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Abstract. Amodel, plane symmetric, 3-D potential, which preprocess, modifying at the same time the topological structure of
serves some features of galactic problems, is used in ordephase space. However, it is not presently well understood how
examine the phase space structure through the study of the pthp-results from this kind of study can be used in a quantitative
erties of orbits crossing perpendicularly the plane of symmetdescription of the evolution of an ensemble of trajectories.
It is found that the lines formed by periodic orbits, belonging Inthe second approach, which may be designateasaso-
to Farey sequences, are not smooth neither continuous. Ins&aapic one assumea priori that transport is a pure random
they are deformed and broken in regions characterised by hjgfenomenon (a Markovian process). Then the transport of an
Lyapunov Characteristic Numbers (LCN's). It is suggested thensemble of trajectories may be considered as “classical diffu-
these lines are an incomplete form of a fractal repeller, as déen” in action space. Unfortunately, it is well known that trans-
cussed by Gaspard and Baras (1995), and are thus closelypast in Hamiltonian systems cannot be considered as a pure
sociated to the “quasi-barriers” discussed by Varvoglis et Markovian process, due to the problem sifckiness More-
(1997). There are numerical indications that the contour lineger the process may followélvy rather than classical statistics
of constant LCN’s possess fractal properties. Finally itis showW8hlesinger et al., 1993). In this case the macroscopic approach
numerically that some of the periodic orbits -members of thstill works, provided that the process is consideredrastal
lines- belong to true irregular families. It is argued that the fradiffusion in normalspace (Zaslavsky, 1994). In this way it be-
tal properties of the phase space should affect the transportofes evident thatévy-like statistics are closely related to the
trajectories in phase or action space and, therefore, play a self-similarity of the phase space. This formalism results in a
tain role in the chaotic motion of stars in more realistic galactdifferential equation with fractional partial derivatives, whose
potentials. solution is formidably difficult, even in the simple case of 2-D
systems.
Key words: chaos — celestial mechanics, stellar dynamics — There are rather few attempts to study transport in Hamil-
Galaxy: kinematics and dynamics — galaxies: kinematics atwhian systems with more than two degrees of freedom, mainly
dynamics because the above mentioned approaches for 2-D systems can-
not be directly generalized. It is therefore important to note that
there exists yet a third approach for the description of trans-
) o port, which may be implemented in a straightforward way in
1. Introduction — motivation systems with more than two degrees of freedom, and this is

One of the most interesting open questions in non-linear djemal diffusionin fractal space(e.g. see West and Deering,
namics is the nature and evolution of transport in the chaofi@94, and references therein). The fractality of phase space has
phase space regions of perturbed integrable Hamiltonian s§gen already demonstrated for 2-D systems and has been as-
tems. Most of the work in this field has been done for 2-gociated with the self similarity of the hierarchical structure of
systems or for the standard map, following two different aILi,‘s_land families on a surface of section (e.g. see Zaslavsky, 1994,
proaches. In the first approach, which may be designatedBgKadda et al., 1997). .
microscopic one studies the homoclinic and heteroclinic tan- N the case of more than two degrees of freedom the sit-
gle of stable and unstable manifolds inside the chaotic regi¢fftion is more complicated, since the topological structure of
This gives a “complete” qualitative picture of transport in phad12se space in any region depends on the number of local in-
space, since a chaotic trajectory follows the unstable manifof§grals of motion. Recently Varvoglis et al. (1997) have found

of the unstable periodic orbits, jumping from one to another ndgfications of phase space fractality in the same model 3-D
the heteroclinic points. On the other hand, invariant tori syf@Mmiltonian system studied in the present work, but they were

rounding stable periodic orbits act as “barriers” in the transpétfable, due to the particular method of study they had selected,
to identify actual fractal or multifractal sets in phase space.

Send offprint requests tti. Varvoglis (varvogli@astro.auth.gr) They have conjectured that the fractality is due to the presence
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of quasi-barriers(Varvoglis and Anastasiadis, 1996), i.e. geoSect. 5 we show numerically the existence of irregular families
metrical objects of lower than full dimensionality (depending oof periodic orbits. Finally in Sect. 6 we summarise and discuss
the number of local integrals of motion), such as periodic orbitsyr results.
invariant tori around them and cantori (Aubry, 1978; Percival,
1979). 2. Remarks on previous results

From the above discussion it is obvious that the importance o
of the fractality of phase space in the diffusion process lies #nl- Basic lines

the nature and in the rate of the diffusion: In a simply connectg@le systematic exploration of the phase space structure of 3-D
space, the diffusion is classical and follows Fick's law (trangsgmiltonian systems was initiated by Magnenat (1982) and later
port proportional to\/(1)). In a fractal space the diffusion ispy Contopoulos & Barbanis (1989), BC and Barbanis (1996),
non-classical (presumably &y process) and, in the case ofnrough the study of periodic orbits of unit mass test particles

a Hamiltonian system, usually it has a lower than the Fickigh 5 3-D model potential, corresponding to the Hamiltonian
rate.

_ 1 2 2 2 1 2 2 2
On the other hand, the distribution of periodic orbits perpefl = 7 (P2 + Py +p2) + 3 (A2® + By® + C2?) 1)
dicular to ther — y plane in the present 3-D model potential has —exz? —nyz? =h

been studied by Barbanis and Contopoulos (1995) (hencefqyth, 5 particular set of parameters (A = 0B= 0.4, C = 0.225
referred to as BC) and Barbanis (1996). It was found that it is_ 0.560, 7 = 0.20 andh = 0.00765). The spécific value’s

not random: the perpendicular crossings (p.c.’s) of orbits wifgr the parameters A, B, C were selected by Magnenat (1982)
multiplicities forming Farey sequences with the— y plane because the 2-D system— = for \/m = 2 is topologically
are arranged along lines, named in the present paper basic-lfieSy alent to the Inner Lindblad Resonance and the 2-D system
(BL) and Farey tree lines (FTL). These lines are not continupgsﬁ » for \/B/C = 4/3is awell studied 2-D dynamical system
butthey possess gaps; two of them have already been mentiqyf] extended chaotic regions. For this set of parameters it was
in BC. Since the presence of Farey sequences implies a fqy)n in BC that the distribution of the p.c’s of the periodic or-
of self-similarity, it is possible that the BL's and FTL'S may bg,ji s not accidental: the crossings are arranged along particular
related to the above-mentioned quasi-barriers and that the 9ARSs on ther — 7 plane (Wherer = A'/2z, 7 = B'/?y), as
may be related to any fractal properties of phase space.  j; is evident in FigLl (taken from Fig. 5 of BC). Each orbit has
In the present paper we use the model potential studied Qo one p.c., marked by a (x), or two p.c.’s, marked by (+). In
BC in order to test the conjecture put forward by Varvoglis et gl,ig paper, for clarity reasons, we use a poiptristead of (x).

