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Abstract. A model, plane symmetric, 3-D potential, which pre-
serves some features of galactic problems, is used in order to
examine the phase space structure through the study of the prop-
erties of orbits crossing perpendicularly the plane of symmetry.
It is found that the lines formed by periodic orbits, belonging
to Farey sequences, are not smooth neither continuous. Instead
they are deformed and broken in regions characterised by high
Lyapunov Characteristic Numbers (LCN’s). It is suggested that
these lines are an incomplete form of a fractal repeller, as dis-
cussed by Gaspard and Baras (1995), and are thus closely as-
sociated to the “quasi-barriers” discussed by Varvoglis et al.
(1997). There are numerical indications that the contour lines
of constant LCN’s possess fractal properties. Finally it is shown
numerically that some of the periodic orbits -members of the
lines- belong to true irregular families. It is argued that the frac-
tal properties of the phase space should affect the transport of
trajectories in phase or action space and, therefore, play a cer-
tain role in the chaotic motion of stars in more realistic galactic
potentials.

Key words: chaos – celestial mechanics, stellar dynamics –
Galaxy: kinematics and dynamics – galaxies: kinematics and
dynamics

1. Introduction – motivation

One of the most interesting open questions in non-linear dy-
namics is the nature and evolution of transport in the chaotic
phase space regions of perturbed integrable Hamiltonian sys-
tems. Most of the work in this field has been done for 2-D
systems or for the standard map, following two different ap-
proaches. In the first approach, which may be designated as
microscopic, one studies the homoclinic and heteroclinic tan-
gle of stable and unstable manifolds inside the chaotic region.
This gives a “complete” qualitative picture of transport in phase
space, since a chaotic trajectory follows the unstable manifolds
of the unstable periodic orbits, jumping from one to another near
the heteroclinic points. On the other hand, invariant tori sur-
rounding stable periodic orbits act as “barriers” in the transport
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process, modifying at the same time the topological structure of
phase space. However, it is not presently well understood how
the results from this kind of study can be used in a quantitative
description of the evolution of an ensemble of trajectories.

In the second approach, which may be designated asmacro-
scopic, one assumesa priori that transport is a pure random
phenomenon (a Markovian process). Then the transport of an
ensemble of trajectories may be considered as “classical diffu-
sion” in action space. Unfortunately, it is well known that trans-
port in Hamiltonian systems cannot be considered as a pure
Markovian process, due to the problem ofstickiness. More-
over the process may follow Lévy rather than classical statistics
(Shlesinger et al., 1993). In this case the macroscopic approach
still works, provided that the process is considered asfractal
diffusion in normalspace (Zaslavsky, 1994). In this way it be-
comes evident that Ĺevy-like statistics are closely related to the
self-similarity of the phase space. This formalism results in a
differential equation with fractional partial derivatives, whose
solution is formidably difficult, even in the simple case of 2-D
systems.

There are rather few attempts to study transport in Hamil-
tonian systems with more than two degrees of freedom, mainly
because the above mentioned approaches for 2-D systems can-
not be directly generalized. It is therefore important to note that
there exists yet a third approach for the description of trans-
port, which may be implemented in a straightforward way in
systems with more than two degrees of freedom, and this is
normal diffusionin fractal space(e.g. see West and Deering,
1994, and references therein). The fractality of phase space has
been already demonstrated for 2-D systems and has been as-
sociated with the self similarity of the hierarchical structure of
island families on a surface of section (e.g. see Zaslavsky, 1994,
BenKadda et al., 1997).

In the case of more than two degrees of freedom the sit-
uation is more complicated, since the topological structure of
phase space in any region depends on the number of local in-
tegrals of motion. Recently Varvoglis et al. (1997) have found
indications of phase space fractality in the same model 3-D
Hamiltonian system studied in the present work, but they were
unable, due to the particular method of study they had selected,
to identify actual fractal or multifractal sets in phase space.
They have conjectured that the fractality is due to the presence
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of quasi-barriers(Varvoglis and Anastasiadis, 1996), i.e. geo-
metrical objects of lower than full dimensionality (depending on
the number of local integrals of motion), such as periodic orbits,
invariant tori around them and cantori (Aubry, 1978; Percival,
1979).

From the above discussion it is obvious that the importance
of the fractality of phase space in the diffusion process lies in
the nature and in the rate of the diffusion: In a simply connected
space, the diffusion is classical and follows Fick’s law (trans-
port proportional to

√
(t)). In a fractal space the diffusion is

non-classical (presumably a Lévy process) and, in the case of
a Hamiltonian system, usually it has a lower than the Fickian
rate.

On the other hand, the distribution of periodic orbits perpen-
dicular to thex−y plane in the present 3-D model potential has
been studied by Barbanis and Contopoulos (1995) (henceforth
referred to as BC) and Barbanis (1996). It was found that it is
not random: the perpendicular crossings (p.c.’s) of orbits with
multiplicities forming Farey sequences with thex − y plane
are arranged along lines, named in the present paper basic-lines
(BL) and Farey tree lines (FTL). These lines are not continuous
but they possess gaps; two of them have already been mentioned
in BC. Since the presence of Farey sequences implies a form
of self-similarity, it is possible that the BL’s and FTL’s may be
related to the above-mentioned quasi-barriers and that the gaps
may be related to any fractal properties of phase space.

In the present paper we use the model potential studied by
BC in order to test the conjecture put forward by Varvoglis et al.
(1997) about the origin of the fractality of phase space. Further-
more, through this, we attempt to assess the relation between the
topological structure of the phase space and transport, on the one
hand, and the system of BL’s and FTL’s, on the other. Although
this potential can model a true galaxy only locally, its study
is expected, nevertheless, to contribute to the understanding of
galactic evolution problems, based on the fact that evolution
is intimately connected to transport in phase and configuration
space. Transport in a chaotic region of a perturbed integrable
dynamical system, in turn, may be viewed as (stochastic) diffu-
sion, which depends on the value of the Lyapunov Characteris-
tic Number as well as on the topological structure of the phase
space. We believe that similar behaviour would characterise any
3-D perturbed integrable dynamical system, as are most of the
realistic model galactic potentials.

