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We have shown, in previous publications, that stable chaos is
associated with medium/high-order mean motion resonances with
Jupiter, for which there exist no resonant periodic orbits in the
framework of the elliptic restricted three-body problem. This topo-
logical “defect” results in the absence of the most efficient mecha-
nism of eccentricity transport (i.e., large-amplitude modulation on
a short time scale) in three-body models. Thus, chaotic diffusion of
the orbital elements can be quite slow, while there can also exist a
nonnegligible set of chaotic orbits which are semiconfined (stable
chaos) by “quasi-barriers” in the phase space. In the present pa-
per we extend our study to all mean motion resonances of order
q ≤ 9 in the inner main belt (1.9–3.3 AU) and q ≤ 7 in the outer belt
(3.3–3.9 AU). We find that, out of the 34 resonances studied, only 8
possess resonant periodic orbits that are continued from the circu-
lar to the elliptic three-body problem (regular families), namely, the
2/1, 3/1, 4/1, and 5/2 in the inner belt and the 7/4, 5/3, 11/7, and
3/2 in the outer belt. Numerical results indicate that the 7/3 res-
onance also carries periodic orbits but, unlike the aforementioned
resonances, 7/3-periodic orbits belong to an irregular family. Note
that the five inner-belt resonances that carry periodic orbits corre-
spond to the location of the main Kirkwood gaps, while the three
outer-belt resonances correspond to gaps in the distribution of outer-
belt asteroids noted by Holman and Murray (1996, Astron. J. 112,
1278–1293), except for the 3/2 case where the Hildas reside. Fast,
intermittent eccentricity increase is found in resonances possessing
periodic orbits. In the remaining resonances the time-averaged el-
ements of chaotic orbits are, in general, quite stable, at least for
times t ∼ 250 Myr. This slow diffusion picture does not change
qualitatively, even if more perturbing planets are included in the
model. c© 2002 Elsevier Science (USA)
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tribution of asteroids, the most prominent features being the
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1. INTRODUCTION

Recent studies have shown that a large number of real as-
teroids follow chaotic trajectories (see Knežević and Milani
2000). Chaos can force asteroids to develop planet-crossing or-
bits and suffer repeated close encounters with the major planets,
eventually being driven away from the main belt. The macro-
scopic results of this process are imprinted in the orbital dis-
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Kirkwood gaps, associated with the low-order mean motion
resonances with Jupiter, namely, the 2/1, 3/1, 4/1, 5/2, and
7/3 resonances (see Moons 1997 for a review on the dynam-
ics). Apart from the inner-belt gaps, Holman and Murray (1996)
noted that the distribution of semi-major axes of outer-belt (be-
yond 3.3 AU) asteroids also presents gaps, the most promi-
nent ones being related to the 5/3, 7/4, and 8/5 mean motion
resonances.

On the other hand, chaos does not always lead to a rapid
growth of eccentricity. During the past decade many authors
have found strongly chaotic orbits, in terms of Lyapunov expo-
nents, which do not show significant variations of their elements
for times much longer than the Lyapunov time. Such “slow”
chaos can be found within wide domains of the phase space.
Milani and Nobili (1992) introduced the terminology stable
chaos, to emphasize the paradoxal motion of the asteroid (522)
Helga, which resides in the vicinity of the 12/7 mean motion
resonance with Jupiter (a ≈ 3.63 AU). Its orbit is very chaotic
(Lyapunov time TL ∼ 7000 years), but, the proper values of
its semi-major axis, a, eccentricity, e, and inclination, i , are
very stable for times longer than 103 TL. The motion of Helga
was also studied by Holman and Murray (1996) and in more
detail by Tsiganis et al. (2000), who both found that its orbital
elements do not change significantly for times of ∼109 years.
Subsequently, many more cases of real asteroids exhibiting
this kind of motion were found (see, e.g., Milani et al. 1997,
Šidlichovský 1999). In Tsiganis et al. (2000, 2002) we noted
that the orbit of Helga, as well as of other real asteroids exhibit-
ing stable chaos, also has a property that leads to a distinction
between “slow” and “stable” chaos. This property is that not
only do the variations of e and i have a very small amplitude
(this is common in both types of chaotic motion), but also the
“jumps” �e and �i are very well correlated for times longer
than 103 TL. This implies that the associated proper frequencies
are almost constant with time. In this respect the word “sta-
ble” does not refer to stability in the sense of Lyapunov, but
rather it describes an orbital behavior where the elements seem to
evolve in a nearly quasi-periodic manner for times much greater
than TL.
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The following question remains to be answered now: Why
is there only a small number of gaps in the distribution of
asteroids, while chaotic motion seems to be the rule, rather than
the exception, in numerical integrations? Obviously the answer
can only be obtained by analyzing the various chaos-generating
mechanisms, the associated transport process, and the relevant
time scales. In the next section we will briefly review these
mechanisms and describe their main effects.

2. DYNAMICAL MECHANISMS LEADING TO CHAOS

Chaos in the main belt results from resonances between the
unperturbed frequencies of motion of an asteroid and the driv-
ing frequencies of the system, the latter being (a) the frequencies
of revolution of the main perturbing planets (especially Jupiter)
and (b) the frequencies of precession of the planetary orbits.
Resonances between the revolution frequency (mean motion, n)
of an asteroid and that of a planet (n′; most usually Jupiter) are
referred to as mean motion resonances. These are defined by
the condition pλ̇ + qλ̇′ = pn + qn′ ≈ 0, where λ (resp. λ′) de-
notes the mean longitude of the asteroid (resp. Jupiter) and p, q
are integers. In the three-body problem (Sun–Jupiter–asteroid)
only this type of resonance occurs, since n′ is the only nonzero
driving frequency.1 If the orbit of the perturber is allowed to pre-
cess, or more perturbing planets are taken into account, mean
motion resonances are forced to pulsate. More important sec-
ular resonances between the frequencies g = 〈�̇ 〉 and s = 〈�̇〉
of the asteroid and the fundamental secular frequencies of the
planetary system, gi and si , are possible. The associated critical
arguments are of the form k� + p� + ∑

i (qi�i + ri�i ), where
�i and �i are linear approximations of the planetary arguments
and k, p, qi , ri are integers. Note that, for both types of reso-
nance, the integers involved must obey a set of relations, known
as the D’Alembert rules.