(1997) aboutthe_origin of the fractality of phase space. Furth%réch p.c. is designated by a number (or a number and a letter),
more, through this, we attemptto assess the relation betweenifigosenting the multiplicity of the orbit; different orbits with

topological structure of the phase space and transport, on thefmzesame multiplicity are differentiated by a prime. The lines

ha_md, and t_he system of BL's and FTL's, on the other. _Althouq;}e formed by the p.c.'s of the orbits, whose multiplicities form
this potential can model a true galaxy only locally, its studynmetic progressions with increment the multiplicity of the
is expected, nevertheless, to contribute to the understanding ot orpit They are termed in this papbasicif they connect

galactic evolution problems, based on the fact that evolutlgtpoitS of the unperturbed system (e.g. 1a, 1b in Fig. 1) or orbits
is intimately connected to transport in phase and configuratigi, low multiplicity, m (e.g.m < 5). For example the basic
space. Transport in a chaotic region of a perturbed integral ’ -

dynamical system, in turn, may be viewed as (stochastic) diffu-
sion, which depends on the value of the Lyapunov Characteris-  3(+), 5(), 7(+), 9()....2¢(+)
tic Number as well as on the topological structure of the phase and 3(+), ), 7(+), 9("),...2¢(+),

space. We believe that similar behaviour would characterise gf#ich form the lines C and‘Cstart with an orbit of multiplicity

3-D perturbed integrable dynamical system, as are most of thend increment 2, which is the multiplicity of the limit orbit
realistic model galactic potentials. 2c.

The purpose of this paper is threefold:
(a) to study in finer detail the distribution of the periodic .
orbits along the BLs and FTL's. 2.2. Farey tree lines

(b) to examine whether these lines are connected, in aRyBC it was recognized that the distribution of p.cs on the
way, to transport in phase space and are, thus, related tohey plane presents some self-similar features. To begin with,

uences

“guasi-barriers” and to each basic sequence of orbits corresponds a number of new
to confirm the existence of true irregular families of periodisequences of higher order. Each member of a new sequence is
orbits in a 3-D Hamiltonian system. a periodic orbit having as multiplicity the sum of the multiplic-

This paper is organized as follows. In the next section viges of two consecutive orbits of the generating sequence. For
present, for reasons of completeness, some remarks on prgxample between the first two orbits of the basic sequence C,
ous results. In Sect. 3 we show that the LCN’s may “map” the:. 3(+) and 5(, there is the orbit 8(+). Two second order se-

fractality of phase space. In Sect. 4 we present our resultsfifences are formed between 3 and 8 as well as between 8 and
the interconnection and discontinuities of BL's and FTLs. Ig_ j.e.
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8(+), 11(-), 14(+), 17(-), 20(+), 23(-), ...3(") 013
and 2 ¥
8(+4), 13(+), 18(+), 23(+), 28(+), ...5(+)

Both new sequences have as first member the orbit 8, but tl
have different limit orbits and increments (i.e. 3 for the first ar
5 for the second, respectively). In the same way we can fo
sequences of even higher order. We call the orbits of these hig
order sequencdzarey tree orbitsand the lines on which they
lie Farey tree linesbecause such sequences are similar to t
Farey sequences discussed by Niven and Zuckerman (1960).
a good review on Farey trees see Efthymiopoulos et al. (199
The periodic orbits are used, in the present paper, as
additional tool for probing the topological structure of the phas
space. In particular, periodic orbits of high multiplicities ar
needed in order to search for self-similar structures in the Bl
and FTL's for a wide interval of multiplicities (see Avnir et al.,
1998). The importance of the non-basic (Farey) lines lies exac
on the above line of reasoning, as well as in the fact that th=0-13
might be necessary in order to calculate correctly an appropriate
diffusion coefficient. It should be noted that we have restrictédg. 1. The majority of the perpendicular crossings of the periodic orbits

our Study to the periodic orbits Crossing perpendiCL”ar the Mthe Hamiltonian (1) lie on partiCUlar lines on the- y plane inside
plane for simplicity reasons. the boundary circl&? + 52 = 2h. Most of the lines are concentrated

around the basic orbits 1a and 1b. There is also a noticeable spiral
structure with focal point the orbit 1a. Four spirals illustrate the area
2.3. Irregular orbits of this structure. Note that in this figure (reproduced from BC, Fig. 5)

- . o @diﬁerent notation is used than in the rest of the present paper. Each
All periodic orbits of the same multiplicity that can be foun ymbol, (x) or (+), shows a periodic orbit with one or two crossing

through the continuous variation of a parameter in the equgints, respectively.

tions of motion belong to the same family. The graph giving

one of the initial conditions of the periodic orbits as a function

of the parameter is theharacteristicof this family. Families, 1, d(t)

which do not exist for values of the perturbing parameter belowit) = n In @ (3)

a critical value, appear only as pairs, are well known in 2-D dy-

namical systems and are calieggular families(Contopoulos whose limit, ag — oo, is defined as the LCN. The functigt)

1970; Barbanis 1986). However, their existence has not bestrows plateaus in the time intervals whéb& dt is close to zero
proven for 3-D systems. Pairs of families that have been fouadd steeply increasing transient segments in the time intervals
in such systems without a direct connection to a basic orbit, thefieredV/dt takes large positive values. This fact shows that
were all of small multiplicities and it turns out that they have aa trajectory is confined successively in regions of phase space
indirect connection to a basic orbit through other families bifuwhere the LCN converges to a limit and, therefore, the fractal
cating from it (Barbanis, 1996). It is desirable to know whethgroperties ofdV'/dt should arise from the (apparently) self-
families of periodic orbits in 3-D systems (presumably of higkimilar distribution of periodic orbits and other quasi-barriers
multiplicities) do exist withouany connection to a basic orbit. in phase space (Zaslavsky, 1994).