The purpose of this paper is threefold:
(a) to study in finer detail the distribution of the periodic

orbits along the BL’s and FTL’s.
(b) to examine whether these lines are connected, in any

way, to transport in phase space and are, thus, related to the
“quasi-barriers” and

to confirm the existence of true irregular families of periodic
orbits in a 3-D Hamiltonian system.

This paper is organized as follows. In the next section we
present, for reasons of completeness, some remarks on previ-
ous results. In Sect. 3 we show that the LCN’s may “map” the
fractality of phase space. In Sect. 4 we present our results on
the interconnection and discontinuities of BL’s and FTL’s. In

Sect. 5 we show numerically the existence of irregular families
of periodic orbits. Finally in Sect. 6 we summarise and discuss
our results.

2. Remarks on previous results

2.1. Basic lines

The systematic exploration of the phase space structure of 3-D
Hamiltonian systems was initiated by Magnenat (1982) and later
by Contopoulos & Barbanis (1989), BC and Barbanis (1996),
through the study of periodic orbits of unit mass test particles
in a 3-D model potential, corresponding to the Hamiltonian

H = 1
2

(
p2

x + p2
y + p2

z

)
+ 1

2

(
Ax2 + By2 + Cz2

)
(1)

−εxz2 − ηyz2 = h

with a particular set of parameters (A = 0.9, B = 0.4, C = 0.225,
ε = 0.560, η = 0.20 andh = 0.00765). The specific values
for the parameters A, B, C were selected by Magnenat (1982)
because the 2-D systemx − z for

√
A/C = 2 is topologically

equivalent to the Inner Lindblad Resonance and the 2-D system
y − z for

√
B/C = 4/3 is a well studied 2-D dynamical system

with extended chaotic regions. For this set of parameters it was
found in BC that the distribution of the p.c.’s of the periodic or-
bits is not accidental: the crossings are arranged along particular
lines on thex − y plane (wherex = A1/2x, y = B1/2y), as
it is evident in Fig. 1 (taken from Fig. 5 of BC). Each orbit has
either one p.c., marked by a (x), or two p.c.’s, marked by (+). In
this paper, for clarity reasons, we use a point (·) instead of (x).
Each p.c. is designated by a number (or a number and a letter),
representing the multiplicity of the orbit; different orbits with
the same multiplicity are differentiated by a prime. The lines
are formed by the p.c.’s of the orbits, whose multiplicities form
arithmetic progressions with increment the multiplicity of the
limit orbit. They are termed in this paperbasicif they connect
orbits of the unperturbed system (e.g. 1a, 1b in Fig. 1) or orbits
with low multiplicity, m (e.g.m ≤ 5). For example the basic
sequences

3(+), 5(·), 7(+), 9(·),...2c(+)
and 3(+), 5′(·), 7(+), 9′(·),...2c(+),

which form the lines C and C′, start with an orbit of multiplicity
3 and increment 2, which is the multiplicity of the limit orbit
2c.

2.2. Farey tree lines

In BC it was recognized that the distribution of p.c.’s on the
x − y plane presents some self-similar features. To begin with,
to each basic sequence of orbits corresponds a number of new
sequences of higher order. Each member of a new sequence is
a periodic orbit having as multiplicity the sum of the multiplic-
ities of two consecutive orbits of the generating sequence. For
example between the first two orbits of the basic sequence C,
i.e. 3(+) and 5(·), there is the orbit 8(+). Two second order se-
quences are formed between 3 and 8 as well as between 8 and
5, i.e.
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8(+), 11(·), 14(+), 17(·), 20(+), 23(·), ...3(·)
and (2)

8(+), 13(+), 18(+), 23(+), 28(+), ...5(·)
Both new sequences have as first member the orbit 8, but they
have different limit orbits and increments (i.e. 3 for the first and
5 for the second, respectively). In the same way we can form
sequences of even higher order. We call the orbits of these higher
order sequencesFarey tree orbitsand the lines on which they
lie Farey tree lines, because such sequences are similar to the
Farey sequences discussed by Niven and Zuckerman (1960). For
a good review on Farey trees see Efthymiopoulos et al. (1997).

The periodic orbits are used, in the present paper, as an
additional tool for probing the topological structure of the phase
space. In particular, periodic orbits of high multiplicities are
needed in order to search for self-similar structures in the BL’s
and FTL’s for a wide interval of multiplicities (see Avnir et al.,
1998). The importance of the non-basic (Farey) lines lies exactly
on the above line of reasoning, as well as in the fact that they
might be necessary in order to calculate correctly an appropriate
diffusion coefficient. It should be noted that we have restricted
our study to the periodic orbits crossing perpendicular the x-y
plane for simplicity reasons.

2.3. Irregular orbits

All periodic orbits of the same multiplicity that can be found
through the continuous variation of a parameter in the equa-
tions of motion belong to the same family. The graph giving
one of the initial conditions of the periodic orbits as a function
of the parameter is thecharacteristicof this family. Families,
which do not exist for values of the perturbing parameter below
a critical value, appear only as pairs, are well known in 2-D dy-
namical systems and are calledirregular families(Contopoulos
1970; Barbanis 1986). However, their existence has not been
proven for 3-D systems. Pairs of families that have been found
in such systems without a direct connection to a basic orbit, they
were all of small multiplicities and it turns out that they have an
indirect connection to a basic orbit through other families bifur-
cating from it (Barbanis, 1996). It is desirable to know whether
families of periodic orbits in 3-D systems (presumably of high
multiplicities) do exist withoutanyconnection to a basic orbit.
Their presence might play a certain role in the fractality of phase
space and, therefore, in trajectory transport.

