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We follow the evolution of distributions of real and fictitious as-
teroids, initially placed in the vicinity of the 12:7 mean motion res-
onance with Jupiter. Our results show that, besides the well-known
example of 522-Helga, other stable chaotic asteroids could, in prin-
ciple, exist in this region of the belt. Most of the particles, though,
attain Jupiter-crossing orbits within 50 Myr, under the influence
of other close-by resonances (e.g., 5:3). However, the escape pro-
cess is also controlled by the initial value of the critical argument
@ — wj. In this respect 522-Helga can, in fact, be the remnant of a
larger initial distribution, as conjectured by M. Murison et al. (1994,
Astron. J. 108 2323-2329). Numerical indications that quasi-
periodic orbits exist among the nonremoved test particles support
the idea that stable chaos may be a special realization of what is
known in Hamiltonian dynamics as stickiness effect. This is also cor-
roborated by the fact that the autocorrelation function, r (k), of the
action time series of stable chaotic orbits is almost a quasi-periodic
function, in contrast to escaping orbits, for which r (k) decays ex-
ponentially. Implications to the problem of formulating a diffusive
approach are also discussed.  © 2000 Academic Press
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1. INTRODUCTION

may be the remnant of a much larger distribution of asteroid:
initially in the vicinity of the 12:7 resonance, most of which
where ejected on hyperbolic orbits within 100 Myr from the
formation of the Solar System. Thisis because, according to the
results, for any given value of the escaping distribution is a
Gaussian and, fof. ~ 7000 years, the age of the Solar Systen
lies within three standard deviations from the mean escape tir
Thus, they concluded, stable chaos, as defined by Milani at
Nobili (1992), may be thought of as a “statistical fluctuation”
of Eq. (1) and does not constitute a hew phenomenon in tf
dynamical behavior of asteroids. Subsequently, other asteroi
exhibiting similar behavior were also found, in several regions c
the main asteroid belt (see, e.g., Milabial. 1997, Sidlichovsky
1999).

Varvoglis and Anastasiadis (1996) have shown that Eq. (1) cz
be recovered throughdiffusive approximatiowof the problem,
i.e., the solution of a suitably modified Fokker—Planck equatior

of (1Y) _ a2ty f(1.)

2
ot al2 Te @

which describes the diffusion in action (eccentricity) of an initia
distribution of asteroidsf (1), provided thatD = ar® = const.

The notionstable chaosppeared in the literature of celestiallhis last relation betwee and A was found, numerically,

mechanics as a term devised by Milani and Nobili (1992) foy Konishi (1989) and holds only in the “resonance-overla
describe the peculiar behavior of the asteroid 522-Helga, whitgtgime” of Hamiltonian sytems. The agreement between tt
lies in the immediate vicinity of the 12:7 mean motion resc@bove two different approaches may be attributed to the fa
nance with Jupiter. Briefly this term means that, although tfieat, in order to speed up their numerical calculations, Muriso
trajectory of Helga is characterized by a short dynamical lifet al. (1994) increased the mass of the perturber by a factor «
time, T. = 1/A ~ 7000 years (where is the maximal Lyapunov 10 with respect to the actual mass of Jupites 10.;, extrap-
characteristic number), its orbital elements show a remarkabli@ting their results to the actual Solar System case- (1;).
stability over a time interval comparable to the age of the Soldowever, as the perturbation is proportionaltpthe already
System. This discovery raised some important questions am@tigall set of invariant tori in the outer part of the asteroid bel
the astronomical community, especially after a relationship b&as further reduced and the topology of the phase space w
tween the dynamical lifetimd,_, and theescape timglg, of an  drastically modified. In fact, as noted in Murray and Holmar

asteroid,
Te ~ T2, 1)

(1997), foru =10u; the 2:1 and 3:2 resonances of the elliptic
restricted three-body problem overlap, even for small eccentri
ities. Thus, a single, connected, chaotic region covers a wic

was reported by Lecaet al. (1992); 522-Helga violates this range of semimajor axes (the “outer asteroid belt”). However, i
statistical “law.” Murisoret al. (1994) proposed that 522-Helgathe real Solar System, Eq. (1) cannot hold, since the topolog
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STABLE CHAOS IN THE 12:7 RESONANCE 241

of the action space is probably far more complex, as discussgdhe dynamics in the vicinity of the 12:7 mean motion res
in Varvoglis and Anastasiadis (1996), Morbidelli and FroeschBnance are presented in Section 3. Our numerical results
(1996), and Murray and Holman (1997; see also Holman apdesented in Section 4. Finally, in Section 5, we summarize ol
Murray 1996). conclusions and discuss the possible implications of our resu

The complexity of the phase space is what led Varvoglis atal the problem of formulating a propéiffusive approactor
Anastasiadis (1996) to conjecture that Helga may be a reabteroidal transport.
life example ofstickinessan effect caused in nearly-integrable
Hamiltonian systems by the surviving KAM tori that are im- 2. NUMERICAL SETUP
mersed in the stochastic sea and other “quasi-barriers” (e.g.,
cantoriin 2D—Aubry 1978, Percival 1979) surrounding them; In order to examine the diffusive character of motion for par
this was also discussed by Murisenal. (1994). It has been ticles initiated at a given subset of the action space, one h
shown that stickiness results anomalous transporproper- to explore thoroughly the conjugate angles’ space. This is b
ties (Shlesingeet al. 1993, Zaslavsky 1994). If this is true,cause at any given action value, if the perturbation is not we
transport of chaotic trajectories in this subset of action space @ove some “critical” threshold, some initial phases may lez
which Helga lies, cannot be modeled asamal (Brownian) to vastly chaotic behavior, while some others may not. Thi
random walk as it is supposed in solving Eq. (2), but, insteadind of dependence of the evolution of an asteroid on its initic
the notion oflévy walkgShlesingeet al. 1993) may be more phase (actually the resonant argumentand v) has already
suitable. One, of course, has to demonstrate the existencd@gn observed in some cases of resonant motion in the aster
quasi-periodic orbits in the immediate vicinity of Helga, whictpelt, namely the 3:1 and 2:1 resonances (Hadjidemetriou 19¢
could act as “quasi-barriers” for action diffusion. Hadjidemetriou and Lemaitre 1997). Itis related to the existenc