Their presence might play a certain role in the fractality of phase It should be emphasised that, in the present paper, LCN's
space and, therefore, in trajectory transport. are not calculated in order to estimate “rates of diffusion”, since
LCN'’s alone cannot describe completely this phenomenon in
the case where there exist invariant tori of considerable mea-
sure. We do, however, calculate LCN’s in order to “probe” the
Varvoglis et al. (1997), while studying numerically transpofshase space structure, i.e. to delineate, in an independent from
phenomena in the trajectories of the Hamiltonian (1), haweher methods way, the “topology” of the phase space. This new
found, in an indirect way, that the phase space shows a fragethod is based on the property that trajectories starting in a cer-
tal structure. In particular they presented numerical evidenggn region, bounded by “quasi-barriers”, are characterised by
that the functioniV/dt has multifractal properties, whel&t) a certain “Local Lyapunov Number”. By drawing the contour
denotes essentially the coarse-grained volume of phase spmes of LCN’s, one draws, essentially, the geometric boundary
visited by a trajectory up to timé They found, also, that the of the region bounded by the “quasi-barriers”.

evolution of the functioniV/dt is closely related to the evolu-

tion of the function

0 X 013

2.4. Lyapunov numbers
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the contour lines of constant LCN on thie- 7 plane at the LCN
valueX = 10~%. In Fig.[2 we show our results for the LCN'’s
at the end of a time intervakt = 310°. Fig[2 contains only
a small part of the studied region. The structure of the contour
lines inthe whole region as well as their variation withis still
under investigation and will be the topic of another publication.

The emergent picture is very interesting. One can immedi-
ately see that the studied area may be divided into two regions:
Most of it is characterized by small values of LCN'’s (white re-
gions); inside the white regions one can find small elongated
regions characterized by high values of LCN’s (gray regions).
It should be noted that the position and elongation of these re-
gions is closely related to the position and the direction of BL's
and FTLs (see next section). This fact may be interpreted in
the following way. Since a considerable fraction of the periodic
orbits along these lines are unstable, the exponential divergence
of trajectories in the area around them is governed mainly by
the unstable manifolds of the orbits-members of the lines. The
situation is reminiscent of fractal repelleras defined in Gas-
pard and Baras (1995), i.e. a set of countably infinite unstable
periodic orbits, which has zero Lebesgue measure and a finite
Hausdorff dimension. In our case the orbits-members of BL's
and FTL's may be considered as forming a sort of an incom-

0.005 0.010 0.015 X plete (since not all periodic orbits are unstalftagtal repeller.

Fig. 2. A segment of the BL between the p.c.’s of the periodic orbits t other words the BL's and FTL's are closely associated with
and 5 (indicated by a bold line) and the network of various FTL's (cothe “quasi-barriers”, which are geometrical objects that sepa-
responding to the upper central part of Fig. 1, line C). The nonexisteate “loosely” different phase space regions with different Lo-
part of C between 8 and 14 is indicated by a dashed line. The conteal LCN, as it has been discussed by Varvoglis et al. (1997) and
lines of constant LCN's\ = 10~ are superimposed and the regionsrsiganis etal. (1998).
of A > 10" are gray shaded Since (1) there is evidence that BL's and FTL's have frac-
tal properties and (ii) there is a relation between the BL's and
FTLs, on one hand, and the LCN’s on the other, it should be
interesting to examine whether the contour lines have fractal
The “classical” calculation of LCN's requires a continuous intdroperties as well. To do so we calculate the LCN's in the re-
gration of the corresponding trajectories, until the functi¢gty 9ion —0.02 < z < 0.01,0.05 < ¥ < 0.10 using a coarse
has reached a plateau. It is, therefore, obvious that this metttdd = Ay = 0.005) and a fine meshXz = Ay = 0.001).
cannot be used in a “mass production” procedure. For this rdds region was selected because it was studied, although with
son we decided to use a different approach, by calculating thénuch coarser mest\g = Ay = 0.01) by Contopoulos
value of the functiony(¢) at various integration time intervals,and Barbanis (1989, Fig. 9). We then plot both contour lines at
At, up toAt = 3 10°. Comparing the results for differentt’s A = 107*, on the same graph, as shown in Eig. 3. It is easy
we have found that they are qualitatively the same (i.e. thi§/see that, while the dashed line, corresponding to the coarser
form level lines with increasing complexity as one goes to finétesh, seems rather smooth, the continuous one, correspond-
details), provided thaht > 10°. So, even ify(¢) does not reach ing to the finer mesh, shows “tongues” that oscillate about the
a plateau, its value at the end of the corresponding time interd@shed curve, a picture reminiscent of the classical examples
At > 10° gives a correct estimate, at least to order of magf fractal curves. Of course this cannot be taken gsoaf,
nitude, of the “degree of stochasticity” of the trajectory in theven numerical, that contour lines are fractal curves, since the
phase space region restricted by the quasi-barriers. We deg}g’iilable data are not exhaustive (see also Avnir et al., 1998).
nate this value as théixed Time LCNIn what follows we use, However, we believe that Figl 3, if considered together with the
for convenience, the notation LCN. Through this kind of LCN’§ct that LCN's reflect the distribution of the unstable manifolds
we attempt to probe the topological structure orithey plane Of unstable periodic orbits, is a strong indication that the contour
as follows: lines have, indeed, fractal properties.

