, would actually require that mH < 35 GeV. However, the current experimental limit of mH is well
above these values, atmH > 114 GeV [207], thus turning the Standard Model an inadequate theory for baryogenesis.
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would be induced in the wall of the bubbles by the ordered release of free energy during the transition. Each bubble would
be an independent dynamo, producing fields correlated only on the scale of the bubble radius. The result is a pattern of
randomly oriented field lines that, properly averaged, would produce a large-scale field spanning over regions that are not
causally connected, i.e. coherent on larger scales, whose spectrum is of the form Bl ∝ l−3/2 i.e., a dipole field, but of weaker
intensity.

Since then, several mechanisms for magnetic field generation by first order phase transitions have been proposed in
the literature. In 1995 Baym et al. [232] proposed an also dynamo-based mechanism, whereby seed fields (produced by
thermal fluctuations) are amplified by a turbulent dynamo induced by the collision of supersonic shock waves created by
the expansion of the walls of the broken symmetry bubbles. Their work was framed within the standard model, since at the
time it was still believed that a first order phase transition was possible in it. In this sense, the resulting magnetic intensities
would be incorrect.

Concretely, when the expansion of the universe supercooled the cosmos below a critical temperature, of the order
Tcr ∼ 100 GeV, then (at random locations) the Higgs fields tunnels from the unbroken SU (2) × U (1)Y phase to the broken
U (1)em phase, forming bubbles that expand and convert the false vacuum energy into kinetic energy. As the shock fronts
collide, turbulence is developed in the cones associated to the bubble intersection, with Reynolds number

Re ≃
vwRb

λ
, (5.2.1)

where vw is the wall velocity, Rb is the size of a bubble at collision time and λ is the scattering length of fluctuations in the
electroweak plasma. Baym et al. found that for scales smaller than Rb, Re ∼ 1012. Assuming vw ∼ vfluid ∼ 10−1, that the
typical bubble radius after the completion of the phase transition is Rb ∼ fbH−1

ew (with fb ∼ 10−2
− 10−3 being the fractional

size andH−1
ew ∼ mPlg

−1/2
∗ T−2

c ∼ 10 cm that the event horizon at the electroweak scale —mPl is the Planckmass and g∗ ∼ 102

is the number of massless degrees of freedom in the matter) and that λ ∼ Tgewα2 |logα| (with α the fine structure constant
and gew ∼ g∗ the number of degrees of freedom that scatter by EW processes), Baym et al. obtained

Re ∼ 10−3mPl

Tc
α2

|logα| ∼ 1012. (5.2.2)

Such a large Reynolds numbermeans that turbulence is fully developed on scales smaller than Rb. Assuming that the electric
conductivity is large at that epoch [49], strong magnetic turbulence should exist and in that situation kinetic and magnetic
energies are in equipartition, allowing us to estimate that

B2 (Rb) ∼ g∗T 4
c v2

fluid. (5.2.3)

To obtain the intensity of the large-scale field, Baymet al. assumed that the small-scale field formed a pattern of continuously
distributed dipoles, with distribution being a Gaussian. Therefore the correlation function of the dipole density is

ν i (0) ν j (r)

= κδijδ3 (r) , (5.2.4)

while the one of the magnetic for r ≫ fbH−1
ew reads


Bi (0) Bi (r)


≃

e2κ
r3

log

Hewr
fb


. (5.2.5)

From Eqs. (5.2.3) and (5.2.5), Baym et al. obtained that


B2

R ∼ v2
fluidg∗T 4

c


fb

HewR

3

log2

HewR
fb


, (5.2.6)

where ⟨· · ·⟩R means averaging on a scale R. The present time estimate for thismagnetic field on a galactic scale, lgal ∼ 109 AU,
is B


lgal


∼ 10−17
− 10−20.

In 1991Vachaspati [229] proposed amechanismofmagnetogenesis based on second order cosmological phase transition.
These transitions would produce domains of different vacuum expectation values for the Higgs field, with these differences
amounting to gradients in the field. The latter would ultimately lead to electromagnetic fields after the completion of the
transition. Thismechanism can produce fields associated to other (unbroken) symmetries (like SU(3)) aswell.When applied
to the electroweak transition, and assuming that the initial correlation scale,χi ∼ 2 (gTi)−1, is of the order of the inversemass
of the W boson, with Ti ≃ 102 GeV, an initial intensity of B ∼ gT 2

i /2 ≃ 1023 G is obtained for that correlation length. The
initial energy density of the field is comparable to that of the universe, ΩB (ti). For a region of size ℓi = Nχi, with N ≫ 1,
the Higgs field is randomly oriented. Consequently the initial magnetic intensity on that scale would be BN ∼ gT 2

i /4N ,
which at the electroweak scale gives BN (tew) ∼ 1023N−1 G. At the QCD scale, we finds BN


tQCD


∼ 1018N−1 G and today

BN

ttoday


∼ 10−6N−1 G (with N > 1013 in all cases). For a scale of 100 kpc today, N = 1024 and thus B ∼ 10−30 G.

Thework of Vachaspati was questioned by Davidson in Ref. [233]. She computed the electric current due to the dynamics
of the Higgs field and showed that it vanishes during the EW phase transition. Her conclusion was that no large-scale
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magnetic fields are generated by the classical rolling of the Higgs vacuum expectation value during the electroweak phase
transition. Later, in 1998, Grasso and Riotto [234] reanalyzed the generation of magnetic fields during the EW phase
transition and found that the Vachaspati mechanism was plausible. Grasso and Riotto analyzed the two possibilities for the
phase transition: first order and second order. They showed that the magnetic induction is connected to some semiclassical
configurations of the gauge fields, such as electroweak Z-strings andW -condensates. The initial Higgs field configuration is

Φin (X) =
1

√
2
exp


−i

θ (X)

2
naτ a


0

ρ (X) eiϕ/2


, (5.2.7)

with τ a representing the Pauli matrices, na a unit vector in the SU (2) isospace, θ (X) the U(1) Higgs field phase and ρ (X)
the modulus of the Higgs field. The equation of motion for the SU (2) gauge field in the adjoint representation is

DcF a
cb = −g |ρ|

2 ∂bθ (X)

na

− nc φ̂c φ̂
a


, (5.2.8)

where it is assumed that the initial gauge fields W a
µ and their derivatives are zero at t = 0. Also, φ̂ ≡ ΦĎτ aΦ/ΦĎΦ =

cos θφ̂0 + sin θ n̂ × φ̂0 + 2 sin2 (θ/2)

n̂ · φ̂0


n̂, with φ̂T

0 ≡ − (0, 0, 1). As n̂ does not depend on the space coordinates, it is

always possible to assume that it is perpendicular to φ̂0. In other words, φ̂ can be always obtained by rotating φ̂0 at an angle
θ in the (φ̂0, n̂)-plane. Then, Eq. (5.2.8) becomes

DcF a
cb = −g |ρ|

2 ∂bθ (X) na. (5.2.9)

This clearly shows that only the gauge field component along n̂, namely Aa = nbWab is created by a nonvanishing gradient
of the phase between the two domains. When the full SU (2)×U (1)Y group is considered, it is no longer possible to choose
n̂ arbitrarily, because the different orientations of n̂, with respect to φ̂0, correspond to different physical situations. Setting n̂
parallel to φ̂0 and assuming that the charged gauge field does not evolve significantly, Grasso and Riotto found the following
complete set of evolution equations, which is valid for a finite (though short) time after the bubbles first contact:

∂aF Z
ab =

g
2 cos θW

ρ2 (X)


∂bϕ +

g
2 cos θW

Zb


, (5.2.10)

and

dada

ρ (X) eiϕ/2

+ 2λ


ρ2 (X) −
1
2
η2


ρ (X) eiϕ/2
= 0. (5.2.11)

Here da = ∂a + i g
2 cos θW

Za, with η being the vacuum expectation value of Φ and λ the quartic coupling. Expressions (5.2.10)
and (5.2.11) are the Nielsen–Olesen equations of motion [235]. Their solution describes a Z-vortex with ρ = 0 at its core
[236,237]. The geometry of the system implies that the vortex is closed, forming a ring whose axis coincides with the
conjunction of the bubble centers.

To determine the magnetic field produced during the process described above, it is necessary to give a gauge invariant
definition of the electromagnetic field in the presence of a nontrivial Higgs background. Grasso and Riotto chose

∂aF em
ab = 2 tan θW∂a [Za∂b log ρ (X) − Zb∂a log ρ (X)] , (5.2.12)

while Tornkvist used [238]

F em
ab ≡ − sin θW φ̂cF c

ab + cos θW F Y
ab +

sin θ

g
εcdeφ̂

c

Daφ̂

d 
Dbφ̂

e
, (5.2.13)

obtaining no electric current and so no magnetic field. It must be stressed that both definitions (5.2.12) and (5.2.13) fulfill
the requirement that they reproduce the standard definition in the broker phase with an uniform Higgs background. Grasso
and Riotto noted that the presence of an inhomogeneous W -condensate, produced by string decay, gives rise to electric
currents that can sustain magnetic fields even after the Z-string has disappeared.

An attempt to predict the strength of the magnetic field at the end of the EW phase transition was done by Ahonen and
Enqvist [239] and by Enqvist [240], who analyzed the formation of ring-likemagnetic fields in collisions of bubbles of broken
phase in an Abelian Higgs model. Under the assumption that magnetic fields are induced by a process similar to the Kibble
and Vilenkin mechanism [241], it was concluded that a field of the order of B ≃ 2 × 1020 G, with a coherence length of
about 102 GeV−1, could be induced. In addition, assuming that the plasma was endowedwith MHD turbulence, Ahonen and
Enqvist found that the coherence scale could be enhanced by the inverse cascade of the magnetic helicity, and so a field of
Brms ≃ 10−21 G on a comoving scale of 10 Mpc could be present today. As stated earlier, however, the problem with first
order phase transitions in the standard model is that they are incompatible with the experimental lower limit for the Higgs
mass.

Grasso and Riotto also analyzed the creation of magnetic fields when the EW phase transition is of second order. In
this case domains where the Higgs field is physically correlated are formed near the critical temperature. The formation
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of topological and non-topological vortices, is a common phenomenon in second order phase transitions via the Kibble
mechanism. It is also known that the non-topological vortices share many common features with the electroweak
strings [242]. In this sense, Grasso and Riotto argued that electroweak strings are formed during the second order EW phase
transition. To estimate the density of vortices (and consequently the mean magnetic field), it is necessary to know the
Ginzburg temperature, TG. This sets the threshold at which the thermal fluctuations of the Higgs field, inside a given domain
of broken symmetry, are no longer able to restore the symmetry. The Ginzburg temperature was computed by the authors
of Ref. [234], after comparing the expansion rate of the Universe with the nucleation rate per unit volume of sub-critical
bubbles of symmetric phase with size equal to the correlation length of the broken phase. The latter is given by

Γub =
1
ℓ4
b
e−Sub3 /T , (5.2.14)

where ℓb is the correlation length in the broken phase and Sub3 is the high temperature limit of the Euclidean action [243].
For the EW phase transition, TG ≃ TC , and the corresponding size of a broken phase domain is determined by the correlation
length at T = TG, i.e.,

ℓb (TG)−2
= V ′′ (⟨φ (TG)⟩ , TG) , (5.2.15)

where V (φ, T ) is the effective Higgs potential. Using the fact that ℓb (TG)2 depends weakly on MH , Grasso and
Riotto estimated the magnetic field strength, on a scale ℓb (TG) at the end of the EW phase transition, to be Bℓ ∼

4e−1 sin2 θWℓ2
b (TG) ∼ 1022 G. To obtain the intensity on cosmologically interesting scales, the authors of Ref. [234] followed

the procedure of line averaging suggested by Enqvist and Olesen, i.e., ⟨B⟩rms,L ≡ Bℓ/
√
N , where N is the number of domains

crossed by line, obtaining that a field coherent on a scale of 1Mpc today would have an intensity of B0 (1 Mpc) ∼ 10−21 G. It
must be pointed out, however, that all these studies do not take into account the dissipative effects of the primordial plasma.
Consequently, the corresponding numerical results should be treated as upper limits.

