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Abstract. We examine whether the macroscopically measured diffusion rate in the chaotic region
of a time-perturbed classical pendulum depends on the value of the maximal Lyapunov characteristic
number,λ. In this respect we calculate the functionsλ(l),w(l), λ(ε) andw(ε), wherel denotes the
physical length of the pendulum,ε the strength of the perturbation andw the width of the stochastic
layer around the separatrix. We find that all these functions follow power laws. In particular, both
λ(l) andw(l) scale as the Lyapunov exponent and the width of the resonance of the unperturbed
system, i.e. asl−1/2 and l3/2, respectively. It follows that the width of the stochastic layer is
proportional toλ−3 so that, for sufficiently small values ofl, stochastic diffusion is restricted to a
thin layer and, therefore, practically does not depend onλ.

1. Introduction

In a series of papers by Lecar and co-workers (Soperet al1990, Lecaret al1992a, b, Franklin
et al 1993, Murisonet al 1994), numerical evidence was presented on the possible existence
of a law pertaining to the motion of asteroids in the outer asteroidal belt. According to these
results, the value of the maximal Lyapunov characteristic number (LCN),λ, of an asteroid’s
trajectory is connected to the time interval (‘event time’,TE) needed for this asteroid to become
a planet crosser, through a relation of the form

logTE = a + b log
1

λ
. (1)

The maximal LCN is defined as the value at which the functionχ(t) = {ln[d(t)/d(0)]}/t
saturates, where byd(t)we denote the phase-space distance of two initially nearby trajectories
differing byd(0) at t = 0.

It is evident that the existence of such a relation implies an anti-correlation between the
value of theLyapunov time, TL = 1/λ, and thediffusion rateof the trajectory in action space.
Equivalently, it states that the extent of action space that the trajectory can visit within a fixed
time interval is an increasing function ofλ. Milani and co-workers on the other hand (Milani
and Nobili 1992, Milaniet al 1997) have argued against the concept of a simple relationship
between chaos and dynamical lifetime, drawing the attention to the discovery of asteroids with
largeλ which do not become planet crossers for time intervals several orders of magnitude
longer than the ‘event time’ (TE) estimated through equation (1).
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Recently, Varvoglis and Anastasiadis (1996) showed that, in the case where transport may
be considered as governed by a classical Fokker–Planck diffusion equation and the diffusion
space is assumed to be infinite and simply connected, a relation of the form of (1) may be
recovered analytically. However, the situation where large-scale transport in action space is
inhibited by the existence of some kind of ‘quasi-barriers’, i.e. surviving invariant tori and
cantori (for 2D systems) or higher-dimensional geometrical objects (fornD systems,n > 2),
is common in Hamiltonian systems (see Shlesingeret al 1993, Varvogliset al 1997, Tsiganis
et al1998, Barbaniset al1998). If we assume that transport in the presence of ‘quasi-barriers’
can still be described by a Fokker–Planck equation, the existence of a law of the form of (1),
i.e. a connection between themacroscopicallymeasured diffusion rate to certain dynamical
properties of the system, should depend on the topological structure of the diffusion space as
well.

Of particular interest would be a dynamical system where trajectories can assume large
values ofλ and yet remain for a long time in a ‘narrow’ stochastic region. Such behaviour
has been observed in asteroidal motion near high-order mean motion resonances in the outer
asteroid belt, where Murray and Holman (1997) have shown that equation (1) is violated and
the diffusion coefficient is action dependent. We argue that this comes as a result of the
complicated topological structure of these phase-space regions, where KAM tori and other
‘quasi-barriers’ can restrict the available phase space. Of course, in Hamiltonian systems
with three (or more) degrees of freedom, Arnold diffusion can account for the migration
of confined chaotic trajectories in action space, but not within physically meaningful time
intervals. However, even if thesticking of chaotic trajectories to ‘quasi-barriers’ does not
last very long, it is enough to establish different transport properties for different phase-space
regions (see also Varvogliset al1997, Tsiganiset al1998). Since such dynamical systems are
rather complex, we decided to use a suitable ‘toy model’ in this paper.