Secular resonances can greatly modulate an asteroid’s eccen-
tricity and/or inclination. Analytic and synthetic secular theo-
ries, derived by many authors (see, e.g., Bretagnon 1974, Nobili
et al. 1989, Laskar 1990, Knežević et al. 1991), can help in com-
puting the location of secular resonances outside mean motion
resonances. First-order secular resonances bound the distribu-
tion of main-belt asteroids in the (a, i) space (see, e.g., Michel
et al. 2000). Also, the unrealistically wide (in the frame of a
three-body model) gap associated with the 4/1 resonance is ex-
plained by the presence of the ν6 (〈�̇ 〉 ≈ g6) and ν16 (〈�̇〉 ≈ s6)
secular resonances at a ≈ 2 AU (i ≤ 5◦). However, secular reso-
nances can also occur inside the libration zone of a mean motion
resonance, as the latter can significantly modify the values of the
secular frequencies, with respect to their unperturbed values. In
fact, although numerous chaotic orbits can be found in mean

motion resonances, complete depletion of these regions does
not occur in the three-body problem. The overlap of coexist-

1 The longitude of pericenter, � ′, and the longitude of the node, �′, of Jupiter
are constant; i.e., g′ = �̇ ′ = 0 = �̇′ = s′.
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ing secular resonances destroys the stability islands and leads
to large-scale eccentricity transport, within relatively short time
scales (Moons and Morbidelli 1995). Finally, when the direct
effects of more than one planet are taken into account, three-
body mean motion resonances appear (Nesvorný and Morbidelli
1998a, Murray et al. 1998). A resonance of the Jupiter–Saturn–
asteroid type occurs when pλ̇J + qλ̇S + r λ̇ ≈ 0. For a given de-
gree in eccentricity these resonances are much more dense than
ordinary mean motion resonances in the belt (although much
weaker; see Nesvorný and Morbidelli 1998b), contributing sig-
nificantly to chaotic diffusion in the belt.

In this paper we will focus on a comparative study of mean
motion resonances with Jupiter. The main interest in this study
comes from the fact that the phase-space topology induced by
resonance may be very different from case to case. In the
elliptic three-body problem a mean motion resonance splits into
a multiplet of nearby (in frequency space) harmonics. If we
only consider orbits that are co-planar with the perturber’s orbit,
each harmonic is identified by a different critical argument, of
the form

σk = (p + q)λ′ − pλ − q� + k(� − � ′) = σ + kφ. (1)

The k 
= 0 terms represent resonances between the two slow an-
gles, σ and φ, of the averaged problem, these are also called
“secondary resonances.” The harmonics may or may not have a
common node in the (a, e) space, defined by φ̇ = 0 (called “coro-
tation resonance” by Henrard and Caranicolas 1990). This node
appears as a pair of fixed points on the (X = e cos φ, Y = e sin φ)
surface of section of the averaged problem (see, e.g.,
Hadjidemetriou 1993), which correspond to the intersection of
two resonant periodic orbits (one stable and one unstable) of the
nonaveraged problem with the considered “energy” manifold.
An island of libration of φ develops around the stable fixed point,
and the homoclinic layer of the unstable periodic orbit encircles
this island. This topological structure provides a very efficient
mechanism for the growth of the eccentricity. Wandering of α

chaotic trajectory around the island leads to e ∼ 0.9 (for the 3/1
resonance) within half the libration period, with the eccentricity
evolving in an intermittent manner, first seen by Wisdom (1982).

Even if resonant periodic orbits do not exist for a given orbital
commensurability, chaos is still produced by the overlapping of
the closely spaced resonant harmonics. The efficiency of this
overlap depends on the width and mutual distance of the har-
monics, which scale with e. Some resonant multiplets may gen-
erate global chaos in their vicinity while, for other cases, chaotic
orbits can be semiconfined within thin layers in phase space (see
Morbidelli and Guzzo 1997). Most outer-belt resonances
(beyond 3.3 AU) are almost globally chaotic, with asteroids
experiencing a slow diffusion in the space of proper elements,
according to the analytic model of Murray and Holman (1997).
On the other hand, in the resonances studied by Tsiganis et al.

(2000, 2002), both slowly diffusing and stable-chaotic orbits
were identified.
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We begin our study by searching for periodic orbits inside
different resonances (Section 3), in order to describe qualita-
tively the transport properties of chaotic orbits. Numerical re-
sults of orbital integrations of fictitious asteroids are presented in
Section 4 and conclusions are given in Section 5.

3. SEARCHING FOR RESONANT PERIODIC ORBITS

We study all mean motion resonances with Jupiter, defined
by the integer ratio n/n′ = (p + q)/p, with q ≤ 9 for the inner
belt and q ≤ 7 for the outer belt. The p’s are selected so that
1.9 ≤ a ≤ 3.9 AU. By adding the 3/2 resonance (a ≈ 3.96 AU),
where the Hildas reside, a total of 34 cases is considered. First,
we compute the main families of resonant periodic orbits in
the 2D circular restricted three-body problem (hereafter circular
problem). Next, we examine whether these families continue (or
not) in (i) the 2D elliptic restricted three-body problem (Jupiter

on a fixed ellipse; hereafter elliptic problem) and (ii) the 3D
circular restricted problem (hereafter 3D problem).

elliptic motion both stable and unstable orbits exist. We refer to
Hadjidemetriou (1993) for a detailed discussion on this topic.
FIG. 1. Families of resonant periodic orbits (circular problem, µ = 0.000954786) in the (x0, energy) space. The curves shown here correspond to the circular
family and the elliptic branches of the 3/1, 2/1, 3/2, and 4/3 resonances. The point of collision with Jupiter for 2/1 resonant orbits is also shown. Note that, for
first-order resonances, the pericentric and apocentric branches do not join smoothly on the circular branch, in contrast to the 3/1 case, and “gaps” of elliptic periodic
orbits appear. The extent of these gaps can be seen by superimposing the unperturbed (µ = 0, dotted curves) families of periodic orbits. Instead, for p/(p + 1)
resonances, the pericentric branch of the p = k + 1 resonance (e.g., 4/3) is connected with the apocentric branch of the p = k resonance (resp. 3/2) through a

branch of circular periodic orbits. The deviation of these connecting circular bra
approached. Finally, elliptic branches of different resonances cannot intersect but
ND HADJIDEMETRIOU

3.1. Circular Problem

Let us assume Jupiter to move on a circular orbit around the
Sun and consider a uniformly rotating frame of reference in the
plane of motion, (x, y), the origin of which is at the center of mass
of the two bodies and the x axis is on the Sun–Jupiter line. The
unit of mass is the sum of the masses of the two bodies (µ is the
ratio of Jupiter’s mass to the total mass) and the unit of distance is
the radius of Jupiter’s orbit. By setting the gravitational constant
G = 1, the period of Jupiter becomes TJ = 2π . It can be proved
that, in this rotating frame, there exist families of periodic orbits
of the massless body (asteroid) symmetric with respect to the x
axis. We can distinguish between circular and elliptic families
of periodic orbits. Along a circular family the eccentricity of the
asteroid stays close to zero, but the semi-major axis and the mean
motion vary. In contrast, along an elliptic family, the eccentricity
of the asteroid increases from zero to unity, while the semi-major
axis and the mean motion stay almost constant. In all cases of
nches from the unperturbed circular family becomes more evident as Jupiter is
may seem to do so, since the sign of ẏ0 is not specified on the plot.
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At each of the 34 resonances studied here there exists a fam-
ily of resonant periodic orbits, symmetric with respect to the x
axis. Any orbit of this family is uniquely determined by a point
(x0, ẏ0) in the (x, ẏ) space of initial conditions (with y0 = 0
and ẋ0 = 0). Thus, each family is represented by a continuous
curve, the characteristic curve, in the (x0, ẏ0) space. Instead, we
can represent these families in the (x0, energy) space, where by
“energy” we denote the value of the Jacobi constant. Some of the
above-mentioned families are shown in Fig. 1. Each elliptic fam-
ily is composed of two branches: the pericentric one (asteroid
initially at perihelion, � = 0) and the apocentric one (asteroid
initially at aphelion, � = π ). The specific shape of the curves
depends on the value of µ. Figure 1 corresponds to the actual
value of Jupiter’s mass, µ = 0.000954786.