We draw a dense mesh on the g plane (for) < = < 0.020
and0.010 < y < 0.045 atintervaI.SQ.E:Ay :”0.0005) anq W€ 4 BL and ETL are not simple
use the nodes of this mesh as initial conditions for trajectories
starting perpendicular to this plane. We calculate the LCN AE it is evident from Fig. 1L and the relevant discussion in BC
each trajectory at the end of various time intervals and we drawd Barbanis (1996), the BL's formed by the lowest order se-

0.035

0.030

0.025

0.020

3. LCN's and fractal properties
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quences look continuous and smooth. Because of thisithad 010 \
assumed that the lines appearing in Elg. 1 contain all the higl
order sequences described in Sect. 2 as well, so that any fi ¥
tal properties, arising from the Farey tree character of the
sequences, are restrictatbng the lines and noacrossthem. g gg
However, the existence of two small gaps in a BL, noticed | L L
BC, gave the first evidence that, somehow, this picture is r L
correct. In order to examine, therefore, in depth the situatic -
we proceed in the calculation of periodic orbits belonging | -
several higher order sequences than those appearing in Fig0.08 |~
We focus our interest on a small region, between the orb
3(+) and 5() of the line C (BC, Fig. 8), since it is in this area i
that the first noticeable gap was observed. Between these
orbits lies the orbit 8(+). Therefore two second order sequen¢
are formed with orbit 8 as first member and increments 3 a™
5 respectively, i.e. the sequences (2). In Eig. 2 we can see |
the first sequence presents a large gap between orbits 8 B
14, where higher order FTL's, branching away from the Bl L
may be observed. Furthermore, as we discuss below, orbito.os |-
(which lies between orbits 8 and 14, instead of being part -
the BL) belongs to a higher order FTL. In contrast the secol -

sequence does not show any noticeable gaps. The reasor r w Ho
this difference becomes obvious, if one considers the BL's a i | | J 1
FTLs in association with the degree of stochasticity of the pha® %3 ,, ool 0.00 0oL

space where these orbits lie, estimated through the calculation

of LCN’s. In Fig[2 one can immediately notice that the firgfi9- 3- The con;z(tir ””er’f cogsotgglt Io-lm\r]] aé tlhe ‘)’aw‘: 1]974 for X
sequence crosses a region of high LCN’s, while the second{§°2/S¢ mesmz = Ay = 0.005, dashed liné) and a fin€ mes
9 9 9 (fAf = Ag = 0.001, solid line). Regions ok > 10~* andX < 10~*

confined in a region of low LCN’s. .
. . are marked wh a H and an L, respectively
Let us now examine what happens to the higher order se-

quences between 11 and 8, on one hand, and 11 and 14 on the
other, i.e. 11{), 19(+), 27(), 35(+),..., 8(+) and 14(+), 25(+),
36(+),..., 11(). As itis evident from Fig2, the FTL correspondthan the size of the mesh used. This is something that should be
ing to the first sequence is torn and split into two branches, ofgected for a geometrical object with fractal properties and has
beginning from orbit 11 going upwards and the other beginnii§en indeed encountered in some other regions of the studied
from orbit 8 going downwards. Similar is the situation with thérea.
second sequence. The FTL is torn and split into two branches, From the above discussion emerges an intuitively appealing
one going upwards from orbit 14 and the other going dowanicture: BL's and FTL's are, in a sense, lines representing some
wards from orbit 11. The branch going downwards from orbrdered features of the dynamical system, which are deformed
11 is connected to the FTL of the first sequence going upwatBighe neighbourhood of thehaotic seasind tend to run per-
from orbit 11, resulting in a composite S-shaped line (the thregndicular to the local gradient of the contour lines of constant
leftmost continuous thin lines in Figl 2). In this way we see th&CN’s. Therefore we understand that the structure of the BL's
the gap between orbits 8 and 14 is, in a way, “filled” with FTL'@nd FTL's on ther —7 plane is considerably more complicated
corresponding to higher order sequences. This is an examplé\gn itwas assumedin BC, afactwhich, as we showedin Sect. 3,
a case where higher order FTL's do not lie on the “parent” BS€ems to play an important role in the nature of transport in the
It is interesting to note that the branch of the second F1Rhase space of Hamiltonian (1).
going upwards from orbit 11 is developed inside a narrow strip
of ordered motion.
In Fig.[2 we notice also two “vertical

that emanate from the orbits 5yand 17(), corresponding to |n two previous papers (BC; Barbanis 1996) the authors investi-
higher order sequences with increment 40. The first of them, hged the bifurcation and the evolution of known periodic orbits
one emanating from orbit 5-(is vertical to the local gradient of belonging to some BL's. It was found that a small number of
the contour lines and lies in a region of low LCN’s. The seconflese families form pairs that do not have any direct or indirect
one, the one emanating from orbit 37{s vertical to the local connection with the periodic orbits of the unperturbed system.
gradient of the contour lines as well but it seems to spaigla  However, for a given multiplicity, there are many other bifur-

LCN's region. The most probable explanation is that the lingting families, which may play the role of connecting bridges
lies, in fact, in a narrow strip of low LCN's, with a width lesspetween those pairs.

" higher order FTL’55' Existence of irregular families
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Following these considerations, we studied the evolution - ! ! ! ! ! ]
the bifurcations of somsepecificmultiplicities from the basic i
orbits 1a and 1b. We have selected the multiplicities 11 a L
29 for three reasons: (I) 11 and 29 are prime numbers, sot o.10 -
there are no families of these multiplicities resulting from lowe _ |-
multiplicity families, except from those with multiplicity one. !
(ii) The number of bifurcating families is neither small nor grea L
(iii) There are a lot of orbits of these multiplicities on the variou o.0s |-
BL's and FTL's fore = 0.560 andn = 0.20. i

The detailed discussion in Appendix A and the examples
Appendix B lead to the conclusion that pairs of families withot L
any direct or indirect connection to a basic orbit of the unpe o.00 -
turbed system (e.g. the six pairs appearing in[Eid. A1) exist ir
3-D system. This happens mainly for high multiplicities, exactl
as one would expect considering the analogous case of irreg| L
families in 2-D systems. It should be noted also that, besid-o-0s -
the above mentionedassicalcase of irregular families, in this
work we have found a new kind of irregular families, which wi
call adouble pair i.e a pair consisting of two single pairs (set L