The mechanism proposed by Vachaspati [229] and later analyzed by Grasso and Riotto [234] (see also [32]) was recently
numerically confirmed and improved by Diaz-Gil et al. [244,245]. The authors considered the full SU (2)⊗U (1)model in the
framework of hybrid inflation. After a short period of hybrid inflation that ends at the EW scale, where nonlinearities in the
Higgs and gauge fields can be neglected, tachyonic preheating develops and nonlinearities in the fields cannot be neglected
anymore. During this period the Vachaspati mechanism operates, andmagnetic string-like configurations appear due to the
gradients in the orientation of the Higgs field. The important feature of the induced magnetic fields is that they are helical,
i.e., they possess a non-null r.m.s. magnetic helicity. During the subsequent phase of (first order) EW symmetry breaking, the
magnetic fields are squeezed in string-like structures localized in the regions between bubbles, where the gradients of Higgs
fields are still large. The evolution of the coherence scale of these fields can be tracked for a short period of time after the
end of the phase transition. At that time it is important to track the evolution of the low-momentum part of the spectrum,
which is the one that can seed the fields for galaxies and clusters of galaxies. It is seen that it carries a fraction of ∼10−2 of
the total energy density, which would be enough to explain the magnetic fields observed in clusters. The correlation length
grows as fast as the particle horizon (i.e., linearly in time) and this behavior is interpreted as an indication that an inverse
cascade of magnetic helicity is in operation. However, it is not possible to extrapolate this behavior to later times, due to our
limited knowledge on the primordial plasma features.

Stevens and Johnson [246,247] analyzed the possibility of magnetogenesis by a first order EW phase transition, possible
for some choices of parameters in the minimal supersymmetric Standard Model (see also [248]). They considered the
Lagrangian

L = L1 + L2 + (leptonic, quark and supersymmetric partner interactions), (5.2.16)

with

L1 = −
1
4
W i

abW
i ab

−
1
4
BabBab (5.2.17)

and

L2 =

i∂a −
g
2
τ · Wa −

g ′

2
Ba


Φ

2 − V (Φ, T ) . (5.2.18)

Also, T represents the temperature, whileW i
µν and Bµν are given by

W i
ab = ∂aW i

b − ∂bW i
a − gεi

jkW
j
aW

k
b (5.2.19)

and

Bab = ∂aBb − ∂bBa, (5.2.20)

respectively. In the previous equations, W i (with i = +, −) are the W+, W− fields, Φ is the Higgs field and τ i is the SU (2)
generator (fermions are not considered in this model). In the framework of the MSSM the bubbles that consist of a region of
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space filled by the Higgs field with a cloud of the other constituents of the MSSM in the broken phase. From this Lagrangian,
one obtains the linearized equations of motion with O (3) symmetry, which are suitable to study collisions where the Higgs
field is relatively unperturbed from its mean value within the collision volume. Stevens and Johnson [247] found that the
coherent evolution of the charged W fields within the bubbles is the main source of the electric current that generates the
magnetic field. In their model, fermions are taken into account as a background that provides dissipation through electric
conductivity. They numerically integrated the equations of motion of the model, paying special attention to the role of the
surface thickness of the bubbles, finding that the main sensitivity is due to the steepness of the bubble surface: the steeper
the transition, the more enhanced the seed field becomes. Despite this, the authors of Ref. [247] did not attempt to give the
present day value of the generated magnetic field, because of uncertainties in the properties of the host plasma.

5.2.2. Magnetogenesis from cosmic strings
The interaction between cosmic strings and magnetic fields was first discussed in 1986 by Ostriker et al. [249], while

their connectionwith primordialmagnetogenesiswas first suggested by Vachaspati in 1991 [229]. Later themechanismwas
further developed by Brandenberger et al. [250], also for superconducting cosmic strings, who showed that thesemodels are
severely constrained by cosmological arguments: the only stable configurations for those strings are springs and vortons,
which produce matter overdensities in the same manner primordial magnetic monopoles do. So, these models had to be
ruled out.

In 1999 Brandenberger and Zhang [251] studied magnetogenesis by anomalous global strings and discussed for the first
time the importance of the coherence length in these models. The authors proposed a mechanism based on the realization
that anomalous global strings couple to electromagnetism [252] through an induced Fµν F̃µν term in the low energy effective
Lagrangian and therefore magnetic fields can be generated. The major advantage of the mechanism is that the coherence
scale of the induced magnetic fields is basically the curvature radius of the inducing string. The mechanism is realized
within QCD, namely there exists a class of string-like classical solutions of the linear sigma model, that describes strong
interactions below the confinement scale, called pion strings [253]. At low temperatures those strings are not topologically
stable, decaying at a temperature Td ∼ 1 MeV, but within the plasma they can stabilize because the plasma interactions
break the degeneracy among the three pions.

Since a pion string is made of σ and π0 fields, it is neutral under the Uem (1) symmetry. However, the π0 couples to
photons via the Adler–Bell–Jackiw anomaly. In the linear sigma model, the effective coupling of π0 to photons is obtained
from the contribution of the quark triangle diagram [254]. At low energies only pions and photons are important, hence the
effective Lagrangian to leading order reads

Llow =
f 2π
4
Tr

∂aΣ

Ď∂aΣ

−

1
4
FabF ab

−
Ncα

24π
π0

fπ
eabcdFabFcd, (5.2.21)

where Nc = 3, Σ = exp (iτ̄ · π̄/fπ ), τ̄ are the Pauli matrices and α is the electromagnetic fine structure constant. From this
Lagrangian one also obtains the classical equation of the electromagnetic field

∂aF ab
= −

α

π
∂a


π0

fπ


F̃ ab. (5.2.22)

The key effect is due to the anomaly term in Eq. (5.2.22). Charged zero modes on the string will induce a magnetic field
circling the string that falls off less rapidly, as a function of the distance from the string, than it is classically expected. Zero
mode currents are automatically set up by the analogue of the Kibble mechanism [221] at the time of the phase transition
and therefore magnetic fields coherent in a scale of the string size are automatically generated. The coherent magnetic field,
as a function of the distance r from the string, can be expressed as

B (r) = Nc
en
2π


r
r0

α/π 1
r

(5.2.23)

with n being the number density of charge carriers on the string, r0 giving thewidth of the string and α ≪ 1. By dimensional
analysis, Brandenberger and Zhang obtained that at the time tc = tc , when the strings form, r0 ∼ T−1

c and n ∼ Tc . The initial
correlation length of the string network, ξ (Tc) increases rapidly, approaching a scaling solution of the form ξ (t) ∼ t . During
this evolution the charge density is diluted as the strings stretch, while at the same time the merger of small strings into
larger ones leads to an increase of charge. Assuming that the initial separation of the strings is microscopic, and that they
decay during radiation dominance, Brandenberger and Zhang obtained

n (td) ∼


Td
Tc

p

n (tc) , (5.2.24)

with p = 5/4 or 3/2 [251]. Also, the corresponding magnetic field at td is

B (td) ∼ 105 Tc
1 GeV

r−1
m


Td
Tc

p

(rTc)α/π G. (5.2.25)
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Brandenberger and Zhang assumed that between td and the present time, t0, the field propagates through a perfectly
conducting plasma and found that today the magnetic intensity should be

B (t0) ∼ 10−14 Tc
1 GeV

r−1
kpc


Td
Tc

p T0
Td


(rTc)α/π G. (5.2.26)

Note that T0 is the present time temperature, rkpc is the present distance from the original comoving location of the string
expressed in kpc and r the physical distance at Td. Considering t as an estimate of the string separation, Tc ∼ 1 GeV, Td ∼ 1
MeV and p = 1, Brandenberger and Zhang obtained

B (t0) ∼ 10−26 (rTc)α/π G, (5.2.27)

arguing that, if r is of cosmological order and T−1
c ≪ 1, we can have (rTc)α/π

≫ 1.
To analyze the coherence scale of the fields, the authors assumed that after Td the field lines are frozen-in comoving

coordinates, obtaining

ξ (td)c = βtdz (td) = β10−2 kpc Td [MeV]−1 , (5.2.28)

where z (td) is the redshift at td andβ ∼ 1 for scaling strings. On scales larger than ξ (td)c the fields have randomorientation,
yielding an average of

B̄ =
1

√
N
B (t0) , (5.2.29)

with

N =


d

ξ (td)c

2
= d [kpc ]2 β−2104Td [MeV]2 , (5.2.30)

where d is the scale the coherent field is calculated. The authors found that B̄ ≃ 10−2B (t0). Obviously, if the resistivity of
the host plasma is accounted for, the suppression will be larger.

Recently, Gwyn et al. [255] extended the mechanism to heterotic cosmic strings arising inM theory. Those strings, being
stable, would produce even stronger fields. This work is reviewed in the following section. Another possible way that cosmic
strings could produce primordial magnetic fields was proposed by Dimopoulos [256], by Dimopoulos and Davies [257] and
by Battefeld et al. [258]. In these scenarios, the magnetic fields are be induced by vortices produced by cosmic strings via
the Harrison–Rees [152] effect. This mechanism, however, was recently strongly criticized by Hollenstein et al. [259], who
showed that the Harrison–Rees effect is quite inefficient in producing cosmologically interesting magnetic fields.

6. Magnetogenesis beyond the standard model

In this sectionwe are going to review different types ofmagnetic field generationmechanisms involving theories beyond
the standard model. Primordial magnetic fields will be generated during inflation. As it was shown in Section 4, on a non-
flat background perturbations in the electromagnetic field can be efficiently amplified during inflation within the standard
model, that is within the standard linear theory of electrodynamics. On the contrary, on a flat background the amplification
during inflation is not sufficient in order to be cosmologically relevant. Following [35] (see also Section 4.3 earlier) the ratio
r of the energy density in the magnetic field ρB over the energy density ργ in the background radiation is introduced, thus

r ≡
ρB

ργ

, (6.0.31)

where ρB =
B2
8π . In the case of linear electrodynamics on a flat background themagnetic energy density decays as a−4, where

a is the scale factor. Hence the ratio r is a constant as the universe evolves. This is also true in the radiation dominated era
when the universe is dominated by a highly conducting plasma. The interstellar magnetic field in our Galaxy is of the order
of a few µG. Assuming that a galactic dynamo, contributing an exponential factor in time, is operating since the time of the
formation of the Galaxy requires an initial seed magnetic field at the time of galaxy formation of at least Bs ≃ 10−20 G [260]
which corresponds to a minimummagnetic to photon energy density ratio r given by r ≃ 10−37. There is some controversy
about the efficiency of such a galactic dynamo, thus working under the hypothesis that there is no efficient amplification of
the initial magnetic seed field due to a galactic dynamo but only the amplification due to the collapsing protogalactic cloud
requires r to be at least of the order of r = 10−8 [35]. These lower bounds on r were derived assuming no cosmological
constant. In a flat universe with a large positive cosmological constant assuming a galactic dynamo operating these bounds
can be lowered significantly. In particular for reasonable cosmological parameters an initial seed magnetic field of at least
Bs ≃ 10−30 G is enough to explain the present day galactic magnetic field strength [30]. This corresponds to r = 10−57.
In typical inflationary scenarios on a galactic scale of 1 Mpc r ≃ 10−104 at the beginning of the radiation dominated era
(cf. Eq. (4.3.9)) which is much below the required minimal value even in the presence of a cosmological constant. Therefore,
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in the case of a flat background, it is necessary to go beyond the standardmodel. There are different possibilities ofmodifying
the standard four-dimensional electromagnetic Lagrangian.

Currently models of modified gravity enjoy an intense activity due to the fact that they can be used to describe the late
time evolution of the universe at a global scale as well as, say, the observed rotation curves of galaxies. Thus these models
combine the effects of dark energy, which is used to model the accelerated expansion of the present universe, and dark
matter, which is postulated to exist in the form of halos around most galaxies.

The gravitational sector in theories of modified gravity is usually described by a Lagrangian of the form (e.g., [261])

S =
1

8πG


d4x

√
−gf (R), (6.0.32)

where f (R) is a function of the Ricci scalar R, most often chosen to be of the form f (R) ≃ R+αRn, whereα and n are constants.
It should also be noted that one of the original realizations of inflation is given by f (R) = R + R2 which can be shown to be
equivalent to a conformally coupled scalar field [262]. Usually it is argued that modified gravity theories are some kind of
effective description resulting from taking into account quantum corrections to the classical Einstein–Hilbert action.

In order to study the generation of primordial magnetic fields in this type of theories the electromagnetic field has to
be included in the Lagrangian [263]. Considering flat space the conformal invariance of the Maxwell Lagrangian in four
dimensions has to be broken in order to generate magnetic fields strong enough to seed the galactic magnetic field. In the
following a survey of models will be given which are used in this respect.

6.1. Gravitational coupling of the gauge potential

Models involving the gravitational coupling of the gauge potential are described by Lagrangians of the form RAmAm and
RmnAmAn where Rmn is the Ricci tensor. Gauge invariance of the Lagrangian is broken explicitly and for that matter it does
not seem very appealing. The term RAmAm describes a massive photon with its mass given bymγ ∼ R1/2. Electromagnetism
is then described by Proca theory and Am is the Proca field.