2.4. Lyapunov numbers

Varvoglis et al. (1997), while studying numerically transport
phenomena in the trajectories of the Hamiltonian (1), have
found, in an indirect way, that the phase space shows a frac-
tal structure. In particular they presented numerical evidence
that the functiondV/dt has multifractal properties, whereV (t)
denotes essentially the coarse-grained volume of phase space
visited by a trajectory up to timet. They found, also, that the
evolution of the functiondV/dt is closely related to the evolu-
tion of the function

Fig. 1.The majority of the perpendicular crossings of the periodic orbits
of the Hamiltonian (1) lie on particular lines on thex − y plane inside
the boundary circlex2 + y2 = 2h. Most of the lines are concentrated
around the basic orbits 1a and 1b. There is also a noticeable spiral
structure with focal point the orbit 1a. Four spirals illustrate the area
of this structure. Note that in this figure (reproduced from BC, Fig. 5)
a different notation is used than in the rest of the present paper. Each
symbol,(×) or (+), shows a periodic orbit with one or two crossing
points, respectively.

χ(t) =
1
t

ln
d(t)
d(0)

(3)

whose limit, ast → ∞, is defined as the LCN. The functionχ(t)
shows plateaus in the time intervals wheredV/dt is close to zero
and steeply increasing transient segments in the time intervals
wheredV/dt takes large positive values. This fact shows that
a trajectory is confined successively in regions of phase space
where the LCN converges to a limit and, therefore, the fractal
properties ofdV/dt should arise from the (apparently) self-
similar distribution of periodic orbits and other quasi-barriers
in phase space (Zaslavsky, 1994).

It should be emphasised that, in the present paper, LCN’s
are not calculated in order to estimate “rates of diffusion”, since
LCN’s alone cannot describe completely this phenomenon in
the case where there exist invariant tori of considerable mea-
sure. We do, however, calculate LCN’s in order to “probe” the
phase space structure, i.e. to delineate, in an independent from
other methods way, the “topology” of the phase space. This new
method is based on the property that trajectories starting in a cer-
tain region, bounded by “quasi-barriers”, are characterised by
a certain “Local Lyapunov Number”. By drawing the contour
lines of LCN’s, one draws, essentially, the geometric boundary
of the region bounded by the “quasi-barriers”.



882 B. Barbanis et al.: Imperfect fractal repellers and irregular families of periodic orbits

8

135

35

27

73

119

19

30

11

36
23

17

61

302 74b

108a

74a

57a

97b

154b

154

97b

y

x

0.020

0.025

0.030

0.035

0.005 0.010 0.015

20

14

25

97

133

3

100

67

108b

57

Fig. 2. A segment of the BL between the p.c.’s of the periodic orbits 3
and 5 (indicated by a bold line) and the network of various FTL’s (cor-
responding to the upper central part of Fig. 1, line C). The nonexistent
part of C between 8 and 14 is indicated by a dashed line. The contour
lines of constant LCN’sλ = 10−4 are superimposed and the regions
of λ > 10−4 are gray shaded

3. LCN’s and fractal properties

The “classical” calculation of LCN’s requires a continuous inte-
gration of the corresponding trajectories, until the functionχ(t)
has reached a plateau. It is, therefore, obvious that this method
cannot be used in a “mass production” procedure. For this rea-
son we decided to use a different approach, by calculating the
value of the functionχ(t) at various integration time intervals,
∆t, up to∆t = 3 105. Comparing the results for different∆t′s
we have found that they are qualitatively the same (i.e. they
form level lines with increasing complexity as one goes to finer
details), provided that∆t > 105. So, even ifχ(t) does not reach
a plateau, its value at the end of the corresponding time interval
∆t > 105 gives a correct estimate, at least to order of mag-
nitude, of the “degree of stochasticity” of the trajectory in the
phase space region restricted by the quasi-barriers. We desig-
nate this value as theFixed Time LCN. In what follows we use,
for convenience, the notation LCN. Through this kind of LCN’s
we attempt to probe the topological structure on thex−y plane
as follows:

We draw a dense mesh on thex−y plane (for0 < x < 0.020
and0.010 < y < 0.045 at intervals∆x =∆y = 0.0005) and we
use the nodes of this mesh as initial conditions for trajectories
starting perpendicular to this plane. We calculate the LCN of
each trajectory at the end of various time intervals and we draw

the contour lines of constant LCN on thex−y plane at the LCN
valueλ = 10−4. In Fig. 2 we show our results for the LCN’s
at the end of a time interval∆t = 3 105. Fig. 2 contains only
a small part of the studied region. The structure of the contour
lines in the whole region as well as their variation with∆t is still
under investigation and will be the topic of another publication.

The emergent picture is very interesting. One can immedi-
ately see that the studied area may be divided into two regions:
Most of it is characterized by small values of LCN’s (white re-
gions); inside the white regions one can find small elongated
regions characterized by high values of LCN’s (gray regions).
It should be noted that the position and elongation of these re-
gions is closely related to the position and the direction of BL’s
and FTL’s (see next section). This fact may be interpreted in
the following way. Since a considerable fraction of the periodic
orbits along these lines are unstable, the exponential divergence
of trajectories in the area around them is governed mainly by
the unstable manifolds of the orbits-members of the lines. The
situation is reminiscent of afractal repelleras defined in Gas-
pard and Baras (1995), i.e. a set of countably infinite unstable
periodic orbits, which has zero Lebesgue measure and a finite
Hausdorff dimension. In our case the orbits-members of BL’s
and FTL’s may be considered as forming a sort of an incom-
plete (since not all periodic orbits are unstable)fractal repeller.
In other words the BL’s and FTL’s are closely associated with
the “quasi-barriers”, which are geometrical objects that sepa-
rate “loosely” different phase space regions with different Lo-
cal LCN, as it has been discussed by Varvoglis et al. (1997) and
Tsiganis et al. (1998).