Working on the planar elliptic restricted three-body problen®f stable or unstable resonant periodic orbits, which correspol
Murray and Holman (1997) have shown that the relation betwetsndifferent values of the critical arguments. This is exactly whe
the Lyapunov time and the escape time in the outer aster®i@ wish to explore, i.e., which initial phases lead to fast diffu
belt is far more complex than the simpheonotonicrelation sion, which to slow diffusion, and which, if any, lead to stable
reported by Lecaet al. (1992), which holds only in the casechaos or regular (quasi-periodic) motion. If initial conditions
where the effective perturbation parameter is close to the critid@@ding to stable chaotic trajectories gather close to sets of i
threshold. Moreover, Murray and Holman (1997) derived di@l conditions which lead to quasi-periodic motion, this woulc
analytic approximation of the quasi-linediffusion coefficient be anindication thattable chaoss, indeed, a suitable oxymoron
for “random-walking” in action space, which (coefficient) igdescribing whatis known in Hamiltonian dynamicsstiskiness
action dependent. Using an approximate solution of the Fokkegffect
Planck equation, they have shown that the escape time for lowdn this respect, we integrate the equations of motion for tw
eccentric orbits initiated on the 12:7 resonance is comparablegf@ups of initial conditions. The first group (hereafter G1) is
the age of the Solar System, although their Lyapunov time is@mposed of 128 fictitious asteroids having initial condition
the order of 10 years. Thus, they concluded, Helga is neithér=aiz7 AU, e=0.07,i =4° and2 =0, while w andM are
an example of stable chaos nor the remnant of a larger initifistributed on a 16 8 grid onS? = {(0, 27) x (0, 2)}, respec-
distribution; instead, the stable-looking behavior of Helga is ddizely. Following the standard notation of celestial mechanic:
to the slow diffusion from the 12:7 mean motion resonance. a denotes the semimajor axisthe eccentricityj the inclina-

In this paper we study the statistics of escape from the vicinitn to the invariant planeQ the longitude of the ascending
of the 12:7 mean motion resonance. Our results show that fhede,» the argument of perihelion arld the mean anomaly
phase space in this region of the belt is very complicated and #f¢he minor body. In the Delaunay formalism of the restricte
escape time of a test particle may vary by orders of magnituderee-body problem, the anglés, », and2 are conjugate to
depending on the initial conditions. Other “stable chaotic” orbit§e actionsC = /a, G = L/(1 — €?), andH = G cos(), respec-
(i.e., with exactly the same behavior in terms of orbital elementé/ely, wherey is the ratio of the mass of Jupiter to the total mas
evolution of the critical argument and the Lyapunov exponent @sthe system. Also, we denote ly,/7 the value of the semi-
522-Helga) are found within our initial distribution. Moreovermajor axis corresponding to the 12:7 mean motion resonanc
we investigate the idea of Varvoglis and Anastasiadis (1996}ich is defined by the relation
that the property of stable chaos may be a realization of the
stickiness effect in this specific dynamical system. Finally, we 23
show that stable chaotic orbits share a common characteristic: Ap+a)/p = aJ( p+ q) ’ (3)
long-time correlated evolution of the actions. The possibility of
existence of a statistical “law,” pertaining to asteroidal escapgherea; is the semimajor axis of Jupiter aqd q are integers.
is also discussed. The second group (G2) contains the “true” Helga, with initia

In the next section (Section 2), we present the models usashditions taken for the epoch JD2448601.0 (Dec. 10, 199
and the numerical setup of our integrations. Some basic aspdais the paper of Murisoat al.(1994), and 128 clones of Helga




242 TSIGANIS, VARVOGLIS, AND HADJIDEMETRIOU

with initial a, e, i, and 2 equal to those of Helga, while periodic orbits of the asteroid, along which the resonare
andM are again distributed on a 368 grid onS?. Thus, both remains almost constant and the eccentricity of the asteroid i
distributions are delta-functions of the three actions. The maireases, starting from zero. On this resonant family exist bor
model used in this study is the spatial elliptic restricted threstable and unstable orbits (see, e.g., Hadjidemetriou 1992).
body problem (hereafter ERTBP) and the equations of motionWe shall focus our attention on the cas@’ = 12/7. At this
are integrated using the regularized mixed variable symplecte&sonance there exists a family of resonant periodic orbits, in tl
integratorswift rmvs3 from the SWIFT package designed byotating frame, symmetric with respect to thexis. The initial
Levison and Duncan (1994), with a time step of 36.525 daysonditions of a periodic orbit ang0), y(0)=0, x(0)=0, y(0)
Finally, the effect that all four outer planets, fully interactingand the period is very close to the unperturbed value,7 x
have in the evolution of G2 is also examined (subsequently ®& = 14 . In Fig. 1a we present this resonant family in the spac
refer to this model as 4P). The initial conditions for the planeiq0)-energy E, instead ofy(0)) and in Fig. 1b in the space
are taken from théstronomical Almana¢1991). X(0)-T. The circular family, from which the resonant family

In the beginning, the equations of motion of every particleifurcates, is also shown. In the above-mentioned normalize
are integrated up to 20 Myr, unless it previously suffers a closaits the semimajor axis of an asteroid initially on the 12:7
encounter with Jupiter, i.e., it passes within Hill's radius fromesonance is close to the vakie- 0.698. There are two branches
the planet. In this case the integration is stopped, assuming thithe resonant family that bifurcate from the circular family. In
the “asteroid” will be swiftly ejected from the system. The inene of them the asteroid is initially at perihelion and in the othe
tegration continues up to 50 Myr for all G2 particles that arat aphelion. In particular, there are in both branches Helga-lik
not ejected within the first 20 Myr. A 5-Gyr integration is als@rbits, with eccentricities close to the value 0.0761 (which is th
done for 522-Helga alone, in order to verify the results of Milani
and Nobili (1992) and Murray and Holman (1997), which havg
shown that the orbital lifetime of 522-Helga is comparable t
the age of our Solar System.