3.2. Elliptic Problem

In the elliptic problem, families2 of resonant (p + q)/p peri-
odic orbits can bifurcate from a point of the elliptic branch of
the family of the circular problem, if the period is exactly equal
to T = p 2π . For a particular resonance, such bifurcation points
may or may not exist. As can be seen in Table I3 (some examples
are shown in Fig. 2a) this condition is not fulfilled for most of the
resonances studied here; the characteristic curves, in the (x0, T )
space, do not intersect the T = p 2π line. The only resonances
for which periodic orbits continue in the elliptic problem are
the 2/1, 3/1, 4/1, and 5/2 in the inner belt and the 7/4, 5/3,
11/7, and 3/2 in the outer belt. Thus, most resonant multiplets
do not have a secular node (i.e., an island of libration) and the
most efficient mechanism of eccentricity transport is absent. In
the inner belt, the only resonances possessing this property are
those associated with the known Kirkwood gaps (except for the
7/3 case, which we will study in a separate section). In the outer
belt, the 3/2 resonance (where the Hildas reside) and some of
the resonances associated with the “gaps” noted by Holman
and Murray (1996) also carry periodic orbits in the elliptic
problem.

3.3. 3D Problem

The aforementioned analysis is restricted to co-planar orbits.
A more complete analysis of the dynamics requires the study
of the possible continuation of the families of periodic orbits in
a 3D configuration space. This is done by adding to the equa-
tions of motion of the circular problem the z component and
assessing the vertical stability of each 2D periodic orbit. The
stability index is the trace of the monodromy matrix, A, for in-
finitesimally small displacements along the z direction. A 2D

periodic orbit is said to be vertically stable if |tr(A)| < 2; oth-
erwise it is unstable. Periodic orbits for which tr(A) = ±2 are

2 These families are parametrized by the eccentricity of the perturber, e′.
3 Only resonances with q ≤ 7 for the inner belt and q = 5 for the outer belt

are shown in Table I, since these are the cases for which a numerical study was
also performed.
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TABLE I
Mean Motion Resonant Structure of the Asteroid Belt

ares TL Esc TL Esc
(p + q)/p (AU) e′ �= 0 i �= 0 (3BP) (3BP) (OSS) (OSS)

9/2 1.91 — — 2.096 — 0.705 —
4/1 2.06 0.25 — 0.165 3/3 0.110 3/3
7/2 2.26 — — 0.174 — 0.250 1/3

10/3 2.33 — — 0.437 — 0.819 —
3/1 2.50 0.00, 0.80 ? 0.076 3/3 0.068 3/3
11/4 2.65 — — 0.835 — 1.345 —
8/3 2.70 — — 0.145 — 0.121 —
5/2 2.82 0.15, 0.60 — 0.175 3/3 0.090 3/3
12/5 2.90 — — 0.227 — 0.351 —
7/3 2.96 — * 0.066 2/3 0.074 3/3
9/4 3.03 — — 0.065 — 0.078 2/3

11/5 3.08 — — 0.081 — 0.113 —
13/6 3.11 — — 0.163 — 0.215 —
2/1 3.28 0.73 0.67, 0.80 0.029 2/3 0.064 3/3

11/6 3.47 — — 0.032 1/3 0.040 2/3
9/5 3.52 — 0.46? 0.026 3/3 0.030 3/3
7/4 3.58 0.10, 0.36 — 0.015 3/3 0.009 3/3

12/7 3.63 — — 0.037 — 0.068 —
5/3 3.70 0.00, 0.41 0.30, 0.40 0.014 3/3 0.017 3/3
13/8 3.76 — — 0.135 — 0.137 —
8/5 3.80 — — 0.012 3/3 0.041 3/3
11/7 3.85 0.02 — 0.026 1/3 0.029 2/3
3/2 3.97 0.46 0.39, 0.43 0.037 2/3 0.064 3/3

Note. Each resonance is indicated by the ratio n/n′ (first column). The reso-
nances are given in ascending order of their nominal locations, a = ares (second
column). The horizontal line marks the beginning of the outer belt. The next two
columns show the value of e of the periodic orbit of the circular problem, which
corresponds to the bifurcation point (if it exists) for the elliptic problem (e′ �= 0)
and the 3D problem (i �= 0). TL is the Lyapunov time (in years if multiplied by
105) for an initial e = 0.1. “Esc” denotes the number of escapers from each res-
onance in the 3BP integration of RUN-II (sixth column). The last two columns
are again TL and “Esc,” but for the OSS integration of RUN-II.

called vertical critical orbits, from which a family of 3D peri-
odic orbits bifurcates. Performing these computations (see again
Fig. 2a) we found that, again, most of the resonances studied do
not posses vertical critical orbits. Continuation in the 3D prob-
lem occurs only for the 3/1, 2/1, 9/5, 5/3, and 3/2 resonances
(see Fig. 2b). We note that the 3/1 and the 9/5 are “patholog-
ical cases” with respect to this kind of study. By this we mean
that the stability index has steep variations, so that an accurate
determination of the eccentricity of the bifurcation point is not
easy (a question mark is placed in the corresponding cell of
Table I). The 9/5 resonance is the only case for which continu-
ation in the 3D problem but not in the elliptic problem occurs.
As for the 7/3 case, we simply note here that 3D periodic orbits
do not bifurcate from the plane, but still this is not the whole
story.

3.4. Summary
As shown here, the majority of mean motion resonances in
the main belt (25/34 studied here) do not possess periodic orbits.
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FIG. 2. (a) The half-period, T/2, of a resonant periodic orbit (left) and the trace of the monodromy matrix (right), tr(A), are graphically presented for the
inner-belt resonances indicated on the plot. The bifurcation points for the elliptic problem are defined by the x0 value for which T/2 = pπ . The vertical critical
orbits are located at the values of x0 where tr(A) = 2. As can be seen on the plot, one bifurcation point for the elliptic problem and none for the 3D problem exist
for the 4/1 resonance. Two bifurcation points for the elliptic and none for the 3D problem are found for the 5/2 resonance. In contrast, no bifurcation point exists

for the 8/3 resonance. (b) The family of 3/2-resonant periodic orbits is shown as an example of vertical bifurcation. The x axis shows the eccentricity of the 2D
periodic orbit (circular problem). Two vertical critical orbits (tr(A) = 2) are found at e = 0.39 and e = 0.43.
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Thus, a slow—diffusive—evolution of chaotic orbits is expected.
However, “semi confined” chaotic orbits may also exist, for
which the only “escape” mechanism left (in the three-body
framework) would be Arnol’d diffusion. In the remaining cases,
which are the lowest order (i.e., stronger) ones, intermittent ec-
centricity transport is expected, due to the existence of libration
islands. Including more planets in the model may change this
picture, as described in Section 2. In the following section we
check the validity of these propositions, with the aid of numeri-
cal integrations.

