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Abstract

Numerical evidence is presented, indicating that the Coulomb three-body
scattering problem possesses chaotic phase space regions for collision ener-
gies corresponding to the common classical approximation regime. Con-
sequently, the stochasticity threshold of 100 eV, reported previously by
Sattin and Salasnich, is extended by two orders of magnitude up to 20 keV.
The underestimated stochasticity threshold reported by these authors was
probably due to an inappropriate application of the specific numerical tech-
nique they used.

1 Introduction

The Classical Trajectory Monte Carlo (CTMC) method [1,2]
is extensively used in modelling simple collisions between
atoms, ions and electrons. The so calculated total and partial
cross sections are satisfactory in a large energy interval,
depending on the colliding constituents (atomic and mass
numbers of the colliding particles as well as their state of
ionization) and the refinements used in the exit tests for
the classification of the trajectories [3].

The method consists essentially in the statistical study of a
classical (or semi-classical) scattering problem, which, in the
simplest possible case [4], is nothing more than a specific
realisation of the Coulomb Three-Body (CTB) problem: a
completely stripped ion as projectile (first body, typically
a proton), coming practically from infinity, interacts with
a hydrogen atom as target (composed by a nucleus and
an electron, constituting the second and third body,
respectively). Given the excess of available energy, the sys-
tem may end up, after the interaction, in essentially three
generic possible exit channels: either the electron remains
bounded to the original nucleus (excitation, E), or the elec-
tron is orbiting around the incoming ion (charge transfer,
C) or, finally, the electron is ejected from the target atom
and the three particles move independently afterwards
(ionization, I). Initial conditions for the three particles
are selected at random and, after numerical integration, each
trajectory is assigned an exit channel, according to the
imposed exit tests. After the calculation of a large number
of trajectories, it is expected that the fraction of them leading
to E, C or I will give, approximately, the corresponding
effective cross section.

Traditionally, the results of the CTMC method were con-
sidered to be reliable, provided that the system can be treated
classically, presumably as long as the velocity of the
impacting ion is larger than the classical velocity of the elec-
tron around the nucleus of the target. Otherwise,
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quantum-mechanical effects may become significant and
the notion of a particle’s trajectory looses its classical
meaning. In the simplest case of a proton impacting on a
hydrogen atom in the ground level, the threshold corre-
sponds to a typical collision energy of, approximately, 25
keV. Consequently, it came as a surprise when the effective
cross sections calculated through the CTMC method for col-
lision energies in the keV region were shown far more
reliable than the above simple theoretical arguments could
predict [5]. Moreover the CTMC method turned out to
be more stable than other quantum-mechanical methods,
which have been shown to depend strongly on the number
of states taken into account in the numerical calculations
(see e.g. [6]).

The regime of validity of the CTMC method has been
investigated by Keller et al. [7], who, based on the
Kolmogorov-Arnold-Moser (KAM) theorem, specified
quantum corrections to the classical trajectories consisting
of small random perturbations, added during the numerical
integration of the differential equations. For a simplified
presentation of the KAM theorem see [8]. Using the CTMC
method, in conjunction with the above technique, these
authors found empirically that their final results (i.e. the cal-
culated cross-sections) were independent of the nature of the
perturbations, in particular both of the method of their
introduction as well as of their statistical distribution. More-
over they found that this “modified” CTMC method was
producing improved results, at least for the ionization of
H by protons.

Subsequently, Katsonis and Varvoglis [9] conjectured, on
theoretical grounds, that the CTB interaction is a scattering
system exhibiting chaotic properties at least in some phase
space regions, a fact that may explain the robusteness of
the method, as discussed in what follows. It should be noted
that the notion of chaos in the case of a scattering system
is quite different from the one usually encountered in
dynamical flows defined on compact phase space regions:
it does not refer directly to the exponential divergence of
nearby trajectories (according to the well known Lyapunov
exponents), but rather to the intricate mixing of initial con-
ditions leading to any one of the possible exit channels of
the interaction (in the present case E, C or I). The set of
initial conditions leading to a specific exit channel may
be considered as its ““basin’ (designated here by the same
symbols E, C or I). This is reminiscent of the relation
between attractors and their basins in dissipative dynamical
systems. In a scattering system we are not primarily
interested in the properties of the exit channels (which cor-
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respond to the attractors in a loose analogy) but rather in the
properties of their basins and on the dimensionality of their
boundaries.