The strongest bound on the photonmasswithin our galaxy is obtained by assuming a Proca regime on all scales. The Proca
field contributes to the magnetic pressure of the intergalactic medium which has to be counterbalanced by the thermal
pressure of the plasma. Observations assuming standard electrodynamics indicate that within our galaxy the interstellar
medium is approximately in equipartition. From this it can be concluded that the magnetic pressure due to the Proca field
has to be subleading with respect to the standard magnetic pressure [264]. This implies the bound mγ < 10−26 eV [265].
Furthermore, in [265] it is pointed out that these limits depend on the mechanism on how the photon acquires mass. If it is
via the Higgs mechanism then it is possible that large-scale magnetic fields are effectively described by Maxwell’s theory.
In this case the strongest bound comes from the validity of Coulomb’s law and is given by mγ < 10−14 eV [266,265]. Using
this type of Lagrangian on cosmologically scales, the typical scale is given by the value of the Hubble parameter today, H0,
which results in the estimate, mγ ∼ R

1
2 and R

1
2 ∼ H then at present the photon mass is given by mγ ∼ H0 ∼ 10−33 eV

which is well below the above mentioned present limits on the photon mass [35].
The idea is that the initial magnetic seed field is created from the amplification of perturbations in the electromagnetic

field during inflation. In [35] the resulting magnetic field at the end of inflation in this type of theories was calculated using
the assumption that at the time of horizon crossing during inflation the energy density in this mode is determined by the
Gibbons–Hawking temperature. This was critically reconsidered in [267] were it was found calculating the spectral energy
density from first principle quantizing the corresponding canonical field that this assumption actually is an over-estimation
of the actual energy density. However, here we follow the original calculation of [35]. The equations of motion are derived
from the Lagrangian [35]20

L = −
1
4
FmnFmn

−
b
2
RA2

−
c
2
RmnAmAn, (6.1.1)

where A2
≡ AmAm. Furthermore b and c are constants. The equations of motion lead together with the parametrization of

the Maxwell tensor in terms of the electric and magnetic field, Êα and B̂α in the ‘‘lab’’ frame, respectively,

Fmn = a2


0 −Êx −Êy −Êz
Êx 0 B̂z −B̂y

Êy −B̂z 0 B̂x

Êz B̂y −B̂x 0

 (6.1.2)

to the equations
1
a2

∂

∂η


a2Êα


− curlB̂α −

n
η2

Aα

a2
= 0 (6.1.3)

1
a2

∂

∂η


a2B̂α


+ curlÊα = 0, (6.1.4)

20 Recall the notation convention: Latin indices take values between 0 and 3. Greek indices take values between 1 and 3.
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where η is conformal time. Thus the line element is given by ds2 = a2(−dη2
+ dx⃗ 2) and

n ≡ η2

6b

ä
a

+ c

ä
a

+

 ȧ
a

2
, (6.1.5)

where a dot indicates a derivative with respect to conformal time. Taking the curl of Eq. (6.1.3) and using it in Eq. (6.1.4)
results in a wave-type equation for the magnetic field,

1
a2

∂2

∂η2


a2B̂α


− D2B̂α +

n
η2

B̂α = 0. (6.1.6)

Expanding in Fourier modes using Fα(k⃗, η) ≡ a2

d3xeik⃗·x⃗B̂α(x⃗, η), yields

F̈α(k) + k2Fα(k) +
n
η2

Fα(k) = 0. (6.1.7)

So that the additional terms in the Lagrangian can potentially act as pump terms, that is amplifying the spectral energy
density of the magnetic field. The averaged magnetic field energy density is given by ρmag(η) = ⟨(B̂α B̂α)(x⃗, η)⟩/(8π). Using
the correlation function

⟨Fα(k⃗, η)F∗

β (q⃗, η)⟩ = |FµFµ
|(k, η)


δαβ −

kαkβ

k2


, (6.1.8)

results in

ρmag(η) =
1

4πa4


d3k|FµFµ

|. (6.1.9)

Thus, with ρB(k, η) = k dρmag
dk , the spectral energy density is given by

ρB(k, η) =
1

4πa4
k3|FµFµ

|. (6.1.10)

Therefore, solving Eq. (6.1.7) for different types of scale factor, the magnetic energy density is estimated after the end of
inflation using ρB ∝ |FµFµ

|/a4 [35]. Note that for standard electrodynamics, n = 0, and thus the magnetic energy density
simply scales at the usual a−4 rate of a frozen-in magnetic field.

As can be seen from Eq. (6.1.7)modeswell inside the horizon, that is thosemodeswith comovingwave number |kη| ≫ 1,
simply oscillate, since the last term can be neglected and Eq. (6.1.7) reduces to the equation of a harmonic oscillator. In the
opposite case, for modes well outside the horizon, satisfying |kη| ≪ 1 the second term in Eq. (6.1.7) becomes subleading
and the resulting equation can easily be solved giving the solutions

|FµFµ| ∝ ηm± , (6.1.11)

wherem± ≡
1
2


1±

√
1 − 4n


. Calculating the behavior ofρB during the different stages of the universe: de Sitter (inflation),

radiation and matter dominated epoch, the fastest growing modes are determined by p ≡ m− =
1
2


1 −

√
1 − 48b − 12c


which is calculated during the de Sitter stage and q ≡ m+ =

1
2


1+

√
1 − 48b − 24c


calculated in the radiation dominated

era [35]. Thus, at the time of galaxy formation, the ratio of magnetic over photon energy density, r , is found to be [35]

r ≃ (7 × 1025)−2(p+2)
 M
MP

4(q−p)/3TRH
MP

2(2q−p)/3 T∗

MPl

−8q/3 λ

1Mpc

−2(p+2)
, (6.1.12)

where T∗ is the temperature at which plasma effects become important during reheating. In [35] this is estimated to be of

the order of T∗ ∼ min


TRHM
1/2

,

T 2
RHMPl

1/3
. Taking typical values for the physical parameters, there is a wide range for

the exponents p and q such that r is bigger than the minimal required value in order to seed the galactic magnetic field with
a galactic dynamo operating, r > 10−57, or without, r > 10−8. In Fig. 1 log r is shown for typical values of the parameters.

6.2. Quantum corrections in QED in a curved background

The QED one-loop vacuum polarization of the photon in a general curved background gives rise to terms coupling the
Maxwell tensor to the curvature [268]. Vacuum polarization describes the effect of virtual electron–positron pair creation
thus giving the photon a size of the order of the electron Compton wave length which interacts with curvature. This leads to
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Fig. 1. The logarithm of the ratio r , magnetic field energy density over photon energy density, is shown for different values of p and q in a model including
RA2 and RµνAµAν terms [35]. The numbers in the graph refer to the values of log10 r along the closest contour line.

an interesting spacetime structure including the phenomenon of gravitational birefringence, where the photon propagation
depends on its polarization and it can be faster than the speed of light [268–271]. In general the Lagrangian has the form [268]

L = −
1
4
FmnFmn

−
1

4m2
e


bRFmnFmn

+ cRmnFmkF n
k + dRmnlkFmnF lk

+ f (∇mFmn)(∇aF a
n)

, (6.2.1)

where b, c , d and f are constants. The last term can be neglectedwith respect to the other terms since it leads to higher order
derivative terms in the equations of motion [272],

∇
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1
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e
∇
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+
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e


∇a∇

a
∇

bFbn + Ra
n∇

bFba


= 0. (6.2.2)

In order to proceed here a different approach from the one used in the previous section will be followed. This will allow
to actually determine the spectrum of the resulting magnetic field. Instead of assuming that the energy density of the
magnetic field at the time of horizon crossing corresponds to the one calculated using the Gibbons–Hawking temperature,
the spectrum of the resulting primordial field will be calculated by determining explicitly the Bogoliubov coefficients. This
gives the particle production and thus the spectral energy density of the primordial magnetic field. The background model
will be described by two stages, an inflationary stage during which the correction terms coupled to curvature are important
and a radiation dominated stage determined by standard Maxwell electrodynamics. Since the resulting field strength will
be compared with observational values at the order of galactic scale corresponding to 1 Mpc today, it is not necessary to
include the evolution during the matter dominated period. Galactic length scales re-enter the horizon during the radiation
dominated stage, which can seen from the temperature T

T ∼ 78


λ

Mpc

−1

eV, (6.2.3)

at which a scale for λ < λeq ∼ 14Ω−1
m h−2 Mpc crosses back into the horizon. Thus a galactic scale of order 1 Mpc enters the

horizon at a timewhen the universe was at about 78 eV and thus inside the radiation dominated era, since radiation–matter
equality occurs at Teq = 5.6Ωmh2 eV.

The background cosmology is chosen to be such that

a(η) =


a1


η

η1

β

η < η1

a1


η − 2η1

−η1


η ≥ η1.

(6.2.4)

In the following a1 ≡ 1. Thematching between the inflationary phase and the radiation dominated era takes place at η = η1.
De Sitter inflation corresponds to β = −1 and for β < −1 power-law inflation is taking place.

The Maxwell tensor is written in terms of the gauge potential Am, that is Fmn = ∂mAn − ∂nAm. Furthermore, the radiation
gauge, A0 = 0, ∂λAλ = 0 will be used. Then the gauge potential is given in terms of the expansion in Fourier modes by

Aµ(η, x⃗) =


d3k

(2π)
3
2
√
2k

2
λ=1

ϵ
(λ)

k⃗ µ


a(λ)

k⃗
Ak(η)eik⃗·x⃗ + a(λ) Ď

k⃗
A∗

k(η)e−ik⃗·x⃗

, (6.2.5)
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where the sum is over the twophysical polarization states and ϵ
(λ)

k⃗ µ
are the polarization vectors satisfying, ϵ⃗(λ)

k⃗
·k⃗ = 0. a(λ)

k⃗
and

a(λ) Ď

k⃗
are annihilation and creation operators, respectively, satisfying the standard commutation relations, [a(λ)

k⃗
, a(λ′)

k⃗′
] = 0 =

[a(λ) Ď

k⃗
, a(λ′) Ď

k⃗′
] and [a(λ)

k⃗
, a(λ′) Ď

k⃗′
] = δλλ′δk⃗k⃗′ . However, since the Lagrangian has additional terms coupling the electromagnetic

field to the curvature, the commutation relations between the operator Aj and its canonicalmomentumπAµ =
∂L

∂(∂0Aj)
are not

the canonical ones. However, as will be done explicitly below, it is possible to define a canonical field which does satisfy the
standard commutation relation. It is that field that is used to quantize the theory and calculate the production of particles.

The mode functions satisfy

F1(η)Äk + F2(η)Ȧk + F3(η)k2Ak = 0, (6.2.6)

where a dot indicates d
dη and

F1(η) = 1 +
µ1

m2
eη

2
1


η

η1

−2(β+1)

µ1 = β

6b(β − 1) + c(β − 2) − 2d


F2(η) =

µ2

η3
1m2

e


η

η1

−2β−3

µ2 = −2(β + 1)µ1

F3(η) = 1 +
µ3

η2
1m2

e


η

η1

−2(β+1)

µ3 = β

6b(β − 1) + c(2β − 1) + 2dβ


. (6.2.7)

In the case where the additional terms in the Lagrangian are absent, that is b = c = d = 0, the mode equation for Ak
reduces to a simple harmonic oscillator equation. In this case Ak itself can be used to implement the standard quantization
scheme. In general, however, it is necessary to use the canonical fieldΨµ(η, x⃗) and its Fourier amplitudeΨ (η, k⃗) defined by,
respectively,

Ψµ(η, x⃗) = F
1
2
1 (η)Aµ(η, x⃗) Ψ = F

1
2
1 (η)Ak. (6.2.8)

With this the mode equation for Ψ (η, k) is given by

Ψ ′′
+ PΨ = 0, (6.2.9)

where a new dimensionless variable z ≡ −kη has been defined and ′
≡

d
dz . Moreover,

P =
1
4

κ1z−4β−6
1 + κ2z−2(β+1)

2 +
1
2

κ3z−2β−4

1 + κ2z−2(β+1)
+

1 + κ4z−2(β+1)

1 + κ2z−2(β+1)
, (6.2.10)

and

κ1 ≡ µ2
2κ

2
0 κ2 ≡ µ1κ0 κ3 ≡ (2β + 3)µ2κ0 κ4 ≡ µ3κ0

where

κ0 ≡


me

H1

−2  k
k1

2(β+1)

. (6.2.11)

Here the maximally amplified (comoving) wavenumber k1 has been defined by k1 ≡
1

|η1|
. Furthermore H1 is the value of the

Hubble parameter at the beginning of the radiation dominated stage at η1. It is related to k1 by k1 ∼ H1. Thus the canonical
field satisfies the equation of a harmonic oscillator. This is also the case of a free scalar field in flat spacetime. Therefore the
canonical quantization procedure will be applied to the canonical field Ψ , which will be written as

Ψµ(η, x⃗) =


d3k ϵ

(λ)

k⃗ µ


a(λ)

k⃗
fk⃗ + a(λ) Ď

k⃗
f ∗

k⃗


. (6.2.12)

Hence it will be required that the mode functions fk⃗(x) ≡ Ψ eik⃗·x⃗/(2π)
3
4 and f ∗

k⃗
form an orthonormal set, that is

satisfying [273],

(fk⃗, fk⃗′) = δ(3)(k⃗ − k⃗′), (f ∗

k⃗
, f ∗

k⃗′
) = −δ(3)(k⃗ − k⃗′), (fk⃗, f

∗

k⃗′
) = 0. (6.2.13)

Furthermore, the scalar product is defined by

(fk⃗, fk⃗′) = −i


Σ

fk⃗(x)
↔

∂ mf ∗

k⃗′
(x)dΣm, (6.2.14)
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where dΣm
= nmdΣ and nm is a future-directed unit vector orthogonal to the space-like hypersurface Σ which is taken to

be a Cauchy surface. Moreover, dΣ is the volume element in Σ . Also the notation fk⃗(x)
↔

∂ mf ∗

k⃗′
= fk⃗∂mf

∗

k⃗′
− (∂mfk⃗)f

∗

k⃗′
was used.