Since (I) there is evidence that BL’s and FTL’s have frac-
tal properties and (ii) there is a relation between the BL’s and
FTL’s, on one hand, and the LCN’s on the other, it should be
interesting to examine whether the contour lines have fractal
properties as well. To do so we calculate the LCN’s in the re-
gion −0.02 < x < 0.01, 0.05 < y < 0.10 using a coarse
(∆x = ∆y = 0.005) and a fine mesh (∆x = ∆y = 0.001).
This region was selected because it was studied, although with
a much coarser mesh (∆x = ∆y = 0.01) by Contopoulos
and Barbanis (1989, Fig. 9). We then plot both contour lines at
λ = 10−4, on the same graph, as shown in Fig. 3. It is easy
to see that, while the dashed line, corresponding to the coarser
mesh, seems rather smooth, the continuous one, correspond-
ing to the finer mesh, shows “tongues” that oscillate about the
dashed curve, a picture reminiscent of the classical examples
of fractal curves. Of course this cannot be taken as aproof,
even numerical, that contour lines are fractal curves, since the
available data are not exhaustive (see also Avnir et al., 1998).
However, we believe that Fig. 3, if considered together with the
fact that LCN’s reflect the distribution of the unstable manifolds
of unstable periodic orbits, is a strong indication that the contour
lines have, indeed, fractal properties.

4. BL and FTL are not simple

As it is evident from Fig. 1 and the relevant discussion in BC
and Barbanis (1996), the BL’s formed by the lowest order se-
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quences look continuous and smooth. Because of this it had been
assumed that the lines appearing in Fig. 1 contain all the higher
order sequences described in Sect. 2 as well, so that any frac-
tal properties, arising from the Farey tree character of the p.c.
sequences, are restrictedalong the lines and notacrossthem.
However, the existence of two small gaps in a BL, noticed by
BC, gave the first evidence that, somehow, this picture is not
correct. In order to examine, therefore, in depth the situation,
we proceed in the calculation of periodic orbits belonging to
several higher order sequences than those appearing in Fig. 1.

We focus our interest on a small region, between the orbits
3(+) and 5(·) of the line C (BC, Fig. 8), since it is in this area
that the first noticeable gap was observed. Between these two
orbits lies the orbit 8(+). Therefore two second order sequences
are formed with orbit 8 as first member and increments 3 and
5 respectively, i.e. the sequences (2). In Fig. 2 we can see that
the first sequence presents a large gap between orbits 8 and
14, where higher order FTL’s, branching away from the BL,
may be observed. Furthermore, as we discuss below, orbit 11
(which lies between orbits 8 and 14, instead of being part of
the BL) belongs to a higher order FTL. In contrast the second
sequence does not show any noticeable gaps. The reason for
this difference becomes obvious, if one considers the BL’s and
FTL’s in association with the degree of stochasticity of the phase
space where these orbits lie, estimated through the calculation
of LCN’s. In Fig. 2 one can immediately notice that the first
sequence crosses a region of high LCN’s, while the second is
confined in a region of low LCN’s.

Let us now examine what happens to the higher order se-
quences between 11 and 8, on one hand, and 11 and 14 on the
other, i.e. 11(·), 19(+), 27(·), 35(+),..., 8(+) and 14(+), 25(+),
36(+),..., 11(·). As it is evident from Fig. 2, the FTL correspond-
ing to the first sequence is torn and split into two branches, one
beginning from orbit 11 going upwards and the other beginning
from orbit 8 going downwards. Similar is the situation with the
second sequence. The FTL is torn and split into two branches,
one going upwards from orbit 14 and the other going down-
wards from orbit 11. The branch going downwards from orbit
11 is connected to the FTL of the first sequence going upwards
from orbit 11, resulting in a composite S-shaped line (the three
leftmost continuous thin lines in Fig. 2). In this way we see that
the gap between orbits 8 and 14 is, in a way, “filled” with FTL’s
corresponding to higher order sequences. This is an example of
a case where higher order FTL’s do not lie on the “parent” BL.

It is interesting to note that the branch of the second FTL
going upwards from orbit 11 is developed inside a narrow strip
of ordered motion.

In Fig. 2 we notice also two “vertical” higher order FTL’s
that emanate from the orbits 57(·) and 17(·), corresponding to
higher order sequences with increment 40. The first of them, the
one emanating from orbit 57(·), is vertical to the local gradient of
the contour lines and lies in a region of low LCN’s. The second
one, the one emanating from orbit 17(·), is vertical to the local
gradient of the contour lines as well but it seems to span ahigh
LCN’s region. The most probable explanation is that the line
lies, in fact, in a narrow strip of low LCN’s, with a width less
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Fig. 3. The contour lines of constant LCN at the valueλ = 10−4 for
a coarse mesh (∆x = ∆y = 0.005, dashed line) and a fine mesh
(∆x = ∆y = 0.001, solid line). Regions ofλ > 10−4 andλ < 10−4

are marked with a H and an L, respectively

than the size of the mesh used. This is something that should be
expected for a geometrical object with fractal properties and has
been indeed encountered in some other regions of the studied
area.

From the above discussion emerges an intuitively appealing
picture: BL’s and FTL’s are, in a sense, lines representing some
ordered features of the dynamical system, which are deformed
in the neighbourhood of thechaotic seasand tend to run per-
pendicular to the local gradient of the contour lines of constant
LCN’s. Therefore we understand that the structure of the BL’s
and FTL’s on thex− y plane is considerably more complicated
than it was assumed in BC, a fact which, as we showed in Sect. 3,
seems to play an important role in the nature of transport in the
phase space of Hamiltonian (1).

5. Existence of irregular families

In two previous papers (BC; Barbanis 1996) the authors investi-
gated the bifurcation and the evolution of known periodic orbits
belonging to some BL’s. It was found that a small number of
these families form pairs that do not have any direct or indirect
connection with the periodic orbits of the unperturbed system.
However, for a given multiplicity, there are many other bifur-
cating families, which may play the role of connecting bridges
between those pairs.
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Following these considerations, we studied the evolution of
the bifurcations of somespecificmultiplicities from the basic
orbits 1a and 1b. We have selected the multiplicities 11 and
29 for three reasons: (I) 11 and 29 are prime numbers, so that
there are no families of these multiplicities resulting from lower
multiplicity families, except from those with multiplicity one.
(ii) The number of bifurcating families is neither small nor great.
(iii) There are a lot of orbits of these multiplicities on the various
BL’s and FTL’s forε = 0.560 andη = 0.20.

