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In a previous publication (Tsiganis et al. 2000, Icarus 146, 240–
252), we argued that the occurrence of stable chaos in the 12/7 mean
motion resonance with Jupiter is related to the fact that there do
not exist families of periodic orbits in the planar elliptic restricted
problem and in the 3-D circular problem corresponding to this res-
onance. In the present paper we show that nonexistence of resonant
periodic orbits, both for the planar and for the 3-D problem, also oc-
curs in other jovian resonances—namely the 11/4, 22/9, 13/6, and
18/7—where cases of real asteroids on stable-chaotic orbits have
been identified. This property may provide a “protection mecha-
nism,” leading to semiconfinement of chaotic orbits and extremely
slow migration in the space of proper elements, so that diffusion
is practically unrelated to the value of the Lyapunov time, TL, of
chaotic orbits. However, we show that, in more complicated dy-
namical models, the long-term evolution of chaotic orbits initiated
in the vicinity of these resonances may also be governed by secular
resonances. Finally, we find that stable-chaotic orbits have a charac-
teristic spectrum of autocorrelation times: for the action conjugate
to the critical argument the autocorrelation time is of the order
of the Lyapunov time, while for the eccentricity- and inclination-
related actions the autocorrelation time may be longer than 103TL.
This behavior is consistent with the trajectory being sticky around
a manifold of lower-than-full dimensionality in phase space (e.g., a
4-D submanifold of the 5-D energy manifold in a three-degrees-of-
freedom autonomus Hamiltonian system) and reflects the inability
of these “flawed” resonances to modify secular motion significantly,
at least for times of the order of 200 Myr. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

of Helga and the remarkable stability of its orbital elements,
One of the most interesting, newly discovered, phenomena in
Solar System dynamics is a type of asteroid motion commonly
referred to as stable chaos. The first example, asteroid (522)
Helga, was given by Milani and Nobili (1992), who used the
aforementioned oxymoron to stress the apparent contradiction
between the short value of the Lyapunov time,1 TL ≈ 7,000 years,
1 The Lyapunov time is defined as TL = 1/γ , where γ is the Lyapunov char-
acteristic exponent, i.e., the average rate of exponential divergence of initially
close-by orbits, a standard measure for chaos.
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which do not change appreciably for times of the order of 103TL.
This asteroid, having proper semi-major axis aP ≈ 3.63 AU and
proper eccentricity eP ≈ 0.05, is situated close to the nominal lo-
cation of the 12/7 mean motion resonance of the restricted three-
body problem. The authors found the corresponding critical ar-
gument, σ = 7λ − 12λJ (where λ denotes the mean longitude
and the subscript J refers to the elements of Jupiter through-
out this paper), to alternate between libration and circulation
(in both senses), concluding thus that the 12/7 resonance is
the mechanism responsible for chaos. The explanation, given
in their paper, for the stability of Helga’s orbit was a secular
protection mechanism, related to the evolution of the argument
� − �J (where � is the perihelion longitude), which is mostly
librating. The maximum value of the osculating eccentricity
(e ≈ 0.1) is achieved when � − �J ≈ 0 and, thus, conjunction
with Jupiter occurs at perihelion and close encounters between
Jupiter and Helga cannot remove this object from the resonance.
Further evidence concerning stable chaos in the neighborhood
of Helga was presented by Holman and Murray (1996), who
integrated 10 clones of Helga for 5 Gyr, finding both late es-
capers (with escape times greater than 800 Myr) and surviving
particles.

Subsequently, Milani et al. (1997) showed that asteroids in
stable chaos (ASCs) are quite frequent in many places of the
main asteroid belt, as well as the Trojan swarms, raising thus
an important question concerning the overall stability of the
ateroid belt(s). The authors concluded that the occurrence of
stable chaos in the main belt must be related to medium- to high-
order mean motion resonances; Dvorak and Tsiganis (2000) ar-
gue that, similarly, stable chaos in the Trojan swarms is gener-
ated by nonlinear secular resonances. However, not every case
of stable chaos found so far can be explained by the sole action
of high-order mean motion resonances. For example, the large
variations of the semi-major axis of the asteroid (490) Veritas
can only be explained by employing the notion of three-body res-
onances (Nesvorný and Morbidelli 1998, see also Murray et al.
1998) of the Jupiter-Saturn-asteroid type, defined by the relation
pλ̇J + qλ̇S + r λ̇ � 0, where p, q, and r are integers satisfying
the d’Alembert rules. Šidlichovský (1999) performed a numeri-
cal integration of the orbits of the first 100 numbered asteroids,
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a large fraction of which turned out to be chaotic. Among these
objects some were found to be in a mean motion resonance with
Jupiter, some in a mean motion resonance with Mars, and the
rest in a three-body resonance.