-l48

resonance 12/7

3. DYNAMICS IN THE 12:7 MEAN MOTION RESONANCE -

pericenter

The knowledge of the dynamics of the model we use is ez
sential in understanding the evolution of the system. We shg
present briefly in this section the main aspects of the dynami 154 —|
inside the 12:7 mean motion resonance, in which 522-Helga STABLE
verified to lie. A full exploration of the phase space is beyon

UNSTABLE

Helga-like orbits

. -156 — €=0.07
the scope of this paper. | oreur
3.1. Circular Planar Restricted Three-Body Problem 158 : | , : . ‘ :
The basic model we shall start with is the planar circular re o o0 7 %o T o e

stricted three-body problem (Sun—Jupiter—asteroid). Althou
this is not a realistic model, it contains the basic features
the complete model and, for this reason, it is very useful in ui
derstanding the dynamics of more realistic models (e.g., ellipt ~ ++¢° —
orbit of Jupiter, three-dimensional space, effect of the other pla 4
ets), as will become clear in the following.

We assume that Jupiter revolves around the Sun in a circuz
orbit and we consider a uniformly rotating frame of referenc®
xQy, on the plane of motion, whose origin is the center of mas  **2° 7
of Sun and Jupiter and theaxis is the Sun—Jupiter line. If we .
choose the unit of mass to be the sum of the massesof Sun. . oo & v~=t4w |
Jupiter, the length unitto be equal to the (fixed) distancebetwe | | o omn
Sun and Jupiter an@ = 1, then the revolution period of Jupiter
isT = 2. Itcan be proved that there exists, in the above rotatir \
frame, a family of nearly circular periodic orbits of the asteroic, ' T oxo
along WhI.Ch the Semlmajor/a).(ls’ and ansequently the ngitig FIG.1. (a) The family of resonant 12/7 periodic orbits in th@)-Energy
vary continuously, where(n’) is the orbital frequency of the as'space. The lineE = —1.55010966 corresponds to Helga-like orbits. (b) The

teroid (Jupiter). At the points where'n'’ is rational (except for same family in thex(0)-T space. There does not exist any orbit with period
n/n’=(p+ 1)/ p) we have a bifurcation of a family of resonaniequal toT = 14r.

44 .80

resonance 12/7

pericenter

cpocenter

circutar family
(norresonant)
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Xo= 8.7498 dy/dto= 0.3643 Thax=40BAH = D.0BAYS | The role played by the fixed points in a model is clearly
seen in the study of asteroidal motion in the 3:1 resonan
(Hadjidemetriou 1993). In this case there are, in the ellipti
model, two fixed points for small and two more for high eccen
tricity values. In a model where the high eccentricity resonanct
are absent (this is the case studied by Wisdom 1982, 1983), 1
have chaotic motion and sudden jumps of the eccentricity on
up toe=0.3. Beyond that region, the motion appears to be rec
ular. If, however, we include the high eccentricity resonances |
the model, the evolution changes drastically and jumps of the €
centricity of the asteroid up to 0.9 occur (Hadjidemetriou 1993
This phenomenon is due to the fact that the introduction of tf
high eccentricity fixed points (&= 0.80) changes the topology
of the model’s phase space and the high eccentrcity regions
no longer isolated by invariant tori.

In the 12:7 resonance there are no fixed points in the ellij
tic model for the following reason: A bifurcation of a family
of periodic orbits from the circular to the elliptic model exists
only if there is a periodic orbit on the family of the circular
FIG. 2. A Poincag surface of section for the Helga-like orbits in the_mOdel (see Fig. 1) whose period IS. a_n exact multiple mf 2
CPRTBP. in our caseT = 147 =43.982297. This is because the elliptic

restricted three-body problem is & eriodic time dependent
dynamical system and any periodic orbit must have a peric

initial value of eccentricity used in our numerical experimentsy/hich is a multiple of the periods2 However, from Fig. 1b
The apocentric orbits are unstable and the pericentric orbits 4rt clear that such an orbit does not exist (contrary to othe
stable. resonances, e.g., 3:1, 2:1). This means that the low eccentric
The structure of the phase space is clearly seen if we take [R8IONS of the phase space cannot be connected, through asir
Poincag mapping on the surface of sectig(®) = 0, E = const. chaotic path, with the high eccentricity ones (however, since tt
For Helga-like orbits we have the surface of section shown §i@bility of both the apocentric and pericentric branches chang
Fig. 2 for E = —1.55010966. We see that there are two sets W¥fith the eccentricity, there are bifurcations of higher multiplic-
periodic orbitst one stable (at =0, i.e.,w = 0) and the other ity resonant periodic orbits). Thus, we come to the conclusic
unstable (at =7, i.e., w=r). The characteristic exponent,thatin the 4D phase space of the planar elliptic problem at ﬂ.
y, of the unstable periodic orbit has been calculated and corfe 7 résonance no dramatic effects are expected in the evolut
sponds tg/~1 = 8000 years. Note that the width of the libratiorPf @n asteroid. The noncontinuation of the main family of peri
region (island) is very small, so that a small deviation from trfedic orbits offers in this sense a protection mechanism for tt
exact periodic orbit would result to a trajectory that comes clo§¥0lution of low-eccentricity orbits. We emphasize, howeve:
to both the stable and the unstable regions. This could genef&@, in this part of the outer asteroid belt, the resonances &
chaotic motion, which would be confined in a narrow regiofl0Sely spaced. In fact, two low-order resonances, the 5:3 a
of phase-space, bounded by smooth invariant curves. Thud,"4 comensurabilities, lie on both sides of the 12:7 resonan
phenomenon that could be characterizestable chaosccurs and, even for moderate eccentricities{0.15), their proximity

naturally in the 12:7 resonance of the simplest model that ghould be important for the dynamical evolution of an asteroi
scribes asteroidal motion.