The detailed discussion in Appendix A and the examples in
Appendix B lead to the conclusion that pairs of families without
any direct or indirect connection to a basic orbit of the unper-
turbed system (e.g. the six pairs appearing in Fig. A1) exist in a
3-D system. This happens mainly for high multiplicities, exactly
as one would expect considering the analogous case of irregular
families in 2-D systems. It should be noted also that, besides
the above mentionedclassicalcase of irregular families, in this
work we have found a new kind of irregular families, which we
call adouble pair, i.e a pair consisting of two single pairs (see
Fig. B6 and its discussion in Appendix B).

6. Summary and conclusions

Barbanis and Contopoulos (1995), in studying the distribution
of the p.c.’s of the periodic orbits in a well known 3-D model
potential with thex − y plane, have discovered a noteworthy
order. Except for a couple of gaps, the p.c.’s of periodic orbits,
whose multiplicities form Farey-tree sequences, are arranged
along continuous and smooth-looking lines. The p.c.’s along
these lines have some fractal properties, arising from the fact
that they belong to Farey-tree sequences of various orders. In
the present work we tried to study the properties of these lines
in association with the values of the LCN’s of the area span by
them.

We have found numerical evidence that the contour lines of
LCN’s show fractal properties. We have also found numerical
evidence that the splitting of initially continuous and smooth-
looking BL’s and FTL’s, as well as the ensuing formation of
gaps, is not an exception, as was implied in BC. As a rule, it
is observed in regions of thex − y plane characterised by high
values of the LCN’s and appears not only in BL’s, but in higher
order FTL’s as well.

Since our results are only numerical and involve only a small
number of periodic orbits, the above results cannot be consid-
ered as firm proof that the distribution of BL’s and FTL’s as well
as the contour lines of LCN’s have, beyond any doubt, fractal
properties. However we feel that there is enough evidence that
the above two geometrical objects (BL’s and FTL’s on the one
hand and contour lines on the other) are closely related and that,
furthermore, they show strong indications of fractal behaviour.
Therefore we think that the study of some selected regions of
thex − y should be done in more detail, by calculating LCN’s
in even finer mesh and by comparing the contour lines to higher
order FTL’s, in order to establish to a higher level of confidence
the fractal nature of both geometrical objects.
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Fig. A1. The lines A and A′, B and B′, C and C′ are around orbit 1a.
On these lines the p.c.’s of the periodic orbits with multiplicity 29 are
depicted, whenε = 0.560, η = 0.20. The orbits of the corresponding
families of the bifurcations from orbit 1a of Table A1 are also given,
omitting from each name the prefix 29.

As far as irregular periodic orbits are concerned, we have
found that the majority of the periodic orbits forming BL’s and
FTL’s either bifurcate directly from 1a or 1b or they are con-
nected indirectly with them. However, by considering families
of periodic orbits with large multiplicities, we find that some of
them do not have any connection with 1a or 1b but they form a
pair with another family. In the present work we have encoun-
tered also the more complex situation of adouble pair, i.e. a
pair whose members are pairs too.

Acknowledgements.The authors would like to thank Prof. L. Martinet
for a critical reading of the first version, which improved the final form
of the paper. H.V. would also like to thank Prof. J.H. Seiradakis and
Mr. K. Tsiganis for several helpful discussions.

Appendix A: search for irregular families;
bifurcations from the orbit 1a

Tables A1 and A2 give the bifurcating families from the basic
family 1a with multiplicities 29 and 11 respectively, when0 ≤
ε ≤ 0.560 andη = 0.20. The corresponding bifurcations from
1b are given in Appendix B. The bifurcations from 1a and 1b
take place when the index

a = −2 cos (2πR) (A1)
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Fig. A2. The family 29A forms a pair with the family 29Aa. From
the common point S (ε1min, η) emanate the family 29A1 and 29Aa1
by changingη. The family 29A1 stops at the point S1 (ε1min, η1),
while 29Aa1 at the point S2 (ε1min, η2). No continuation of 29Aa1
has been found. On the other hand at the point S1 two other families,
i.e. 29A2 and 29A3 emanate withη = η1 and changingε between
ε1min ≤ ε ≤ ε2min. The two families are connected at the point S3
(ε2min, η1). No connection of S3 with 1a has been found.

(whereR is the rotation number of the bifurcating orbit) is equal
to one of the two indices of the stability,s, of the orbits 1a or 1b
(Contopoulos & Barbanis 1994). In this way we calculateεbif ,
i.e. the value of the parameterε (for η = 0.20) for which one
of the indices of the stability of the orbit 1a or 1b, calculated in
quadruple precision, is equal to the indexa.

Each table contains the rotation number,R, the indexa, the
values ofεbif , the name of each bifurcating family and the way
that this family evolves. The name of each bifurcating family
from 1a or 1b consists of a letter (a or b) and two numbers.
The first number gives the multiplicity,m (11 or 29), and the
second the nominator ofR. For example, 11a7 designates the
family with multiplicity 11 which bifurcates from 1a and hasR
= 7/11. Orbits of families whose nominator ofR is odd have two
p.c.’s with the (x − y) plane, while those with even nominators
have only one. In the case of one p.c. there are two different
bifurcating families. We distinguish one of them from the other
with an accent to its family name, i.e. 11a6′.