In a previous publication (Tsiganis et al. 2000, hereafter
Paper I) we revisited the problem of the motion of (522) Helga.
We performed a numerical integration, showing that the orbital
elements of Helga remain stable for times of the order of 2 Gyr.
However, integrating a group of particles with an initial phase
shift with respect to Helga, we found that most particles es-
caped within 50 Myr, with a mean escape time of ∼10 Myr.
The remaining particles where the ones that had initial phases
in the interval −π/3 ≤ � − �J ≤ π/3, and Helga resided in the
border between the escaping and the surviving set. Other orbits
with almost identical behavior to that of Helga were also found
close to these borders. Also, the time series of the eccentricity-
related Delaunay actions had correlation times that were much
longer (by many orders of magnitude) than the Lyapunov time.
The results were almost the same when the perturbations of all
four outer planets were taken into account. This picture fits well
into a stickiness scenario, as proposed by Murison et al. (1994)
and Varvoglis and Anastasiadis (1996), but the clearly chaotic
evolution of the critical argument σ = 7λ − 12λJ implies that, if
the notion of stickiness is to be used, it should be extended for
many-dimensional dynamical systems (for a detailed discussion
see Paper I). We will come back to this point at the end of the
present paper.

In Paper I, the main family of resonant periodic orbits of the
12/7 resonance, which appear as fixed points in a Poincaré sec-
tion of the planar ciruclar restricted three-body problem, was
studied. We found however that, contrary to several other mean
motion resonances, e.g., the 2/1 and 3/1 resonances, there does
not exist on this family a bifurcation point for families of pe-
riodic orbits of the elliptic problem and of the 3-D problem.
This means that as soon as the orbit of Jupiter becomes ellip-
tic, no periodic orbits at this resonance exist, and the same is
true for 3-D orbits. As a consequence, the phase space at this
resonance is expected to be “smooth,” because the periodic or-
bits (or fixed points of the Poincaré map, or fixed points of
the averaged Hamiltonian) typically appear in stable–unstable
pairs but, in this case, no stable and unstable manifolds ex-
ist in the phase space. Since the homoclinic loops, associated
with the unstable periodic orbits, are known to divide the plane
(X = e cos(� − �J), Y = e sin(� − �J)) into three, topologi-
cally distinct, regions (internal circulation, libration, and exter-
nal circulation), we concluded that this is not the case in the
12/7 resonance. This in turn means that, in the three-body prob-
lem, the mechanism which in other resonances (e.g., the 3/1
case; Hadjidemetriou 1993a) was found to be responsible for
the transport of chaotic orbits from low- to high-eccentricity
regions of the phase space does not exist in the 12/7 mean
motion resonance. Thus, the eccentricity of chaotic orbits, ini-

tiated in the vicinity of this resonance, cannot grow easily to
Jupiter-crossing values. For proper eccentricities of the order
CHAOS 455

of the forced eccentricity, eP < eJ ≈ 0.048, libration orbits ex-
ist, while for eP > eJ the argument � − �J is circulating. For
(522) Helga, having eP ≈ eJ, the critical argument barely man-
ages to circulate. This behavior, which persists even when all
outer planets pertub the asteroid, can be considered as a pro-
tection mechanism, in accordance with the results of Milani
and Nobili (1992). We note however that, in models containing
more than one perturbing planet, the depletion of a gap corre-
sponding to an orbital resonance is drastically enhanced by the
overlap of secular resonances that are generated inside the li-
bration zone of the orbital resonance (Moons and Morbidelli
1995). This is in fact the presently accepted mechanism for
the depletion of the resonances associated with the Kirkwood
gaps.

In the present paper we study the motion of asteroids in the
vicinity of the 11/4, 13/6, 18/7, and 22/9 mean motion reso-
nances, in the same spirit as in Paper I. These resonances appear
to be associated with the stable-chaotic motion of the asteroids
(50) Virginia, (6) Semele, (2) Pallas, and (33) Polyhymnia, re-
spectively, according to Šidlichovský (1999). In the next section
we focus on a numerical study of the long-term evolution of
these four real ASCs. In Section 3 we show that all these reso-
nances share the same property as the 12/7 resonance, namely
the nonexistence of periodic orbits in the 3-D space and in the
case where the orbit of Jupiter is elliptic. This is clear from the
fact that there does not exist a bifurcation point on the main fami-
ly of periodic orbits of the circular problem to periodic orbits
either of the 3-D problem or of the elliptic problem. In Sec-
tion 4 we present the results of a numerical simulation of the
evolution of fictitious asteroids, initially set in the vicinity of
these resonances. We show that, in a limited number of cases,
the long-term evolution of these asteriods and the stability of
their proper elements can change, due to the action of secular
resonance, when all outer planets are taken into account. Also,
we examine the properties of the autocorrelation spectra of the
action time series of stable-chaotic orbits. Finally, a discussion
and conclusions are given in Section 5.