Based on the above considerations we chose to study the ‘classical’ pendulum, perturbed
by a time-dependent force of the formε cos(θ−ωt). It is known that in the case where low-order
resonances do not overlap the dynamics near a resonance are similar to that of a modulated
pendulum (Elskens and Escande 1991). This is also true for simple models describing motion
near a mean motion resonance in the asteroid belt under the effect of secular frequencies, as
discussed in Morbidelli and Froeschlé (1996). In a more recent work Nesvorný and Morbidelli
(1998) present an analytic model of three-body resonances (including Saturn). They show that
the averaged Hamiltonian, expressed in resonance variables, can be reduced to that of a simple
pendulum and, ignoring the secular terms, is integrable. The same holds for the averaged planar
circular restricted three-body problem which is a classic model used for the understanding of
the main features of the dynamics near a mean motion resonance. This dynamical system of
the perturbed pendulum also models other interesting physical processes, such as the motion of
a charged particle in the field of two electrostatic plasma waves, and as such has already been
studied extensively (Doveil and Escande 1981, Escande and Doveil 1981, Codaccioniet al
1982). In the unperturbed case, the characteristic exponent of the principal unstable periodic
trajectory as well as the width of the primary resonance, which gives a natural estimate of
transport in action space, depend on the pendulum’s physical length,l, and can be evaluated
analytically (see section 2). The effect of increasing the value ofl is to decrease the positive
characteristic exponent,µ+, of the unstable trajectory and to ‘expand’ the phase space in the
p-direction (i.e. to increase the width,1p, of the primary island). It would be reasonable, then,
to expect that the perturbed pendulum would have, at least in some cases, similar properties,
i.e. thatλ(l) andw(l) would depend onl on the same way as, correspondingly,µ+ and1p,
wherew denotes the width of the stochastic layer. If this is true, then trajectories within the
stochastic layer can obtain large values ofλ, while being confined in a thin chaotic region, so
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that the diffusion rate does not depend effectively on the value of the maximal LCN.
The ‘natural’ parameters of a classical pendulum are its length,l, its mass,m, and the

value of the gravitational acceleration,g. However, by keeping the mass and the acceleration
of gravity constant, the equations of motion can be cast in a form depending only on one
parameter, the length,l. If a perturbation is introduced, a second parameter should describe
the perturbation strength. In our numerical experiments we examined the dependence ofλ in
the vicinity of the principal unstable periodic trajectory and the width,w, of the stochastic
layer that develops around the separatrix of the 1:1 resonance, on the values of the strength of
the perturbation and the length of the pendulum. In the next section we describe in detail our
model. Our numerical results are presented in section 3, and the last section is devoted to a
discussion.

2. The model

The dynamical system described above is defined by a Hamiltonian of the form,

H = H0 + εH1 = p2
θ

2ml2
−mgl cosθ + ε sin(θ − ωt). (2)

In the above equations (θ, pθ ) are the canonical variables andω is the perturbation’s frequency.

2.1. The integrable case

The characteristic exponent of the unstable equilibrium point, as well as the width of the
resonance of the classical pendulum, can be found in the literature (see e.g. Lichtenberg and
Lieberman 1983). For reasons of completeness, however, we decided to include here a brief
section on their derivation. The phase space of a simple pendulum defined byH0 is shown
in figure 1. The separatrix, for whichh0 = mgl, passes through the hyperbolic fixed point at
(θ, pθ ) = (π, 0). A stability analysis around this point can be easily performed by solving the
variational equations

ξ̇ = Aξ = (�S)ξ (3)

where� is the unit symplectic matrix and S is the Hessian matrix ofH0 calculated at the fixed
point. The solution of (3) is

ξ(t) = C+eµ
+t +C−eµ

−t (4)

whereµ+ > 0 andµ− < 0 are the eigenvalues of A andC± are constants which depend upon
the initial conditions. Thus, the characteristic exponents of the unstable periodic orbit of the
integrable system take the values

