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Abstract, Stability features of dynamical systems are frequently attributed to the implications
of the Kolmogoroff-Amold-Moser (kaM) theorem. However, application of this theorem
requires compact phase-space regions. This is nat the case in the hyperbolic Coulomb three-
body problem encountered in most of the classical trajectory Monte Carlo (CT™MC) applications.
Therefore, the satisfactory results of the CTMC method in a wide energy region or its robustness
with respect to pertusbations cannot be interpreted in this way. We propose here a justification of
the above properties based on the character of the space of initial conditions corresponding to the
trajectory classes resulting in excitation, jonization and charge trapsfer. Numerical experiments
are in progress in order to confirm that the algebraic dimension of the boundaries separating the
three sets of trajectories is, indeed, fractal, so that the system could be at least partly classified
as a chaotic dynamical system, The stability properties of the cTMc method can then be inferred
straightforwardly, since chaotic dynamical systems are structurafly stable.

The satisfactory accuracy by which the classical trajectory Monte Carlo (CTMC) method
(Abrines and Percival 1966, Olson and Salop 1977, Peach et al 1985) approximates the
experimentally measured effective cross sections for ionization (IN) and charge transfer (CT)
in a wide energy region (McDowell and Janev 1985, Willis et af 1983, Olson et al 1993
{and references therein), Katsonis and Maynard 1991, 1993, Kaisonis et af 1991, Maynard
et al 1992, Katsonis ef al 1995), is leading to a favourable comparison with the results of
various quantum-mechanical calculations, at least for H targets.

Justifying the success of the CTMC method by theoretical arguments has been the aim
of numerous investigators. Recently, Keller ez af (1993) investigated the conditions of
applicability of this method, especially in the case of energies lower than those corresponding
to the classical orbital velocity of the hydrogen ls electron. These authors also give
improved ionization and electron-capture cross sections for protons colliding with H(1s), for
collision energies down to 10 keV. As a matter of fact, an improved classical treatment, even
with a simple Coulomb potential, is expected to be sufficient for the most common case of
hydrogen targets. The alternative of treating the Coulomb three-body (CTB) problem within
the quantum-mechanical formalism, which consists of resolving the three-particle Fadeev
integral equations of motion with effective potentials (see Avakov et af 1990}, seems a more
involved task with less physical insight.

Keller ef al used the Kolmogoroff-Arnold-Moser (KAM) theorem fo specify quantum
corrections by heuristically imposing a compactness condition in the initial state (model
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hydrogen atom), without addressing the more general problem of the full phase-space
properties. As it is well known (see Lichtenberg and Lieberman 1983, pp 159-68), this
theorem applies to bounded trajectories of dynamical systems, i.e. to a compact phase-
space region. Moreover, it requires Hamiltonian perturbations which have at least 2N — 2
continuous derivatives (where ¥ refers to the degrees of freedom of the system {Chirikov
1979)). In dynamical modeis currently used in the CMTC method e.g. as described in Peach et
al (1985), the particles’ trajectories come from and go to infinity, even if only a finite part of
each trajectory is considered. Thus, the trajectories’ behaviour is not described by the KAM
theorem. It should be noted that in the modification of the standard ¢TMC method proposed
in Keller ez al (1993), the ‘perturbation’ of the Hamiltonian (a2 ‘randomization’ of momenta
along the trajectory, at regular time intervals) belongs to the class CY, i.c. it does not have
continuous first-order derivatives. The continuity condition is not definitively restrictive,
since in numerical studies concermning Hamiltonians with C° perturbations, indications have
been found for the existence of invariant tori in accordance with the KAM theorem (Varvoglis
1985). Relaxation, however, of the compactness condition (i.e. extension to potentially
unbounded motions} is a non-trivial task, although from the physical point of view it does
not seem unreasonable.