2. LONG-TERM EVOLUTION OF THE REAL ASCs

First we discuss the setup of the numerical experiments pre-
sented in this study. Then we give the results concerning
the long-term dynamical evolution of the four real ASCs, whose
chaotic behavior can be related to a mean motion resonance with
Jupiter (Šidlichovský 1999).

2.1. Numerical Setup

Two dynamical models are used throughout this paper: (i)
the 3-D elliptic restricted three-body problem (hereafter 3BP)
and (ii) the 3-D outer Solar System (hereafter OSS) model, in
which all four outer planets are considered to interact through
Newtonian gravity and perturb the massless asteroids (particles).

The integrator used is the symplectic integrator of Wisdom and
Holman (1991), as it is implemented in the SWIFT package
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(Levison and Duncan 1994), with a time step of δt = 10−2TJ ≈
43 days in all cases. In the following, the time unit will be
the revolution period of Jupiter, TJ ≈ 11.86 years. The initial
conditions for the planets were taken from the Astronomical Al-
manac (2000) for the epoch JD 2451600.0 (2000 Feb. 26.0 TDT)
and the initial conditions of the asteroids (for the same epoch)
were taken from the free-access MPCORB.DAT database, pro-
vided by the Minor Planet Center (ftp://cfa-ftp.harvard.edu/pub/
MPCORB/MPCORB.DAT).

2.2. Results

First, a 105TJ integration was performed, in both models, for
(2) Pallas, (33) Polyhymnia, (50) Virginia, and (86) Semele, in
order to verify the results of Šidlichovský (1999) concerning
the associated chaos-generating resonances and the Lyapunov
time of their orbits. Then the results were extended by perform-
ing a 108TJ ≈ 1.2 Gyr integration of the same objects, again in
both models, to check the long-term (in)stability of their orbital
elements.

In the first run (105TJ) with the OSS model, the orbits of
these asteroids turned out to be chaotic with their Lyapunov
times being in the range 5,000–20,000 years, as in Šidlichovský
(1999). Also, the critical arguments corresponding to the res-
onances, noted in the same paper, were found to alternate be-
tween libration and circulation in an erratic manner, indicating
that chaos is generated by these resonances. If Jupiter is taken
as the sole perturbing body,2 the situation is somewhat different.
The Lyapunov time for Pallas, Semele, and Virginia is almost the
same, but the motion of Polyhymnia seems to be regular. The
time evolution of the deviation vector shows a linear diver-
gence (γ → 0 ⇒ TL → ∞) at least for an integration spanning
≈10 Myr, and the critical arguments associated with the 22/9
resonance show fast circulation. Thus we conclude that, using
the same set of initial conditions also in the 3BP model, “Poly-
hymnia” falls out of the 22/9 resonance. The quotes are used
here to stress the fact that a simulation of the orbital evolution
of these “asteroids” under such a simplified model (Jupiter as
the sole perturbing body) is not representative of the evolution
of the real objects.

The time needed for a notable change in the orbital elements
of these asteroids is much longer than their Lyapunov time, as
was found from a 108TJ ≈ 1.2 Gyr integration. We quantify their
orbital stability by computing a set of time-averaged elements
(which can be considered as an approximation to proper ele-
ments) using a running-window averaging, similar to the one
used by Morbidelli and Nesvorný (1999), of

i+N/2
XP(ti ) = 1

N

∑
j=i−N/2

X (t j ), (1)

2 We used the orbital elements of Jupiter at the aforementioned epoch instead
of the commonly used values.
ND HADJIDEMETRIOU

TABLE I
Averaged Elements of the Real ASCs

Asteroid aP ± σ (a) eP ± σ (e) sin(IP) ± σ (sin I )