The exit tests for deciding which exit channel will be
assigned to each trajectory include the comparison of the
energies of the electron with respect to each one of the
two protons. Let us denote by E, := E(e — pp) the energy
of the electron with respect to the incoming proton, pp,
and by E; := E(e — p;) the energy of the electron with respect
to the target proton, p;. Then the channel followed by each
trajectory corresponds to one of the four quadrants of
the plane Ej,, E;. The quadrant(E, > 0, E; < 0) corresponds
to the exit channel E, the quadrant (£, <0, E; > 0) to
the exit channel C and the quadrant (E, > 0, E; > 0) to
the exit channel I. The fourth quadrant (£, < 0, E; < 0), cor-
responding to the formation of a ‘“molecule”, is usually
taken to be of negligible probability with respect to the
probabilities of the channels E, C or I. The sets of initial
conditions (in phase space) corresponding to the special
cases where either E, or E; are zero constitute the boundaries
between the basins. In particular the set corresponding to the
half-line (£, = 0, E; > 0) is the boundary between the basins
of C and I and the set corresponding to the half-line
(Ep > 0, E; =0) is the boundary between the basins of I
and E. The intersection of the above two boundaries in phase
space corresponds to the point (E, =0, E; =0). In the
neighborhood of this point are mapped trajectories that fol-
low any of the three exit channels. Since the trajectories
of Hamiltonian dynamical systems are continuous functions
of their initial conditions, there should be open regions in the
initial conditions space with the same property: in a small
open disk there are points belonging to all three basins.
The above condition is possible in a 2-D space, only if
the boundaries of the basins are fractal curves; the basins
themselves are then similar to multifractal Julia sets on
the complex plane [10].

In the planar case of the CTB problem, which is usually
taken in order to avoid the complexity of additional degrees
of freedom and in order to obtain better insight, the
incoming ion moves on the same plane as the electron of
the target atom. For a constant value of the collision energy,
the space of initial conditions is two-dimensional (usually
parametrised by the impact parameter, b, and the initial
phase of the electron on its orbit, 6). Therefore the bound-
aries of the basins should be fractal curves, at least in some
regions of the initial conditions space. It should be noted
that, although the boundaries are fractals, the basins them-
selves are of complete measure, i.e. their dimension is equal
to the dimension of the initial conditions’ space. This is
due to Liouville’s theorem, which applies to all conservative
dynamical systems (e.g. see [11]). Any set of initial con-
ditions with a volume Vj, = V(¢ = 0) in phase space has
the same volume, V(f), with the set of the points of the
trajectories at any other time ¢. Since the CTB problem is
a conservative Hamiltonian system, the Hausdorff
dimension of any non empty basin of any one of the three
exit channels is equal to the Hausdorff dimension of the
set of initial conditions, which in the CTMC method is
of complete measure.

Katsonis and Varvoglis [9], suggested on this ground that
the robustness of the CTMC method in the low energy
region, as well as its insensitivity to the nature of the induced
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perturbations reported in [7], might be attributed to the
chaotic nature of the scattering problem through the
following ‘“‘conjecture”. If the scattering CTB problem is
indeed a chaotic system (at least in some phase space
regions), then the quantum-mechanical effects, which are
simulated in [7] by small statistical ““perturbations’ during
the numerical integration of, otherwise, deterministic
trajectories, do not affect statistically the calculation of effec-
tive cross-sections. The reason is that, for any initial con-
dition leading to one exit channel, there is always in its
neighbourhood another initial condition leading to a differ-
ent channel. Therefore, a small uncertainty in the initial con-
ditions of a trajectory, which is in any case introduced by the
finite accuracy of the representation of the numbers in a
computer, has the same effect as the addition of a small noise
during the phase of its numerical integration. However
without calculating the size of the chaotic regions it is
impossible to estimate their importance. Therefore in [9]
it was concluded that numerical experiments were necessary
in order to corroborate their “conjecture”.