Evergy= -1. 55818966

3.3. More Advanced Models

3.2. Elliptic Planar Restricted Three-Body Problem The model used in our numerical experiments is, basically, tf

Let us now assume that Jupiter moves on a fixed elliptic orbipatial elliptic restricted three-body p.roblem. The difference
The dynamical evolution in this model depends on the structf§tween the planar case and the spatial case cannot lead to
of the phase space, which is defined by the fixed points tHBtic changes, at least for nearly coplanar orbits, which is tf
exist on a surface of section. These fixed points correspond®@>€ In our numerical experiments. Including more planets
the resonant periodic orbits of the model. If no fixed poinl.@e model would result in an increase of the perturbations i

exist, no strong chaotic phenomena (e.g., sudden jumps in fiiced to the asteroid’s orbit. The most important changes cor
eccentricity) are expected. from the fact that the orbit of Jupiter (as well as of the rest @

the planets) is not fixed any more but is secularly precessing.
The frequencies describing the precession of the planetary «
1 These appear as a chain of five islands. bits constitute the set gkcular frequenciesf the Solar System.
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A resonance between the precession frequency of an asteroia 2¢7-
longitude of perihelion (or node) and one (or a linear combine

tion) of the secular frequencies is calledge@cular resonance il
The role played by secular resonances in the formation of tt l
Kirkwood gaps and the dynamical transport of near-Earth aste
oids (NEASs) has been proved to be extremely important (seg
e.g., Moons 1997, Froeseh1997). Outside mean motion reso-5
nances, the location of the main secular resonances (up to or
three) on thed, i) plane can be found in Milani and Knezevic
(1990) (see also Morbidelli and Henrard, 1991). Bor 3.63
ande~ 0.1 the main secular resonances seem to be located
inclinations much larger thar Avhich is the mean inclination of - e . T
Helga. The 12:7 resonance is probably too weak to significant t (years)

modify the proper frequency of the perihelion longitude, with
respectto the nonresonant case. Thus, Helga-like orbits seem
to be affected by secular resonances and the differences betw:
the elliptic three-body problem arid-body (N > 3) models are 003
not expected to be dramatic for the case studied here.

agso |
|
34|

3,63

agz-

0,12 —

0,06

4. NUMERICAL RESULTS @

During the first 50 Myr of our simulations, the “true” Helga o2
did not develop a Jupiter-crossing orbit. The evolution of its
osculating semimajor axis and eccentricity during this time in 1 | T | LR
terval is shown in Figs. 3a and 3b. In the 5-Gyr integration “*L; ———— o :
Helga remained in the same orbital elements’ region for abo =it e sy g g
1.6 Gyr, whence it entered the action sphere of Jupiter. We al:
verified the fact that Helga evolves on a chaotic trajectory, wit ¢ 7-
a Lyapunov time of about &10° years (see below Fig. 8). This ]
chaotic behavior can be visualized in Fig. 3c, which shows th
time evolution of the elemertd = 71 — 1215, where periods of
circulation in both directions are interspersed within short pe
riods of libration. Using the standard notation of celestial me
chanics) = Q +w+ M (1) is the mean longitude of the minor
body (Jupiter). These results are in agreement with the pre\
ously reported results of Milani and Nobili (1992) and Murray
and Holman (1997).

t (years)

@ (rads)

4.1. Evolution of G1 and G2 in the ERTBP Model ¢ | i | il | ksiid | cundE | sh

The stability of the orbital elements for such a long time inter- Liecte)

valis not, however, the case for the majority of our test particles.rig. 3. Evolution of (a) the osculating semimajor axis and (b) the oscu:
Onthe contrary, as seen in Fig. 4a, the number of partiblé3, lating eccentricity of the asteroid 522-Helga ftst = 50 Myr. The evolution of
still orbiting the Sun on a non-Jupiter-crossing trajectory aftére elemen® =75 — 124, (c) is typical of a chaotic trajectory.

timet decreases rapidly. Almost 60% of the particles leak out

from the sysf[em, for both groups, on a 20-Myr time scale (s:teoe,[his curve, we gey—t = (1634 0.8) x 10F, but, as we see
Table I). In Fig. 4a we have included the results for two smaller . . i
. o . ) . in the plot, the existence ddite escapersi.e., an almost linear
samples of particles, initially placed in the 7:4 and 5:3 resQ- ., : . . : )
. X ail” of escaping particles witilg > 15 Myr, spoils the fit. A
nance, respectively, for comparison. These two resonanceslilgdiﬁed exponential decay of the form
on both sides of the 12:7 mean motion resonance. In Fig. 75 P y '
the same plot as in Fig. 4a is given for the particles of G2 and N(t) = No + Nye ! (5)
for At =50 Myr. The percentage of escaping particles increases
now to 71.3%. Fitting an exponential decay law of the form, with y—! = (8.9 + 0.6) x 10° (which implies that a part-No—
of the initial population will not escape) fits the data in a muct

N(t) = N(0)e ", (4) better way.
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FIG. 4. (Top) The total number of particles still on resonaniit), as

a function of time At =20 Myr), for the four groups mentioned in the text.
(Bottom) The same graph for G2 only and fat =50 Myr, fitted by the two

80 4

N =146 501+3.854
‘ ¥'=(16.294£0 848) x 10°
"y fit #2: N=N+Ne™
N,=31.377+2.736
N,=137.35644.284

¥'=(8.858+0.601) x 10°

exponentials mentioned in the text.

The histogram of escape times for G2 is shown in Fig. 5. The
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FIG. 5. The histogram of escape times for GRt(=50 Myr), binned to
1.25-Myr intervals. The fitted curve is a log-normal distribution.

the shape of a steep Gaussian distribution, i.e., a well defin
mean value and a small dispersion, since all the particles wol
diffuse toward larger eccentricities at the same speed. Inste:
we find that the histogram is best-fitted by a log-normal distribt
tion, with a very long tail, something which is also the footprin
of Lévy-like random walk¢Shlesingeret al. 1993), which are
nonclassical diffusive processes. Obviously, our “true” Helg
lies in the far edge of the distribution’s tail.

