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We follow the evolution of distributions of real and fictitious as-
teroids, initially placed in the vicinity of the 12:7 mean motion res-
onance with Jupiter. Our results show that, besides the well-known
example of 522-Helga, other stable chaotic asteroids could, in prin-
ciple, exist in this region of the belt. Most of the particles, though,
attain Jupiter-crossing orbits within 50 Myr, under the influence
of other close-by resonances (e.g., 5:3). However, the escape pro-
cess is also controlled by the initial value of the critical argument
$ −$J. In this respect 522-Helga can, in fact, be the remnant of a
larger initial distribution, as conjectured by M. Murison et al. (1994,
Astron. J. 108, 2323–2329). Numerical indications that quasi-
periodic orbits exist among the nonremoved test particles support
the idea that stable chaos may be a special realization of what is
known in Hamiltonian dynamics as stickiness effect. This is also cor-
roborated by the fact that the autocorrelation function, r (k), of the
action time series of stable chaotic orbits is almost a quasi-periodic
function, in contrast to escaping orbits, for which r (k) decays ex-
ponentially. Implications to the problem of formulating a diffusive
approach are also discussed. c© 2000 Academic Press
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The notionstable chaosappeared in the literature of celesti
mechanics as a term devised by Milani and Nobili (1992)
describe the peculiar behavior of the asteroid 522-Helga, w
lies in the immediate vicinity of the 12:7 mean motion res
nance with Jupiter. Briefly this term means that, although
trajectory of Helga is characterized by a short dynamical l
time,TL = 1/λ≈ 7000 years (whereλ is the maximal Lyapunov
characteristic number), its orbital elements show a remark
stability over a time interval comparable to the age of the So
System. This discovery raised some important questions am
the astronomical community, especially after a relationship
tween the dynamical lifetime,TL, and theescape time, TE, of an
asteroid,

TE ∼ Ta
L , (1)

was reported by Lecaret al. (1992); 522-Helga violates thi
statistical “law.” Murisonet al.(1994) proposed that 522-Helg
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initially in the vicinity of the 12:7 resonance, most of whic
where ejected on hyperbolic orbits within 100 Myr from t
formation of the Solar System. This is because, according to
results, for any given value ofTL the escaping distribution is
Gaussian and, forTL ∼ 7000 years, the age of the Solar Syst
lies within three standard deviations from the mean escape
Thus, they concluded, stable chaos, as defined by Milani
Nobili (1992), may be thought of as a “statistical fluctuatio
of Eq. (1) and does not constitute a new phenomenon in
dynamical behavior of asteroids. Subsequently, other aste
exhibiting similar behavior were also found, in several region
the main asteroid belt (see, e.g., Milaniet al.1997, Sidlichovsky
1999).

Varvoglis and Anastasiadis (1996) have shown that Eq. (1)
be recovered through adiffusive approximationof the problem,
i.e., the solution of a suitably modified Fokker–Planck equat

∂ f (I , t)

∂t
= D

∂2 f (I , t)

∂ I 2
− f (I , t)

TE
, (2)

which describes the diffusion in action (eccentricity) of an init
distribution of asteroids,f (I ), provided thatD=aλb= const.
This last relation betweenD and λ was found, numerically
by Konishi (1989) and holds only in the “resonance-over
regime” of Hamiltonian sytems. The agreement between
above two different approaches may be attributed to the
that, in order to speed up their numerical calculations, Muri
et al. (1994) increased the mass of the perturber by a facto
10 with respect to the actual mass of Jupiter,µ= 10µJ, extrap-
olating their results to the actual Solar System case (µ=µJ).
However, as the perturbation is proportional toµ, the already
small set of invariant tori in the outer part of the asteroid b
was further reduced and the topology of the phase space
drastically modified. In fact, as noted in Murray and Holm
(1997), forµ= 10µJ the 2:1 and 3:2 resonances of the ellip
restricted three-body problem overlap, even for small eccen
ities. Thus, a single, connected, chaotic region covers a w
range of semimajor axes (the “outer asteroid belt”). Howeve
the real Solar System, Eq. (1) cannot hold, since the topo
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of the action space is probably far more complex, as discu
in Varvoglis and Anastasiadis (1996), Morbidelli and Froesce
(1996), and Murray and Holman (1997; see also Holman
Murray 1996).

The complexity of the phase space is what led Varvoglis
Anastasiadis (1996) to conjecture that Helga may be a r
life example ofstickiness, an effect caused in nearly-integrab
Hamiltonian systems by the surviving KAM tori that are im
mersed in the stochastic sea and other “quasi-barriers” (
cantori in 2D—Aubry 1978, Percival 1979) surrounding the
this was also discussed by Murisonet al. (1994). It has been
shown that stickiness results inanomalous transportproper-
ties (Shlesingeret al. 1993, Zaslavsky 1994). If this is true
transport of chaotic trajectories in this subset of action spac
which Helga lies, cannot be modeled as anormal (Brownian)
random walk, as it is supposed in solving Eq. (2), but, inste
the notion ofLévy walks(Shlesingeret al.1993) may be more
suitable. One, of course, has to demonstrate the existen
quasi-periodic orbits in the immediate vicinity of Helga, whi
could act as “quasi-barriers” for action diffusion.