4. NUMERICAL INTEGRATIONS—RESONANT ORBITS

The orbits of a large number of test particles were numeri-
cally integrated to study the long-term evolution of chaotic or-
bits started in the vicinity of mean motion resonances. The ini-
tial conditions of the planets were taken from the Astronomical
Almanac (2001, Epoch 2001 Feb 26.0) and were integrated for
a short time, until Jupiter came to pericenter. Particles reach-
ing q = 0.005 AU (Sun-grazers) or approaching a planet within
a distance smaller than 1.5 Hill radii were “ejected” from the
system. We used the MVS symplectic integrator (Wisdom and
Holman 1991) implemented in the SWIFT package (Levison and
Duncan 1994). The time step was set to τ = 10−2 TJ ≈ 43 days,
a compromise between accuracy4 and computational cost. The
integrations presented here sum up to several weeks of CPU time
on a custom PC/Pentium III.

In our first numerical experiment (hereafter RUN-I) we scan-
ned the “main belt” of the 3D elliptic three-body problem (here-
after 3BP), using sets of 280 test particles uniformly spread in
a (
a = 0.005, 2.0 ≤ a ≤ 3.4 AU). Four such sets were used
(1120 particles in total), each one being at a different initial
eccentricity level, with e = 0.05, 0.1, 0.15, and 0.2 (i.e., all
280 particles in a set had the same initial value of e). The rest
of the elements were given the values i = 5◦, � = �J, � = �J,
and λ = λJ. Both the equations of motion and the variational
equations (used for computing the maximal Lyapunov exponent)
were solved for each particle. The objective of this experiment
was to identify the main chaotic regions (resonances) of the
inner belt and check the associated transport properties (inter-
mittency vs diffusion) of chaotic trajectories for different values
of e. A 2-Myr solution of the variational equations was first
obtained (used for computing TL) and the orbits of those parti-
cles having TL ≤ 2 × 105 years were subsequently integrated for
250 Myr.

The value of 
a chosen here can be larger than a high-
order resonances’ width, which, in the pendulum approximation,
scales like δ� ∼ √

µ eq (for e ≈ eJ ≈ 0.05), where � = (
√

a −√

a0)/k and a0 is the nominal location of the resonance given by

Kepler’s law. To study chaotic motion in these thin resonances a

4 The accuracy of the MVS method is comparable to ε =O(µτ 2) ≈ 10−7

for the Bulirsch–Stoer method. People using this integrator typically select
τ between 20 (inner belt) and 80 (outer belt) days for long integrations
(tint > 100 Myr).
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second integration was performed (RUN-II), with particles ini-
tially placed inside the libration zone of each inner-belt (resp.
outer-belt) resonance of order q ≤ 7 (resp. q ≤ 5). Three parti-
cles per resonance were integrated (all having the same values
for i , � , and � as before) at three different eccentricity values,
e = 0.05, 0.01, and 0.15. The initial mean anomaly, M , was se-
lected by setting the critical argument, σ = p λ − (p + q) λJ +
q � , equal to the value at which the center of libration of the res-
onance is located (circular problem), i.e., σ = 0 for odd q’s and
σ = π for even q’s. Finally, the initial values of a were chosen
after performing a series of short-term numerical integrations,
in which a was shifted by small amounts δa ∼ 10−2 AU with
respect to a0. In this way most of the selected particles were
started in the chaotic zones of the respective resonances. While
scanning the (thin in a) high-order resonances, we found several
chaotic orbits (as shown by the behavior of the critical argu-
ments) for each value of e. In most cases we could not detect
a stability island (i.e., stable librations of σ ) in the middle of
the resonance, which means that chaos is the dominant behav-
ior in high-order resonances. Thus, although a larger number
of test particles would be desirable for a more refined analysis
of the dynamics, we expect this set of few particles to be rep-
resentative of the long-term evolution of chaotic orbits started
inside high-order resonances. The variational equations for this
set of 69 particles were integrated for 5 Myr, to enable detection
of even larger values of TL than in RUN-I. The equations of
motion were solved for a time span of 250 Myr. Both the varia-
tional equations and the equation of motion were solved within
two different models: (i) the 3BP model and (ii) the outer Solar
System (hereafter OSS) model, in which the particle is subject
to the (Newtonian) gravitational forces of the Sun and the four
outer planets. The purpose of the OSS intergation was to check
how the results of the 3BP model change when the effects of
additional planets are present.

4.1. The Lyapunov Time

Let us denote by v(t) the solution of the variational equations,
i.e., the norm of the displacement vector tangent to the orbit, after
time t . For chaotic orbits v(t) grows exponentially with time
and the limit γ = limt→∞{ 1

t ln[v(t)/v(0)]} is the value of the
maximal Lyapunov exponent. Its inverse, TL = 1/γ , is called the
Lyapunov time. Having derived a 2-Myr (or 5-Myr) record for
v(t), an estimate of γ is obtained by a linear least-squares fit on
ln v(t). Note that if TL > 4 × 105 (or 106) years we cannot safely
state that the orbit is chaotic, as a record of at least five times the
actual value of TL is needed for an accurate determination of γ

through fitting.
Figure 3 shows graphically the results of RUN-I. It is evident

that a small fraction of particles (from 7% for e = 0.05 to 10%
for e = 0.2) follow chaotic trajectories. These are seen as dips
in the distribution of TL. The upper bound of TL, which is
indicated by the existence of a plateau in the graphs, reflects
the short integration time. Chaotic orbits with very small val-

ues of TL cannot be identified. A few peaks with TL larger
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than the plateau value are also seen. These are an artifact of
the fitting method and appear when a nearby chaotic zone in-
duces large variations in the finite time series of ln v(t) of a
regular orbit, which has a zero-slope secular trend. As noted on
the figure, the initial value of a for these particles coincides with
the location of the main mean motion resonances. For e = 0.05,
chaotic trajectories are found only in the 4/1, 3/1, 5/2, 7/3, and
2/1 resonances. As the eccentricity is increased, more and more
resonances are seen to generate chaos. For e = 0.2, most of the
inner-belt resonances shown in Table I lead to chaotic motion,
but the wide stability island of the 2/1 resonance also manifests
itself.

Let us now take a deeper look at the high-order resonances.
The results of RUN-II are shown in Fig. 4 (also Table I). Most of
these particles follow chaotic orbits, both in the 3BP and the OSS
integration. Only 5/69 particles in the 3BP and 2/69 in the OSS
model, all starting at e = 0.05, seem to reside on regular orbits.
Note that, as expected, the value of TL continuously decreases
as Jupiter is approached, as well as when the eccentricity is
increased. Almost all chaotic orbits have TL ≤ 105 years and
about half of them have TL ≤ 104 years, no matter what their
initial eccentricity value. Note also that the differences between
the 3BP and the OSS integration are minimal. This result implies
that the degree of chaoticity of mean motion resonant orbits,
as measured by TL, is already determined by the three-body
problem. However, the transport properties of this phase-space
subset need not be preserved as well.