The above results, clearly, depend upon the initial distributio
of the test particles. Since the distribution i&-function of the
actions and uniform in the anglasand M, it is reasonable to
imagine that there must be a relation between the escape til
of an asteroid and its initial phases, which explains why sor
particles escape within a 10-Myr time scale while others ma
take as long as 2 Gyr to encounter Jupiter. Figure 6 shows tt
relation; let us present the initial conditions for the G2 patrticle
on the ¢, v) plane ofresonant arguments

mean escape time is about 6.5 Myr and the dispersion about

the mean is about 3.5 Myr. If the escape time was not strongly o — 1—2/\3 _ ZA g
depending on the initial conditions, this histogram should have 5 S (6)
12 7
V=——A1+ =A + @3,
TABLE | 5 5

Escape Statistics in the ERTBP?

Group Escaping (%) (Tg) (years)
7:4 93.75 7.2 10
5:3 81.25 6.3« 10°
G1 57.81 6.6< 10°
G2 64.34 6.4¢ 10°
G2 70.54 5.4x 10°

2The percentages are obtained after the 20-Myr inte-
gration for all groups except G2which is the percentage
for G2 taken after 50 Myr.

wherew = w + Q2 is the longitude of perihelion of the asteroid
andw; that of Jupiter. As shown in this figure, the initial con-
ditions of the particles that do not escape within the 50 Myr ar
not randomly distributed on the(v) plane but, instead, they
are mostly concentrated around the diagoaak- w;=0, of
the plot. This set of surviving particles has initial perihelia in the
range

971< <1471
Mg < 22
g — %= 8

(7)
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FIG.6. The @, v)plane of initial conditions. Filled circles represent initial
conditions which lead to escape within 50 Myr. Open circles correspond to the s¢
of initial conditions of the surviving population. Crossed circles denote the stable 0,06 |-
chaotic particles found. The plot is not uniform, since the initial distribution is

seton a 16« 8 grid in (@, M).

© 004 -
which corresponds to ]
T 0,02 .
—— < (o —wy)g < —, 8
5 <@ o <3 ®) .
where the subscript zero refers to initial conditions. o0k L . . ; ;-‘"' .
The evolution of the orbits on the,(w — @) plane is shown, -15 -1.0 05 0.0 05 10 15
for some representative cases, in Fig. 7. Itis clear from the plc o,

that, for orbits which eventually escape (the first three orbits

from top to bottom in Fig. 7a), the critical argument— o

FIG.7.

Evolution of the orbits on thex( @ — @) plane: (a) for escaping

: . gt . orbits (top threeyr — @ circulates and the eccentricity reaches values up tc
circulates and the eccentricity can reach values ®.19; e=0.19 while for Helga-like orbits (bottorg < 0.1 and the motion takes place

the initial Yaluee: 0_'0761 is aCtua”y close to the mirmnumvery close to a small libration region. (b) An orbit for whieh — @; remains
value of this osculating element. On the other hand, for all thvays in libration and motion appears to be quasi-periodic.
orbits which do not escape within the 50-Myr time span, either

t:‘;E ml_?nlon tavl\(/ﬁis ﬁlai\ce \r:exnc|0§fht0 2 rl?r:gw frngilon7of Ilb:attr;%r? motion as Helga, i.estable chaotic motiont is interesting
(like Helga, ch is shown at the bottom of Fig. 7a) o that these orbits seem to gather to the borders of the “stable” (

critical arguments — w; remains always in libration (Fig. 7b). th
For these orbits the initial eccentricity is close to the maximu
value ofe(t) and theproper eccentricityshould be of the order

Bq. (8).

of the forced eccentricityef~ 0.048). The Lyapunov exponent
was calculated for the surviving particles and the results found

can be summarized as follows:

(a) seven of them (the initial conditions are given in Table 1} S0 (rads) Mo (rads) T (vears)
showexa_ctlyth_e same be_havior as Helga; nar_nely, they eV(_)Ive 1 107/8 27/8 5.1x 108
on chaotic trajectories witl_ ~ 6000 years (Fig. 8) but their 2 117/8 0 5.9x 103
orbital elements have no significant variations over the 50-Myr 3 117/8 127/8 5.1x 10°
time interval. Also, thei® plots show exactly the same pattern; 4 127/8 107/8 4.8x 1833
i.e., ® is a slow variable alternating between circulation and 13;2 15;2 i';i 103
libration (an example is shown in Fig. 9). Given these results, we 137/8 127/8 4.9% 168

TABLE |11
Initial Conditions for G2 Particles in Stable Chaos

e sense of orbital stability) set of initial conditions defined by

can conclude that these fictitious asteroids exhibit the same kind
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10° apout Q.l?, mpch larger than the corespond_ing value for Hglg
like orbits (which is about 0.1), and the amplitude of fluctuatior
is slowly increasing. At such values@foverlapping with close-

by resonances may be expected (see Dermottand Murray, 19¢
At t ~3.2 Myr a sudden jump in eccentricity occurs, before
the asteroid encounters Jupiter. As far as the semimajor axis
concerned, it is constantly drifting toward larger mean value
while the amplitude of its oscillations increases as well. Thi
kind of evolution indicates that the asteroid is slowly driver
into a close-by resonance which can pump the eccentricity up

pad)

107 B ——rr——rr——rrrT——r a 367+
10° 10° 107 10° 10°
t (days) 3,66

FIG. 8. Calculation of the Lyapunov exponent for the stable chaotic parti- sesd |-
cles. All particles have Lyapunov times of the order of 6000 years. n |
g 3,64
(b) Among the surviving particles we also found chaotic or-* Il
bits for which the Lyapunov time is larger than®1gears. We ass-{
do not, however, classify them as stable chaos.
(c) For most of the surviving orbits a 10 Myr integration for ~ 3s2{ "
the calculation of the Lyapunov exponent shows no signs ¢ T —— — T
chaoticity; i.e., the divergence(t) decreases linearly on a log— e 2o oo
log plot oft vs x(t). Also, no evidence for chaos can be seer
in the evolution of®, which always circulates. Thus, we have p ©124
numerical indications that quasi-periodic orbits exist among th
nonescaping orbits. The argumemnt— z; is librating for most
of these orbits (one of them is shown in Fig. 7b).