Working on the planar elliptic restricted three-body proble
Murray and Holman (1997) have shown that the relation betw
the Lyapunov time and the escape time in the outer aste
belt is far more complex than the simplemonotonicrelation
reported by Lecaret al. (1992), which holds only in the cas
where the effective perturbation parameter is close to the cri
threshold. Moreover, Murray and Holman (1997) derived
analytic approximation of the quasi-lineardiffusion coefficient
for “random-walking” in action space, which (coefficient)
action dependent. Using an approximate solution of the Fok
Planck equation, they have shown that the escape time for
eccentric orbits initiated on the 12:7 resonance is comparab
the age of the Solar System, although their Lyapunov time i
the order of 104 years. Thus, they concluded, Helga is neith
an example of stable chaos nor the remnant of a larger in
distribution; instead, the stable-looking behavior of Helga is
to the slow diffusion from the 12:7 mean motion resonance

In this paper we study the statistics of escape from the vici
of the 12:7 mean motion resonance. Our results show tha
phase space in this region of the belt is very complicated and
escape time of a test particle may vary by orders of magnit
depending on the initial conditions. Other “stable chaotic” orb
(i.e., with exactly the same behavior in terms of orbital eleme
evolution of the critical argument and the Lyapunov exponen
522-Helga) are found within our initial distribution. Moreove
we investigate the idea of Varvoglis and Anastasiadis (19
that the property of stable chaos may be a realization of
stickiness effect in this specific dynamical system. Finally,
show that stable chaotic orbits share a common character
long-time correlated evolution of the actions. The possibility
existence of a statistical “law,” pertaining to asteroidal esca
is also discussed.

In the next section (Section 2), we present the models u

and the numerical setup of our integrations. Some basic asp
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of the dynamics in the vicinity of the 12:7 mean motion re
onance are presented in Section 3. Our numerical results
presented in Section 4. Finally, in Section 5, we summarize
conclusions and discuss the possible implications of our res
to the problem of formulating a properdiffusive approachfor
asteroidal transport.

2. NUMERICAL SETUP

In order to examine the diffusive character of motion for p
ticles initiated at a given subset of the action space, one
to explore thoroughly the conjugate angles’ space. This is
cause at any given action value, if the perturbation is not w
above some “critical” threshold, some initial phases may le
to vastly chaotic behavior, while some others may not. T
kind of dependence of the evolution of an asteroid on its ini
phase (actually the resonant argumentsσ and ν) has already
been observed in some cases of resonant motion in the ast
belt, namely the 3:1 and 2:1 resonances (Hadjidemetriou 1
Hadjidemetriou and Lemaitre 1997). It is related to the existe
of stable or unstable resonant periodic orbits, which corresp
to different values of the critical arguments. This is exactly w
we wish to explore, i.e., which initial phases lead to fast dif
sion, which to slow diffusion, and which, if any, lead to stab
chaos or regular (quasi-periodic) motion. If initial conditio
leading to stable chaotic trajectories gather close to sets of
tial conditions which lead to quasi-periodic motion, this wou
be an indication thatstable chaosis, indeed, a suitable oxymoro
describing what is known in Hamiltonian dynamics asstickiness
effect.

In this respect, we integrate the equations of motion for t
groups of initial conditions. The first group (hereafter G1)
composed of 128 fictitious asteroids having initial conditio
a=a12/7 AU, e= 0.07, i = 4◦ andÄ= 0, whileω and M are
distributed on a 16× 8 grid onS2={(0, 2π )× (0, 2π )}, respec-
tively. Following the standard notation of celestial mechan
a denotes the semimajor axis,e the eccentricity,i the inclina-
tion to the invariant plane,Ä the longitude of the ascendin
node,ω the argument of perihelion andM the mean anomaly
of the minor body. In the Delaunay formalism of the restrict
three-body problem, the anglesM , ω, andÄ are conjugate to
the actionsL=√a,G=L

√
(1− e2), andH=G cos(i ), respec-

tively, whereµ is the ratio of the mass of Jupiter to the total ma
of the system. Also, we denote bya12/7 the value of the semi-
major axis corresponding to the 12:7 mean motion resona
which is defined by the relation

a(p+q)/p = aJ

(
p

p+ q

)2/3

, (3)

whereaJ is the semimajor axis of Jupiter andp,q are integers.
The second group (G2) contains the “true” Helga, with init
conditions taken for the epoch JD2448601.0 (Dec. 10, 19

ectsfrom the paper of Murisonet al.(1994), and 128 clones of Helga
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with initial a, e, i , andÄ equal to those of Helga, whileω
andM are again distributed on a 16× 8 grid onS2. Thus, both
distributions are delta-functions of the three actions. The m
model used in this study is the spatial elliptic restricted thr
body problem (hereafter ERTBP) and the equations of mo
are integrated using the regularized mixed variable symple
integratorswift rmvs3, from the SWIFT package designed b
Levison and Duncan (1994), with a time step of 36.525 da
Finally, the effect that all four outer planets, fully interactin
have in the evolution of G2 is also examined (subsequently
refer to this model as 4P). The initial conditions for the plan
are taken from theAstronomical Almanac(1991).

In the beginning, the equations of motion of every parti
are integrated up to 20 Myr, unless it previously suffers a cl
encounter with Jupiter, i.e., it passes within Hill’s radius fro
the planet. In this case the integration is stopped, assuming
the “asteroid” will be swiftly ejected from the system. The i
tegration continues up to 50 Myr for all G2 particles that a
not ejected within the first 20 Myr. A 5-Gyr integration is als
done for 522-Helga alone, in order to verify the results of Mila
and Nobili (1992) and Murray and Holman (1997), which ha
shown that the orbital lifetime of 522-Helga is comparable
the age of our Solar System.

3. DYNAMICS IN THE 12:7 MEAN MOTION RESONANCE

The knowledge of the dynamics of the model we use is
sential in understanding the evolution of the system. We s
present briefly in this section the main aspects of the dynam
inside the 12:7 mean motion resonance, in which 522-Helg
verified to lie. A full exploration of the phase space is beyo
the scope of this paper.