In Fig. A1 we have drawn the BL’s A and A′, B and B′, C
and C′. The origin and the end of these lines are the orbits 4(+)
and 11(·) for A and A′, 3(·) and 2c(+) for B, 3′(·) and 2c for

Table A1. Bifurcations from 1a with m=29

R a εbif Fam. Comments

1/29 -1.95324111 0.046714 a1 highly unst.

a2
2/29 -1.81515084 0.104470 �

a2′

3/29 -1.59218613 0.157357 a3 �
a4

4/29 -1.29477257 0.207020 �
a4′

5/29 -0.93681688 0.253711 a5 see points on
Fig. A1

a6
6/29 -0.53505668 0.297548 �

a6′

7/29 -0.10827782 0.338633 a7 �
a8

8/29 0.32356399 0.377069 �
a8′

9/29 0.740277631 0.412949 a9 a9=c1

a10 a10 = c2
10/29 1.12237413 0.446314

a10′ a10′ = c2′

11/29 1.45199098 0.477053 a11 a11=c3

a12 a12=c4
12/29 1.71371435 0.504489

a12′ a12′=c4′

13/29 1.89530634 0.525074 a13 a13=c5

a14 a14=29b
14/29 1.98827591 0.5184375

a14′ a14′=29a

15/29 1.98827591 0.467095 a15 a15=β1

a16 a16=β2
16/29 1.89530634 0.395884

a16′ a16′=β2′

17/29 1.71371435 0.310435 a17 a17=β3

a18 a18→ β4
18/29 1.45199098 0.208203

a18′ a18′→ β4′

19/29 1.12237413 0.085467 a19 a19→a191

B′, 3(+) and 2c(+) for C and C′. For clarity reasons we omit the
prefix 29 from the name of the families in Fig. A1 and Table A1.

The known orbits of multiplicity 29 on the above lines are:

– On the lines A and A′: 29 and 29′, 29A and 29A′

– On the lines B and B′: β1, β2 andβ2′, β3, β4 andβ4′

– On the lines C and C′: c1,c2 and c2′, c3, c4 and c4′, c5, c6
and c6′

– On other FTL lines (not shown here) lie the termination
points of the bifurcating families from 1a, withR=5/29 to
8/29, namely a5, a6 and a6′, a7, a8 and a8′ (see Table A1)

The families of Table A1, which correspond to the first four
rotation numbers, become highly unstable asε increases. This
is the reason why the computations were not continued until
ε = 0.560.
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Fig. A3. The two branches of the family 11b connect to the branches of
the family 11ba, at the points a, b. At these points emanate the branches
of the family b′, which, by changingη from 0.20 to 0, reach the points
a1, b1. At these points terminate the branches of the family 11ab, which
bifurcate from 1a whenε = 0.1227395, η = 0

The corresponding orbits of the families withR=9/29 to
13/29, whenε = 0.560, are the points c1, c2 and c2′, c3, c4
and c4′, c5 of C and C′ respectively. Similarly, the orbits of the
families withR=15/29 to 17/29 coincide with the pointsβ1,β2
andβ2′, β3. The families a14 and a14′ pass through the point
29b of the spiral Eb and 29a of Ea, respectively. The lines Ea,
Eb belong to the spiral structure around 1a as seen in Fig. 1. (see
also Fig. 3 in Barbanis 1993).

The families a18 and a18′ are connected indirectly with the
familiesβ4 andβ4′ respectively through two other families. A
similar example is shown in Fig. A3.

The family a19 bifurcates atεbif = 0.085467 and exists for
ε < εbif until εmin = 0.048765. At this value it is connected to
a family which becomes highly unstable atε = 0.305.

Each of the remaining orbits 29 and 29A of A, 29′ and 29A′

of A′, c6 of C, c6′ of C′ belongs to a family which terminates
at some minimumε, where a new family emanates, so that six
pairs are formed. E.g. the orbit c6 is the 14th member of the
basic sequence C. This family terminates atεmin = 0.53507.
From this termination point emanates the family ca, which at
ε = 0.560 reaches the point ca on a FTL (see Fig. A1).

Summarizing, the bifurcating families evolve, with respect
to ε, in the following way:
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Fig. A4. The p.c.’s of the periodic orbits with m=11 are illustrated with
the corresponding bifurcating families from 1a. All the orbits on the
BL’s are connected directly with 1a, except of 11b, forming a pair with
11ba which is connected indirectly with 1a (see Fig A3)

a) The characteristics of many families move away from the
original parent family and, forε = 0.560, they cross a BL
or a FTL.

b) Some families terminate at a maximumεmax or a minimum
εmin. In this case there are three possibilities:
(I) Such a family is connected to another family bifurcating

also from the same orbit 1a or 1b and terminating at the
sameε (see e.g. 11b2′ →11b8′, Table B1).

(ii) From the same parent orbit, 1a or 1b, bifurcate two fam-
ilies, one of them terminating atεmax and the other at
εmin. Another family starting atεmin terminates atεmax
(see Fig. A3). In few cases there are more than one in-
tervening families.

(iii) From the bifurcating family, which stops atεmax, an-
other family emanates which, forε = 0.560, crosses a
BL or a FTL (see e.g. 11b3 reaches 11f of F, F′, Ta-
ble B1).

c) In bifurcating families with small rotation numbers the com-
putations stop sooner thanε = 0.560, because the orbits of
these families become extremely unstable.

Some pairs of families that are connected at someεmin have
no direct connection with 1a. The question is: Is there some
other family bifurcating from 1a, for some pair of values ofε
andη, which passes through the point from which emanates the
pair whenε = 0.560 andη = 0.20?
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Fig. A5. The two branches of the bifurcating families 11a1 and 11a7
from 1a stop atεmax = 0.3099459 andεmin = 0.1522655 respec-
tively. The family 1117 connects these families.

Fig. A2 represents the pair of 29A and 29Aa; their com-
mon point, S, corresponds toε1min = 0.5504835, η = 0.20.
Keepingε = ε1min = const and varyingη we find two other
families, 29A1 and 29Aa1, emanating from the common point
S. The family 29A1 stops at the point, S1, corresponding to
minimumη1 = 0.181232, while the family 29Aa1 stops at S2
whenη2 = 0.184350. All efforts to find a continuation of 29Aa1
were unsuccessful. On the contrary, from the point S1 emanate
the families 29A2 and 29A3 forη = η1 = const andε varying
from the valueε1min to ε2min = 0.52840725, where the two
families terminate at the common point S3. No connection of
S3 to 1a has been found.