4.2. Long-Term Orbital Stability

In RUN-I a total of 90/1120 particles (8%) were found to
follow chaotic orbits with TL ≤ 2 × 105 years. These orbits were
integrated for 250 Myr. Particles started in the gap resonances
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FIG. 5. The eccentricity evolution is shown for four RUN-I particles, started in the vicinity of the 2/1, 3/1, 5/2, and 7/3 resonances respectively. The initial

eccentricity of each orbit is also shown in the plot. Large amplitude, intermittent,

all cases.

a Mars-crossing orbit. On the other hand, particles started at
higher order resonances survived for the entire integration time

span. Figures 5 and 6 show the time evolution of the eccentricity

of some selected resonant particles. According to the results
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FIG. 6. The eccentricity evolution is shown for four RUN-I particles, started in the 8/3, 9/4, 11/4, and 13/6 resonances respectively. As the aforementioned

riodic orbits, a slow diffusion of e is found and the time scale
resonances do not carry periodic orbits, a small-amplitude, diffusive, evolution of
retains linear correlations for t ∼ 100 Myr (see Section 4.3).
jumps in e, associated with the existence of resonant periodic orbits, are seen in

presented in Section 3, low-order resonances that carry periodic
orbits induce intermittent jumps in e, leading particles to planet-
crossing orbits. Conversely, in resonances that do not have pe-
e is observed. The 13/6 orbit shown here is an example of stable chaos, as e(t)
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TABLE II
Inner-Belt Escapers of RUN-II

Fate Fate
(p + q)/p e0 (3BP) TMC Tesc (OSS) TMC Tesc

4/1 0.05 →Sun 40.470 40.541 →Sun 0.283 9.420
0.10 →Sun 10.130 10.202 →Sun 0.265 1.823
0.15 →Sun 0.146 0.218 →Sun 0.295 6.728

7/2 0.15 — — — →Sun 65.600 82.960
3/1 0.05 →Sun 7.400 64.035 →Sun 0.820 1.200

0.10 →Sun 1.900 86.001 →Sun 0.760 3.660
0.15 →Sun 2.600 85.260 →Sun 0.216 24.487

5/2 0.05 MC 0.246 — →Jup 0.920 32.332
0.10 MC 0.312 — →Jup 0.130 16.503
0.15 MC 0.042 — →Jup 0.134 14.647

7/3 0.05 →Jup 86.045 153.068 →Jup 47.772 47.923
0.10 →Jup 23.300 217.705 →Jup 73.577 74.135
0.15 MC 19.400 — →Jup 5.840 6.542

9/4 0.10 — — — →Jup 118.700 118.972
0.15 — — — →Jup 167.720 169.244

2/1 0.05 →Sun 14.570 183.423 →Sun 63.850 96.485
0.10 →Sun 205.904 206.399 →Sun 34.860 39.054
0.15 — — — →Sun 65.503 71.318

Note. The resonance ratio and the initial eccentricity of the test particle are
given in the first two columns. The fate of the particle, where MC stands for
Mars-crosser, is then shown. TMC (in Myr) is the time at which the orbit first
crosses the one of Mars, i.e., q < 1.5 AU, and Tesc (in Myr) is the time at which
the orbit encounters either Jupiter or the Sun (q < 0.005 AU). The last three
columns refer to the OSS integration. All escapers are Mars-crossers, so MC is
written only for those that do not end up as Jupiter-crossers or Sun-grazers.

for reaching planet-crossing values may be much longer than
250 Myr. Note that there are no large differences in terms of TL

among the integrated particles, however, the escape time may
vary by orders of magnitude. This result implies that the escape
time depends more on the overall phase space structure near a
given resonance than on the value of TL.

We concentrate on the results of RUN-II. A summary of the re-
sults is given in Table I. In the 3BP model 42.0% of the integrated
particles “escaped” from the belt. Outer-belt particles encoun-
tered Jupiter and were ejected on hyperbolic orbits. On the other
hand, inner-belt particles attained Mars-crossing eccentricities
and some of them reached a pericenter distance q ≤ 0.005 AU,
thus “falling” into the Sun. In the OSS integration the percent-
age of escapers increased, as expected, to 53.6%. None the less,
half of the particles, despite the fact that most of them follow
chaotic orbits as shown here, survived for 250 Myr. In the 3BP
integration the only inner-belt particles that escaped were the
ones started inside the gap resonances, i.e., the 2/1, 3/1, 4/1,
5/2, and 7/3 resonances. All these resonances, apart from the
7/3 one, carry resonant periodic orbits in the 2D elliptic prob-
lem. The peculiarity of the 7/3 resonance will become apparent
in a following section. In the outer belt this correlation seems to
be lost, as particles escape also from resonances that do not have

periodic orbits. However, no particle starting near the 12/7 or the
13/8 resonance escaped. The OSS integration was not very dif-
ND HADJIDEMETRIOU

ferent in terms of escaping particles. The gap resonances were
evacuated. Three more inner-belt particles, two from the 9/4
region and one from the 7/2 region, escaped. In the outer belt
three more escapers were also found (one from each of the 11/6,
11/7, and 3/2 resonances) but the 12/7 and 13/8 particles still
survived for the entire integration time span. The fate of the “es-
capers” and the time of escape, Tesc, are given in Table II for
inner-belt particles and in Table III for outer-belt particles. The
fact that in the OSS model only a few more escapes are found, as
well as the data concerning the escape time (Tables II and III),
lead to the conclusion that the evolution of chaotic orbits is faster
in the OSS model. However, for this set of small-eccentricity
orbits no dramatic changes were detected, with respect to the
3BP behavior. This last remark holds for the “thin” resonances
(q ≥ 4).

The particles that survived the integration sum up to 58.0% in
the 3BP model and 46.4% in the OSS model. For these orbits a
set of time-averaged elements was computed, as an approxima-
tion to proper elements, which are quasi-integrals of motion. A
time series for these averaged elements, aP, eP, and sin IP, was
derived, using a running window (as in Tsiganis et al. 2001) of
length N , corresponding to 10 Myr,

XP(ti ) = 1

N

i+N/2∑
j=i−N/2

X (t j ), (2)

where XP stands for any element. The variations of the values
of the XP’s with time is an indicator of orbital stability. This can

TABLE III
Outer-Belt Escapers of RUN-II

(p + q)/p e0 Tesc (3BP) Tesc (OSS)

11/6 0.10 119.856 78.452
0.15 — 28.256

9/5 0.05 31.929 62.630
0.10 33.976 14.804
0.15 94.400 10.543

7/4 0.05 0.172 0.087
0.10 0.016 0.014
0.15 8.133 0.188

5/3 0.05 3.182 0.724
0.10 1.041 1.358
0.15 0.053 0.028

8/5 0.05 10.115 0.461
0.10 8.800 2.452
0.15 3.243 0.325

11/7 0.10 — 192.294
0.15 39.945 43.666

3/2 0.05 54.221 8.472
0.10 — 34.699
0.15 47.910 6.928
Note. The resonance ratio, the initial eccentricity, and the time (in Myr) of
encounter with Jupiter is given for each particle.
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FIG. 7. The surviving particles of the RUN-II integrations are shown on the planes of the time-averaged elements (aP, eP) (top) and (aP, sin IP) (bottom). The

left panels are the results of the 3BP integration, and the right panels correspond

of which are the mean values of the corresponding elements, XP, and the superim

be quantified by means of the standard deviation of XP,

σ (XP) =
√√√√ M∑

i=1

(XP(ti ) − 〈XP〉)2

M
, (3)

where M is the number of points in the time series of the av-
eraged element and 〈XP〉 is the mean value of the averaged
element. The results of these calculations are shown graphi-
cally in Fig. 7, where each of the remaining particles is repre-
sented by a point, the coordinates of which are the corresponding
mean values of aP, eP, and sin IP. The error bars, superim-
posed on each point, have a length equal to the correspond-
ing values of σ (aP), σ (eP), or σ (sin IP). It is evident from this
plot that there are two types of orbits surviving the integration,
a feature common both to the 3BP and the OSS models. In
the 3BP integration about half (48%) of the surviving orbits
have σ (eP) < 0.005, σ (aP) < 10−3 AU, and σ (sin IP) < 10−3.
The rest of the orbits show a tendency of becoming unstable,
as the variations of eP and sin IP are larger. Only two orbits
have σ (eP) > 0.01 and five orbits have σ (sin IP) > 0.01. We re-
mind the reader that almost all orbits are in fact chaotic with