7

t (years)

0,094%

It is known, however, that one cannot prove (but only disprove
the quasi-periodic nature of an orbit by means of numericee
methods. It may be the case that at least some of the orbi
mentioned in (c) could also be chaotic (like those mentioner  ©031
in (b)) but they are stuck close to quasi-periodic orbits, thu:
behaving in a regular manner for very long time. A finer grid
of initial conditions and longer integrations would be needec
in order to obtain a detailed “Lyapunov map” of this “stable”
set. In this respect stickiness indeed occurs in the vicinity of th
12:7 mean motion resonance. The question whether Helga,
well as the other stable chaotic orbits mentioned in (a), coul
also be considered as extreme cases of sticky orbits has no
simple answer. The fact that these orbits seem to emanate frc
the borders of the “stable” set admits such an interpretatior
Also, as we will see in a following sectioall the nonescaping
orbits share a common property, namely a long-time correlate
evolution of the eccentricity-related Delaunay actions. On th
other hand, the evolution of the critical argumen& 74 — 12)
is typical of clearly chaotic trajectories. This point will be further
discussed in the final section of the paper.

In Fig. 10 the osculating semimajor axis and eccentricity time
series of the fastest G2 escaper are shown. It is evident tha. t(years)
the evolution of the osculating elements is very different from FIG. 9. Another example of stable chaos: (a) osculating semimajor axi:

those of Helga and the other stable chaotic particles found. #losculating eccentricity, and (c) the elementThe behavior seen in this plot
particular, the eccentricity fluctuates with a maximum value @f exactly the same as in Fig. 3 for Helga.

0,06 -

0,00

ORIy
o

T
1x10°

T ¥
2x10° 3x10°
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a(AU)

355+ T T T T T T T T

0.0 5.0x10°  10x10°  1.6x10° 20x10° 25x10° 30x10°  3.5xi0°
time (years)
T T T v T T L T T ¥ 1
oo 50x10°  1.0x10°  1sx10° 2o0x10° 25x10°  30x10°  35x10°
time (years)
C 77
LH T T L]
2.00x10° 3.06x10° 3.12x10° 3.18x10°
time (years)

FIG.10. The osculating semimajor axis (a) and eccentricity (b) time serie
of the fastest G2 escaper. The resonant argur@eat3x — 515 (c) shows a

change from circulation to libration &t~ 3.15 Myr.
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140 - :

fit #1: N=Ne™

) N,=139.788+3.040
¥'=(13.859+0.647) x 10°

fit #2: N=N+Ne ™"
N,=28.498+3.237
N=121.27323.564

120 4

100 4

= 804 ¥'=(8.586+0.606) x 10°
=z
60 -|
40
20 .
0 1x10” 2x10" 3x10 4x10” 5x107
t (years)
FIG. 11. Decay of the number of particles(t) for G2 in the 4P model

(At =50 Myr). Again two exponential fits are superimposed.

done in order to see how the additional perturbations induced |
the interaction of the four giant planets modify the results the
we found in the framework of the ERTBP. Figures 11, 12, an
13 are the counterparts of Figs. 4b, 5, and 6, respectively.

At a first glance, we see that the basic features of the pri
vious plots are preserved in this case also. In particular, mo
of the particles again leak out from the system within 20 Myr
as seen in Fig. 11, and the histogram of escape times (Fig. 1
has again the shape of a log-normal distribution. Thus, althouc
the escape times of individual particles are not the same a
more, the statistical behavior of G2 is the same within the tw
models. The percentage of escaping particles does not char
by much (see also Table I), but the mean escape time decrea
to (Tg) ~ 5.4 x 10° years and the dispersion increases. This i
expected, since the additional perturbations induced by the otf
planets speed up the diffusive process. However, as discusset

N(Tp)

Jupiter-crossing values. At~ 3.7 AU the strongest resonance
present is the 5:3 mean motion resonance. The correspond
resonant argumen® = 31 — 513, is also shown in Fig. 10 for
the interval 3—3.25 Myr@® is circulating up tot ~3.15 Myr
and then changes to a libration, before the asteroid eventue
escapes, indicating that this is indeed the case here.

4.2. Evolution of G2 in the 4P Model

. . . FIG. 12. The histogram of escape times for G2 in the 4P model=
As mentioned before, we also integrated the G2 particlgg myr). The mean escape time is now approximate»510° years. The
(again for 50 Myr) in the four-planet configuration. This wasitted curve is again a log-normal distribution.
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Section 3, for such values of the semimajor axis the main seca
lar resonances are located at much higher inclinations than 1
mean inclination of these asteroids{4°). Thus, the asteroids
are not dynamically affected by them and the statistical behavi
of the G2 set is the same within the two models.

Figure 13 is almostidentical to Fig. 6. The (— @;)o channel
of surviving particles is again present. The stable chaotic ast&
oids are again seen to emanate from the borders of a “stable”

-0.2 4

104

8_
0.6
04
02

0.0

of initial conditions. Figures 6 and 13 differ only in the bound-
aries of the initial perihelia set, which leads to regular motior
i.e., atwp = 97 /8 andwo = 14w /8. However, we stress here the
fact that the exact differences between the two models, conce %87 . ' ‘ ' ‘
ing the “stable” region, cannot be evaluated from the prese 0 2000 4000 6000 8000 10000
results and a finer mesh of initial conditions has to be used f time-lag (k)

this purpose.