Since Ψ is quantized in flat spacetime, dΣm
= δm

0 d
3x and the normalization condition on the mode functions fk⃗ reduces to

Ψ (η, k)∂ηΨ (η, k′)∗ −

∂ηΨ (η, k)


Ψ (η, k′)∗ = i, (6.2.15)

which is the Wronskian of the solutions of the differential equation (6.2.9). The field equation in real space for the Fourier
transform Ψ (η, x⃗), assuming it to be real, can be derived from the Lagrangian

LΨ =
1
2


ηabΨ,aΨ,b − m2

effΨ
2 . (6.2.16)

The effective mass can be determined by going back to k-space. Using Eqs. (6.2.9) and (6.2.10)

m2
eff = k2(1 − P). (6.2.17)

It can be verified that Ψµ(η, x⃗) and its canonical momentum satisfy the standard commutation relations. The time-
dependent effective mass meff(η) reflects the dynamics of the cosmological background. It also indicates that there is no
unique vacuum state. Having one set of orthonormal functions fk⃗ another orthonormal set ofmode functions f̃k⃗ can be found.
Then the canonical field Ψµ has the expansion in terms of the annihilation and creation operators ã(λ)

k⃗
, ã(λ) Ď

k⃗
and f̃k⃗

Ψµ(η, x⃗) =


d3k ϵ

(λ)

k⃗ µ


ã(λ)

k⃗
f̃k⃗ + ã(λ) Ď

k⃗
f̃ ∗

k⃗


(6.2.18)

and this defines a new vacuum state |0̃⟩,

ã(λ)

k⃗
|0̃⟩ = 0, (6.2.19)

for all k⃗ and λ and a new Fock space. Since both sets of mode functions are complete, they are related by the Bogoliubov
transformation [273],

f̃k⃗ =


q⃗

(αk⃗ q⃗fq⃗ + βk⃗ q⃗f
∗

q⃗ ), (6.2.20)

where αk⃗ q⃗ and βk⃗ q⃗ are the Bogoliubov coefficients satisfying


k⃗(αq⃗ k⃗α
∗

r⃗ k⃗
− βq⃗ k⃗β

∗

r⃗ k⃗
) = δq⃗ r⃗ . Moreover, it is found that,

suppressing the index λ, [273],

ak⃗ =


q⃗

(αq⃗ k⃗ãq⃗ + β∗

q⃗ k⃗
ãĎq⃗). (6.2.21)

Thus, Eq. (6.2.21) implies that the vacuum state |0̃⟩ is in general not annihilated by ak⃗, but rather gives

ak⃗|0̃⟩ =


q⃗

β∗

q⃗ k⃗
|1̃q⃗⟩ ≠ 0. (6.2.22)

This means that the expectation value of the number operator Nk⃗ = aĎ
k⃗
ak⃗ of fk⃗-mode particles in the state |0̃⟩ is given by

⟨0̃|Nk⃗|0̃⟩ =


q⃗

|βq⃗ k⃗|
2. (6.2.23)

In order to determine the particle production due to the time-dependent cosmological background the mode functions are
matched at the transition time η = η1. Furthermore, on subhorizon scales corresponding to z ≫ 1, the mode equation
(6.2.9) reduces to the equation for a free harmonic oscillators and therefore does not give any important contribution. Only
modes on superhorizon scales are relevant, since in that case, for z ≪ 1, the mode equation can be approximated by

Ψ ′′
+ (ξ1z−2

+ ξ2)Ψ = 0, (6.2.24)

where

ξ1 = −(β + 1)(β + 2) ξ2 =
6b(β − 1) + c(2β − 1) + 2dβ
6b(β − 1) + c(β − 2) − 2d

. (6.2.25)

The particular choice β = −1 describes de Sitter inflation, and in this case ξ1 = 0 and ξ2 = 1 leading to a plane wave
solution which was also noted in [268,35]. Furthermore, β = −2 implies ξ1 = 0, but ξ2 =

18b+5c+4d
18b+4c+2d . Eq. (6.2.24) solved
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during power-law inflation, β < −1 and β ≠ −2, results in the following solution in terms of the Hankel function of the
second kind, H(2)

ν (x),

Ψ (I)
=


π

2k

√
zH(2)

ν (


ξ2 z), where ν =

β +
3
2

 (6.2.26)

which gives the correctly normalized incoming wave function for η → −∞ for ξ2 > 0. This means that the incoming
vacuum solution at infinity is a planewave solution andmoreover approaches the positive frequency solution inMinkowski
spacetime. It is assumed that electrodynamics becomes standardMaxwell electrodynamics at the beginning of the radiation
dominated stage at η = η1. Thus the terms due to the interaction between curvature and the electromagnetic field in
the mode equation (6.2.24) can be neglected which leads to a free harmonic oscillator equation which is solved by the
superposition of plane waves,

Ψ (RD)
=

1
√
k


c+e−i(z−z1) + c−ei(z−z1)


, (6.2.27)

where z1 ≡ k|η1| and c± are the Bogoliubov coefficients, corresponding to αk⃗ q⃗ = c+δk⃗ q⃗ and β∗

k⃗ q⃗
= c−δk⃗ q⃗. Therefore to

determine the magnetic field energy spectrum, the Bogoliubov coefficients are calculated by matching the solutions of the
gauge potential and its first derivative at η = η1 on superhorizon scales. Using the small argument limit of the Hankel
functions [274], this leads to β ≠ −

3
2 [272]

|c−|
2

≃
[Γ (ν)]2

8πµ1


1
2

− ν

2 me

H1

2 
ξ2

4

−ν  k
k1

−1−2ν

, (6.2.28)

where it was used that in the approximation used here, F1(η1) ≃ µ1


me
H1

−2
. In the case β = −

3
2 the limiting behavior of

themode function on superhorizon scales leads to a divergent factor ln2

√

ξ2
k
k1


in |c−|

2. Thus, wewill not pursue this case
any further. Including both polarization states the total spectral energy density of the photons is given by (cf., e.g., [275])

ρ(ω) ≡
dρ

d log k
≃ 2


k
a

4
|c−|

2

π2
. (6.2.29)

Since the electric field decays rapidly due to the high conductivity of the radiation dominated universe, the spectral
energy density (6.2.29) gives a measure of the magnetic field energy density, ρB. Using the density parameter of radiation,

Ωγ =


H1
H

2  a1
a

4, the ratio of magnetic over background radiation energy density r is given for β ≠ −2, − 3
2 , −1, by [272]

r ≃
2 [Γ (ν)]2

3π2µ1


1
2

− ν

2  me

MPl

2 
ξ2

4

−ν  k
k1

3−2ν

, (6.2.30)

where MPl is the Planck mass. The magnetic field energy density can also be calculated using the two-point function of the
magnetic field, ⟨Bµ(k⃗)B∗

ν(k⃗
′)⟩. This leads to an expression similar to (6.2.30). Furthermore, the form of the magnetic field

spectrum (6.2.30) imposes the constraint ν ≤
3
2 . This implies the range for β given by −3 < β < −1 taking into account

the constraint from power-law inflation. Using the constraint which was used to derive the mode Eq. (6.2.24)

µ1


me

H1

−2

> 1, (6.2.31)

the maximal value of r which can be achieved within this model can be estimated. It is found to be, for β ≠ −2, − 3
2 , −1,

at ωG = 10−14 Hz corresponding to a galactic scale of 1 Mpc, and using the maximal amplified frequency evaluated today,

ω1(η0) = 6 × 1011


H1
MPl

 1
2
Hz, [272]

rmax(ωG) = 10−79+52ν [Γ (ν)]2

1
2

− ν

2 
ξ2

4

−ν  H1

MPl

ν+
1
2

. (6.2.32)

In Fig. 2 log10 rmax is shown for the case that the parameters determining the contributions due to the quantum corrections
are all of the same order, b ∼ c ∼ d. In this case the constraint on µ1 leads to a lower bound on the parameter b, given by

bmin ≡
10−45

β(7β − 10)


H1

MPl

−2

. (6.2.33)
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Fig. 2. In the case b = c = d the contour lines are shown for the maximum value of the logarithm of the ratio of magnetic to background radiation
energy density. The values of log


H1
MPl


correspond to reheat temperatures between 107 and 1019 GeV. The numbers within the graph refer to the value of

log10 rmax along the closest contour line.

As can be appreciated from Fig. 2 there is a region in parameter space where the resulting magnetic field strength is larger
than Bs > 10−20 G corresponding to r > 10−37, namely,β < −2.4, H1

MPl
> 10−18 bounded by the corresponding contour line.

In the case of De Sitter inflation, corresponding to β = −1, there is no significant magnetic field generation since the mode
functions during inflation as well as during the radiation dominated stage are plane waves. Furthermore, it can be checked
that the resulting maximum magnetic field strength satisfies the bound due to gravitational wave production [107]. It was
shown in [107] that formagnetic fields created before nucleosynthesis conversion ofmagnetic field energy into gravitational
wave energy takes place. This leads to a maximal value of rGW given by, [272]

rGW ≃ 2 × 10−61+52ν2
5
2 −ν Γ


5
2

− ν


h2
0


H1

MPl

ν−
3
2

, (6.2.34)

at the galactic scale used here, λ = 1 Mpc. Thus, the requirement rmax ≤ rGW leads to an upper limit on H1
MPl

, that is,

log10


H1

MPl


max

≡ 9 +
1
2
log10


2

7
2 −νh2

0Γ
 5
2 − ν


Γ 2(ν)

 1
2 − ν

2 
ξ2

4

ν


. (6.2.35)

Hence the allowed range is given by


H1
MPl


≤


H1
MPl


max

. This is always satisfied since H1 < MPl.
It is also important to check that the fluctuation in the electromagnetic field during inflation are within the perturbative

regime and thus there is no strong backreaction on the dynamics of inflation. This effect can be estimated by calculating the
energy density in the electromagnetic field and comparing it with the total energy density during inflation given by,

ρ

M4
Pl

=
3
8π


H1

MPl

2 
η

η1

−2(β+1)

. (6.2.36)

The average value of the electromagnetic field energy density is found to be [272]

⟨ρ(em)⟩(η) ≃
2

a4η2

 k∗

0
dkk2|Ψ (I)

|
2

≃
1
π

[Γ (ν)]2

3 − 2ν


ξ2

4

−ν

H4
1


k∗

k1

3−2ν 
η

η1

−4β−2ν−1

, (6.2.37)

where k∗ is the wave number corresponding to the scale which becomes superhorizon at the time η during inflation. Thus
with k∗ ∼ −η−1 the ratio ⟨ρ(em)⟩(η)/ρ ∼ ρ/M4

P which is always smaller than one in the classical domain. Therefore, no
backreaction effects have to be taken into account. In othermodels ofmagnetic field generation during inflation backreaction
does play a role [276,277].
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6.3. Trace anomaly

Linear electrodynamics is scale invariant at classical level. Taking into account quantum corrections it is known that this
classical symmetry is broken. Defining the energy–momentum tensor by (see for example, [278])

Θab
= 2

δ

δgab(x)


d4xLm, (6.3.1)

then if the classical theory is scale invariant there will be a conserved current Ca
= Θabxb such that

∂aCa
= Θa

a . (6.3.2)

A scale transformation is equivalent to a conformal transformation of the metric, such as

gmn(x) → e2σ gmn(x). (6.3.3)

Since the trace vanishes of the electromagnetic field in linear electrodynamics, the current Cm is conserved at the classical
level. However, when quantum corrections are included scale transformations are no longer a symmetry, since the
renormalized coupling constant depend on the scale. Namely, the renormalized coupling constant changes under the
conformal transformation (6.3.3) as [278]

g → g + σβ(g), (6.3.4)

where β(g) is the beta function. The Lagrangian changes as σβ(g) ∂
∂g L. Thus the current satisfies,

∂mCm
= Θm

m = β(g)
∂

∂g
L. (6.3.5)

In massless QED the trace of the energy–momentum tensor can be found explicitly as [278]

Θm
m =

β(e)
2e3

FabF ab. (6.3.6)

A similar expression for the trace of the energy–momentum is also found in QCD and other gauge theories.
The trace anomaly was used in [279,280] (see also [281]) to study the generation of primordial magnetic fields during

inflation. It induces a new term in Maxwell’s equations, namely, in a flat Friedmann–Robertson–Walker background with
scale factor a, [279,280],

∂mFnm + κ
∂ma
a

Fnm = 0. (6.3.7)

The constantκ depends on the theorywhich is used. For example, for the SU(N) gauge theorywithNf generations of fermions
in the fundamental representation [279,280],

κ =
α

π


11N
3

−
2Nf

3


, (6.3.8)

where α is the fine structure constant taken at the time of horizon crossing of the scale k−1 during inflation. Quantizing the
gauge potential and finding the spectrum of the electromagnetic field in de Sitter inflation it is found that [280]

|Ak| ∼


H
k

 κ
2

. (6.3.9)

Thus for large values of κ corresponding to a large number of light fermions during inflation the trace anomaly could provide
an efficient mechanism to generate large magnetic fields during inflation to serve as seed magnetic fields for a subsequent
amplification by a galactic dynamo.