µ± = ±
√
g/l ∝ l−1/2. (5)

In the integrable case there exists a ‘natural’ measure of the maximum change in momentum,
pθ , which is the width of the island of the primary resonance,1p (see figure 1). This can also
be found analytically from equation (2) by settingθ = 0,1p = 2pmax, H0 = h0 = mgl and
ε = 0. The solution then yields

1p = 4m
√
gl3 ∝ l3/2. (6)

Introducing now the nonlinear term, one would like to know (a) whether the value of the
maximal LCN,λ, and the width of the stochastic layer,w, of trajectories in the neighbourhood
of the unstable periodic orbit show any scaling withε andl, and (b) whether this scaling has
any similarity to the scalings ofµ+ and1p of the unperturbed system calculated above.
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Figure 1. The phase space of a classical pendulum. On the left, marked with arrows, the maximum
change in momentum,1p, indicates the width of the island.

2.2. The non-integrable case—numerical approach

We consider the non-integrable pendulum whose Hamiltonian is defined by equation (2).
Hamilton’s equations are then given by

θ̇ = pθ

ml2

ṗθ = −mgl sin(θ)− ε cos(θ − ωt).
(7)

We integrated numerically the above equations forg = 10 andm = 1 using a fourth-order
Runge–Kutta algorithm with adaptive step-size control (Presset al 1992) with the accuracy
level being always set to 10−16 (machine accuracy), for initial conditions in the vicinity of the
unstable point. We followed a standard numerical technique for the calculation of maximal
LCN’s (see e.g., Lichtenberg and Lieberman 1983) integrating simultaneously two initially
close-by trajectories. Since the variation of the pendulum’s length changes the energy of the
unperturbed system, we selected the values ofε in such a way as to represent a certain fraction
of h0 (recall that byh0 we denote the value of the Hamiltonian at the separatrix of the integrable
system).



LCN and the width of the stochastic layer in a pendulum 435

We studied the system for perturbation strengths in the range 0.01h0–0.1h0. The length
of the pendulum in all cases took values in the interval [1, 10]. The canonical equations
were integrated over a long time interval, namelyt = 2 × 105T , whereT = 2π/ω0 and
ω0 = (g/l)1/2 is the frequency of small oscillations of the unperturbed pendulum. This
is necessary for a good estimation ofλ, since the presence of secondary islands inside the
stochastic region may result in prominent stickiness effects, which would prevent the function
χ(t) from saturating fast to the value of the maximal LCN.

The perturbation frequency was set toω/ω0 = 1 for all our experiments. Thus, we are
always on the 1:1 resonance; otherwise our results would not be compared consistently. During
our study we have also tried different frequency ratios. However, deriving a scaling law for the
width of the stochastic layer with the perturbation strength was extremely difficult for these
ratios, since at largeε merging of the stochastic region with neighbouring major subharmonics
occurs, something which is not observed in the caseω = ω0 which is presented in this paper.

Adding a perturbation term to the Hamiltonian forces the stable manifold,WS, of the
homoclinic orbit to intersect with the unstable one,WU. The width of the stochastic layer

Figure 2. Surface of section forε = 0.05h0. The arrows indicate the location in phase,θ , at which
thep-width of the stochastic layer is measured, namelyw+

0 andw−0 at θ = 0 andwπ at θ = π .
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Figure 3. Convergence of the functionχ(t) at the maximal LCN value,λ, aftert = 2× 105T for
ε = 0.05h0.

Table 1. The scaling exponentα1 for different values ofε.

ε α

0.01h0 0.509± 0.015
0.05h0 0.492± 0.018
0.10h0 0.522± 0.027

Table 2. The scaling exponentsβ±θ for differentε.