Quite independently from the above authors, Homan et
al. [12] studied the coplanar interaction of Na* with an
excited Rydberg Li* atom for various initial phase angles
and impact parameters and presented their results
graphically, by color-coding the initial conditions corre-
sponding to each basin. The intricate patterns and the
tangled interwinding of the basins which appear in their
results may be considered as a clear indication for the
fractality of the basins’ boundaries. However, since these
authors neither tested their reslults for self-similar behaviour
nor calculated the dimension of the boundary curves, the
problem of the chaotic nature of the three body Coulomb
scattering was far from being considered as settled.

2. Fractal nature of the system

Following the aforementioned conjecture, Sattin and
Salasnich [13, 14] had undertaken the direct investigation
of the fractal nature of the basins’ boundaries of the
proton-hydrogen scattering problem in its simplest case:
monoenergetic co-planar orbits with the target’s electron
in the ground state. For the numerical evaluation of
fractality, these authors followed the uncertainty exponent
technique, introduced in [15] for scattering problems. Their
conclusion was that the interaction is indeed chaotic but
the chaos becomes prominent only for collision energies
of the order of 100 eV or lower, well below the regime of
validity of the classical approximation needed for CTMC
applications.

Unfortunately, in calculating fractal dimensions, Sattin
and Salasnich departed from the method of [15], since they
kept fixed all other initial conditions but the impact par-
ameter. Consequently their results pertain only to a 1-D sec-
tion of the 2-D initial condition’s space. Therefore, although
these authors detected the existence of self-similar structures
in the space of initial conditions, they were not able to esti-
mate the “‘size”” of the corresponding regions, especially
in the keV energy region, nor to calculate the fractal
dimension of the basins’ boundaries. What they really cal-
culated was the capacity dimension of the basins themselves.
Therefore figure 4 of [14], which represents the main result of
the paper, shows, essentially, the fact that, for low interac-
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tion energies, the capacity dimension of the basin of a
specific exit channel is 1 (i.e. equal to the dimension of
the initial conditions’ space). On the other side, as the initial
velocity of the projectile was increased, the existence of a
threshold energy value was correctly detected, above which
the calculated dimension of the basin becomes zero, simply
because almost all trajectories end up in the other two exit
channels and, therefore, the specific basin is practically
empty.

In this context it is worth to mention that the result pre-
sented in [13] and [14], pertaining to the appearance of chaos
in a scattering problem, is analogous to the well known
result of Henon and Heiles [16] for the case of classical
chaos. In the case of classical chaos the measure of the phase
space region filled by ordered trajectories drops from com-
plete to zero within a very narrow strip of energy values.
In the same way, in the case of a scattering problem the
measure of the basin of a specific exit channel, in a fixed
region of phase space, drops from complete to zero within
a very narrow strip of collision energies. Since the results
of [13] and [14] do not address the crucial problem of the
fractality of the basins’ boundaries, in particular in the
keV energy region, we decided to extend their calculations
in the full 2-D initial conditions space.

3. Calculations and results

For the numerical integration of the equations of motion a
standard numerical code of the Laboratory of Plasma Phys-
ics at Orsay has been used, which follows the formulation
described in [2]. For the present study, the space of the initial
conditions was restricted to the case of co-planar trajectories
with fixed impact energy. The incoming ions are launched
from a fixed distance, ry, towards the atom target, which
is at rest. Since the electron of the target is assumed, in
the present work, to be on a circular orbit with radius equal
to the Bohr radius, it has only one degree of freedom, namely
its initial phase, 6. The incoming ion has one degree of
freedom as well, the impact parameter, b. We used both posi-
tive and negative values for the impact parameter, the nega-
tive ones representing the side of ry where the angular
momentum of the ion has the same sign as that of the
electron. The two initial conditions were chosen at random
within a [b, 0] box, whose sides were selected each time
according to the desired resolution, while ry was taken equal
to 40 times the Bohr radius. In each case 56700 trajectories
were calculated and the exit channel they followed (E, C
or I) was recorded. Then the initial conditions of the
trajectories that ended up in E, C or I were plotted as dots
in three separate plots, one for each exit channel. In this
way we were able to get a rough representation of the three
basins.