0.4

-0.6 1

4.3. Stable Chaos and Long-Time Correlated Motion

The time series of the osculating elements of stable chao
asteroids are characterized by a remarkable stationarity, as
also seenin Figs. 3 and 7. In fact, Milagtial. (1997) calculated
proper elementsef and|p) with almost undetectable diffusion £
for some stable chaotic asteroids. The situation is different i~
the chaotic particles which, eventually, escape. One of the toc
used to distinguish between quasi-periodic and “random” tirr
series is thautocorrelation functiorr (k), which measures how
well correlated are two parts of the time series which lare
time lags apart. For quasi-periodic signalé) is also quasi- 5 T .00 4000 6000 8000 10000
periodic, while for chaotic (or random) time serig&) decays time-lag (K)
exponentially with time (ok). The time at whichr (k) drops

below the value le (Without increasing again) is called the FIG.14. The autocorrelation function(k), as a function of the time lag,
autocorrelation timezc Fast decay of linear correlations is observed for the escapers (a), while for Hel
(b) and the rest of the stable chaotic particlélg remains almost constant.

We calculated (k) for both theG(t) and theH(t) action time
series of all G2 particles, using the records of the first 3 Myr ¢
our integration (in the ERTBP model). Since the inclinations d
o ) . . . . . 1 notchange by much, the results for both time series are almc

4

FIG.13. The @, v) plane of initial conditions for the 4P model. The sym-

bols used are the same as in Fig. 6.

(rads)

54 4 identical? The results are very interesting. While for the chaoti

particles which escape linear correlations decay exponentia
with time, as they should, this is not true for the stable chaot
particles. In factr (k) is almost quasi-periodic. A typical exam-
ple is shown in Fig. 14, where we have plottg#) for both an
escaping particle and for 522-Helga.

Finding different autocorrelation times among the ejected pa
ticles tempted us to search for a possible relationship betwe
the escape timelg, of asteroids and the autocorrelation time
7c, Of their action time series. In Fig. 15 we have plotted
againstTg for all the escaping particles of G2. A power-law fit
yields the relation,

Te = arg, 9

2 Note, however, that this need not be the case in other regions of the aster
belt.
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10°3 tremely long, so that Helga should not have initially too man
] partners. In the present paper we followed numerically the ev
lution of two initial distributions (G1 and G2). Both of them
have a mean escape time affout 7 Myr(ERTBP), which is
much shorter than the predictions of the analytic diffusive ag
proximation of Murray and Holman (1997) for the planar case
Thus, although the simple power-law relation betwd@erand
Te found by Lecaset al. (1992) may not hold, the conjecture of
Murisonet al. (1994) that 522-Helga is the remnant of a muct
larger distribution of asteroids that have already escaped fro
the Solar System may, in fact, be true. On the other hand, n
s all chaotic particles have similar escape times. In fagtmay
] vary by several orders of magnitude (in both the ERTBP an
- —————r —— ——— the 4P models), as shown clearly by the shape of the escapi
10* 10° 10° distribution. More precisely, the percentage of late escapers, f
7. (years) which Tg > (Tg) + 207, &~ 13 Myr, is about 30% of the total es-
caping population. Thus, although all particles begin with th

FIG. 15. ~ Allog-log plot of rc againstTe for all escaping particles of G2 same action values, diffusion is much slower for a statisticall
(ERTBP). The power-law fit shown here, correls/gonding to the “bulge” of th§ignificant percentage of them. ‘

escaping distribution (open circles), yielis ~ t'~. The population of “late . ..
escapers” is represented in this plot by filled circles. It seems that the key to understanding the conflicting re

sults mentioned above is the underlying relation between tt

escape time of a test particle and its initial phase- @;.
with a=(7.53+3.74) x 10° andb = 0.2214 0.035. However, Milani and Nobili (1992) argued that the behavior of Helga
the correlation coefficient of the fit is rather low, namé&y= can be explained as the result of a protection mechanism, whi
0.55. The “spoiling” of the fit is caused by the fact that there args not due to the resonance responsible for chaos, but is |
clearly, two populations on this plot. The larger one correspongiged to the behavior of the critical argument— w; and the
to particles which belong to the bulge of the escaping distribgmall value of Helga’s proper eccentricity. Our numerical re
tion seen in Fig. 5; i.€Te < 13 Myr (which is 2Zrr_ away from sults show, indeed, that all orbits which survive for 50 Myr
the mean), and the smaller population (about 30% of the totgbe either performing librations i — @ or cover a region of
is that of the distribution’s tail; i.e.JTe > 13 Myr. If one dis- the €, @ — ;) plane just outside this narrow libration zone.
regards the tail population, the resulting fit, describing only tt®or these orbits the initial eccentricity value=¢0.0761) is
bulk of the escaping distribution, is much bettBr£ 0.72+ 0.09  close to the maximum osculating eccentricity and the prop
and b=0.19640.024). The late escapers (shown as blackccentricity should be of the order of the forced eccentricit
squares in Fig. 15) have, surprisingly, small autocorrelatigg;). However, we argue that this behavior is, in fact, relates
times. However, one has to remember that the autocorrelati@nthe peculiarity of the 12:7 resonance stated in Section
function,r (k), measures the decay of linear correlations. Thuse., the noncontinuation of the main family of periodic or-
r (k) cannot detect any nonlinear correlations which may slawits in the planar elliptic problem. In other resonances (e.g

T, (years)

down the diffusion process for the late escapers. 3:1) the main unstable periodic orbit divides tieY plane
(X=ecos@ — wj), Y =esin(w — @;)) into three topologi-
5. CONCLUSIONS—DISCUSSION cally distinctregions (libration—internal circulation—external cir-