6.4. Coupling to other fields and varying couplings

In [35] the coupling of a pseudo-scalar axion to electrodynamics was proposed which for energy scales below the
Peccei–Quinn symmetry breaking scale fa can be described by the effective Lagrangian,

L = −
1
2
∂mθ∂mθ −

1
4
FmnFmn

+ gaθFmn
∗Fmn, (6.4.1)

where ga is a coupling constant and the vacuum angle θ = φa/fa, where φa is the axion field. In [282] a similar model has
been considered in detail, namely the coupling of a pseudo-Goldstone boson to electrodynamics. It is interesting to note
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that in these models the created magnetic fields have nonzero helicity [282–285]. In [282] the Lagrangian is assumed to be
of the form

L = −
1
4


FmnFmn

+ gφFmn
∗Fmn , (6.4.2)

where g = α/(2π f ) and f is the coupling constant and α the fine structure constant. The field equations in Fourier space
are found to be [282]

d2F±

dη2
+


k2 ± gk

dφ
dη


= 0, (6.4.3)

where F± = a2(By ± iBz) are the two circular polarization modes. The electric field satisfies the equation, [282]

d2G±

dη2
+


k2 ± g

dφ
dη

k

G± = −g

d2φ
dη2

F±, (6.4.4)

where G± = a2(Ey ± iEz). Using a potential of the form V (φ) = Λ4
[1 − cos(φ/f )] for the scalar field, the resulting

amplification of themagnetic field during inflation is too weak in order to provide a seed field for the galactic dynamo [282].
In [286] a model with N pseudo-Goldstein bosons has been investigated. It has been found that even in the case of one
pseudo-Goldstein boson due to the helical nature of the generated magnetic field the process of the inverse cascade will
result in a strong enough seed field at the time of galaxy formation.

A time-dependent coupling of the electromagnetic field provides another possibility of amplification of perturbations in
the electromagnetic field during inflation. This was first studied in [287] (see also, [288–292]) considering a Lagrangian of
the form [287]

L ∼ eαφFmnFmn, (6.4.5)

where α is a constant. Perturbations in the electromagnetic field are amplified during de Sitter inflation. The resulting
magnetic field for the choice of α = 20 is found to be as large as 6.5 × 10−10 G today.

In [293] (see also [294]) the generation of cosmologically relevant magnetic fields and their subsequent signature in the
CMB has been discussed in a model where instead of the usual U(1)em gauge field, the photon, a hypercharge field Ym [295],
which is associated with the U(1)Y hypercharge group before the electroweak phase transition when the SU(2) × U(1)Y
symmetry is still unbroken, is coupled to a spectator field during inflation. After the electroweak phase transition the photon
field is determined by the hypercharge field by Am = Ym cos θW which gives rise to a primordial magnetic field in the post-
inflationary universe.

6.5. Magnetogenesis in string theory

A natural candidate for a scalar field coupled to the electromagnetic field is providedwithin the low energy limit of string
theory. In the low energy limit string theory leads to Einstein gravity coupled to additional fields, such as the dilaton, which
is a scalar field, and the antisymmetric tensor field which in four dimensions can be related to a pseudo-scalar field, the
axion. To lowest order in the inverse string tension α′ and in the loop expansion controlled by the string coupling gs the
action in the so-called string frame is given by

S = −
1

16πGD


dDx

√
−gDe−φ


RD + ∂mφ∂mφ +

1
4
FmnFmn


, (6.5.1)

where GD is Newton’s constant in D dimensions, RD the Ricci scalar in D dimensions and φ is the dilaton. Indices take values
between 0 and D − 1. The string coupling is given by gs = eφ . Superstring theory can be consistently quantized only in
D = 10 and M-theory predicts 11 spacetime dimensions. In order to reduce the resulting model to the four observed
spacetime dimensions, the extra spacetime dimensions can either be treated as compactified to small extra dimensions,
following the paradigm of Kaluza–Klein compactification, or one couldmodel the observable universe as a four-dimensional
hypersurface embedded in a higher-dimensional background spacetime, which is the procedure followed in the models of
brane cosmology [296]. Here the simplest model is used where the extra dimensions are compactified on static tori with
small, constant radii. Thus the action (6.5.1) is used in D = 4 dimensions [297–299].

It is difficult to implement the standard slow roll inflation paradigm in string cosmology, derived from the low energy
limit of superstring theory. The reason for that is that the dilaton does not have an appropriate potential. The potential
resulting from supersymmetry breaking is far too steep to allow for a slow roll phase in the evolution of the dilaton. Inflation
driven by the kinetic energy of the dilaton, however, can be realized. This is the pre-big-bang model [297–299] where
inflation takes place for negative times (pre-big-bang phase) and is matched to the standard radiation dominated stage for
positive times (post-big-bang phase). Since in the low energy limit of superstring theory to lowest order Einstein gravity is
recovered at cosmic time t = 0 there is a spacetime singularity, which follows from the theorems of Penrose and Hawking.
Thus higher order corrections have to be included in order to regularize the transition between the pre- and post-big-bang
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era. In general, when calculating perturbations in pre-big-bang inflation it is assumed that the background evolves from
an asymptotically flat initial state at t → −∞ to a high curvature phase at around t = 0 which, however, never reaches a
singular state. Only a few explicit, non-singular solutions are known and it seems difficult to determine the generic behavior
of pre-big-bang cosmologies [300]. During pre-big-bang inflation in four dimensions the scale factor behaves in the string
frame in which the universe is expanding and accelerating,

a = a1


η

η1

−
1

1+
√
3
, (6.5.2)

assuming the end of inflation at η1. The dilaton φ behaves in the low energy phase, η < ηs, as [301]

φ = −
√
3 ln |η| + const. (6.5.3)

After some time ηs higher order corrections in the inverse string length α′ become important and the universe enters into a
string phase which lasts until the end of inflation at η1. During the string phase the dilaton evolves as [301]

φ = −2β ln |η| + const. β = −
(φs − φ1)

2 ln zs
, (6.5.4)

where zs ≡ a1/as and as and a1 are the scale factors at the beginning of the string phase and at the end of inflation,
respectively.

Maxwell’s equations derived from the action (6.5.1) imply in the radiation gauge in Fourier space the mode equation for
the gauge potential, [301,302]

A′′

k + [k2 − V (η)]Ak = 0, V (η) = gs(g−1
s )′′, (6.5.5)

where a prime denotes the derivative with respect to conformal time η. Matching the stage of pre-big-bang inflation to the
radiation dominated era, quantizing the gauge potential and calculating the appropriate Bogoliubov coefficient results in
the following values of the ratio of magnetic energy density and background radiation energy density [301],

r(ω) ≃
g2
1

16π2


ω

ω1

4−2β

ωs < ω < ω1 (6.5.6)

r(ω) ≃
g2
1

16π2


ω

ω1

4−
√
3

z−
√
3

s e−∆φs ω < ωs, (6.5.7)

where g1 is the value of the string coupling at the beginning of the radiation era, ∆φs = φs − φ1 and ωs ≡ ω1/z. In Fig. 3
the ratio r(ω) is plotted at galactic scale 1 Mpc which corresponds to ωG = 10−14 Mpc. Imposing that r(ω) < 1 for all
frequencies, leads to the condition [301,302] z−2

s < gs/g1. This implies a lower bound on the value of the coupling at the
beginning of the string phase, gs. From Fig. 3 it can be appreciated that for a duration of the string phase determined by
zs > 1020 and a string coupling gs less than 10−42 the resultingmagnetic field is strong enough to seed the galactic magnetic
field directly. Furthermore, Fig. 3 shows that even for a very short string phase the resulting magnetic fields can be as strong
as 10−30 G which is the limiting value in case of action of a galactic dynamo in a universe with nonvanishing cosmological
constant. Without taking neither the string phase nor the cosmological constant into account, corresponding to a minimal
required value of 10−37 it was concluded in [303] that it is not possible to generate cosmologically relevant magnetic fields
during pre-big-bang inflation.

Even though in this section we focus on mechanisms which rely on the amplification of electromagnetic perturbations
during inflation, we will briefly comment on a different model of magnetogenesis in string theory. In [255] the generation
of primordial magnetic fields from heterotic cosmic strings is studied. Heterotic fundamental cosmic strings were ruled out
byWitten for stability reasons [304]. However, as was shown in [305] the presence of branes offers a solution to the stability
problem. In [306] heterotic cosmic strings are constructed by wrapping M5 branes around the 4-cycles of the Calabi–Yau
manifold present in heterotic string theory. In [255] it was found that in a generalization of the model of [306] the resulting
heterotic strings are superconducting and as such can generate strong magnetic seed fields (see also Section 5).

6.6. Magnetogenesis from extra dimensions

Extra dimensions played a role in gravity ever since the proposal by Kaluza [307] to explain gauge fields geometrically.
Postulating a fifth dimension the components of the metric involving the fifth coordinate can be interpreted as the
components of the gauge potential Am of electrodynamics and a scalar field φ, whose effective coupling to electrodynamics
in four dimensions is that of a dilaton (see, e.g.,[308]). Einstein’s equations in vacuum in five dimensions imply Einstein’s
equations in four dimensions as well as Maxwell’s equation for the gauge potential Am and the massless Klein–Gordon
equation for the scalar field φ, if the dependence on the fifth coordinate is suppressed. However, despite its successful
unification of gravity and electrodynamics there is still something missing in this picture. The point is how to explain that
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Fig. 3. The logarithm of the ratio r , magnetic field energy density over photon energy density, is shown at galactic scale, corresponding to 1 Mpc, for
different values of the string coupling at the beginning of the radiation dominated era, g1 , and the minimal value rmin necessary to seed the galactic
magnetic fields after amplification by a galactic dynamo (r(ωG) > rmin = 10−57) or without (r(ωG) > rmin = 10−8). H1 ∼ MPl is assumed. The shaded
areas indicate the region in parameter space for which the two conditions r(ωG) > rmin and r(ω) < 1 are satisfied. The dark gray area corresponds to the
domain in the zs − gs parameter space for which the galactic magnetic field could be seeded directly without the assumption of a galactic dynamo.

we have not observed the fifth dimension and why there is no dependence on the extra dimension. These problems were
solved byKlein [309] assuming that the extra dimension is a circle of such a small radius that it is beyondobservational limits.
Using a Fourier expansion in the extra coordinate at each point in the four-dimensional spacetime there is an infinite number
of four-dimensional fields. The zero mode results in the original theory of Kaluza where the fields have no dependence on
the extra coordinate. The remaining part of the spectrum corresponds to massive modes.

Extra dimensions appear naturally in models of string/M-theory which also admits solutions with large extra
dimensions [310]. Contrary to the Kaluza–Klein picture in the case of large extra dimensions inspired by string theory,
our observable four-dimensional universe is described by a four-dimensional hypersurface (brane) embedded in a higher-
dimensional background spacetime. The cosmological solutions on the brane are influenced by the curvature of the higher-
dimensional spacetimeprojected onto the brane. This leads for example to additional terms in the Friedmann equation [296].

In models derived from higher-dimensional gravity the four-dimensional Planck mass, which in this section will be
denoted by M4, is no longer a fundamental parameter, but the D-dimensional Planck mass MD. Assuming for simplicity
that all extra dimensions are of the same characteristic size R, the four-dimensional and the D-dimensional Planck masses
are related by,

M2
4 = RnMn+2

D , (6.6.1)

which follows directly using Gauss’ law [311–313]. Newton gravity is observed to be valid down to length scales of the order
of 1 mm [314]. This can be used to put a bound onMD/M4.