In the case of multiplicity 11 we find that all orbits connect,
directly or indirectly, to 1a, except for orbit 11b with two p.c.’s
(Fig. A4). This orbit is a Farey tree orbit on the lines B and B′

between the basic members 3(·) and 5(+). The two branches of
family 11b stop atε1min = 0.15204035, η = 0.20 at the two
p.c.’s a, b (Fig. A3). From these points emanates the family 11ba
which, forε = 0.560, passes through points 11ba (see Fig. A4).
The two families form a pair with no direct connection to 1a.
However, there is an indirect connection to 1a. In fact, starting
from the common points a and b with constantε = ε1min and
diminishingη from η = 0.20 to η = 0, we reach points a1
and b1. Continuing this family, keepingη = 0 and reducing
now ε until the valueεbif = 0.1227395, we find that the new
family 11ab bifurcates from 1a. Therefore, families 11b and
11ba do not form a pair of irregular families, because this pair
is connected indirectly to 1a.

Since our results are numerical, it should be useful to confirm
them through further work for the following two reasons:

(I) The search for bifurcations from 1a and 1b with multiplicity
29 has been confined within the interval0 < ε < 0.560

Table A2. Bifurcations from 1a with m=11

R a εbif Fam. Comments

1/11 -1.68250707 0.138524 11a1 11a1→11a7

11a2 point 11a2
2/11 -0.83083003 0.265946

11a2′ point 11a2′

3/11 0.28462968 0.373682 11a3 11a3=11A of A, A′

11a4 11a4=11c2 of C
4/11 1.30972147 0.463427

11a4′ 11a4′=11c2′ of C′

5/11 1.91898595 0.527056 11a5 11a5=11c1 of C, C′

11a6 11a6=11 of B & A
6/11 1.91898595 0.409869

11a6′ 11a6′=11′ of B′

7/11 1.30972147 0.155080 11a7 11a7→11a1

andη = 0.20 only. One may argue that, although highly
improbable, bifurcations forε > 0.560 may play the role of
connecting bridges of the pairs, considered here as irregular
families, to orbits 1a or 1b.

(ii) Following the above argument as well as for reasons of com-
pleteness, it would be desirable to find also the bifurcations
of 1a and 1b forε = 0.560 andη ≥ 0.

Table A2 shows the bifurcations of the orbits with multi-
plicity m=11 from 1a when0 ≤ ε ≤ 0.560, η = 0.20.

On the lines of Fig. A4 we represent the known orbits with
m=11, whenε = 0.560, η = 0.20. These orbits are:

– On A and A′: 11 (also on B), 11A
– On B and B′: 11 (also on A) and 11′, 11b
– On C and C′: 11c1, 11c2 and 11c2′

– On other lines (not showing) 11a2 and 11a2′, 11ba

The bifurcations of Table A2 are related to the above orbits
as follows.

Family 11a1 is connected to family 11a7 through another
family 1117, as shown in Fig. A5. Family 11a1 terminates at
εmax = 0.3099459. Family 11a7 exists forε ≤ εbif and ter-
minates atεmin = 0.1522655. Family 1117 starts atεmin and
terminates atεmax.

Forε = 0.560,η = 0.20 the following families pass through
the points illustrated in Fig. A4

– Family 11a2 passes though point 11a2, lying on a FTL (not
shown). Similarly 11a2′ passes through 11a2′

– Family 11a3 passes through point 11A on A and A′.
– Family 11a4 reaches point 11c2 on C, while 11a4′ reaches

point 11c2′ on C′.
– Family 11a5 reaches points 11c1 on C and C′

– Family 11a6 passes through the cross point 11 of B and A,
while 11a6′ reaches point 11′ on B′.

Families which start at points 11b on B and B′ and 11ba
form a pair whenε = 0.15204035, η = 0.20. This pair has an
indirect connection to 1a, as illustrated in Fig. A3.
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Fig. B1. The basic lines E and E′, F and F′ cross each other at the
periodic orbit 1b, while D and D′ lie close to 1b. On these lines we
show some basic orbits with small multiplicities and the p.c.’s of the
periodic orbits with m=11 and m=29.

Table B1.Bifurcations from 1b with m=11

R a εbif Fam. Comments

1/11 -1.68250707 0.168452 11b1 11b1=11b1

11b2 11b2 = 11e of E
2/11 -0.83083003 0.344563

11b2′ 11b2′ → 11b8′

3/11 0.28462968 0.525391 11b3 11b3=11f of F, F′

11b8 11b8→11d of D
8/11 0.28462968 0.290248

11b8′ 11b8′ → 11b2′

Appendix B: search for irregular families;
bifurcations from the orbit 1b

Table B1 gives the bifurcations with multiplicity m=11 from
1b. Families withR = 4/11 to 7/11, 9/11 and10/11 are not
included, because the corresponding values ofa are outside the
interval of the present study of0 < ε ≤ 0.560 andη = 0.20.

Fig. B1 depicts the BL’s E and E′, F and F′, D and D′ and the
places of the orbits with m=11 and m=29 whenε = 0.560, η =
0.20.

The known orbits on these lines are:

a) m=11
– On E and E′: 11e, 11e′

– On F on F′: 11f
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Fig. B2. Location of the characteristics of the bifurcating families of
Table B1 parametrized byε (η = 0.20) until ε = 0.560. Only the last
points of family 11b3 are given. The pair of the families 11e′ and 11d′

which start through the corresponding orbits on E′ and D′ s also shown.
Family 11b8 is connected to 11d through the intervening family 118d.