5
TL < 10 years. In the OSS integration the percentage of orbits
with σ (eP) < 0.005 increases to 81% (26/32). Again, only two
to the OSS integration. Each particle is represented by a square, the coordinates
posed error bars have a length equal to the respective value of σ (XP).

orbits have σ (eP) > 0.01 (one of which also has σ (sin IP) > 0.01)
and two orbits have σ (sin IP) > 0.01. Finally, almost all OSS
surviving orbits have σ (aP) < 10−3 AU. We note that, for the
survivors, eP is more stable in the OSS integration. However,
an orbit-by-orbit comparison should not be attempted. Mean
motion resonances are not fixed in space in the OSS model. Fur-
thermore, as osculating elements have additional quasi-periodic
forced variations in the OSS model, an initial osculating value
of e0 corresponds a different value of eP in each model.

4.3. Long-Time Correlated Motion—Stable Chaos

As alreadly mentioned, the orbits of most of the nonescap-
ing particles are chaotic. However, there appear to be two dis-
tinct types of chaotic motion. The difference is visible in the
time evolution of the autocorrelation function, r (t), of the De-
launay actions. As was first noted in Tsiganis et al. (2000,
2002), there exist chaotic orbits, which are the ones that we
refer to as stable-chaotic, that have a very characteristic spec-
trum of autocorrelation times. The autocorrelation function rL(t)
of the action conjugate to the mean longitude (L = √

a) decays
exponentially with time (as expected for a chaotic signal) on
a time scale comparable to the Lyapunov time. On the other

hand, rG(t) and rH(t), which are the autocorrelation functions
of the eccentricity- and inclination-related Delaunay actions
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FIG. 8. The autocorrelation functions r (t) for the three actions L , G, and H are shown (from top to bottom) as functions of time. The unit of the time lag, k,

corresponds to 100 TJ ≈ 1200 years. Two stable-chaotic orbits are shown in this figure. Note that rL(t) decays exponentially with time on a time scale comparable
to T ∼ 104 years. The other two actions have autocorrelation functions that vary
L

(respectively G = L
√

1 − e2 and H = G cos i), show an extre-
mely slow decay with time, retaining linear correlations for
t � TL (often for t > 103 TL). In fact rG(t) and rH(t) seem to
evolve in an almost quasi-periodic manner. As conjectured by
Tsiganis et al. (2002), this picture is consistent with the near
conservation of an additional, local, integral of motion. We note
that this property does not hold for all cases of chaotic orbits
that survive for a long integration time, and it can be used to dis-
tinguish between the slow diffusion predicted by the model of
Murray and Holman (1997) and what we refer to as stable chaos.

Among the particles that survived in the OSS integration, both
slow and stable chaos is present. The autocorrelation functions
of all three actions are shown in Figs. 8 and 9 for four charac-
teristic trajectories of different behavior. These plots were pro-
duced using the first 25 Myr of the osculating elements. Two
stable-chaotic orbits are shown (Fig. 8), for which rL(t) decays
fast while rG(t) and rH(t) are almost quasi-periodic functions of
time. A slowly diffusing chaotic orbit, for which all r (t)’s decay
exponentially with time on a very similar time scale, is shown

in Fig. 9. Finally, intermediate cases can be found (Fig. 9), for
which a strong quasi-periodic component and slowly decaying
almost quasi-periodically with time.

amplitudes of rG(t) and rH(t) are observed. We note that the
orbits for which all three r (t)’s decay exponentially with time
have the largest values for σ (aP), σ (eP), and σ (sin IP).

4.4. The 7/3 Resonance

This resonance is a rather puzzling case. As seen in Section 3,
no bifurcation point from which the periodic orbits of the circu-
lar problem can continue was found, either in the elliptic or in
the 3D problem. Thus one can conclude that there is no “fast”
mechanism of eccentricity transport in the 3BP model. However,
the 7/3 particles integrated in the 3BP model, both in RUN-I and
in RUN-II, did manage to become Mars-crossers. Moreover, as
shown in Figs. 5 and 10, their eccentricity evolution shows an in-
termittent pattern, with jumps up to e ≈ 0.55, a picture consistent
with the existence of an island of libration. The same initial con-
ditions were used in a more accurate Bulirsch–Stoer integration,
and the results remained the same. For this reason we decided
to perform another integration (in both models) of 24 test par-
ticles set initially in the 7/3 resonance on an 8 × 3 grid in the

(a, e) space, with 2.9515 ≤ a ≤ 2.9605 AU and e = 0.05, 0.1, and
0.15. The rest of the orbital elements, as well as the integration
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FIG. 9. The same as in Fig. 8, but for two different chaotic orbits. The left panel shows a slowly diffusing chaotic orbit, for which all three autocorrelation

functions decay exponentially on a similar time scale. The right panel shows an intermediate case, where the amplitudes of rG(t) and rH(t) decay slowly, while a
strong quasi-periodic component persists.
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FIG. 10. The time evolution of a, e, and i for a 7/3-resonant orbit with
e0 = 0.15, in the 3BP model. Note the intermittent behavior of e. This behavior

is accompanied by larger variations of a about ares and also by a higher mean
value of i , as seen on the plots.
parameters, were given the same values as in RUN-II. Checking
the critical argument, σ = 3λ − 7λ′ + 4� , we verified that most
of the particles again followed chaotic orbits.

In the 3BP integration 13 particles (54%) became Mars-
crossers, 6 of which encountered Jupiter before the end of the
integration. All of these orbits presented the same intermittent
eccentricity behavior as in the previous runs. Figure 11 shows
the projection of such an orbit on the (φ = � − �J, e) plane.
The picture reveals the existence of an island of libration, as-
sociated with a stable periodic orbit centered at e ≈ 0.4, φ = π .
The number of Mars-crossers increased to 14 (58.3%) in the OSS
integration, all of which encountered Jupiter. The inclusion of
more perturbing planets speeds up the evolution of chaotic or-
bits significantly. What is more important, though, is that the
evolution of the orbital elements is quite different. Secular res-
onances (the ν5 and ν6) are now responsible for the growth of
the eccentricity (see Fig. 12).