Dynamical extra dimensions can generate a primordial magnetic field in four dimensions. This rests on the fact that the
conformal invariance of Maxwell’s equations is broken in four dimensions in the presence of higher dimensions of time-
dependent size. Assuming the metric to be of the form [315,316]

ds2 = −a2(η)

dη2

− δαβdxαdxβ

+ b2(η)δABdyAdyB, (6.6.2)

where α, β = 1, . . . , 3 and A, B = 4, . . . , 3+ n, n ≥ 1. a(η) and b(η) are the scale factor of the external, three-dimensional
space and the internal, n-dimensional space, respectively. Assuming that before a time η = −η1 inflation takes place in the
external dimensions while the extra dimensions are collapsing. After this time the universe enters the standard radiation
dominated era with the extra dimensions frozen to a small size. The first stage is described by a generalized vacuum Kasner
solution. Thus the behavior of the scale factors is determined by,

a(η) = a1


−

η

η1

σ

, b(η) = b1


−

η

η1

λ

, for η < −η1 (6.6.3)

a(η) = a1


η + 2η1

η1


, b(η) = b1, for η ≥ −η1. (6.6.4)

In the following we set a1 = 1 = b1. The Kasner exponents σ and λ are given in terms of the number of extra dimensions
by [315],

σ = −
1
2


3n

n + 2
− 1


, λ =


3

n(n + 2)
. (6.6.5)
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In D dimensions Maxwell’s equations are given by ∇ÃF
ÃB̃

= 0 with FÃB̃ = ∇
[ÃAB̃], Ã, B̃ = 0, . . . , n + 3. Assuming that

Aµ = Aµ(xα, yB, η), AB = 0 and using the radiation gauge A0 = 0, DµAµ
= 0, Maxwell’s equations imply

−
1
bn

∂0

bn∂0Aµ


+

3
ν=1

∂ν∂νAµ +

a
b

2 3+n
B=4

∂B∂BAµ = 0, (6.6.6)

where ∂0 ≡
∂
∂η

, ∂µ ≡
∂

∂xµ and ∂B ≡
∂

∂yB
. Defining the canonical field Ψµ = b

n
2 Aµ the following expansion is used

Ψµ(η, xν, yA) =


d3kdnq

(2π)
3+n
2


α

eα
µ(l)


al,αΨl(η)eil·X + aĎ

−l,αΨ ∗

l (η)e−il·X

, (6.6.7)

where lm is a (3+ n)-vector with components lµ ≡ kµ, lA ≡ qA. Moreover, l ·X = k · x+ q · y. α runs over the polarizations.
During inflation for η < −η1 the mode equation is given by

Ψ ′′

l +


k2 +


−

η

η1

2β

q2 −
N
η2


Ψl = 0, (6.6.8)

where ′
≡

∂
∂η

andN ≡
1
4 (nλ − 1)2− 1

4 . Moreover, β ≡ σ −λ. β < 0 since only solutionswith contracting extra dimensions

are of interest here. −1 ≤ β < −1/(1 +
√
3), where the lower boundary corresponds to n = 1 and the upper bound gives

the value for large n. For n = 1 and n = 6 there are known solutions in closed form of Eq. (6.6.8). Hence for n = 1 the exact
solution is used to find the spectrum of the primordial magnetic field and for n > 1 approximate solutions are employed.

The solution for one extra dimension, n = 1, is given by [316]

Ψl =

√
π

2
e

π
2 qη1

(−kη)
1
2

√
k

H(2)
iqη1

(−kη), (6.6.9)

where H(2)
ν (z) is the Hankel function of the second kind.

The approximate solution for n > 1 is found by solving the mode Eq. (6.6.8) in two regimes determined by whether the
term due to the modes q in the extra dimensions, (−η/η1)

2βq2 is larger or smaller than k2, where k are the comoving
wave numbers in the observable three-dimensional space. When the contribution due to the wave numbers q in the

extra dimensions is subdominant

−

η

η1

2β
q2 < k2, or ωq < ωk in terms of the physical frequencies ωk = k/a(η) and

ωq = q/b(η), the canonical field is approximately given by [316],

Ψl =

√
π

2

√
−kη
√
k

H(2)
µ (−kη), (6.6.10)

where H(2)
µ is the Hankel function of the second kind and µ2

≡
1
4 + N ⇒ µ =

1
2 (nλ − 1). In the other case, that is for

−
η

η1

2β
q2 > k2, or ωq > ωk, it is found that [316]
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2
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1
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µκ


(−qη) κ


−

η

η1

β


, (6.6.11)

where κ ≡
1

β+1 and µ =
1
2 (nλ − 1).

During the radiation dominated era η > −η1 the mode equation is given by

Ψ ′′

l +


k2 +


η + 2η1

η1

2

q2


Ψl = 0, (6.6.12)

which is solved in terms of parabolic cylinder functions E(α, z) [315],

Ψl =
1

√
2


η1

2q

 1
4 

c−E(α, z) + c+E∗(α, z)

, (6.6.13)

where z ≡


2q
η1

 1
2
(η + 2η1) and α ≡ −

η1k2

2q . Furthermore, |c±| are the Bogoliubov coefficients satisfying the normalization

|c+|
2
− |c−|

2
= 1.
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The total magnetic energy density is given by [317]

ρ = 2
Rn

(2π)n+3

 
k
a

2

+

q
b

2 1
2

|c−|
2dV , (6.6.14)

where, assuming that the volume consists of two spheres, dV =
1

a3bn
2π

3
2
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2 )
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2π
n
2
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2 )
qn−1dq. At η = −η1 the comoving

wavenumbers k and q are equal to the physical momenta, since a1 = 1 = b1. The spectral energy density ρ(ωk) =

dρ/d logωk is then given by
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]
1
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2, (6.6.15)

where Y ≡
ωq
ωk

, and ωk =
k
a , ωq =

q
b . To calculate the ratio of energy density in the magnetic field over the background

radiation energy density it will be assumed that ω1 =
k1
a and k1 ∼ H1 is the maximal wave number, leaving the horizon at

the end of inflation and thus at end of the dynamical higher-dimensional phase η = −η1. Equally it is required that there
is a maximal wave number qmax in q-space corresponding to the modes in the extra dimensions. These assumptions are
justified by the sudden transition approximation used here. At the time of transition η = −η1 the metric is continuous but
not its first derivative. For modes with periods much larger than the duration of the transition, the transition can be treated
as instantaneous. However, in order to avoid an ultraviolet divergency an upper cut-off has to be imposed [318–320]. The
following expressions for r(ωk) are obtained [316]:

(1) For q = 0, n = 1
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. (6.6.16)

(2) For q > 0 and n = 1

r(ωk) ∼
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where ωqmax(η) =
qmax
b and it was assumed that ωqmax > ωk.

(3) For q = 0 and n > 1
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Furthermore, nλ =


3n
n+2 . Since nλ < 4 the resulting spectrum for r(ωk) is increasing in frequency.

(4) For q > 0 and n > 1
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where subleading terms have been omitted and ωqmax > ωk was assumed. The resulting spectrum is growing in
frequency.

The resulting spectrum of the primordial magnetic field is characterized by the Hubble parameter at the beginning of
the radiation dominated era H1, the D-dimensional Planck mass MD and the number of extra dimensions, n. In addition, in
the case where the modes lying in the extra dimensions are taken into account, there is the maximal physical frequency
ωqmax which is estimated assuming qmax ∼ k1. The spectrum is constrained by r(ω) < 1 for all frequencies. The ratio of the
D-dimensional over the four-dimensional Planck mass is limited by the observation that Newtonian gravity is valid at least
down to scales of the order of 1 mm [314]. This leads to the lower bound MD

M4
≥ (1.616 × 10−32)

n
n+2 . Furthermore, with T1

the temperature at the beginning of the radiation epoch, big-bang nucleosynthesis requires that T1 > 10MeV. This imposes

a bound on H1 by using H1
M4

= 1.66g
1
2
∗ (T1)


T1
M4

2
, where for T1 > 300 GeV the number of effective degrees of freedom is

given by g∗(T1) = 106.75 (see, e.g., [163]), namely, log H1
M4

> −40.94.
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Imposing the various constraints leads to upper limits on r(ωk) calculated at the galactic scale corresponding to 1 Mpc,

that is, ωG = 10−14 Hz and taking the maximally amplified frequency evaluated today to be ω1 ∼ 6× 1011Hz


H1
MPl

 1
2
[316].

Not taking into account modes in the extra dimensions leads for one extra dimension to magnetic field strengths Bs <
10−39 G. However, taking into account these modes substantially increases the upper value of the magnetic field to up to
10−8 G. Imposing the constraint T1 ∼ M5 leads to magnetic seed fields Bs < 10−23 G. In models with more than one extra
dimension, n > 1, strong magnetic seed fields can be created if the internal momenta are taken into account. In particular,
without the assumption that the temperature at the beginning of the radiation epoch is of the order of the D-dimensional
Planck scale allows for the creation of seed magnetic fields with strengths of up to 10−10 G. For more than three extra
dimensions, this also holds assuming T1 ∼ MD. With this assumption for two and three extra dimensions results in weaker
magnetic seed fields, with maximal field strengths, Bs < 10−18 G for two extra dimensions and Bs < 10−13 G for three extra
dimensions.

6.7. Magnetogenesis in theories with broken Lorentz symmetry

The spontaneous breaking of Lorentz invariance is present in certain solutions of string field theory which leads to a
nonvanishing photon mass described by the Lagrangian [321]

L = −
1
4
FmnFmn

+ M2
L a

−2ℓAmAm, (6.7.1)

where M2
L ≡

m2
L

M2ℓ
Pl
, mL is a light mass scale in comparison with the typical string energy scale and 2ℓ is a positive integer.

In [321] cosmologically interesting magnetic field strengths are found for a diverse choice of parameters of the model.
In [322] an extension of the standard model is presented in which due to new physics at the Planck scale Lorentz symmetry
is broken spontaneously. In the pure photon sector of the extended QED the Lagrangian is given by, [322]

L = −
1
4
FmnFmn

−
1
4
(kF )plmnF plFmn

+
1
2
(kAF )pϵplmnAlFmn, (6.7.2)

where the coupling (kF )plmn is real and dimensionless and (kAF )p is real and has dimensions of mass. In the context of the
generation of primordialmagnetic fields during inflation the Lagrangian (6.7.2) has been investigated in [323,324]. Analyzing
the model resulting by taking into account only the first two terms in (6.7.2) it has been shown in [323] that magnetic fields
of nanoGauss field strength on a megaparsec scale at present can be generated for a wide range of parameters. In [324] (see
also, [325]) primordial magnetogenesis during inflation has been discussed in a model resulting from considering only the
first and third term in (6.7.2). In this case the generatedmagnetic field is found to bemaximally helical at the end of de Sitter
inflation. The subsequent inverse cascade of the magnetic field spectrum taking place in the turbulent plasma during the
radiation dominated era results in a magnetic field with an interesting field strength and correlation length at the time of
the protogalactic collapse.

Noncommutativity in space provides a different possibility of breaking Lorentz invariance which in this case is explicitly
broken so that all the amplitudes are frame dependent. In the context of generation of primordial magnetic fields this was
first discussed in [326]. Noncommutative spaces occur in string theory in the Seiberg–Witten limit [327] and are described
by the commutation relation for the coordinate operators x̂m,

[x̂m, x̂n] = iθmn, (6.7.3)

where θmn is a constant of dimension length which is conveniently parametrized in terms of the noncommutativity scale
ΛNC , defined by θmn

≡
cmn

Λ2
NC

where cmn is an antisymmetric tensor with components of order unity [326]. Moreover, in order

to avoid problems with unitarity and causality, θ0µ = 0 is chosen such that only space is noncommutative. In [328] it was
shown that the magnetic dipole moment of a charged massive particle, such as the electron, receives quantum corrections
at one loop which are spin independent and proportional to θµ ≡ ϵµνκθ

νκ . This leads to a nonvanishing magnetic field
proportional to θµ when summing over all possible states. However, choosing the noncommutativity scale ΛNC ≃ 103 GeV
the authors find the resulting magnetic field to be too weak in order to successfully seed the galactic dynamo. In [329]
noncommutative quantum field theory was used for the U(1) gauge field leading to a modified Lagrangian describing the
photon which is of the form of the Lagrangian (6.7.2) including the first and the third term. Moreover, in this case (kAF )m is
nonzero only for the spatial components and given by the noncommutativity parameter θµ. Using the approach of [330]
to implement the stringy spacetime uncertainty relation which leads to an effective noncommutative spacetime [331]
investigate primordial magnetogenesis in dilaton electromagnetism. In [332] the generation of primordial magnetic fields
in inflation with a cut-off is investigated. The effect of the cut-off is to add extra terms to the action which in the model
under consideration describes a photon with a mass term during inflation. The free parameter of the model can be chosen
such that cosmologically relevant magnetic fields are obtained.
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6.8. Magnetogenesis and nonlinear electrodynamics

So far the models in this section proposed to generate primordial magnetic fields are all situated within linear electrody-
namics. In order to amplify perturbations in the electromagnetic field during inflation the electromagnetic field is coupled to
a scalar field or curvature terms, quantum corrections resulting in the trace anomaly, symmetries are broken or dynamical
extra dimensions are taken into account. All of these leading to the breaking of conformal invariance of Maxwell’s equations
in four dimensions.