3.1. Circular Planar Restricted Three-Body Problem

The basic model we shall start with is the planar circular
stricted three-body problem (Sun–Jupiter–asteroid). Altho
this is not a realistic model, it contains the basic features
the complete model and, for this reason, it is very useful in
derstanding the dynamics of more realistic models (e.g., elli
orbit of Jupiter, three-dimensional space, effect of the other p
ets), as will become clear in the following.

We assume that Jupiter revolves around the Sun in a circ
orbit and we consider a uniformly rotating frame of referen
xOy, on the plane of motion, whose origin is the center of m
of Sun and Jupiter and thex-axis is the Sun–Jupiter line. If w
choose the unit of mass to be the sum of the masses of Sun
Jupiter, the length unit to be equal to the (fixed) distance betw
Sun and Jupiter andG= 1, then the revolution period of Jupite
is T = 2π . It can be proved that there exists, in the above rota
frame, a family of nearly circular periodic orbits of the astero
along which the semimajor axis, and consequently the ration/n′,
vary continuously, wheren(n′) is the orbital frequency of the as
teroid (Jupiter). At the points wheren/n′ is rational (except for

n/n′ = (p+ 1)/p) we have a bifurcation of a family of resonan
ND HADJIDEMETRIOU
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periodic orbits of the asteroid, along which the resonancen/n′

remains almost constant and the eccentricity of the asteroi
creases, starting from zero. On this resonant family exist b
stable and unstable orbits (see, e.g., Hadjidemetriou 1992)

We shall focus our attention on the casen/n′ = 12/7. At this
resonance there exists a family of resonant periodic orbits, in
rotating frame, symmetric with respect to thex-axis. The initial
conditions of a periodic orbit arex(0), y(0)= 0, ẋ(0)= 0, ẏ(0)
and the period is very close to the unperturbed value,T = 7×
2π = 14π . In Fig. 1a we present this resonant family in the spa
x(0)-energy (E, instead ofẏ(0)) and in Fig. 1b in the spac
x(0)-T . The circular family, from which the resonant fami
bifurcates, is also shown. In the above-mentioned normal
units the semimajor axis of an asteroid initially on the 12
resonance is close to the valuea= 0.698. There are two branche
of the resonant family that bifurcate from the circular family.
one of them the asteroid is initially at perihelion and in the ot
at aphelion. In particular, there are in both branches Helga-
orbits, with eccentricities close to the value 0.0761 (which is

FIG. 1. (a) The family of resonant 12/7 periodic orbits in thex(0)-Energy
space. The lineE=−1.55010966 corresponds to Helga-like orbits. (b) T
t
same family in thex(0)-T space. There does not exist any orbit with period
equal toT = 14π .
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STABLE CHAOS IN T

FIG. 2. A Poincaré surface of section for the Helga-like orbits in th
CPRTBP.

initial value of eccentricity used in our numerical experiment
The apocentric orbits are unstable and the pericentric orbits
stable.

The structure of the phase space is clearly seen if we take
Poincaré mapping on the surface of sectiony(0)= 0, E= const.
For Helga-like orbits we have the surface of section shown
Fig. 2 for E=−1.55010966. We see that there are two sets
periodic orbits,1 one stable (atσ = 0, i.e.,ω= 0) and the other
unstable (atσ =π , i.e., ω=π ). The characteristic exponen
γ , of the unstable periodic orbit has been calculated and co
sponds toγ−1= 8000 years. Note that the width of the libratio
region (island) is very small, so that a small deviation from
exact periodic orbit would result to a trajectory that comes cl
to both the stable and the unstable regions. This could gen
chaotic motion, which would be confined in a narrow regi
of phase-space, bounded by smooth invariant curves. Thu
phenomenon that could be characterized asstable chaosoccurs
naturally in the 12:7 resonance of the simplest model that
scribes asteroidal motion.

3.2. Elliptic Planar Restricted Three-Body Problem

Let us now assume that Jupiter moves on a fixed elliptic or
The dynamical evolution in this model depends on the struc
of the phase space, which is defined by the fixed points
exist on a surface of section. These fixed points correspon
the resonant periodic orbits of the model. If no fixed poin

exist, no strong chaotic phenomena (e.g., sudden jumps in
eccentricity) are expected.

1 These appear as a chain of five islands.
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The role played by the fixed points in a model is clea
seen in the study of asteroidal motion in the 3:1 resona
(Hadjidemetriou 1993). In this case there are, in the elli
model, two fixed points for small and two more for high ecc
tricity values. In a model where the high eccentricity resonan
are absent (this is the case studied by Wisdom 1982, 1983
have chaotic motion and sudden jumps of the eccentricity
up toe= 0.3. Beyond that region, the motion appears to be
ular. If, however, we include the high eccentricity resonance
the model, the evolution changes drastically and jumps of th
centricity of the asteroid up to 0.9 occur (Hadjidemetriou 199
This phenomenon is due to the fact that the introduction of
high eccentricity fixed points (ate= 0.80) changes the topolog
of the model’s phase space and the high eccentrcity region
no longer isolated by invariant tori.