Here we present an argument, inferpreting the observed success of the CTMC method
and probably the recent results of Keller er af (1993). Use is made here of a definition
for the ordered and chaotic trajectories which differ from the common one, pertaining to
the case where the trajectories have points at infinity. This definition, used previously by
Bleher et al (1988), applies to dynamical systems with multiple modes of exit. It leads to a
natura] extension of the notion of chaotic regions of phase space whenever the trajectories
are not confined in compact subsets of the phase space. In the simplest case, where there are
two possible final evolutions of a trajectory, the problem may be modelled by the motion
of a test particle in a two-dimensional box having two exit holes, A and B. In this case,
the points of the set of initial conditions leading to one outcome (exit through hole A) are
distributed among the points of the set of initial conditions leading to the other outcome (exit
through hole B) in a way which characterizes the system. The boundary separating the two
sets in initial-condition space contains fractal and non-fractal (smooth) regions intertwined.
Whenever the boundaries of the two sets have fractal dimensions (as was the case in the
study of Bleher er al (1988)) the system should be classified as chaotic.

It is well known that chaotic Hamiltonian dynamical systems are structurally stable, i.e.
small perturbations of the Hamiltonian function of the system (in the form appearing in the
KAM theorem above) leave the system chaotic (Lichtenberg and Lieberman 1983, p 271).
Note that the corresponding Kolmogoroff-Sinai metric entropy of the system (Gutzwiller
1990) is expected to vary smoothly, as in bounded systems. According to the CTMC method,
what is identified as a target ionization (or charge transfer) cross section is calculated through
an averaging process over the distribution of the projectile—target initial conditions leading
to the removal of the electron from the target (and final settling into the projectile region).
1t is, therefore, natural to postulate that this average would not change considerably through
a slight perturbation in the case when the system is chaotic,

The CTB dynamical system, which we have used in our CTMC code for H targets (one
negative—two positive charges), may be modelled, foliowing Bleher er al (1988), by a
box in a three-dimensional space with three holes, representing the three possible inelastic
outcomes of a collision (excitation, ionization or charge transfer). We conjecture that the
behavicur of this system should be gqualitatively similar to that of the system studied by
Bleher et af, i.e. that it should possess chaotic regions in phase space. If this conjecture is
true, then, for similar reasons presented subsequently, one would expect the two-negative—
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one-positive charge CTB system to exhibit chaotic properties as well. A general study of
the planar CTB system is given in Gu and Yuan (1993), who have investigated the e—He™
scattering and the general features of the trajectories. They found that this dynamical system
shows, indeed, chaotic behaviour, a fact that corroborates our conjecture about the chaotic
character of the former.

Most of our CTMC caiculations for atomic collisions pertain to the study of the effective
cross sections in collisions of a stripped ion AY*{g = Z) with a hydrogen atom composed
of an electron e~ and a proton p*, which is part of the dynamic study of the CTB system
(e~, p*, AY"); in the case of Z = 1 it simplifies to (¢~, p*, p*). An interesting special case
of the latter system is the one where the two protons are fixed, which corresponds to the HJ
molecule, successfully studied with the canonically invariant quantization method of Maslov
by Strand and Reinhardt (1979). This system is integrable, so that the motion of the electron
is not chaotic; the stability of H has been proved classically to come from the tunnelling
e~ trajectories confined between an ellipse and either one of two hyperbolae. Aside from
this exceptional case and for similar reasons, the system (e~,p™, p*)} should exhibit, as
mentioned before, dynamical features analogous to those of the system (™, ¢, a?*), where
@?* stands for the alpha particle. In the (™, p*, p*) case each of the two protons is about
2000 times heavier than each of the electrons of the (e7, e™, ¢2*) case. Inversely, the sole
e~ is about 4 x 2000 times lighter than the corresponding a®* and the attractive e”—o2*
potential coefficient is the double of the e~—p* case. In accordance with the dynamical
system invariance under T2/L% = 1 transformations, 7 and L being the time and length
units respectively, the distance scale is clearly smaller in the (e™, e~, «?*) case than in the
(e~,pT, pT) one. Moreover, existing (e~, e, ') dynamical studies may have different
aims (e.g. Yamamoto and Kaneko 1993), therefore the initial conditions used and the classes
of the CTB trajectories which are studied are not necessarily the same as with the (p*, p*,e™)
case. It is still possible to gain significant insighi by comparison of the results pertaining
to both cases. The importance of the Kepler-like two-body problem is inherent in various
categories of trajectories of both systems, the T72/L% invariance corresponding to the third
Kepler law,

In systems having only chaotic trajectories, the calculated effective cross section should
not depend on the selection of the phase-space region where the average is calculated, or
on any slight perturbation of the dynamical system itself. On the contrary, whenever
ordered regions exist in the phase space, the calculated effective cross section should
depend on the specific region of the phase space (containing only ordered, only chactic
or both types of trajectories) as well as on any perturbation destroying invariant tori of the
system (and, therefore, converting ordered trajectories to chaotic). Note that the numerical
procedure applied to Keller et al (1993) can be thought of as doing exactly the latter
task: randomization of momenta destroys any region of ordered motion, thus rendering the
calculation of the averages more robust and independent of the specific selection of initial
conditions.