Fig.[B8 and its discussion in Appendix B). -0.10 [~ -
6. Summary and conclusions o5l ]

-0.12 -0.08 -0.04 0.00 0.04

I
o
o
®

Barbanis and Contopoulos (1995), in studying the distribution
of the p.c.’s of the periodic orbits in a well known 3-D modeFig. Al. The lines A and A B and B, C and C are around orbit 1a.
potential with thex — 7 plane, have discovered a noteworth{n these lines the p.c.’s of the periodic orbits with multiplicity 29 are
order. Except for a couple of gaps, the p.c.’s of periodic orbitéepicted, wher = 0.560, n = 0.20. The orbits of the corresponding
whose multiplicities form Farey-tree sequences, are arrané%'i’}i”es of the bifurcations from orbit 1a of Table Al are also given,
along continuous and smooth-looking lines. The p.c.’s aloQg'ting from each name the prefix 29.

these lines have some fractal properties, arising from the fact
that they belong to Farey-tree sequences of various orders. In

the present work we tried to study the properties of these lines As far as irregular periodic orbits are concerned, we have
the present . y P ) P ound that the majority of the periodic orbits forming BL's and
in association with the values of the LCN'’s of the area span

L's either bifurcate directly from 1a or 1b or they are con-

them. . . . _nected indirectly with them. However, by considering families
We have found numerical evidence that the contour lines o . . S .
of periodic orbits with large multiplicities, we find that some of

LC.N s show fractal propertles. We have a_llso found NUMENICRlem do not have any connection with 1a or 1b but they form a
evidence that the splitting of initially continuous and smooth-

) \ , : : air with another family. In the present work we have encoun-
Iooklng BL's and FTLS.’ as well as_the_ens_umg formation O{f)e[red also the more complex situation oflauble pait i.e. a
gaps, is not an exception, as was implied in BC. As a rule, |

is observed in regions of the— 7 plane characterised by highpalr whose members are pairs too.
values of the LCN's and appears not only in BL's, butin hlghPﬂcknowledgementsThe authors would like to thank Prof. L. Martinet

order FTL's as well. for a critical reading of the first version, which improved the final form

Since our results are only numerical and involve only a smaH the paper. H.V. would also like to thank Prof. J.H. Seiradakis and
number of periodic orbits, the above results cannot be consigk- K. Tsiganis for several helpful discussions.

ered as firm proof that the distribution of BL's and FTL's as well

as the contour lines of LCN’s have, beyond any doubt, fractal ) ) N
properties. However we feel that there is enough evidence thgPendix A: search for irregular families;
the above two geometrical objects (BL's and FTL's on the orfifurcations from the orbit 1a

hand and contour lines on the other) are closely related and thgjles A1 and A2 give the bifurcating families from the basic
furthermore, they show strong indications of fractal behavioygmily 1a with multiplicities 29 and 11 respectively, whenc
Therefore we think that the study of some selected regions.of () 560 andy = 0.20. The corresponding bifurcations from

the —y should be done in more detail, by calculating LCN'§p are given in Appendix B. The bifurcations from 1a and 1b
in even finer mesh and by comparing the contour lines to highgke place when the index

order FTL's, in order to establish to a higher level of confidence
the fractal nature of both geometrical objects. a = —2cos (2 R) (A1)
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I ! ! ! ! Table Al. Bifurcations from 1a with m=29
0.085 -+ R a €bif Fam. Comments
- i | 1/29  -1.95324111 0.046714 al highly unst.
I ] a2
r 72129 -1.81515084 0.104470 >
0.080 |- — a2
i | 3729 -159218613 0.157357 a3 >
| ) a4
r 4 4/29 -1.29477257 0.207020 4 >
0.075 — - a
: : 5/29 -0.93681688 0.253711 a5 Figﬁpoints on
: : 6/29 0.53505668 0.297548 a6
0.070 — | -Y. . a6 >
L 4 7/29 -0.10827782 0.338633 a7 >
i ]l a8
8/29 0.32356399 0.377069 >
0.065 — ag8
i | 929 0740277631 0.412949 a9  a9=cl
- 1 1029 112237413 0446314 210 al0=c2
0.060 - ald ald=cZ
e b 11/29 1.45199098  0.477053 all  all=c3
0.010  0.012  0.014  0.016  0.018 X 0.020
. . L . al2 al2=c4
Fig. A2. The family 29A forms a pair with the family 29Aa. From12/29 1.71371435 0.504489 al?  ald=cd
the common point Se(min,7n) €manate the family 29A1 and 29Aal B
by changingn. The family 29A1 stops at the point S%, {in, 1), 13/29 1.89530634 0.525074 al3 al3=c5
while 29Aal at the point S2(min, 172). NO continuation of 29Aal _
has been found. On the other hand at the point S1 two other familigg/29 1.98827591 0_5184375a14 a14_—29b
i.e. 29A2 and 29A3 emanate with = 17; and changing between al4  al4=29a
€min < € < €min. Thfe two famil!es are connected at the point S35/209  1.98827591  0.467095 al5  ai=
(e,min, m1). NoO connection of S3 with 1a has been found.
alé  alés2
16/29 1.89530634 0.395884 alé  al6=32
_ _ _ _ o 17/29 1.71371435 0.310435 al7 apB=
(whereR is the rotation number of the bifurcating orbit) is equal
to one of the two indices of the stability, of the orbits 1aor 1b 1g/59 145190098 0208203 218 318 54
(Contopoulos & Barbanis 1994). In this way we calculate, alg  al8— (4
i.e. the value of the paramete(for = 0.20) for which one 19/29 1.12237413 0.085467 al9 a18191

of the indices of the stability of the orbit 1a or 1b, calculated it
quadruple precision, is equal to the index