In the 12:7 resonance there are no fixed points in the e
tic model for the following reason: A bifurcation of a fami
of periodic orbits from the circular to the elliptic model exis
only if there is a periodic orbit on the family of the circul
model (see Fig. 1) whose period is an exact multiple ofπ ,
in our caseT = 14π = 43.982297. This is because the ellip
restricted three-body problem is a 2π -periodic time dependen
dynamical system and any periodic orbit must have a pe
which is a multiple of the period 2π . However, from Fig. 1b
it is clear that such an orbit does not exist (contrary to o
resonances, e.g., 3:1, 2:1). This means that the low eccent
regions of the phase space cannot be connected, through a
chaotic path, with the high eccentricity ones (however, since
stability of both the apocentric and pericentric branches cha
with the eccentricity, there are bifurcations of higher multip
ity resonant periodic orbits). Thus, we come to the conclu
that in the 4D phase space of the planar elliptic problem a
12:7 resonance no dramatic effects are expected in the evo
of an asteroid. The noncontinuation of the main family of p
odic orbits offers in this sense a protection mechanism for
evolution of low-eccentricity orbits. We emphasize, howev
that, in this part of the outer asteroid belt, the resonance
closely spaced. In fact, two low-order resonances, the 5:3
7:4 comensurabilities, lie on both sides of the 12:7 resona
and, even for moderate eccentricities (e∼ 0.15), their proximity
should be important for the dynamical evolution of an aster

3.3. More Advanced Models

The model used in our numerical experiments is, basically
spatial elliptic restricted three-body problem. The differen
between the planar case and the spatial case cannot lead t
matic changes, at least for nearly coplanar orbits, which is
case in our numerical experiments. Including more plane
the model would result in an increase of the perturbations
duced to the asteroid’s orbit. The most important changes c
from the fact that the orbit of Jupiter (as well as of the res
the planets) is not fixed any more but is secularly precessin
The frequencies describing the precession of the planetary or-
bits constitute the set ofsecular frequenciesof the Solar System.
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A resonance between the precession frequency of an aste
longitude of perihelion (or node) and one (or a linear combi
tion) of the secular frequencies is called asecular resonance.
The role played by secular resonances in the formation o
Kirkwood gaps and the dynamical transport of near-Earth a
oids (NEAs) has been proved to be extremely important (
e.g., Moons 1997, Froeschl´e 1997). Outside mean motion res
nances, the location of the main secular resonances (up to
three) on the (a, i ) plane can be found in Milani and Knezev
(1990) (see also Morbidelli and Henrard, 1991). Fora∼ 3.63
ande∼ 0.1 the main secular resonances seem to be locat
inclinations much larger than 4◦, which is the mean inclination o
Helga. The 12:7 resonance is probably too weak to significa
modify the proper frequency of the perihelion longitude, w
respect to the nonresonant case. Thus, Helga-like orbits see
to be affected by secular resonances and the differences be
the elliptic three-body problem andN-body (N> 3) models are
not expected to be dramatic for the case studied here.

4. NUMERICAL RESULTS

During the first 50 Myr of our simulations, the “true” Helg
did not develop a Jupiter-crossing orbit. The evolution of
osculating semimajor axis and eccentricity during this time
terval is shown in Figs. 3a and 3b. In the 5-Gyr integrati
Helga remained in the same orbital elements’ region for ab
1.6 Gyr, whence it entered the action sphere of Jupiter. We
verified the fact that Helga evolves on a chaotic trajectory, w
a Lyapunov time of about 6×103 years (see below Fig. 8). Th
chaotic behavior can be visualized in Fig. 3c, which shows
time evolution of the element2= 7λ− 12λJ, where periods o
circulation in both directions are interspersed within short
riods of libration. Using the standard notation of celestial m
chanics,λ=Ä+ω+M (λJ) is the mean longitude of the mino
body (Jupiter). These results are in agreement with the p
ously reported results of Milani and Nobili (1992) and Murr
and Holman (1997).

4.1. Evolution of G1 and G2 in the ERTBP Model

The stability of the orbital elements for such a long time int
val is not, however, the case for the majority of our test partic
On the contrary, as seen in Fig. 4a, the number of particles,N(t),
still orbiting the Sun on a non-Jupiter-crossing trajectory a
time t decreases rapidly. Almost 60% of the particles leak
from the system, for both groups, on a 20-Myr time scale (
Table I). In Fig. 4a we have included the results for two sma
samples of particles, initially placed in the 7:4 and 5:3 re
nance, respectively, for comparison. These two resonance
on both sides of the 12:7 mean motion resonance. In Fig
the same plot as in Fig. 4a is given for the particles of G2
for1t = 50 Myr. The percentage of escaping particles increa
now to 71.3%. Fitting an exponential decay law of the form
N(t) = N(0)e−γ t , (4)
AND HADJIDEMETRIOU
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FIG. 3. Evolution of (a) the osculating semimajor axis and (b) the os
lating eccentricity of the asteroid 522-Helga for1t = 50 Myr. The evolution of
the element2= 7λ− 12λJ (c) is typical of a chaotic trajectory.

to this curve, we getγ−1= (16.3± 0.8)× 106, but, as we see
in the plot, the existence oflate escapers, i.e., an almost linear
“tail” of escaping particles withTE> 15 Myr, spoils the fit. A
modified exponential decay of the form,

N(t) = N0+ N1e−γ t , (5)

with γ−1= (8.9± 0.6)× 106 (which implies that a part—N0—
better way.
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FIG. 4. (Top) The total number of particles still on resonance,N(t), as
a function of time (1t = 20 Myr), for the four groups mentioned in the tex
(Bottom) The same graph for G2 only and for1t = 50 Myr, fitted by the two
exponentials mentioned in the text.