The question of course still remains as to why we were not
able to detect the bifurcation point. We note that the stability
index of the family of periodic orbits of the 2D problem shows a

peak of tr(A) = 1.99965 at e ≈ 0.37, i.e., very close to the value
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FIG. 11. A projection of the orbit shown in Fig. 10 on the (φ, e) plane. It is
clear that the intermittent jumps in e are related to the libration island, centered
at e ≈ 0.4, φ = π .

of e at which the periodic orbit seems to be located (Fig. 11). We
are quite confident though that the curve does not intersect the
tr(A) = 2 line, as the calculations were performed at an accuracy
of 10−14. By increasing the mass of Jupiter and recalculating the
periodic orbits, we found that the situation becomes worse, as the
maximum value of tr(A) decreases. The apparent inconsistency
between our numerical results for the 7/3 resonance and the
study of periodic orbits (Section 3) leads us to consider the pos-
sibility of this being a phenomenon that we did not take into ac-
count before. As a test, we integrated another set of 24 particles,
with the same initial values for a, e,� , andσ as before, but on the
same plane as Jupiter. The difference between the 3D case and
the co-planar one turned out to be remarkable. Although most
of the orbits remained chaotic, none presented an intermittent
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FIG. 12. Evolution of a 7/3-resonant orbit, starting with e0 = 0.15 in the
OSS model. No intermittent jumps are observed in the eccentricity time se-
ries. The large jumps of e, and subsequent escape, are correlated with the li-

bration/circulation of the ν6 secular resonant argument, ν6 = � − � ∗

S , where
� ∗

S = g6 t + � ∗
S, 0 is a linear approximation of Saturn’s perihelion longitude.
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eccentricity evolution and no Mars-crossers were found within
250 Myr. Almost all orbits had quite small variations in both aP

and eP. Therefore, the intermittency seen before is clearly a 3D
phenomenon. Thus, no bifurcation point exists and the periodic
orbit seen in the numerical results must belong to an irregular
family, i.e., a family of 3D periodic orbits that do not bifurcate
from the iP = 0◦ plane. This claim is supported by Fig. 13, where
an intermittent orbit is projected on the (φ, e) plane, by splitting
the data into two parts, (i) for i ≤ 6◦ and (ii) for i > 6◦. It is clear
that the orbit is semiconfined within a small region of the (φ, e)
plane when the inclination is small, while it escapes to much
larger values of e only if the inclination is large enough.

A resonant periodic orbit occurs when all angles, σ , φ, and
θ = � − �J (in the 3BP), are stationary. In the three-body
problem a periodic orbit coincides with the secular resonance
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FIG. 13. Projection of another 7/3-resonant orbit on the (φ = � − �J, e)
plane (3BP model). If we split the data in two parts according to the value of the
inclination, we see that the behavior is different for i < 6◦ than for i > 6◦. On the
top panel (i < 6◦), the orbit explores a small region of the plane, defined roughly

by e < 0.15. When i > 6◦ (bottom), chaotic wandering around the libration island
forces the eccentricity to reach values up to 0.6.
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g = s = 0. In the absence of resonance among the fast angles the
frequencies g �= 0 and s �= 0 are determined by secular theory for
different values of a, e, and i . Therefore, to have a periodic orbit,
the mean motion resonance must be strong enough to modify g
and s so that they become zero at some point(s) in the (a, e, i)
space. For the lowest order (i.e., stronger) 2/1, 3/1, 4/1, and
5/2 resonances the condition g = 0 is found to hold for some
co-planar orbits (the node is not defined) and these are the pe-
riodic orbits that are continued from the circular problem. This
is not true for the 7/3 and most of the higher order resonances.
However, the condition g = s = 0 may be fulfilled at higher val-
ues of i . This is what we observe in the 7/3 case. Thus, periodic
orbits may also exist for higher order resonance ratios, but these
orbits must be located at high inclinations (probably i > 15◦).

4.5. A Note on the 3/2 Resonance and the Hilda Group

Most of the particles that we set initially in this resonance
escaped (2/3 in the 3BP and 3/3 in the OSS model). As a group
of resonant asteroids (the Hildas) is known to reside in this res-
onance, this outcome may seem strange. We note, however, that
the 3/2 resonance is a first-order resonance of width in a that
is quite large. The small number of particles set in resonance is
not representative, especially since they were selected on pur-
pose to be in the chaotic zone close to the resonance inner border.
Several papers have been devoted to the dynamics of the 3/2 res-
onance and the apparent contradiction between the existence of
the 3/2 resonant group and the 2/1 Hecuba gap (see Lemaitre
and Henrard 1988, Nesvorný and Ferraz-Mello 1997, Ferraz-
Mello et al. 1998; also see Moons 1997). Hadjidemetriou and
Voyatzis (2000) found that a large part of the phase space, larger
than in the 2/1 resonance, leads to chaotic motion in the 3/2 res-
onance. However, as their results show, secondary resonances
do not overlap completely, in contrast to the 2/1 case, and a
large number of chaotic orbits is expected to be “trapped” in the
libration island of this resonance. In this respect, many Hildas
may be thought of as stable-chaotic asteroids.

Instead of exploring this resonance by integrating the orbits of
fictitious asteroids we decided to integrate the orbits of the real
Hildas. The initial conditions of 144 objects were taken from the
AstDys database.5 In the same database a catalogue of proper
elements and Lyapunov exponents, calculated by Knežević and
Milani (2000), can also be found. As shown by these data, a
large number of Hildas follow chaotic orbits. We verified this
result by performing a 4-Myr integration (OSS model) of the
variational equations (Fig. 14). Forty-nine Hildas (34%) have
TL ≤ 4 × 105 years. We integrated the orbits of these objects for
100 Myr into the future. Asteroid 19752 was found to encounter
Jupiter by the end of the integration (Tesc ≈ 96.4 Myr). Apart
from this case of hyperbolic escape, the computations of the

time-averaged elements show that the rest of the particles are
quite stable, having σ (aP) ∼ 10−4 AU, σ (eP) ∼ 5 × 10−4, and

5 http://hamilton.dm.unipi.it/astdys.
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FIG. 14. Histogram of log TL for the 144 Hildas, integrated in the OSS
model. Forty-nine objects are concentrated to the left of the vertical line, which
marks the TL = 4 × 105 years border.

σ (sin IP) ∼ 5 × 10−4. Based on these results one may be tempted
to label the Hildas as examples of stable chaos. Calculations of
the autocorrelation functions of the actions show that most of
the Hildas are in fact diffusing, but at a very slow pace. We
note that the phase-space geometry in the vicinity of the 3/2
resonance is very different from the high-order cases studied
before. The basic topological feature in this case is the wide
island of libration, and the Hildas are semiconfined inside this
island. Thus the diffusion process by which chaotic Hildas can
escape is probably very different from the one observed in high-
order resonances (described by Tsiganis et al., 2002) and further
study of this behavior should be made.