3BP model
Virginia 2.6506 ± 0.0001 0.2540 ± 0.0010 0.0522 ± 0.0042
Pallas 2.7718 ± 0.0003 0.3198 ± 0.0036 0.5497 ± 0.0016
Polyhymnia 2.8664 ± 0.0000 0.3053 ± 0.0000 0.0399 ± 0.0003
Semele 3.1072 ± 0.0003 0.2173 ± 0.0275 0.1288 ± 0.0491

OSS model
Virginia — — —
Pallas 2.7701 ± 0.0003 0.2854 ± 0.0030 0.5475 ± 0.0003
Polyhymnia 2.8662 ± 0.0004 0.2998 ± 0.0005 0.0410 ± 0.0004
Semele 3.1062 ± 0.0009 0.1767 ± 0.0101 0.0490 ± 0.0108

where X stands for a, e, or i , and the width of the window, N ,
corresponds to 106TJ. Taking successive averages every 105TJ,
a time series for the averaged element XP is obtained. The sta-
bility of these orbital parameters can be visualized in Fig. 1,
where a 2-D projection of the respective time series for all four
asteroids (i) on the (aP, eP) plane and (ii) on the (aP, iP) plane
(for both models) is shown. The mean values, 〈XP〉, along with
the respective standard deviations, as calculated from the time
series of the averaged elements, can be found in Table I.

In the 3BP model the elements of Polyhymnia (22/9) are ex-
tremely stable for the whole integration time span and this is
consistent with the discussion made in the previous paragraph.
The elements of Virginia (11/4) are also very stable and only
a slight diffusion in the space of orbital elements is detected.
The situation is somewhat different for Pallas (18/7), as dif-
fusion in eccentricity becomes apparent for times greater than
≈200 Myr. However, the variations a and i of its semi-major
axis (a ∼ 10−3 AU) and inclination (i ∼ 0◦.5) are almost un-
detectable. The most unstable orbit is the one of Semele (13/6),
with the maximum variation being e � 0.1 in eccentricity and
i � 8◦.5 in inclination. We note though that its elements are
also quite stable for at least 200 Myr.

Although chaotic motion is expected to eventually lead to dif-
fusion in the space of orbital elements, the time scale necessary
for a notable change of the elements seems to be totally unrelated
to the value of the Lyapunov time; in the “worst” case (Semele)
it is longer than 104TL. Note also that all orbits have eccentrici-
ties larger than 0.2. For Semele this means that the proximity of
the 2/1 resonance cannot be neglected and, in fact, this may be
the mechanism that generates diffusion both in eccentricity and
inclination.

In the OSS model the results are almost the same for Polyhym-
nia (22/9) and Pallas (18/7) as in the 3BP model. Note though
that the mean values of the averaged elements differ from those
in the 3BP model. The variations of the elements of Polyhymnia
are still very small, although the situation is certainly different
from the 3BP case, and, surprisingly, the elements of Pallas are

more stable than before. The same holds also for Semele (13/6),
the variations being e � 0.03 in eccentricity and i � 2◦.5
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FIG. 1. A 2-D projection of the time series of the averaged elements for the four real ASCs on the (aP, eP) (top) and (aP, IP) (bottom) planes. The left frame

presents the results of the 3BP model; the right frame presents those of the OSS model. The length of the time series corresponds to �1.2 × 109 years. The names

of the asteroids are marked on the figure (see text for a discussion).

in inclination. The major difference however, with respect to
the 3BP model, is found for Virginia (11/4). In this integration
Virginia becomes a Jupiter-crosser after t ≈ 750 Myr and is sub-
sequently ejected from the main belt on a hyperbolic orbit.3 Note
that the variations of its inclination are small compared to the
observed eccentricity diffusion. No mean motion resonance with
Jupiter of significant order (other than the 11/4) is located close
to 2.65 AU. The question now is whether the resonances that
have already been identified as the associated chaos-generating
mechanisms are indeed the ones that force the orbits of Semele
and Virginia to grow unstable.

3. DYNAMICS IN MEAN MOTION RESONANCES

The study of asteroid dynamics near mean motion resonances
is usually performed in one of the following two ways: (i) con-
struction of a suitable averaged Hamiltonian and solution of the
canonical equations or (ii) computation of the location and sta-
bility character of the respective resonant periodic orbits in the
nonaveraged problem. Murray and Holman (1997) used the for-

mer way to study asteroid motion in the vicinity of high-order
mean motion resonances in the outer asteroid belt, while in this

3 One always has to remember that long-time numerical integration of chaotic
orbits cannot be taken as a deterministic prediction of future evolution.
work we follow the latter path. A comparison between these two
approaches will be given below.