The histogram of escape times for G2 is shown in Fig. 5.
mean escape time is about 6.5 Myr and the dispersion a
the mean is about 3.5 Myr. If the escape time was not stro
depending on the initial conditions, this histogram should h

TABLE I
Escape Statistics in the ERTBPa

Group Escaping (%) 〈TE〉 (years)

7:4 93.75 7.2× 104

5:3 81.25 6.3× 105

G1 57.81 6.6× 106

G2 64.34 6.4× 106

G2∗ 70.54 5.4× 106

a The percentages are obtained after the 20-Myr inte-
∗
gration for all groups except G2, which is the percentage

for G2 taken after 50 Myr.
E 12:7 RESONANCE 245
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FIG. 5. The histogram of escape times for G2 (1t = 50 Myr), binned to
1.25-Myr intervals. The fitted curve is a log-normal distribution.

the shape of a steep Gaussian distribution, i.e., a well defi
mean value and a small dispersion, since all the particles wo
diffuse toward larger eccentricities at the same speed. Inst
we find that the histogram is best-fitted by a log-normal distrib
tion, with a very long tail, something which is also the footpri
of Lévy-like random walks(Shlesingeret al. 1993), which are
nonclassical diffusive processes. Obviously, our “true” He
lies in the far edge of the distribution’s tail.

The above results, clearly, depend upon the initial distribut
of the test particles. Since the distribution is aδ-function of the
actions and uniform in the anglesω andM , it is reasonable to
imagine that there must be a relation between the escape
of an asteroid and its initial phases, which explains why so
particles escape within a 10-Myr time scale while others m
take as long as 2 Gyr to encounter Jupiter. Figure 6 shows
relation; let us present the initial conditions for the G2 partic
on the (σ, ν) plane ofresonant arguments,

σ = 12

5
λJ− 7

5
λ−$

(6)

ν = −12

5
λJ+ 7

5
λ+$J,

where$ =ω+Ä is the longitude of perihelion of the asteroi
and$J that of Jupiter. As shown in this figure, the initial con
ditions of the particles that do not escape within the 50 Myr
not randomly distributed on the (σ, ν) plane but, instead, they
are mostly concentrated around the diagonal,$ −$J= 0, of
the plot. This set of surviving particles has initial perihelia in t
range

9π 14π
8
≤ ω0 ≤

8
, (7)



A

a
e
a

p
b

t
h
i
h
.
u
r

u

r

n
n

p to
e

” (in
by
246 TSIGANIS, VARVOGLIS,

FIG. 6. The (σ, ν) plane of initial conditions. Filled circles represent initi
conditions which lead to escape within 50 Myr. Open circles correspond to th
of initial conditions of the surviving population. Crossed circles denote the st
chaotic particles found. The plot is not uniform, since the initial distribution
set on a 16× 8 grid in (ω,M).

which corresponds to

−π
3
< ($ −$J)0 <

π

3
, (8)

where the subscript zero refers to initial conditions.
The evolution of the orbits on the (e,$ −$J) plane is shown,

for some representative cases, in Fig. 7. It is clear from the
that, for orbits which eventually escape (the first three or
from top to bottom in Fig. 7a), the critical argument$ −$J

circulates and the eccentricity can reach values up toe= 0.19;
the initial valuee= 0.0761 is actually close to the minimum
value of this osculating element. On the other hand, for all
orbits which do not escape within the 50-Myr time span, eit
the motion takes place very close to a narrow region of librat
(like Helga, which is shown at the bottom of Fig. 7a) or t
critical argument$ −$J remains always in libration (Fig. 7b)
For these orbits the initial eccentricity is close to the maxim
value ofe(t) and theproper eccentricityshould be of the orde
of the forced eccentricity (eJ' 0.048). The Lyapunov exponen
was calculated for the surviving particles and the results fo
can be summarized as follows:

(a) seven of them (the initial conditions are given in Table
showexactlythe same behavior as Helga; namely, they evo
on chaotic trajectories withTL ∼ 6000 years (Fig. 8) but thei
orbital elements have no significant variations over the 50-M
time interval. Also, their2 plots show exactly the same patter
i.e.,2 is a slow variable alternating between circulation a

libration (an example is shown in Fig. 9). Given these results,
can conclude that these fictitious asteroids exhibit the same k
ND HADJIDEMETRIOU
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FIG. 7. Evolution of the orbits on the (e, $ −$J) plane: (a) for escaping
orbits (top three)$ −$J circulates and the eccentricity reaches values u
e= 0.19 while for Helga-like orbits (bottom)e≤ 0.1 and the motion takes plac
very close to a small libration region. (b) An orbit for which$ −$J remains
always in libration and motion appears to be quasi-periodic.

of motion as Helga, i.e.,stable chaotic motion. It is interesting
that these orbits seem to gather to the borders of the “stable
the sense of orbital stability) set of initial conditions defined
Eq. (8).

TABLE II
Initial Conditions for G2 Particles in Stable Chaos

Particle Ä0 (rads) M0 (rads) TL (years)

1 10π/8 2π/8 5.1× 103

2 11π/8 0 5.9× 103

3 11π/8 12π/8 5.1× 103

4 12π/8 10π/8 4.8× 103

5 12π/8 14π/8 6.1× 103

6 13π/8 6π/8 4.2× 103

3

ind
7 13π/8 12π/8 4.9× 10
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FIG. 8. Calculation of the Lyapunov exponent for the stable chaotic pa
cles. All particles have Lyapunov times of the order of 6000 years.

(b) Among the surviving particles we also found chaotic o
bits for which the Lyapunov time is larger than 105 years. We
do not, however, classify them as stable chaos.

(c) For most of the surviving orbits a 10 Myr integration fo
the calculation of the Lyapunov exponent shows no signs
chaoticity; i.e., the divergenceχ (t) decreases linearly on a log
log plot of t vs χ (t). Also, no evidence for chaos can be se
in the evolution of2, which always circulates. Thus, we hav
numerical indications that quasi-periodic orbits exist among
nonescaping orbits. The argument$ −$J is librating for most
of these orbits (one of them is shown in Fig. 7b).