5. CONCLUSIONS

We will now try to answer the question that we posed in the In-
troduction of this paper. In our first numerical experiment (RUN-
I) we have seen that a fraction of ∼10% of test particles placed
inside the 3BP “belt” followed chaotic orbits, due to the action
of the main mean motion resonances with Jupiter, typically with
TL < 2 × 105 years. In RUN-II we found that higher order res-
onances also lead to chaotic motion, with TL < 105 years. In
particular we have seen, during our test integrations, that chaos
is the typical orbital behavior in medium/high-order resonances,
at least for orbits starting with e0 ≥ 0.1. Thus, even in the three-
body problem, the volume of phase space covered by chaotic so-
lutions is appreciable. However, many of these trajectories have
orbital elements that are remarkably stable. We will attempt to
explain this contradiction, by trying to understand which of the
chaos-generating mechanisms (described in Section 2) act on
each one of the 34 resonances studied in this paper.
In the inner asteroid belt (1.9 ≤ a ≤ 3.3 AU) a total of 21 reso-
nances of order 1 ≤ q ≤ 9 exist. Apart from the “gap resonances”
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(2/1, 3/1, 4/1, 5/2, and 7/3), none of the rest carries periodic
orbits. The 7/3 is the only resonance for which a possible irregu-
lar family of periodic orbits was detected. We cannot exclude the
possibility of having resonant periodic orbits for other commen-
surabilities, but these orbits must be located at high inclinations.
The existence of resonant periodic orbits leads to fast, intermit-
tent eccentricity transport, as we have also seen in our numerical
results. The word “fast” is only used in contrast to the “slow,” dif-
fusive evolution which takes place in the vicinity of resonances
that do not carry periodic orbits. The actual time needed for an
asteroid to escape from a gap resonance may be quite long, and
the percentage of orbits that lead to escape may be small com-
pared to the width of the libration zone of the resonance. The
escape time is controlled by the period of secular evolution in
the resonance, as this period defines the time needed for an orbit
to travel around the island of libration of φ = � − �J. Further-
more, the escape time also depends on the initial eccentricity of
the asteroid as well as on the distance of the resonance from a ma-
jor planet, since the planet-crossing value of e is approximately
given by ec = |ares − a′|/a′. Of course, the overlapping among
the resonant harmonics further enhances chaotic transport in-
side the resonances that carry periodic orbits. In the remaining
16 resonances studied in this paper, which do not carry peri-
odic orbits, chaos is solely generated by the overlapping of the
harmonics of the resonance multiplet. No escapes were found
in the 250-Myr 3BP integration and, moreover, the orbital ele-
ments of chaotic orbits are, in general, remarkably stable. From
the results presented in Tsiganis et al. (2002), one can infer that
this picture also holds for resonances with q > 9. According
to the analytic theory of Murray and Holman (1997), which is
valid for resonances that do not carry periodic orbits, the escape
time for orbits starting from inner-belt resonances with q > 5
and e0 ∼ 0.1 should be longer than the age of the Solar Sys-
tem. Remember that this will be the case if resonance overlap
among the terms of the multiplet is complete, i.e., the whole
eccentricity axis is connected. If not, something which is ex-
pected to be rather common, semiconfined chaotic motion (i.e.,
stable chaos), will also occur. Many orbits of this kind, which
are characterized by a nearly quasi-periodic evolution of e and
i for extremely long times, were also found in our integrations.

As an overall evaluation of our results for the inner belt, we
can conclude that there exists a correlation between gaps in
the distribution of asteroids and resonances that carry periodic
orbits. Imagine a simplified model of our planetary system, con-
sisting of the Sun, a Jupiter-like (µ ∼ 1/1000) planet, and a disk
of small bodies, inner to the planet. As shown in our results, the
resonances in which the Kirkwood gaps are presently observed
are the only resonances inner to the 11/6 that have the ability
to sculpt gaps in the small-body disk, at least for times compa-
rable to the lifetime of our Solar System. This is because only
these resonances can force asteroids to develop planet-crossing
or Sun-grazing orbits on a time scale of ∼100 Myr. Of course,

complete evacuation of these gaps would not occur, since secular
resonances (i.e., more planets) are needed to destroy the stability
ND HADJIDEMETRIOU

islands and enhance eccentricity transport for a much larger vol-
ume of initial conditions. In this three-body model, as our results
show, the majority of resonances would be inefficient in creat-
ing gaps, at least for orbits starting in the small-eccentricity and
small-inclination region (e < 0.15, i ≤ 15◦). If more perturbing
planets are taken into account, the effect of medium/high-order
mean motion resonances (with no periodic orbits) would not be
very different from the 3BP model. This means that the pulsa-
tion of resonances, induced by the precession of Jupiter’s orbit,
does not enhance significantly the overlap among the terms of
a resonant multiplet. Also, because q ≥ 3, these resonances are
too “weak” to significantly modify the values of the secular fre-
quencies, with respect to those predicted by secular theory. Thus,
secular resonances do not occur inside these resonances either.
Therefore, the existence of a significant number of resonant as-
teroids on slowly diffusing, or even stable-chaotic, orbits should
not be a surprise.

For the outer-belt resonances, the role played by periodic or-
bits is not so clear. The theory of Murray and Holman (1997)
predicts that the escape time, due to diffusive chaos, can be
very small. The diffusion rate depends on the order of the res-
onance and the initial value of the asteroid’s free eccentricity.
In fact orbits with e0 ∼ 0.1 can become Jupiter-crossing within
108 years in most of the resonances studied. The 7/4, 5/3, and
8/5 resonances should be the most efficient ones, and this is
also shown in our results. Especially for the 7/4 and 5/3 cases,
resonant periodic orbits were also found to exist. However, the
overlap among the terms of the resonant multiplet is certainly
exhaustive in these two resonances. Taking into account that
adjacent resonances also begin to overlap at e > 0.15, we can
understand why most of the orbits starting from the vicinity of
the 7/4 and 5/3 resonances should cross Jupiter’s orbit within
less than 1 Myr. Thus, the fact that periodic orbits do exist for
these resonances may be of no significance at all, since the sta-
bility island is probably destroyed and its associated chaotic
layer could not be viewed separately from the large, connected,
chaotic sea. On the other hand, higher order resonances, such as
the 12/7 and 13/8, have a characteristic escape time which is
∼109 years for e ∼ 0.1. Since no other transport mechanism (i.e.,
periodic orbits) exists for the 12/7 and 13/8 cases, no escape
within a 250-Myr integration should be expected, and this is
what we actually observed. When all outer planets are included,
eccentricity transport in the outer belt is also enhanced. There
are, however, still regions, like the 12/7 resonance, where stable
chaos persists (see Tsiganis et al. 2000).
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Milani, A., A. Nobili, and Z. Knežević 1997. Stable chaos in the asteroid belt.
Icarus 125, 13–31.
Moons, M. 1997. Review of the dynamics in the Kirkwood gaps. Celest. Mech.
Dynam. Astron. 65, 175–204.
KIRKWOOD GAPS 299

Moons, M., and A. Morbidelli 1995. Secular resonances inside mean-
motion commensurabilities: The 4/1, 3/1, 5/2 and 7/3 cases. Icarus 114,
33–50.

Morbidelli, A., and M. Guzzo 1997. The Nekhoroshev theorem and the asteroid
belt dynamical system. Celest. Mech. Dynam. Astron. 65, 107–136.

Murray, N., and M. Holman 1997. Diffusive chaos in the outer asteroid belt.
Astron. J. 114, 1246–1259.

Murray, N., M. Holman, and M. Potter 1998. On the origin of chaos in the
asteroid belt. Astron. J. 116, 2583–2589.

Nautical Almanac Office, U.S. Naval Observatory 2001. The Astronomical
Almanac, U.S. Government Printing Office, Section E3.
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