Each table contains the rotation numbérthe indexa, the B, 3(+) and 2c(+) for C and CFor clarity reasons we omit the
values ofey,;¢, the name of each bifurcating family and the waprefix 29 from the name of the families in Fig. A1 and Table A1.
that this family evolves. The name of each bifurcating family The known orbits of multiplicity 29 on the above lines are:

from l1a or 1b consists of a letter (a or b) and two numbers.
The first number gives the multiplicityp (11 or 29), and the
second the nominator @?. For example, 11a7 designates the
family with multiplicity 11 which bifurcates from 1la and h&s
=7/11. Orbits of families whose nominator Bfis odd have two
p.c.’s with the & — ) plane, while those with even nominators
have only one. In the case of one p.c. there are two different
bifurcating families. We distinguish one of them from the other
with an accent to its family name, i.e. 11a6

In Fig.[AT we have drawn the BL's A and’AB and B, C

=~ On the lines A and A 29 and 29 29A and 29A

— Onthe lines B and B 31, 52 and2’, 33, 34 andB4’

— On the lines C and €c1,c2 and c2 c3, ¢4 and ¢4 c5, c6
and cé

— On other FTL lines (not shown here) lie the termination

points of the bifurcating families from 1a, witR=5/29 to

8/29, namely a5, a6 and’a@7, a8 and d§see Table Al)

The families of Table A1, which correspond to the first four
rotation numbers, become highly unstable &screases. This

and C. The origin and the end of these lines are the orbits 4(ig) the reason why the computations were not continued until
and 11() for A and A, 3() and 2c(+) for B, J-) and 2c for ¢ = 0.560.
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Fig. A3. The two branches of the family 11b connect to the brancheskify. A4. The p.c.’s of the periodic orbits with m=11 are illustrated with
the family 11ba, at the points a, b. At these points emanate the brandhescorresponding bifurcating families from 1a. All the orbits on the
of the family H, which, by changing from 0.20 to O, reach the points BL's are connected directly with 1a, except of 11b, forming a pair with
al, bl. Atthese points terminate the branches of the family 11ab, whictha which is connected indirectly with 1a (see[Eid A3)

bifurcate from 1la whena = 0.1227395, 7 = 0

a) The characteristics of many families move away from the
original parent family and, foe = 0.560, they cross a BL

oraFTL.
The corresponding orbits of the families wift=9/29 to  b) Some families terminate at a maximug,, or a minimum
13/29, whene = 0.560, are the points c1, c2 and 'c23, c4 emin- IN this case there are three possibilities:
and c4, c5 of C and Crespectively. Similarly, the orbits of the () Sych a family is connected to another family bifurcating
families with R=15/29 to 17/29 coincide with the pointd, 52 also from the same orbit 1a or 1b and terminating at the
and;s2’, 33. The families al4 and alpass through the point samee (see e.g. 1182-+11b8, Table B1).

29b of the spiral Eb and 29a of Ea, respectively. The lines Ea, (jiy From the same parent orbit, 1a or 1b, bifurcate two fam-
Eb belong to the spiral structure around 1a as seeniflFig. 1. (se€ = jjies, one of them terminating at,. and the other at

also Fig. 3 in Barbanis 1993). €min. Another family starting at,,;, terminates at,ax
The familieS al8 and alal’e Connected indirectly W|th the (See F|EB) In feW cases there are more than one in_
families 54 ands4’ respectively through two other families. A tervening families.
similar example is shown in Fig. A3. (iiiy From the bifurcating family, which stops at,., an-
The family al9 bifurcates at;; = 0.085467 and exists for other family emanates which, fer= 0.560, crosses a
€ < epir until ei, = 0.048765. At this value it is connected to BL or a FTL (see e.g. 11b3 reaches 11f of F, Ta-
a family which becomes highly unstableeat 0.305. ble B1).

Each of the remaining orbits 29 and 29A of A/281d 29A () |n bifurcating families with small rotation numbers the com-
of A’, c6 of C, c6 of C’ belongs to a family which terminates ~ pytations stop sooner than= 0.560, because the orbits of
at some minimunz, where a new family emanates, so that six  these families become extremely unstable.
pairs are formed. E.g. the orbit c6 is the 14th member of the

basic sequence C. This family terminates,at, = 0.53507. Some pairs of families that are connected at segpghave
From this termination point emanates the family ca, which ab direct connection with 1a. The question is: Is there some
¢ = 0.560 reaches the point ca on a FTL (see Eigl Al). other family bifurcating from 1a, for some pair of valueseof

Summarizing, the bifurcating families evolve, with respeendn, which passes through the point from which emanates the
to e, in the following way: pair whene = 0.560 andn = 0.20?
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0.08 T ‘11‘1 \ Table A2. Bifurcations from 1a with m=11
- Emin - 7 -
7 - 0.1525 "*97‘20 | R a €bif Fam. Comments
+0.25
i : 1 111 -1.68250707 0.138524 1lal 1ialla?
11a7 )
.04 — ‘ | '
0.0 £0.307 2/11 -0.83083003 0.265946 -132 ~ Pointllaz
L €max i 11aZ point 11a2
11al +0.307
i 12 el | 3/11 028462968 0.373682 11a3 11a3=11AO0fA, A
0.1 =T 05 00 11ad  11ad=11c2of C
r 7 - a a4=11cZ o0
ool 02 | an1 130072147 04634270, T
: /
L 10.307 | 5/11 1.91898595 0527056 1la5 1la5=11clofC,C
T max
; 11la7
- 0.307 § 1126 11a6=11fB & A
I | 611 191898505 04008691 . .. Co
—0.04 — 117 0.1525 | 7711 1.30972147 0155080 1la7 1iaflal
0.25" . €min
r 0.20 -
| ‘ | | | ‘ | | ‘ | | | | _ .
0.0 008 0.00 % 0 05 and»n = 0.20 only. One may argue that, although highly