Several hundred sets, of 56700 trajectories each, were
calculated. In the beginning we selected as collision energy
100 eV, which is the threshold energy for the onset of chaotic
motion calculated in [13]. It was very easy to see, even by
simple inspection, that in this regime the initial conditions
space presented a clear fractal structure. Since, however, this
is a known result, we decided to focus our simulations on the
energy level of 20 keV, which is close to the classical approxi-
mation regime.
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In the lower order resolution (0 < 6 <2m,
—2.5 < b < +2.5) we first identified regions with signs of
possible self-similarity. In a second step we selected small
boxes centered on the regions of interest identified in the first
step and with sides approximately ten times smaller and we
repeated the calculations selecting the initial conditions
inside these boxes. After repeating this process in successive
steps, we were able to find self-similar structures in many
regions. In figures 1-3 we give a typical example, where
one can see that the basin of the I exit channel is self-similar
for at least three successive scalings, which span two orders
of magnitude in the b axis and four orders of magnitude
in the 0 axis. This can be considered as a clear indication
of fractality, as discussed in [17]. Even more, there are indi-
cations in our results that the basins have the Wada
property, which is stronger than simple fractality. This prop-
erty refers to the fact that any initial condition, which is on
the boundary of one basin, is also simultaneously on the
boundary of all other basins [18].

We measure the dimension of a basin’s boundary by the
well known algorithm introduced in [15]. In each b, 6 box,
as the ones presented in Figs. 1-3, we select at random 2700
“central1 trajectories, b;, 8;, i =1,2700. For each central
trajectory we integrate twenty ‘‘side’ trajectories, which
have the same initial 0; but initial impact parameters equal
to bi+¢;, j=1,10. We calculate the fraction, f, of pairs
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Fig. 1. Basin of the ionization exit channel at the lowest resolution. The small
strucutre in the box on the upper left part was considered worth of a more
detailed study.
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Fig. 2. The area in the square on the upper left part of figure 1 in higher res-
olution. The single line in figure 1 is decomposed in three lines.
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Fig. 3. The leftmost of the three lines in figure 2, if seen in higher resolution, is
decmposed again in a set of higher order lines.

of side trajectories that follow a different exit channel from
that of the central trajectory and we plot the points
Ji — ¢ in log-log axes. According to the theory presented
n [15], the points should lie on a straight line of the form
log(f) = ¢ + alog(¢) where the slope, «, is equal to the
co-dimension of the basin’s boundary. Therefore
d = D — o is equal to the dimension of the boundary, where
D = 2 is the dimension of the initial conditions phase space.
In Fig. 4 we present the results for the basin appearing in
Fig. 1. By a least square fitting of a straight line to the data
we find «=0.774+0.03, from which it follows that
d = 1.23 £0.03, clearly a non-integer. Therefore the basin’s
boundary is fractal.

From the form of the algorithm it is clear that the calcul-
ated d is a sort of an “average’” dimension of all “families”
of boundaries appearing in each box, as discussed already
n [15]. Since the dimension of non-fractal boundaries is
always 1 while that of fractal boundaries is always larger
than 1, this “average” is lower than the true dimension
of the fractal boundaries. Therefore if one is willing to cal-
culate the dimension of a single family, he should select a
box with a finer resolution, such as the ones appearing in
figures 2 or 3. A calculation for the box in figure 3 gives
for the family shown there d = 1.62 + 0.03.

4. Discussion — Conclusions

How much confidence should we have on our calculations?
First of all, the values of ¢ in figure 4 span two orders of
magnitude, an interval that usually is considered as sufficient
for reliable results. Moreover two specific tests were
performed, in order to confirm the significance of our results.
The first one was to calculate d in regions of the initial con-
ditions space where there is not any apparent self-similar
structure. The result was d = 1, i.e. a regular, non-fractal,
line, as it should be expected. The second one was to calcu-
late d for all three exit channels corresponding to the same
set of initial conditions. Within the available accuracy the
calculated values d;,i = 1,3 were equal. This shows that
the non-integer value of d calculated in the present paper
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f(e)~e"
a=0.77£0.03

Fig. 4. A least square fit to the data f(¢) vs ¢ for figure 1. The co-dimension of
the basin’s boundary, 0.77 & 0.03, is not a natural number, so that the bound-
ary is a fractal curve.

is not due to a numerical artifact, but it is a property of
the true dynamical system of ion-atom collisions, as
suggested in [9], which appears in a region of collision ener-
gies within the regime of wvalidity of the classical
approximation. Then we have to conclude that the scattering
of protons by hydrogen atoms is indeed a chaotic dynamical
system for values of collision energies where the classical
approximation is valid.
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