culation) and this topology is responsible for the transport ¢
In this paper we try to understand the nature of transportimitially low-eccentric orbits to high-eccentricity regions. This
the neighborhood of the 12:7 mean motion resonance and toigevidently not the case for the 12:7 resonance; only a narrc
terpret the peculiar orbital behavior of the asteroid 522-Heldibration zone with proper eccentricities less than 0.05 (like i
The peculiarity consists in the fact that Helga’s trajectory seerpgy. 7b) exists while most of the orbits circulate. For those orbit
to be strongly chaotic—in terms of Lyapunov exponents— arwhich eventually escape, the proper eccentricity should be larg
yet the osculating elements of this asteroid remain stable than 0.1. Helga-like orbits also circulate but wigh~ 0.05.
billions of years. Until now two different interpretations of thiswhether this mechanism is also present in other high-ord
fact have appeared in the literature. Murisaral. (1994) pro- resonances, which appear to be associated to the occurence
posed that the mean escape time from the 12:7 mean motiable chaos in the inner part of the asteroid belt, is certain
resonance is rather short and that Helga is the remnant ofvighin our plans for future work. However, at this specific re-
much larger initial distribution of asteroids. In contrast, the amgjion of the outer belt studied in this paper, the resonances &
alytic results of Murray and Holman (1997) indicate that thelosely spaced and, thus, overlap with adjacent low-order res
mean escape time from the 12:7 mean motion resonance is @xaces can drive asteroids with initially moderate eccentricitie
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(0.1<e<0.15) to Jupiter-crossing orbits, as shown in ouexhibiting stable chaos and we plan to test for this property oth
results. stable chaotic asteroids that have been discovered so far (Mil:
In the more general framework of Hamiltonian dynamics, thet al. 1997, Sidlichovsky 1998). The fact that stable chaotic pal
conjecture that stable chaos may be interpreted as a realizatiotiaés, although having small Lyapunov times, retain correlatior
the stickiness phenomenon seems appealing; the idea of tesitinipe actions for a very long time is also an observation whic
the validity of this proposition led us to the work presented ileads to the conclusion that stable chaotic trajectories constitt
this paper. Unfortunately the results are not conclusive enougtdifferent “class” of dynamical objects. We argue that the proy
The fact that chaotic orbits seem to coexist (within the “stabl&rty of nondecaying correlations could be used as a method
set defined by Eg. (8)) with quasi-periodic orbits implies thatistinguish between fast escapers and stable chaos using sh
sticky orbits exist in this region; this characterization can cetime integrations. Such a method would consist of calculatin
tainly be given to those chaotic orbits found having lafgs. both the Lyapunov exponent, and the autocorrelation func-
The facts that (a) Helga-like orbits are seen to gather to ttien of an action-like time series. Of course, it is also easy t
borders of this “stable” set and (b) these orbits, too, retain catistinguish between stable-chaotic and regular orbits, both
relations in the eccentricity-related time series for times muethich retain correlations, by plotting the corresponding critica
longer than the correspondifiy, support the idea that stableargument.
chaotic orbits may be considered as extreme (sihal) cases  Slow decay of correlations is a characteristic of trajectorie
of stickiness. On the other hand, one would expect that the e¥or which mixing in phase space may take an extremely lon
lution of the critical argumenty, should be quite similar to that time (see Zaslavsky 1985). This is noted also in Yannacopoul
of quasi-periodic orbits for very long times, and this is not thend Rowlands (1997), where the authors show hovptiese-
case here. Therefore, we are tempted to conclude that, accoattdomization approximatiobreaks down in the vicinity of
ing to the protection mechanism described in Section 3 (and ttable orbits, even for large stochasticity parameters. In partic
previous paragraph), invariant tori may in fact be responsible fiar, these authors have shown that, in the case of area preser
bounding the eccentricity of Helga-like orbits. These tori woulthaps on the plane, the quasi-linear approximation of the di
form a hardly permeable barrier, even though we are dealifusion coefficient,Dg., breaks down even above the critical
with a more-than-three degrees of freedom dynamical systeimreshold. This means that not orily becomes action depen-
The question now is what we can define as stickiness: if the ted@nt, but also that the value ({fA 1)?) /7 needs to be calculated
is to be used for orbits winding around stable KAM tori (in theat differentrs for different initial action values, depending on
form of the counterparts of resonant islands in 2D) immersége measure of invariant sets contained within a given phas
in a mostly stochastic region, our results are in conflict. If, ospace domain (which measure is not known a priori). Thus, tf
the other hand, we use the same term to describe chaotic orlutsal structure of the phase space, as also suggested from
within narrow stochastic layers which are “bounded” by “rotaresults, is very important for the mixing properties of the spe
tional” KAM curves (in the sense described above), the resultdic phase-space region and this, in turn, plays a key role in tl
are in agreement. Both situations can be responsible for the slomwper formulation of a diffusive approximation.
(subdiffusive) evolution of the eccentricity-related actions that Onthe other hand, the autocorrelation function decays quick
we observe. Whether KAM tori can still persist under the pefer all the escaping particles found in the simulations. The diffel
turbing effects of more-than-one planet (or they deform into thent autocorrelation times found for the ejected particles tempt
analog ofcantori) is something that cannot be answered withs to search for a possible “statistical law,” connecting the al
the numerical results presented here. In any case, we must dogerrelation timezc, to the escape timdg. Unfortunately, a
sider the fact that very little is known about stickiness (and ttedear picture cannot be established with the results of only tt
behavior of the different degrees of freedom of sticky orhits) ipresent work. This is not only because of the small number «
the phase space of dynamical systems of high dimensionality.dsteroids,” but also because two populations of chaotic esc
appears, therefore, that this complicated phenomenon is stifpers seem to exist. The larger one, belonging to the bulk of tl
matter of investigation. For the specific case of stable chaos stadeaping distribution, can be described by a relation of the for
ied in this paper, much larger initial distributions of particles[g ~ ré > rather well. However, trying to fit the whole escap-
including variations in2 and the initial values of the actions,ing distribution does not give promising results. This is due t
have to be integrated in order to examine the detailed structtine second (smaller) population, which consistst# escapers
of the “stable” set. with very short autocorrelation times. One has to remembe
In any of the cases discussed above, the ptaasedom walk though, thatr (k) measures linear correlations and, thus, an
in the actionsfrequently used to describe chaotic variations afonlinear correlations that may slow down the diffusion pro
the orbital elements of asteroids, does not apply to Helga. dass for these particles cannot be explored using this tool. Mc
fact, all stable chaotic particles found in our integrations, unlikefined nonlinear tools have to be used in order to prove,
those which escape, do not respect one of the most fundamedtisprove, the existence of a statistical law connecting the €
properties of classic random walks, i.e., the exponential decayoafpe time to the time of decorrelation of the eccentricity-relate
linear correlations. This could be a characteristic of all asteroidstions.
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