Nonlinear electrodynamics provides yet another possibility of breaking conformal invariance of the electromagnetic field.
On large scales present day observations confirm the linearity in the electric and magnetic fields of Maxwell’s equations in
vacuum. However, as smaller and smaller scales are approached one might expect deviations from linearity due to the fact
that charges become more localized (see e.g. [127]) and hence increases the energy density. This led to the hypothesis that
there is some upper bound on the field strengths avoiding thus an infinite self-energy of a charged particle. A first example of
a classical singularity-free theory of the electronwas proposed by Born and later by Born and Infeld [333–336]. Themodified
field equations can be derived from the Lagrangian of the form [334]

L = b2

1 −


1 −


E2 − B2


/b2


, (6.8.1)

where b is a maximal field strength. In this section vector notation will be used to make expressions easier to read. The
electromagnetic field is modified at short distances and its energy density is finite. One of the problems with this type of
theory is its quantization [127]. Nonlinear electromagnetism had been considered before by Mie [337]. However, it was
discarded since it depended on the absolute values of the gauge potential [334].

Another place where nonlinear electrodynamics arises is in quantum electrodynamics. Virtual electron pair creation
induces a self-coupling of the electromagnetic field. Heisenberg and Euler calculated the self-interaction energy for slowly
varying, but arbitrarily strong electromagnetic fields [338–340]. It is described by the Lagrangian [338]
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, (6.8.2)

where

X ≡
1
4
FmnFmn Y ≡

1
4
Fmn

∗Fmn (6.8.3)

and M2
≡ 2X − 2iY . Expanding the Lagrangian leads to [338–340]

L = X + κ0X2
+ κ1Y 2. (6.8.4)

This describes the Heisenberg–Euler theory for the choice κ0 =
8α2

45m4
e
and κ1 =

14α2

45m4
e
, where α is the fine structure

constant and me the electron mass. Furthermore, the propagation of a photon in an external electromagnetic field can
be described effectively by the Heisenberg–Euler Lagrangian. Moreover, the transition amplitude for photon splitting in
quantum electrodynamics is nonvanishing in this case. Photon splitting is a process in which an electron–positron pair is
created and one of the particles emits a photon before annihilating with the other particle to generate the second photon.
Thus the initial one photon state transforms into a two photon final state. In principle, this might lead to observational
effects, e.g., on the electromagnetic radiation coming from neutron stars which are known to have strong magnetic fields
[340–342]. In particular, certain features in the spectra of pulsars can be explained by photon splitting [343,344].

Finally, Born–Infeld-type actions also appear as a low energy effective action of open strings [345–348]. As was shown
in [349] the low energy dynamics of D branes is described by the Dirac–Born–Infeld action.

To test whether nonlinear electrodynamics can lead to the generation of cosmologically relevant primordial magnetic
fields the following model will be considered. A stage of de Sitter inflation followed by reheating is matched to a standard
radiation dominated era. During inflation quantum fluctuations are excited within the horizon. Upon leaving the causal
domain they become classical perturbations. It is assumed that electrodynamics is nonlinear during inflation and becomes
linear once the universe enters reheating and subsequently the radiation dominated stage. This latter assumption ensures
that the evolution during the radiation dominated era and subsequent stages of the universe are described by the standard
model of cosmology. To study nonlinear electrodynamics in this settingwas put forward in [350] and independently in [351].

6.8.1. Field equations
The Born–Infeld or Heisenberg–Euler Lagrangians are particular examples of theories of nonlinear electrodynamics. In

general the action of nonlinear electrodynamics coupled minimally to gravity can be written as, see e.g. [347,348,352]

S =
1

16πGN


d4x

√
−gR +

1
4π


d4x

√
−gL(X, Y ), (6.8.5)
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where X and Y are defined by Eq. (6.8.3). Maxwell’s electrodynamics corresponds to the choice L = −X . The equations of
motion are given by

∇mPmn
= 0, (6.8.6)

where Pmn = − (LXFmn + LY ∗Fmn), where the dual bi-vector ∗Fmn is given by ∗Fmn
=

1
2
√

−g ϵ
mnabFab, and ϵmnab the Levi-Civita

tensor with ϵ0123 = +1. Furthermore LA denotes LA = ∂L/∂A, and

∇m
∗Fmn

= 0, (6.8.7)
which implies that Fmn = ∂mAn − ∂nAm. Assuming the background metric to be of the form,

ds2 = a2(η)

−dη2

+ dx2

. (6.8.8)

Furthermorewriting theMaxwell tensor in terms of electric andmagnetic fields in the ‘‘lab’’ frame (cf. Eq. (6.1.2)) Eqs. (6.8.6)
and (6.8.7) imply [350],

D⃗ ·
⃗̂E +

(D⃗LX ) ·
⃗̂E

LX
−

(D⃗LY ) ·
⃗̂B

LX
= 0 (6.8.9)

1
a2

∂η(a2
⃗̂E) − curl⃗̂B +

∂ηLX
LX

⃗̂E −
∂ηLY
LX

⃗̂B −
(D⃗LX ) ×

⃗̂B
LX

−
(D⃗LY ) ×

⃗̂E
LX

= 0 (6.8.10)

D⃗ ·
⃗̂B = 0 (6.8.11)

1
a2

∂η(a2
⃗̂B) + curl⃗̂E = 0. (6.8.12)

From these equations two wave-type equations can be derived which, however, contrary to the case of linear
electrodynamics do not decouple the electric and magnetic field. Taking the curl of Eq. (6.8.10) and using Eqs. (6.8.11) and

(6.8.12) a wave-type equation for the magnetic field ⃗̂B can be found [350].
1
a2

∂2

∂η2
(a2 ⃗̂B) +

1
a2

∂ηLX
LX

∂η(a2
⃗̂B) +

1
a2

∂ηLY
LX

∂η(a2
⃗̂E) +

∂ηLY
LX


∂ηLX
LX

⃗̂E −
∂ηLY
LX

⃗̂B


−D2 ⃗̂B +
⃗̂E × D⃗


∂ηLX
LX


−

⃗̂B × D⃗


∂ηLY
LX


−

∂ηLY
LX

 (D⃗LX ) ×
⃗̂B

LX
+

(D⃗LY ) ×
⃗̂E

LX


+ curl

 (D⃗LX ) ×
⃗̂B

LX

+ curl

 (D⃗LY ) ×
⃗̂E

LX

 = 0. (6.8.13)

Similarly, taking the time derivative of Eq. (6.8.10) and using the remaining equations results in a wave-type equation for

the electric field ⃗̂E [350],
∂2

∂η2


a2 ⃗̂E


+ ∂η


∂ηLX
LX

a2 ⃗̂E


− ∂η


∂ηLY
LX

a2 ⃗⃗B


−D2

a2 ⃗̂E


− ∂η



D⃗LX


×


a2 ⃗̂B


LX

− ∂η



D⃗LY


×


a2 ⃗̂E


LX


− D⃗

 (D⃗LX ) · (a2 ⃗̂E)

LX

+ D⃗

 (D⃗LY ) · (a2 ⃗̂B)
LX

 = 0. (6.8.14)

In the long-wavelength approximation spatial gradients can be neglected [353]. Thus neglecting spatial derivatives
Eq. (6.8.13) implies,

B⃗ ′′

k +
L′

X

LX
B⃗ ′

k +
L′

Y

LX
E⃗ ′

k +
L′

Y

LX


L′

X

LX
E⃗k −

L′

Y

LX
B⃗k


= 0, (6.8.15)

where B⃗k ≡ a2 ⃗̂Bk, E⃗k ≡ a2 ⃗̂Ek and a prime denotes the derivative with respect to conformal time η, that is ′
≡

d
dη . Assuming

that the Lagrangian depends only on X , that is LY = 0, Eq. (6.8.15) implies

B⃗ ′

k =
K⃗k

LX
, (6.8.16)
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where K⃗k is a constant vector and LX ≠ 0. For K⃗k ≡ 0 linear electrodynamics is recovered, for which B⃗k = const. In the long
wave length limit, the wave-like equation for the electric field, Eq. (6.8.14), yields to

d
dη


E⃗ ′

k +
L′

X

LX
E⃗k −

L′

Y

LX
B⃗k


≃ 0. (6.8.17)

Thus integrating Eq. (6.8.17) results in

E⃗ ′

k +
L′

X

LX
E⃗k −

L′

Y

LX
B⃗k = P⃗k, (6.8.18)

where P⃗k is a constant vector. The equations determining the magnetic and electric field, (6.8.15) and (6.8.17), are coupled
nontrivially for LY ≠ 0. Thus in order to find solutions, the Lagrangianwill be considered to be only a function of X , L = L(X).

Furthermore, since X =
1
2 (

⃗̂B
2
−

⃗̂E
2
) it is useful to find equations for E⃗ 2

k and B⃗ 2
k which are given by, for P⃗2

k > 0,

E⃗ 2
k

′′
+ 3

L′

X

LX
E⃗ 2
k

′
+ 2

L′′

X

LX
E⃗ 2
k = 2P⃗2

k (6.8.19)

B⃗ 2
k

′′
+

L′

X

LX
B⃗ 2

k
′
− 2

K⃗ 2
k

L2X
= 0. (6.8.20)

Assuming that the constant vector in Eq. (6.8.18) vanishes, P⃗k = 0, leads to a significant simplification. In this case,
Eq. (6.8.18) for L = L(X) can be solved immediately, giving for the electric field

E⃗k =
M⃗k

LX
, (6.8.21)

where M⃗k is a constant vector. Thus for P⃗k = 0 Eq. (6.8.20) leads to an equation only involving X and LX , namely,

d2

dη2


2a4X +

M⃗2
k

L2X


+

1
LX

dLX
dη

d
dη


2a4X +

M⃗2
k

L2X


− 2

K⃗ 2
k

L2X
= 0. (6.8.22)

6.8.2. A particular model
In order to find explicit solutions of Eq. (6.8.22) a particular Lagrangian has to be chosen. For simplicity the Lagrangian is

chosen to be of the form

L = −


X2

Λ8

 δ−1
2

X, (6.8.23)

where δ is a dimensionless parameter and Λ a dimensional constant. This is the abelian Pagels–Tomboulis model
[354,355]. An effective model of low energy QCD is provided by its nonabelian version [356]. Clearly, linear electrodynamics
is recovered for the choice δ = 1. The Lagrangian (6.8.23) is chosen since it leads to a significant simplification of the
equations, but still allows to study the effects of a strongly nonlinear theory of electrodynamics on the generation of
primordial magnetic fields. In general, the energy–momentum tensor derived from a Lagrangian L(X) is given by

Tmn =
1
4π


LXgabFmaFbn + gmnL


. (6.8.24)

Furthermore, for the Lagrangian (6.8.23) the trace of the energy–momentum tensor is given by

T =
1 − δ

π
L, (6.8.25)

which vanishes only in the case δ = 1 that is for linear electrodynamics. The energy–momentum tensor is calculated
explicitly to check whether there are any constraints on the parameter δ. Decomposing the Maxwell tensor with respect
to a fundamental observer with 4-velocity um into an electric field E⃗ and a magnetic field B⃗, implies [357,114,115,119],

Fmn = 2E[mun] − ηmnksuk Bs, (6.8.26)

where ηmnks =
√

−gϵmnks and umum
= −1. Thus the electric and magnetic field are given, respectively, by Em = Fnmun and

Bm =
1
2ηmnklunF kl. The lab frame is defined by the proper lab coordinates (t, r⃗) determined by dt = adη, dr⃗ = adx⃗. Applying

a coordinate transformation then gives the relation between the fields measured by a fundamental observer and the lab
frame. Using the 4-velocity of the fluid um

= (a−1, 0, 0, 0) results in the relation [358]

Êµ = aEµ, B̂µ = aBµ. (6.8.27)
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As shown in [357,114,115,119] the energy–momentum tensor of an electromagnetic field can be cast into the form of an
imperfect fluid. The energy–momentum tensor of an imperfect fluid is of the form (see for example, [357,114,115,119]),

Tmn = ρumun + phmn + 2q(mun) + πmn, (6.8.28)

where ρ is the energy density, p the pressure, qm the heat flux vector and πmn an anisotropic pressure contribution of the
fluid. hmn = gmn + umun is the metric on the space-like hypersurfaces orthogonal to um. With qmum

= 0 and πmnum
= 0,

ρ = Tmnumun qa = −Tmnumhn
a

Qab ≡ Tmnhm
a h

n
b Qab = phab + πab. (6.8.29)

Therefore using Eqs. (6.8.24) and (6.8.26) the energy density and the heat flux vector for the Pagels–Tomboulismodel (6.8.23)
are found to be

ρ = −
1
8π

L
X


(2δ − 1) EaEa

+ BaBa (6.8.30)

qa =
δ

4π
L
X

ηabmnubEmBn. (6.8.31)

Imposing the condition that πab is trace-free then the pressure and πab are given by

p =
1
3
ρ −

δ − 1
3π

L (6.8.32)

πab = −
δ

4π
L
X


1
3


EmEm

+ BmBm hab − (EaEb + BaBb)


. (6.8.33)

Thus considering ρ (cf. Eq. (6.8.30)) in general there is a constraint on δ which is δ ≥
1
2 required by the positivity of the

energy density ρ.