ε β+
0 β−0 βπ

0.01h0 1.495± 0.024 1.468± 0.043 1.500± 0.013
0.05h0 1.514± 0.049 1.541± 0.059 1.500± 0.010
0.10h0 1.454± 0.052 1.555± 0.067 1.498± 0.007

Table 3. The scaling exponentc1 for different values ofl.

l c1

1.0 0.758± 0.051
2.0 0.765± 0.076
3.0 0.751± 0.096
5.0 0.766± 0.049
7.0 0.752± 0.067
10.0 0.773± 0.067

is then proportional to the distance between the two manifolds which is of O(ε), as can be
found by evaluating the Melnikov function (see e.g. Wiggins 1990). This result is not valid
for all values ofε. In particular, for the numerical results presented here, whereε > 10−2,
we believe that higher-order effects (i.e. merging of the homoclinic layer with neighbouring
subharmonics) are not entirely negligible. Thus, an analytic derivation of the exact relation
between the width of the stochastic region andε is by no means straightforward.



LCN and the width of the stochastic layer in a pendulum 437

Figure 4. Variation ofλ with l. The three different lines correspond to three different perturbation
strengths as marked on the graph. All of them indicate a power law with indexα1 ≈ 0.5.

3. Numerical Results

In figure 2 a surface of section plot is presented for the caseε = 0.05h0 and l = 1. The
corresponding(χ, t) plot is given in figure 3. Asε increases, the stochastic layer around
the separatrix of the 1:1 resonance becomes thicker. The maximal LCN is also a slightly
increasing function ofε, something that should be expected, sinceλ is a measure of the
system’s stochasticity, which is enhanced asε is increased. The exact scaling ofλ with ε is
examined later in this section.

One of the goals of this paper is to investigate the dependence ofλ on the value ofl.
Figure 4 shows, in logarithmic scale, the variation ofλ as a function ofl for three different
values ofε = 0.01h0, 0.05h0 and 0.1h0. It is clear from the plot that the maximal LCN
decreases asl increases, following a power law,

λ = α0l
−α1 (8)

with α0,1 > 0. The values ofα1 were calculated through a least squares fitting method and are
presented in table 1, along with their errors, estimated at a 90% significance level (a method
of statistical analysis used throughout the paper). The interesting point is that the value of
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Figure 5. Variation of the coefficientα0, equation (8), withε. A power-law behaviour is again
observed.

α1 is equal, up to the numerical accuracy of our results, to the valueα1 = 0.5 obtained
for the unperturbed system, in equation (5). For the sake of completeness we examined the
dependence ofλ onε as well. Figure 5 is a plot of the corresponding values ofα0 for different
values ofε. We see thatα0 scales with the value of the perturbation as

α0 = constεγ (9)

whereγ = 0.146±0.025. We see that the relative value of the estimation error is, in this case,
rather large, due to the fact that for large values ofl there are secondary islands that affect the
accuracy of the calculations. To obtain a better valueγ we focused on thel = 1 case, for
which we foundγ = 0.1677±0.0220. Therefore we adopted the valueγ = 1

6. It is now easy
to conclude from equations (8) and (9) thatλ(l, ε) can be estimated through the relation

λ = constl−1/2ε1/6. (10)

Now, as far as the width of the stochastic layer is concerned, it is clear from the surface
of section plot that we cannot define auniquemeasure of it, since the width of the layer is a
function of the phase angle. For this reason we define the widthwπ = pθ,max−pθ,min atθ = π
and, in a similar way, the widthsw+

0 = p+
θ,max− p+

θ,min, w−0 = ‖p−θ,max− p−θ,min‖ at θ = 0,
where the sign + denotes the upper part of the stochastic layer (i.e. positive values ofpθ ) and
the sign− the lower (i.e. negative values ofpθ , see figure 2). Figure 6 shows(w+

0, l) plots for
the three different values ofε used in our calculations. From this figure and the corresponding
table 2 it is evident thatall three widths (w+

0, w
−
0 andwπ ) follow power laws of the form

wi ∝ lβi (i = 0, π) (11)

whereβ±0 andβπ denote the scaling exponents forw±0 andwπ respectively. In this case, also,
it is remarkable that all theβ-values are, up to our numerical accuracy, equal to 1.5. We recall
that this is the exponent of the power law giving the ‘natural’ width (the width of the island,
1p) of the primary resonance of the integrable system, as a function of the pendulum’s length
(see equation 6). In what follows, for reasons of notational simplicity, we are using the symbol
w0 in order to denotew+

0. It should be emphasized that the derived relations forw0 are valid
for all widthsw+

0, w−0 andwπ .
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Figure 6. Variation ofw0 with l for three different values of the perturbation strength. All of them
show a power-law behaviour of an indexβ0 ≈ 1.5.