improbable, bifurcations far > 0.560 may play the role of
Fig. AS. The two branches of the bifurcating families 11al and 11a7 connecting bridges of the pairs, considered here as irregular
from la stop atmax = 0.3099459 andemin = 0.1522655 respec- families, to orbits 1a or 1b.
tively. The family 1117 connects these families. (i) Following the above argument as well as for reasons of com-
pleteness, it would be desirable to find also the bifurcations
Fig[A2 represents the pair of 29A and 29Aa; their com- of 1a and 1b foe = 0.560 andn > 0.
mon point, S, corresponds Qi = 0.5504835, n = 0.20.
Keepinge = ¢, min = const and varyingy we find two other
families, 29A1 and 29Aal, emanating from the common poiRHiCity m=11 from lawhem < ¢ < 0.560, n = 0.20. o
S. The family 29A1 stops at the point, S1, corresponding to ©ON the lines of Fid. Ak we represent the known orbits with
minimum; = 0.181232, while the family 29Aal stops at S2M=11, whene = 0.560, 7 = 0.20. These orbits are:
whenn, = 0.184350. All efforts to find a continuation of 29Aal On A and A: 11 (also on B), 11A
were unsuccessful. On the contrary, from the point S1 emanaleOn B and B" 11 (also on A) ’and 1111b
the families 29A2 and 29A3 fay = 1, = const ande varying On C and (’: 11c1 11¢2 and 1162
from the valuee, min t0 €,min = 0.52840725, where the two ’

families terminate at the common point S3. No connection of On other lines (not showing) 11a2 and 1142 ba

S3to la has been found. The bifurcations of Table A2 are related to the above orbits
In the case of multiplicity 11 we find that all orbits connectys follows.

directly or indirectly, to 1a, except for orbit 11b with two p.c’s  Famjly 11a1 is connected to family 11a7 through another

(Fig.[A4). This orbit is a Farey tree orbit on the lines B arld Bamily 1117, as shown in FifLA5. Family 11al terminates at

between the basic members)3{nd 5(+). The two branches of,  "_ ( 3099459, Family 11a7 exists for < ep;r and ter-

family 11b Stop ak, min = 0.15204035, 7 = 0.20 at the tW0 minates at,;, = 0.1522655. Family 1117 starts at,;, and
p.c’sa, b (Fid.AB). From these points emanates the family 11@aminates at,, ...

which, fore = 0.560, passes_thr_ough po.ints 1lba (segm. A4). Fore = 0.560,7 = 0.20the following families pass through

The two families form a pair with no direct connection to 1ghe points illustrated in Fig-A4

However, there is an indirect connection to 1a. In fact, starting

from the common points a and b with constant e .,;, and — Family 11a2 passes though point 11a2, lying on a FTL (not

diminishingn from = 0.20 to » = 0, we reach points a1  shown). Similarly 11a2passes through 11a2

and b1. Continuing this family, keeping = 0 and reducing — Family 11a3 passes through point 11A on A arid A

now e until the valuee,;; = 0.1227395, we find that the new — Family 11a4 reaches point 11c2 on C, while 1'li@aches

family 11ab bifurcates from 1a. Therefore, families 11b and point11c2on C.

11ba do not form a pair of irregular families, because this pair Family 11a5 reaches points 11c1 on C arid C

is connected indirectly to 1a. — Family 11a6 passes through the cross point 11 of B and A,
Since our results are numerical, it should be useful to confirm while 11a6 reaches point Ylon B'.

them through further work for the following two reasons:

Table A2 shows the bifurcations of the orbits with multi-

Families which start at points 11b on B and &d 11ba
(I) The search for bifurcations from 1a and 1b with multiplicitform a pair where = 0.15204035, n = 0.20. This pair has an
29 has been confined within the internal< ¢ < 0.560 indirect connection to 1a, as illustrated in Fig]A3.
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Fig. B1. The basic lines E and’EF and E cross each other at the Fig. B2. Location of the characteristics of the bifurcating families of
periodic orbit 1b, while D and Dlie close to 1b. On these lines we Table B1 parametrized by(n = 0.20) until e = 0.560. Only the last

show some basic orbits with small multiplicities and the p.c.’s of tHeoints of family 11b3 are given. The pair of the families 1ded 11d
periodic orbits with m=11 and m=29. which start through the corresponding orbits daitd D' s also shown.

Family 11b8 is connected to 11d through the intervening family 118d.
Table B1. Bifurcations from 1b with m=11

R a €bit Fam. Comments — OnDandD: 11d, 11dd
1/11 -1.68250707 0.168452 11bl 11bl1=11b1 b) m=29
— OnE and E 29e1, 29¢e1, 29e2, 29e3, 29¢3
11b2  11b2=1leof E — On Fand F 29f, 29f
2/11 -0.83083003 0.344563 !
11bZ  11bZ — 11b8 — On D and D: 29d1, 29d2, 29d2

3/11 028462968 0.525391 11b3  11b3=l11foff. F Fig[BZ depicts the characteristics of the families in Ta-

11b8  11b8+11d of D ble B1, except for family 11b3, because its characteristic is very
8/11 0.28462968  0.290248 11b8 11b8 — 11bZ close to that of family 11b1. Family 11b1 reaches points 11b1
whene = 0.560, while family 11b3 reaches the two points 11f
of F, F.
Appendix B: search for irregular families; Family 11b2 passes through point 11e of E. Family 11b2
bifurcations from the orbit 1b reachesmax,,, = 0.46578405, where it is connected to family

Table B1 gives the bifurcations with multiplicity m=11 fromllbg' Family 11b8 r_eache_smxbs = 0.4622105, where family
1b. Families withR = 4/11 to 7/11,9/11 and10/11 are not 118d emanates. This family connects 11b8 to 11d, which starts

included, because the corresponding valuesarke outside the ?t,emind = 0.443468 and, where = 0.560, it reaches point 11d
interval of the present study 6f< ¢ < 0.560 andy = 0.20.  YingonD.

: ; , Family 11d terminates at,,;, = 0.443836, where it joins
Fig[B1 depicts the BL's Eand’B- and F, D and B and the , , min ’ _
places of the orbits with m=11 and m=29 whe# 0.560,7 = fa}mn_y 11¢, which for e . 0560 passes through point .
0.20. E’ (Fig.[B2). Families 11%eand 11dform a pair, not having any

obvious connection to the basic orbit 1b.
Table B2 shows the bifurcating families with multiplicities
a) m=11 m=29 from 1b. As we mentioned before, the computation of
— OnEandE 11e, 11¢& orbits with smallR, i.e. R = 1/29, 3/29 and 4/29, stops before
— OnFonF: 11f e = 0.560 because these orbits become highly unstable.