It is known, however, that one cannot prove (but only dispro
the quasi-periodic nature of an orbit by means of numeri
methods. It may be the case that at least some of the o
mentioned in (c) could also be chaotic (like those mention
in (b)) but they are stuck close to quasi-periodic orbits, th
behaving in a regular manner for very long time. A finer gr
of initial conditions and longer integrations would be need
in order to obtain a detailed “Lyapunov map” of this “stable
set. In this respect stickiness indeed occurs in the vicinity of
12:7 mean motion resonance. The question whether Helga
well as the other stable chaotic orbits mentioned in (a), co
also be considered as extreme cases of sticky orbits has n
simple answer. The fact that these orbits seem to emanate
the borders of the “stable” set admits such an interpretat
Also, as we will see in a following section,all the nonescaping
orbits share a common property, namely a long-time correla
evolution of the eccentricity-related Delaunay actions. On
other hand, the evolution of the critical argument2= 7λ− 12λJ

is typical of clearly chaotic trajectories. This point will be furth
discussed in the final section of the paper.

In Fig. 10 the osculating semimajor axis and eccentricity ti
series of the fastest G2 escaper are shown. It is evident
the evolution of the osculating elements is very different fro

those of Helga and the other stable chaotic particles found
particular, the eccentricity fluctuates with a maximum value
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about 0.17, much larger than the coresponding value for He
like orbits (which is about 0.1), and the amplitude of fluctuati
is slowly increasing. At such values ofe, overlapping with close-
by resonances may be expected (see Dermott and Murray, 1
At t ≈ 3.2 Myr a sudden jump in eccentricity occurs, befo
the asteroid encounters Jupiter. As far as the semimajor ax
concerned, it is constantly drifting toward larger mean valu
while the amplitude of its oscillations increases as well. T
kind of evolution indicates that the asteroid is slowly driv
into a close-by resonance which can pump the eccentricity u

FIG. 9. Another example of stable chaos: (a) osculating semimajor a

. In
of
(b) osculating eccentricity, and (c) the element2. The behavior seen in this plot
is exactly the same as in Fig. 3 for Helga.
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50 Myr). The mean escape time is now approximately 5.5× 10 years. The
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FIG. 10. The osculating semimajor axis (a) and eccentricity (b) time se
of the fastest G2 escaper. The resonant argument2= 3λ− 5λJ (c) shows a
change from circulation to libration att ≈ 3.15 Myr.

Jupiter-crossing values. Ata≈ 3.7 AU the strongest resonanc
present is the 5:3 mean motion resonance. The correspon
resonant argument,2= 3λ− 5λJ, is also shown in Fig. 10 fo
the interval 3–3.25 Myr.2 is circulating up tot ≈ 3.15 Myr
and then changes to a libration, before the asteroid event
escapes, indicating that this is indeed the case here.

4.2. Evolution of G2 in the 4P Model

As mentioned before, we also integrated the G2 parti

(again for 50 Myr) in the four-planet configuration. This wa
ND HADJIDEMETRIOU
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FIG. 11. Decay of the number of particlesN(t) for G2 in the 4P model
(1t = 50 Myr). Again two exponential fits are superimposed.

done in order to see how the additional perturbations induce
the interaction of the four giant planets modify the results t
we found in the framework of the ERTBP. Figures 11, 12, a
13 are the counterparts of Figs. 4b, 5, and 6, respectively.

At a first glance, we see that the basic features of the
vious plots are preserved in this case also. In particular, m
of the particles again leak out from the system within 20 M
as seen in Fig. 11, and the histogram of escape times (Fig
has again the shape of a log-normal distribution. Thus, altho
the escape times of individual particles are not the same
more, the statistical behavior of G2 is the same within the
models. The percentage of escaping particles does not ch
by much (see also Table I), but the mean escape time decr
to 〈TE〉 ≈ 5.4× 106 years and the dispersion increases. Thi
expected, since the additional perturbations induced by the o
planets speed up the diffusive process. However, as discuss

FIG. 12. The histogram of escape times for G2 in the 4P model (1t =
6

sfitted curve is again a log-normal distribution.
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TE = aτ b
C, (9)

2

STABLE CHAOS IN T

Section 3, for such values of the semimajor axis the main s
lar resonances are located at much higher inclinations tha
mean inclination of these asteroids (i ∼ 4◦). Thus, the asteroid
are not dynamically affected by them and the statistical beha
of the G2 set is the same within the two models.

Figure 13 is almost identical to Fig. 6. The ($ −$J)0 channel
of surviving particles is again present. The stable chaotic a
oids are again seen to emanate from the borders of a “stabl
of initial conditions. Figures 6 and 13 differ only in the boun
aries of the initial perihelia set, which leads to regular mot
i.e., atω0= 9π/8 andω0= 14π/8. However, we stress here t
fact that the exact differences between the two models, con
ing the “stable” region, cannot be evaluated from the pre
results and a finer mesh of initial conditions has to be used
this purpose.

4.3. Stable Chaos and Long-Time Correlated Motion

The time series of the osculating elements of stable cha
asteroids are characterized by a remarkable stationarity,
also seen in Figs. 3 and 7. In fact, Milaniet al.(1997) calculated
proper elements (eP and IP) with almost undetectable diffusio
for some stable chaotic asteroids. The situation is differen
the chaotic particles which, eventually, escape. One of the
used to distinguish between quasi-periodic and “random” t
series is theautocorrelation function, r (k), which measures how
well correlated are two parts of the time series which ark
time lags apart. For quasi-periodic signals,r (k) is also quasi-
periodic, while for chaotic (or random) time seriesr (k) decays
exponentially with time (ork). The time at whichr (k) drops
below the value 1/e (without increasing again) is called th
autocorrelation time, τC.
FIG. 13. The (σ, ν) plane of initial conditions for the 4P model. The sym
bols used are the same as in Fig. 6.
E 12:7 RESONANCE 249
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FIG. 14. The autocorrelation function,r (k), as a function of the time lag,k.
Fast decay of linear correlations is observed for the escapers (a), while for H
(b) and the rest of the stable chaotic particlesr (k) remains almost constant.