The same argument applies for the interpretation of CTMC successful calculations of
effective cross sections. Since, by our conjecture the classical dynamical system is already
chaotic to some extent, additional quantum mechanical “perturbations’ are not expected to
alter significantly its phase-space structure portrait, apart, perhaps, from the elimination of
the remaining ordered regions. This should be the case in the energy region within which
intrinsic quantum processes are not prevailing, However, calculations corresponding also
to collision energies lower than 10 keV amu~' have been given and discussed, both for
charge transfer (Katsonis and Maynard 1995) and for ionization (Katsonis et al 1995). A
quasi-classical approximation through a trace formula pertaining to non-bounded systems
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(Hejhal 1983, Gutzwiller 1990) might be of help otherwise.

Finally, it should be noted that the above considerations could be verified numericalty,
by calculating the regions of initial conditions in phase space leading, respectively, to
ionization, charge transfer or excitation, and measuring the dimension of the boundaries
separating exit and capture modes in phase space. Results indicating a non-integer algebraic
(Renyi) dimension for this boundary would corroborate our conjecture. We are presently
working towards this direction.

One of the authors (HV} gratefully acknowiedges support from the University de Paris-Sud

References

Abrinas R and Percival 1 C 1966 Proc. Phys. Svc. London 88 861 and 873

Avakov G V, Ahurov A R, Blokhintsev L D, Mukhamedzhanov A M and Poletayeva M V 1990 J. Phys. B: At
Mol. Opt. Phys. 23 2309

Bleher S, Grebogi C, Ott E and Brown R 1988 Phys. Rev. A 38 930

Chirikov B V [979 Phys. Rep. 52 263

Gu Y and Yuan J-M 1993 Phys. Rev. A 47 R2442

Gutzwiller M C 1990 Chans in Classical und Quantum Mechanics (New York: Springer)

Hejhal D A 1983 The Sefberg Trace Formula for PSL(2, R) Vol 2 (Lecture Notes in Mathematics 1001} (Berlin:
Springer)

Katsonis K and Maynard G 1991 J. Physigue IV 1 C1-313

——1995 Low Z Jon Hydrogen Collision I. Charge Transfer for Be?*, BT, O and 097 at press

Katsonis K, Maynard G and Janev R 1991 Phys, Scr. T 37 80

Katsonis K, Maynard G and Varvoglis H 1995 Classical Trajectories Study of Hydrogen Atom Ionization by C™*

. and Ne"™ ar press

Keller S, Ast H and Dreizler R M 1993 1. Phys. B: Ar. Mol. Opt. Phys. 26 L737

Lichtenberg A J and Lieberman M A 1983 Regnlar and Stochastic Motivn (New York: Springer)

Maynard G, Janev R and Katsonis K 1992 J. Phys. B: At. Mol, Opt. Phys. 25 437

McDowell M R C and Janev R 1985 J. Phys. B: At. Mol Phys. 18 1205

Olson R E and Salop A 1977 Phys. Rev. A 16 531

Olson R E, Wang J and Ullrich J 1993 Recent advances and challenges of heavy-particle collision theories XVHT
ICPEAC Proceedings, Aarhus ed T Andersen er al (New York: AIP Press) p 520

Peach G, Willis 8§ L and McDowell M R C 1985 J. Phys. 8: Ar. Mol. Phys. 18 3921

Strand M P and Reinhardt P 1979 J, Cherm. Phys. 70 3812

Varvoglis H 1985 J, Physique 46 495 _

Willis § L, Peach G, McDowell M R C and Banerji J 1985 £ Phys. B: At. Mol, Phys. 18 3939

Yamamoto T and Kaneko K 1993 Phays, Rev. Letr. 70 1928