– On D and D′: 11d, 11d′d
b) m=29

– On E and E′: 29e1, 29e1′, 29e2, 29e3, 29e3′

– On F and F′: 29f, 29f′

– On D and D′: 29d1, 29d2, 29d2′

Fig. B2 depicts the characteristics of the families in Ta-
ble B1, except for family 11b3, because its characteristic is very
close to that of family 11b1. Family 11b1 reaches points 11b1
whenε = 0.560, while family 11b3 reaches the two points 11f
of F, F′.

Family 11b2 passes through point 11e of E. Family 11b2′

reachesεmaxb8′ = 0.46578405, where it is connected to family
11b8′. Family 11b8 reachesεmaxb8 = 0.4622105, where family
118d emanates. This family connects 11b8 to 11d, which starts
atεmind = 0.443468 and, whenε = 0.560, it reaches point 11d
lying on D.

Family 11d′ terminates atεmin = 0.443836, where it joins
family 11e′, which for ε = 0.560 passes through point 11e′ of
E′ (Fig. B2). Families 11e′ and 11d′ form a pair, not having any
obvious connection to the basic orbit 1b.

Table B2 shows the bifurcating families with multiplicities
m=29 from 1b. As we mentioned before, the computation of
orbits with smallR, i.e.R = 1/29, 3/29 and 4/29, stops before
ε = 0.560 because these orbits become highly unstable.
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Fig. B3.The bifurcating family 29b2′ is connected to 29b20′. Families
29b2 and 29e3, corresponding to point 29e3 on E, are connected indi-
rectly through family 292e. Family 29b20 becomes highly unstable at
ε = 0.360. Family 29e3′ forms a pair with 29x.

Table B2.Bifurcations from 1b with m=29

R a εbif Fam. Comments

1/29 -1.95324111 0.063890 29b1 highly unst.

29b2 29b2→29e3
2/29 -1.81515084 0.127362

29b2′ 29b2′ →29b20′

3/29 -1.59218613 0.192211 29b3 highly unst.

29b4
4/29 -1.29477257 0.258516 �

29b4′

5/29 -0.93681688 0.326001 29b5 29b5→29b21

29b6 29b6 = 29d2
6/29 -0.53505668 0.394292

29b6′ 29b6′ = 29d2′

7/29 -0.10827782 0.462973 29b7 29b7 = 29d1

29b8 29b8→29b22
8/29 0.32356399 0.531620

29b8′ 29b8′ →29e1′

9/29 0.74027631 εbif>0.56

29b20 29b20 stops
20/29 0.74027631 0.078653

29b20′ 29b20′ →29b2′

21/29 0.32356399 0.270218 29b21 29b21→29b5

29b22 29b22→29b28
22/29 -0.10827782 0.516148

29b22′ 29b22′ →29f′
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Fig. B4. The two branches of the bifurcating families 29b5 and 29b21
are connected through the intervening families 2951 and 2921.

Fig. B3 shows the indirect connection of family 29b2 to
the family 29e3, starting from orbit 29e3 on E. Family 29b2
terminates atεmax2 = 0.3339236, while family 29e3 atεmin =
0.2491375. The family connecting 29b2 and 29e3 is 292e.

Family 29b2′ is connected to 29b20′ atεmax2′ = 0.3334738.
On the other hand family 29b20 stops atε = 0.360. Fam-
ily 29e3′, starting from point 29e3′ on E′, reachesεmin =
0.2491375, where family 29x emanates. The computation of
29x stops atε = 0.408, η = 0.20.

Fig. B4 shows the connection of the branches of families
29b5 and 29b21 through two other families, i.e. 2951 and
2921. Families 29b5 and 29b21 reachεmax5 = 0.44357242
andεmax21 = 0.4545552 respectively. Families 2951 and 2921,
which are connected atεmin = 0.4394852, start, respectively,
in these points.

For ε = 0.560 family 29b6 reaches point 29d2 of the FTL
sequence 5(+),....29d2(·), 24(+), 19(·), 14(+), 9(·) on D, while
29b6′ is going through point 29d2′ on D′ (Fig. B1). Similarly
for ε = 0.560 family 29b7 reaches points 29d1 of the basic
sequence D and D′, namely the sequence with first member the
orbit 5(+) and increment 4.

Family 29b8 is connected to 29b22 atεmax8 = 0.55711905
(Fig. B5). Family 29b8′ is connected indirectly to 29e1′, which
passes through point 29e1′ of E′ whenε = 0.560. The inter-
vening family 298e1′ starts atεmine1 = 0.5520015 where 29e1′

stops and meets 29b8′ at itsεmax8′ = 0.556970. Family 29b22′

continues untilεmax22′ = 0.55712395, where family 2922f′
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Fig. B5.The direct connection of 29b8 to 29b22 as well as the indirect
connections of 29b22′ to 29f′ through family 2922f′ and of 29b8′ to
29e1′ through family 298e1′ are illustrated. Families 29e1 and 29f,
starting from points 29e1 on E and 29f on F respectively, form a pair
which has no obvious connection to 1b.

emanates. This family connects 29b22′ to family 29f′. Family
29f′ starts from orbit 29f′ on F′ whenε = 0.560 and stops at
εminf′ = 0.557062675.

Families 29e1 and 29f, going through points 29e1 on E
and 29f on F respectively, form a pair connecting atεmin =
0.5520015.

The two branches of family 29e2, which start from points
29e2 on E and E′ when ε = 0.560, parametrized byε (η =
0.20) stop at point S1 whenεmine2 = 0.43790 (Fig. B6). A new
family 29e21 emanates here and terminates at point S when
εmax = 0.4437953. This pair is connected to another pair which
is formed by two families having two branches also. The first
family of this pair starts atε = 0.560 andη = 0.20 from points
29g, lying on FTL’s and terminates at point S2, whenεmin,g =
0.4435759. At this point emanates the second family 29g1 of
this pair. This family terminates at S together with 29e21. Such a
double pair, having no connection to an orbit of the unperturbed
system, is noticed for the first time.
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