We calculatedr (k) for both theG(t) and theH(t) action time
series of all G2 particles, using the records of the first 3 Myr
our integration (in the ERTBP model). Since the inclinations
not change by much, the results for both time series are alm
identical.2 The results are very interesting. While for the chao
particles which escape linear correlations decay exponent
with time, as they should, this is not true for the stable cha
particles. In fact,r (k) is almost quasi-periodic. A typical exam
ple is shown in Fig. 14, where we have plottedr (k) for both an
escaping particle and for 522-Helga.

Finding different autocorrelation times among the ejected p
ticles tempted us to search for a possible relationship betw
the escape time,TE, of asteroids and the autocorrelation tim
τC, of their action time series. In Fig. 15 we have plottedτC

againstTE for all the escaping particles of G2. A power-law
yields the relation,
- Note, however, that this need not be the case in other regions of the asteroid
belt.
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closely spaced and, thus, overlap with adjacent low-order reso-
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FIG. 15. A log-log plot of τC againstTE for all escaping particles of G2
(ERTBP). The power-law fit shown here, corresponding to the “bulge” of
escaping distribution (open circles), yieldsTE ∼ τ1/5

C . The population of “late
escapers” is represented in this plot by filled circles.

with a= (7.53± 3.74)× 105 andb= 0.221± 0.035. However,
the correlation coefficient of the fit is rather low, namelyR=
0.55. The “spoiling” of the fit is caused by the fact that there a
clearly, two populations on this plot. The larger one correspo
to particles which belong to the bulge of the escaping distr
tion seen in Fig. 5; i.e.TE≤ 13 Myr (which is 2σTE away from
the mean), and the smaller population (about 30% of the to
is that of the distribution’s tail; i.e.,TE≥ 13 Myr. If one dis-
regards the tail population, the resulting fit, describing only
bulk of the escaping distribution, is much better (R= 0.72± 0.09
and b= 0.196± 0.024). The late escapers (shown as bla
squares in Fig. 15) have, surprisingly, small autocorrela
times. However, one has to remember that the autocorrela
function,r (k), measures the decay of linear correlations. Th
r (k) cannot detect any nonlinear correlations which may s
down the diffusion process for the late escapers.

5. CONCLUSIONS—DISCUSSION

In this paper we try to understand the nature of transpo
the neighborhood of the 12:7 mean motion resonance and t
terpret the peculiar orbital behavior of the asteroid 522-He
The peculiarity consists in the fact that Helga’s trajectory se
to be strongly chaotic—in terms of Lyapunov exponents—
yet the osculating elements of this asteroid remain stable
billions of years. Until now two different interpretations of th
fact have appeared in the literature. Murisonet al. (1994) pro-
posed that the mean escape time from the 12:7 mean m
resonance is rather short and that Helga is the remnant
much larger initial distribution of asteroids. In contrast, the
alytic results of Murray and Holman (1997) indicate that

mean escape time from the 12:7 mean motion resonance is
ND HADJIDEMETRIOU
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tremely long, so that Helga should not have initially too ma
partners. In the present paper we followed numerically the e
lution of two initial distributions (G1 and G2). Both of them
have a mean escape time ofabout 7 Myr(ERTBP), which is
much shorter than the predictions of the analytic diffusive
proximation of Murray and Holman (1997) for the planar ca
Thus, although the simple power-law relation betweenTL and
TE found by Lecaret al. (1992) may not hold, the conjecture o
Murisonet al. (1994) that 522-Helga is the remnant of a mu
larger distribution of asteroids that have already escaped f
the Solar System may, in fact, be true. On the other hand,
all chaotic particles have similar escape times. In fact,TE may
vary by several orders of magnitude (in both the ERTBP a
the 4P models), as shown clearly by the shape of the esca
distribution. More precisely, the percentage of late escapers
which TE> 〈TE〉+2σTE ≈ 13 Myr, is about 30% of the total es
caping population. Thus, although all particles begin with
same action values, diffusion is much slower for a statistic
significant percentage of them.

It seems that the key to understanding the conflicting
sults mentioned above is the underlying relation between
escape time of a test particle and its initial phase$ −$J.
Milani and Nobili (1992) argued that the behavior of Hel
can be explained as the result of a protection mechanism, w
is not due to the resonance responsible for chaos, but is
lated to the behavior of the critical argument$ −$J and the
small value of Helga’s proper eccentricity. Our numerical
sults show, indeed, that all orbits which survive for 50 M
are either performing librations in$ −$J or cover a region of
the (e, $ −$J) plane just outside this narrow libration zon
For these orbits the initial eccentricity value (e= 0.0761) is
close to the maximum osculating eccentricity and the pro
eccentricity should be of the order of the forced eccentric
(eJ). However, we argue that this behavior is, in fact, rela
to the peculiarity of the 12:7 resonance stated in Section
i.e., the noncontinuation of the main family of periodic o
bits in the planar elliptic problem. In other resonances (e
3:1) the main unstable periodic orbit divides theXY plane
(X= ecos($ −$J), Y= esin($ −$J)) into three topologi-
cally distinct regions (libration–internal circulation–external c
culation) and this topology is responsible for the transpor
initially low-eccentric orbits to high-eccentricity regions. Th
is evidently not the case for the 12:7 resonance; only a nar
libration zone with proper eccentricities less than 0.05 (like
Fig. 7b) exists while most of the orbits circulate. For those orb
which eventually escape, the proper eccentricity should be la
than 0.1. Helga-like orbits also circulate but witheP∼ 0.05.
Whether this mechanism is also present in other high-o
resonances, which appear to be associated to the occuren
stable chaos in the inner part of the asteroid belt, is certa
within our plans for future work. However, at this specific r
gion of the outer belt studied in this paper, the resonances
ex-nances can drive asteroids with initially moderate eccentricities
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(0.1≤ e≤ 0.15) to Jupiter-crossing orbits, as shown in o
results.