As in the case of the maximal LCN, we also investigated the dependence of the width of
the layer onε for constantl. In figure 7 we present a plot ofw0 versusε for three different
values ofl, namelyl = 1, 5 and 10. Since the graph is a straight line in logarithmic scale, the
functional dependence ofw0 on ε is a power law

w0 = c0ε
c1 (12)

wherec1 has a value equal, up to the numerical accuracy of our results, to3
4 as can be seen

in table 3. Figure 8 is a plot of the corresponding values ofc0 for the same values ofl as in
table 3. We see thatc0 scales with the length of the pendulum as

c0 = constl1.514±0.037 (13)

where the exponent ofl is practically the same as in table 2, i.e.3
2. It is now easy to conclude,

from equations (11)–(13), that the width of the stochastic layer can be estimated through

w0 = const(l
√
ε)3/2 (14)
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Figure 7. Variation ofw0 with ε. The three curves represent three different values ofl, as marked
on the graph. The power-law index is the same for all of them, namelyc1 ≈ 3

4 .

Figure 8. Variation of the coefficientc0, equation (12), withl. The power law observed has an
index≈1.5.

4. Discussion

The main purpose of this paper was to study transport in the action space of a model non-
integrable Hamiltonian system for the particular case where the stochastic region may not be
considered as being infinite and simply connected. The motivation was that in the opposite
case numerical (Murisonet al 1994) as well as theoretical (Varvoglis and Anastasiadis 1996)
considerations show that the ‘crossing time’ of a particular region of action space is directly
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related to the Lyapunov time (i.e. the inverse of the maximal LCN).
From our numerical experiments we have found that, in the simple dynamical system of the

classical pendulum selected for study, the value,λ, of the maximal LCN in the neighbourhood
of the unstable periodic trajectory as well as the width,w, of the stochastic layer around the
separatrix follow power laws with respect to the physical length,l, of the pendulum and the
strength,ε, of the perturbation. In particular, for the case of the 1:1 resonance presented in the
previous section,λ is adecreasingfunction,

λ ∝ l−1/2

whilew is anincreasingfunction

w ∝ l3/2
of l.

Therefore, in the case of a periodically driven pendulum the width of the stochastic layer
is inversely proportional to the cube of the maximal LCN andl may be selected in such a
way, as to result in a ‘narrow’ stochastic layer from which trajectories cannot escape, although
characterised by large maximal LCN’s. One then may think of higher-dimensional systems,
where the presence of ‘quasi-barriers’ (as defined in this paper) may restrict trajectories for very
long times in certain regions of phase space, making the macroscopically measured diffusion
rate practically independent of the value ofλ. This effect has been discussed recently by Lecar
(1996), as well as by Murray and Holman (1997), for the case of the outer asteroid belt and
it may explain the conflicting results of Murisonet al (1994), on one hand, and Milani and
Nobili (1992) on the other.

As far as the relation ofλ andw to the perturbation strength is concerned, we have shown
that there is a power-law dependence of the form,

λ ∝ ε1/6

and

w ∝ ε3/4.

The above results hold for the case ofω = ω0 presented in this paper. As already mentioned
in section 2, we also examined other frequency ratios during our study. For these cases the
functional dependence ofw andλ on the perturbation strength,ε, is not clear, since at large
ε’s merging of the stochastic layer with major subharmonics occures. This effect prevents us
from fitting scaling laws for this range ofε, although it is clear that bothλ(ε) andw(ε) are
increasing functions ofε. Moreover,λ(l) is again a decreasing function ofl, while w(l) is
an increasing one, so that the anticorrelation between the maximal LCN and the width of the
stochastic layer holds.
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