The known orbits on these lines are:
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Fig. B3.The bifurcating family 29b2is connected to 29b20Families - Fig. B4. The two branches of the bifurcating families 29b5 and 29b21

29b2 and 29e3, corresponding to point 29e3 on E, are connected iRg connected through the intervening families 2951 and 2921.
rectly through family 292e. Family 29b20 becomes highly unstable at

€ = 0.360. Family 29e3forms a pair with 29x.

Table B2.Bifurcations from 1b with m=29

R a €bif Fam. Comments
1/29 -1.95324111 0.063890 29b1 highly unst.
29b2 29b2+29e3
2/29 -1.81515084 0.127362 29b7 29b2 —29b20
3/29 -1.59218613 0.192211  29b3 highly unst.
29b4
4/29 -1.29477257 0.258516 29b4 >
5/29 -0.93681688 0.326001  29b5 29b39b21
29b6 29b6 = 29d2
6/29 -0.53505668 0.394292 29b8 20b8 = 2947
7129 -0.10827782 0.462973  29b7 29b7 = 29d1
29b8 29b8+29h22
8/29 0.32356399  0.531620 29bg 20bg 52961
9/29 0.74027631 epir>0.56
29b20  29b20 stops
20/29 0.74027631 0.078653 29620 29020 —s29b7
21/29 0.32356399 0.270218 29b21  29b229b5
29b22  29b22:29b28
22/29 -0.10827782 0.516148 29023 29027 —s20f

Fig[B3 shows the indirect connection of family 29b2 to
the family 29e3, starting from orbit 29e3 on E. Family 29b2
terminates at,,.x, = 0.3339236, while family 29e3 at,;, =
0.2491375. The family connecting 29b2 and 29e3 is 292e.

Family 29b2is connected to 29b28te ,ax,, = 0.3334738.

On the other hand family 29b20 stops eat= 0.360. Fam-

ily 29e3, starting from point 29€3on E, reaches,,;, =
0.2491375, where family 29x emanates. The computation of
29x stops at = 0.408, = 0.20.

Fig[B4 shows the connection of the branches of families
29b5 and 29b21 through two other families, i.e. 2951 and
2921. Families 29b5 and 29b21 reagh.., = 0.44357242
andenmax,, = 0.4545552 respectively. Families 2951 and 2921,
which are connected at,;, = 0.4394852, start, respectively,
in these points.

For e = 0.560 family 29b6 reaches point 29d2 of the FTL
sequence 5(+),....29d2(24(+), 19(¢), 14(+), 9¢) on D, while
29b8 is going through point 29d2n D' (Fig.[B1). Similarly
for ¢ = 0.560 family 29b7 reaches points 29d1 of the basic
sequence D and’Dnamely the sequence with first member the
orbit 5(+) and increment 4.

Family 29b8 is connected to 29b22¢gf,«, = 0.55711905
(Fig.[BB). Family 29b8is connected indirectly to 29&which
passes through point 29edf E' whene = 0.560. The inter-
vening family 298elstarts at,;,,,, = 0.5520015 where 29el
stops and meets 2908t itSeax,, = 0.556970. Family 29b22
continues untileyay,,, = 0.55712395, where family 2922f
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Fig. B5. The direct connection of 29h8 to 29b22 as well as the indireEtg. B6. Two pairs of families are connected at the common point S.
connections of 29b220 29f through family 2922fand of 29b8to  The first pair, consisting of families 29e2 and 29e21, has as common
29e1 through family 298e’1are illustrated. Families 29el and 29fpoint S1. The second pair of the families 29g and 29g1 is connected at
starting from points 29e1 on E and 29f on F respectively, form a p&e.

which has no obvious connection to 1b.

Barbanis B., 1996, In: Contadakis M.E., Hadjidemetriou J.D., Mavridis

emanates. This family connects 29b&2 family 29f. Family L.N., Seiradakis J.H. (eds.) Proceedings of the 2nd Hellenic As-
29f starts from orbit 29fon F whene = 0.560 and stops at tronomical Conference. P. Ziti & Co, Thessaloniki, p. 520-525
€min,, = 0.557062675. Barbanis B., Contopoulos G., 1995, A&A 294, 33 (BC)

Families 29e1 and 29f, going through points 29el on BenKaddas., Kassibrakis S., White R.B., Zaslavsky G.M., 1997, Phys.
and 29f on F respectively, form a pair connecting:af, = Rev. E 55, 4909
0.5520015. Contopoulos G., 1970, AJ 75, 96

The two branches of family 29e2, which start from pointgOntOIOOUIOS G. Barban|§ B., 1989, A&A 222, 329

. ontopoulos G., Barbanis B., 1994, Celest. Mech. Dyn. Astron. 59,

29e2 on E and Ewhene = 0.560, parametrized by (n = 279

0'20.) stop at point S1 whe#yin,, = 0'43790 (Fig.[BE). A new Efthymiopoulos C., Contopoulos G., Voglis N., Dvorak R., 1997, J.
family 29e21 emanates here and terminates at point S whenppys. A: Math. Gen., 30, 8167

€emax = 0.4437953. This pair is connected to another pair whiclaspard P., Baras F., 1995, Phys. Rev. E 51, 5332

is formed by two families having two branches also. The firstagnenat P., 1982, Celest. Mech. 28, 319

family of this pair starts at = 0.560 andn = 0.20 from points Niven I., Zuckerman H., 1960, An Introduction to the Theory of Num-
29g, lying on FTL's and terminates at point S2, whgf, ;, = bers. Wiley, New York

0.4435759. At this point emanates the second family 29g1 dtercival I.C., 1979, In: Month M., Herrera J.C. (eds.) Non-linear dy-
this pair. This family terminates at S together with 29e21. Such a namics and the beam-beam interaction. Am. Inst. Phys. Conf. Proc.

double pair, having no connection to an orbit of the unperturb%ﬂlf_ﬂ_’ 302MF Zas| G.M.. Klafter J.. 1993 Nat 363. 31
system, is noticed for the first time. esinger M.F., Zaslavsky G.M., Klafter J., e '
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