In the more general framework of Hamiltonian dynamics,
conjecture that stable chaos may be interpreted as a realizat
the stickiness phenomenon seems appealing; the idea of te
the validity of this proposition led us to the work presented
this paper. Unfortunately the results are not conclusive eno
The fact that chaotic orbits seem to coexist (within the “stab
set defined by Eq. (8)) with quasi-periodic orbits implies t
sticky orbits exist in this region; this characterization can c
tainly be given to those chaotic orbits found having largeTLs.
The facts that (a) Helga-like orbits are seen to gather to
borders of this “stable” set and (b) these orbits, too, retain
relations in the eccentricity-related time series for times m
longer than the correspondingTL, support the idea that stab
chaotic orbits may be considered as extreme (smallTLs) cases
of stickiness. On the other hand, one would expect that the
lution of the critical argument,2, should be quite similar to tha
of quasi-periodic orbits for very long times, and this is not
case here. Therefore, we are tempted to conclude that, ac
ing to the protection mechanism described in Section 3 (an
previous paragraph), invariant tori may in fact be responsible
bounding the eccentricity of Helga-like orbits. These tori wo
form a hardly permeable barrier, even though we are dea
with a more-than-three degrees of freedom dynamical sys
The question now is what we can define as stickiness: if the
is to be used for orbits winding around stable KAM tori (in t
form of the counterparts of resonant islands in 2D) immer
in a mostly stochastic region, our results are in conflict. If,
the other hand, we use the same term to describe chaotic
within narrow stochastic layers which are “bounded” by “ro
tional” KAM curves (in the sense described above), the res
are in agreement. Both situations can be responsible for the
(subdiffusive) evolution of the eccentricity-related actions t
we observe. Whether KAM tori can still persist under the p
turbing effects of more-than-one planet (or they deform into
analog ofcantori) is something that cannot be answered w
the numerical results presented here. In any case, we mus
sider the fact that very little is known about stickiness (and
behavior of the different degrees of freedom of sticky orbits
the phase space of dynamical systems of high dimensional
appears, therefore, that this complicated phenomenon is s
matter of investigation. For the specific case of stable chaos
ied in this paper, much larger initial distributions of particl
including variations inÄ and the initial values of the action
have to be integrated in order to examine the detailed stru
of the “stable” set.

In any of the cases discussed above, the phrasea random walk
in the actions, frequently used to describe chaotic variations
the orbital elements of asteroids, does not apply to Helga
fact, all stable chaotic particles found in our integrations, un
those which escape, do not respect one of the most fundam
properties of classic random walks, i.e., the exponential dec

linear correlations. This could be a characteristic of all astero
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exhibiting stable chaos and we plan to test for this property o
stable chaotic asteroids that have been discovered so far (M
et al.1997, Sidlichovsky 1998). The fact that stable chaotic p
ticles, although having small Lyapunov times, retain correlati
in the actions for a very long time is also an observation wh
leads to the conclusion that stable chaotic trajectories const
a different “class” of dynamical objects. We argue that the pr
erty of nondecaying correlations could be used as a metho
distinguish between fast escapers and stable chaos using s
time integrations. Such a method would consist of calculat
both the Lyapunov exponent,λ, and the autocorrelation func
tion of an action-like time series. Of course, it is also easy
distinguish between stable-chaotic and regular orbits, bot
which retain correlations, by plotting the corresponding criti
argument.

Slow decay of correlations is a characteristic of trajector
for which mixing in phase space may take an extremely lo
time (see Zaslavsky 1985). This is noted also in Yannacopo
and Rowlands (1997), where the authors show how thephase-
randomization approximationbreaks down in the vicinity of
stable orbits, even for large stochasticity parameters. In par
lar, these authors have shown that, in the case of area prese
maps on the plane, the quasi-linear approximation of the
fusion coefficient,DQL, breaks down even above the critic
threshold. This means that not onlyD becomes action depen
dent, but also that the value of〈(1I )2〉/τ needs to be calculate
at differentτs for different initial action values, depending o
the measure of invariant sets contained within a given ph
space domain (which measure is not known a priori). Thus,
local structure of the phase space, as also suggested from
results, is very important for the mixing properties of the s
cific phase-space region and this, in turn, plays a key role in
proper formulation of a diffusive approximation.

On the other hand, the autocorrelation function decays qui
for all the escaping particles found in the simulations. The diff
ent autocorrelation times found for the ejected particles temp
us to search for a possible “statistical law,” connecting the
tocorrelation time,τC, to the escape time,TE. Unfortunately, a
clear picture cannot be established with the results of only
present work. This is not only because of the small numbe
“asteroids,” but also because two populations of chaotic e
pers seem to exist. The larger one, belonging to the bulk of
escaping distribution, can be described by a relation of the f
TE ∼ τ 1/5

C rather well. However, trying to fit the whole esca
ing distribution does not give promising results. This is due
the second (smaller) population, which consists oflate escapers
with very short autocorrelation times. One has to remem
though, thatr (k) measures linear correlations and, thus, a
nonlinear correlations that may slow down the diffusion p
cess for these particles cannot be explored using this tool. M
refined nonlinear tools have to be used in order to prove
disprove, the existence of a statistical law connecting the
cape time to the time of decorrelation of the eccentricity-rela

idsactions.
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