6.8.3. Estimating the primordial magnetic field strength
During de Sitter inflation electrodynamic is nonlinear and described by the Pagels–Tomboulis Lagrangian (6.8.23). Thus

in the very early universe electrodynamics is highly nonlinear and very different from standard Maxwell electrodynamics.
At the end of inflation electrodynamics is assumed to become linear so that the description of reheating and the subsequent
radiation dominated stage are unaltered.

Recalling that the scale factor during de Sitter is given by a(η) = a1


η

η1

−1
, where η ≤ η1 < 0. The end of inflation is

assumed to be at η = η1. The equations determining the electric and magnetic field in the long wave length limit, (6.8.19)

and (6.8.20), are coupled, since X depends on ⃗̂E
2
and ⃗̂B

2
, in particular the invariant X reads, 2a4X ≃ B⃗ 2

k − E⃗ 2
k . Therefore to

find approximate solutions three different regimes will be considered.

1. B⃗ 2
k ≃ O(E⃗ 2

k ).
2. B⃗ 2

k ≫ E⃗ 2
k . This implies the approximation 2a4X ≃ B⃗ 2

k .
3. E⃗ 2

k ≫ B⃗ 2
k . This implies the approximation 2a4X ≃ −E⃗ 2

k .

Following [35] it is assumed that quantum fluctuations in the electromagnetic field lead to initial electric and magnetic
fields. The energy density at the time of first horizon crossing during inflation, say at a time η2, is estimated to be of the
order of the energy density of a thermal bath at the Gibbons–Hawking temperature of de Sitter space. Furthermore it is
useful to recall the energy density in the magnetic field at the time of first horizon crossing corresponding to a value of the

scale factor a2 given by ρB(a2) ≃ H4
≃


M4

M2
Pl

2
, where M4 is the constant energy density during inflation. Assuming that

initially the magnetic and electric energy densities are of the same order, there is an equivalent expression for the electric
energy density at the first horizon crossing. While after the end of inflation, during the radiation dominated epoque, the
electric field rapidly decays due to plasma effects, the magnetic field remains frozen-in.

(1) B⃗ 2
k ≃ O(E⃗ 2

k )
In this case Eq. (6.8.22) can be approximately solved and leads to the magnetic field strength at the end of inflation

corresponding to the value of the scale factor a1 determined by [350],

B2
k(a1)

B2
k(a2)

≃ e−4N(λ) cosh
2
[m(x1 + (δ − 1)C1)]

cosh2
[m(x2 + (δ − 1)C1)]

, (6.8.34)

where N(λ) is the number of e-folds before the end of inflation at which λ left the horizon, that is, eN(λ)
= a1/a2.

Moreover,m ≡
|K⃗k|

MPl|M⃗k|
and x ≡

η

M−1
Pl

.
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Furthermore, the constant C1 is chosen such that (δ−1)C1 = −x2. Using that during de Sitter inflation, a = a1(η1/η)
and the number of e-folds, results in the magnetic energy density ρB at the end of inflation,

ρB(a1) ≃ ρB(a2)e−4N(λ) cosh2
[−mx1(eN(λ)

− 1)], (6.8.35)

where ρB =
B2
8π . Together with the expression for the number of e-folds remaining until the end of inflation after

the comoving scale λ has crossed the horizon during inflation (cf. Eq. (4.3.1)), this results in the ratio of magnetic to
background radiation energy density r at the end of inflation [350],

r(a1) ≃ 10−104


λ

Mpc

−4  M
TRH

 10
3

cosh2


−9.2 × 1025


λ

Mpc


M
MPl

 2
3

TRH
MPl

 1
3

mx1


. (6.8.36)

There are bounds on the parameterm coming from the requirements that r should be larger than a lower value in order
to be strong enough to seed the galactic magnetic field and smaller than an upper bound coming from the fact that r has
be less than one. Therefore assuming λ = 1 Mpc and the inflationary energy scale M = 1017 GeV, the following values
for −mx1 are found [350]. For a model with reheat temperature TRH = 109 GeV [35] the parameter −mx1 has to be in
the range 2.7 × 10−20 < −mx1 < 5 × 10−20 in order to achieve a magnetic seed field with a field strength to be at
least Bs ≃ 10−20 G, corresponding to r0 = 10−37. For a higher reheat temperature TRH = 1017 GeV [35], for the same
magnetic seed field strength −mx1 has to be in the range, 9.5 × 10−23 < −mx1 < 1.5 × 10−22. And similarly, for the
less conservative bound r0 = 10−57, for TRH = 109 GeV, −mx1 has to be in the range 1.4× 10−20 < −mx1 < 5× 10−20

and for TRH = 1017 GeV it is found that 6.7 × 10−23 < −mx1 < 1.5 × 10−22.
(2) B⃗ 2

k ≫ E⃗ 2
k

For δ ≠
1
2 and δ ≠

5
4 the r is found to be [350]

r(a1) ≃

9.2 × 1025− 6

2δ−1


λ

Mpc

−
6

2δ−1


M
MPl

2 6δ−5
2δ−1


TRH
MPl

−
4δ

2δ−1

. (6.8.37)

For P⃗2
k > 0, solutions consistent with the assumption used in the approximation yield cosmologically interesting

magnetic fields for δ > 1.9 for TRH = 1017 GeV and for δ > 3.0 for TRH = 109 GeV. In these cases the ratio of the
energy density of the magnetic field over the energy density of the background radiation r is found to be r > 10−37

corresponding to a primordial magnetic field of at least Bs = 10−20 G.
In the cases δ =

1
2 and δ =

5
4 the solutions show a behavior different from the power-law solutions for X used in

the former case (cf. Eq. (6.8.37)). On the one hand, for δ =
5
4 an implicit solution depending on Euler’s β function can be

found which however makes it difficult to estimate explicitly the magnetic field strength at the end of inflation. On the
other hand, for δ =

1
2 a solution depending on simple functions can be found, namely the ratio r at the end of inflation

is given by, [350]

r(a1) ≃ 10−104


λ

Mpc

−4  M
TRH

 10
3

cosh2


−8 × 1077x1

α2

18

 1
2


λ

Mpc

3  M
MPl

2 TRH
MPl


. (6.8.38)

Here the constant c1 has been chosen as c1 ≡ −


α2
18

 1
2 x1


η2
η1

3
. Furthermore, α2 =

4K⃗2
k

M2
PlΛ

4a41
. In this case the solutions

found for the electric and magnetic field are consistent with the approximation for P⃗2
k > 0 and P⃗2

k = 0. Moreover, the
resulting magnetic field is strong enough to seed the galactic dynamo [350].

(3) E⃗ 2
k ≫ B⃗ 2

k
In this case the approximation implies that at the end of inflation the electric energy density is much larger than the

magnetic energy density.
The ratio r at the end of inflation is given by [350]

r(a1) ≃

9.2 × 1025−β


λ

Mpc

−β  M
MPl

6− 2β
3

TRH
MPl

−2− β
3

. (6.8.39)

For P⃗2
k > 0 the resulting magnetic fields very weak magnetic fields and r(a1) ≪ 10−37 for typical values of the

cosmological parameters. However, in the case P⃗2
k = 0, for δ > 19.5 and a reheat temperature TRH = 109 GeVprimordial

magnetic fields result which could successfully act as seed fields for the galactic dynamo.

In summary, using the Pagels–Tomboulis model an example of a theory of nonlinear electrodynamics has been provided
which can lead during inflation to sufficient amplification of perturbations in the electromagnetic field in order to seed the
galactic magnetic field.

In [351] the resulting magnetic field generated during inflation is estimated for Lagrangians of the form L = L(X).
The magnetic field strength is obtained by neglecting the magnetic field contribution to X on superhorizon scales since



A. Kandus et al. / Physics Reports 505 (2011) 1–58 53

Eq. (6.8.12) implies Bµ ∼ kηEµ on these scales. Moreover, neglecting the spatial gradient terms in Eq. (6.8.10), [351] find
the scaling

(LX )
2 X ∝ a−4. (6.8.40)

Using this relation for Lagrangians of the form L = −X +
n

i=2 ciX
i and L = −X exp (−cX), where ci and c are constants,

and the Born–Infeld Lagrangian (6.8.1), the resulting magnetic field strength at present is estimated. There is a range of
parameters for which magnetic fields strong enough to directly seed the galactic magnetic field can be generated.

In [359] the generation and evolution of primordial magnetic fields has been discussed during de Sitter inflation,
reheating and the radiation dominated era in theories of nonlinear electrodynamics described by Lagrangian densities
L ∼ X + γ X δ and L ∼ X + µ8/X , where γ , δ and µ are constants. It was found that not only primordial magnetic
fields of interesting field strengths can be generated but also the baryon asymmetry by gravitational coupling between the
baryon current and the curvature of the background. In [360] primordial magnetic field generation has been discussed in
DBI inflation.

7. Summary and outlook

Although the origin of cosmic magnetism is still the subject of debate, the ubiquitous presence of large-scale B-fields
with similar (of µG order) strengths in galaxies, galaxy clusters and high-redshift protogalactic structures seems to suggest
a common, primordial origin for them. Very recent reports indicating the presence of extragalactic magnetic fields close to
10−15 G in low density regions of the universe also point towards the same direction.

The possibility of a cosmological (pre-recombination) origin for all the large-scale magnetic fields is a relatively old
suggestion and there have been numerous studies looking at the generation, the evolution and the potential implications of
such primeval fields. There are still serious difficulties to overcome, however, especially when trying to produce the initial
B-fields that will seed the galactic dynamo. Primordial magnetogenesis is still not a problem-free exercise, which probably
explains the plethora of mechanisms proposed in the literature. Roughly speaking, magnetic seeds produced between
inflation and recombination are too small in size, while those generated during inflation are generally too weak in strength.
In either case, the galactic dynamowill not be able to operate successfully. The former of the aforementioned two problems
is essentially due to causality, which severely constrains the coherence length of almost every B-field produced during the
radiation era. The latter problem is attributed to the dramatic depletion suffered by typical inflationary magnetic fields.
Primordial turbulence and magnetic helicity conservation can in principle increase the initial coherence scale of magnetic
seeds, especially of those generated during phase transitions in the early radiation era. Considerable effort has also been
invested in the search for viable physical mechanisms that could amplify weak inflationary magnetic fields. Solutions to
the magnetic strength problem are typically sought outside the realm of classical electromagnetism and/or that of standard
cosmology, although conventional amplification mechanisms can also be found in the literature. The aim of this review is
to provide an up-to-date and as inclusive as possible discussion on the current state of primordial magnetogenesis.

Decidingwhether the large-scalemagnetic fields that we observe in the universe today are of cosmological origin, or not,
would be a step of major importance for cosmology. If confirmed, such primordial fields could have affected in a variety of
ways a number of physical processes that took place during the early, as well as the subsequent, evolution of the cosmos.
Although the argument in favor of cosmological B-fieldsmay not settle unless an unequivocalmagnetic signature is detected
in the CMB, their case gets stronger as more reports of magnetic fields at high redshifts and in empty intergalactic space
appear in the literature. Upcoming observations may also help in this respect. A new generation of radio telescopes, like the
Expanded Very Large Array (EVLA), the Low Frequency Array (LOFAR), the Long Wavelength Array (LWA) and the Square
Kilometer Array (SKA) have large-scale magnetic fields in their lists of main targets. If nothing else, the expected influx of
newdata should put extra constraints thatmay allowus to distinguish between the various scenarios ofmagnetic generation
and evolution. Information of different type, but of analogous importance, may also come from CMB observations, like
those associated with the ESA PLANCK satellite. At the same time, structure-formation simulations are becoming more
sophisticated by the day and a number of research groups have started systematically incorporating magnetic fields into
their codes. This in turn should help us understand and interpret better the non-thermal regime of galaxy formation. So,
hopefully, we will soon have cosmological and structure-formation models with fewer free parameters and more physics.
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