We examine the phase-space structure in the vicinity of the
resonances under consideration, namely the 11/4, 13/6, 18/7,
and 22/9 mean motion resonances with Jupiter. First, the planar
circular restricted three-body problem (hereafter circular prob-
lem) is considered and a study of the main family of periodic
orbits in each of these resonances is performed. Then, we ex-
amine whether the corresponding families continue in (i) the
planar elliptic restricted three-body problem (hereafter elliptic
problem), where Jupiter is set to move on a fixed ellipse, and
(ii) the 3-D circular restricted problem (hereafter 3-D problem).

3.1. Circular Problem

Let us assume that Jupiter is moving on a circular orbit around
the Sun and consider a uniformly rotating frame of reference,
xOy, in the plane of motion, whose origin is at the center of mass
of the two bodies and the x axis is on the Sun–Jupiter line. The
unit of mass is the sum of the masses of the two bodies (µ is the
ratio of Jupiter’s mass to the total mass) and the unit of distance
is the radius of Jupiter’s orbit. Setting the gravitational constant
G = 1, the period of Jupiter becomes TJ = 2π . It can be proved
that in this rotating xOy frame there exist families of periodic
orbits of the massless body (asteroid) that are symmetric with

respect to the x axis. There are branches of families of periodic
orbits for which the orbit of the asteroid is nearly circular and
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FIG. 2. The characteristic curves on the x(0)–energy plane of the families
of periodic orbits of the resonances of the circular problem studied here. Apart
from the 11/4, 18/7, 22/9, and 13/6 cases, the curve corresponding to the 5/2
resonance is shown.

branches where it is elliptic. Along a circular branch the
eccentricity of the asteroid stays close to zero, but the semi-
major axis and the mean motion varies. In contrast, along the
elliptic branch, the eccentricity of the asteroid increases from
zero to unity, while the semi-major axis and the mean motion
stay almost constant. Stable and unstable orbits appear in all
elliptic families. A full description is beyond the scopes of this
paper and we refer to Hadjidemetriou (1993b) for a detailed
discussion.

We examine here the cases n/n′ = 11/4, 13/6, 18/7, and
22/9. At each of these resonances there exists a family of reso-
nant periodic orbits, symmetric with respect to the x axis. Any
periodic orbit of this family is uniquely determined by a point
(x(0), ẏ(0)) in the x–ẏ space (also y(0) = 0 and ẋ(0) = 0). Thus,
a family of periodic orbits is represented by a continuous curve,

called a characteristic curve, in the x–ẏ space of initial con- distinct regions and whose stochastic layer would be responsible

ditions. Instead, we can represent a family in the x–C space,

FIG. 3. (Left) The family of periodic orbits of the 11/4 resonance is plotted on the x(0)–T/2 plane (T is the period of the orbit). It is easily seen that the

for large-scale eccentricity transport, does not exist.
T/2 = 4π line is not crossed by any periodic orbit. Thus, a bifurcation cannot occ
for each one of the periodic orbits of the circular problem. All orbits have tr(A) <
ND HADJIDEMETRIOU

where C is the Jacobi “energy” constant. These families are
shown in Fig. 2. In the same figure, we also give the charac-
teristic curve for the 5/2 resonance, which will serve for com-
parison purposes. Note that, in the x–C diagram, a point does
not uniquely determine an orbit, since the sign of ẏ(0) is not
indicated. Thus, the points of intersection of the characteristic
curves seen in Fig. 2 do not represent the same orbit. Each fami-
ly is composed of two branches: the pericentric branch, where
the asteroid is initially at perihelion (� = 0), and the apocen-
tric branch, where the asteroid is initially at aphelion (� = π ).
These families correspond to a specific value (µ �= 0) of Jupiter’s
mass.

3.2. Elliptic Problem

The dynamical evolution of an asteroid close to a resonance
is determined by the topology of the phase space. This topol-
ogy depends critically on the stable and unstable periodic orbits
that exist, which appear as fixed points in a Poincaré surface of
section. Going from the simplistic circular problem to the more
complex elliptic problem, it is important to check the continu-
ation of the families of stable and unstable periodic orbits that
exist, in all cases, in the circular problem.

A family of resonant (p + q)/p periodic orbits of the elliptic
problem, with the eccentricity of Jupiter as a parameter, bifur-
cates from a point of the elliptic branch of the circular family,
where the period is exactly equal to T = p2π . For a particu-
lar resonance, this point may or may not exist. It can be eas-
ily seen in Figs. 3–6 that this condition is not fulfilled in any
of the resonances studied here (the 5/2 case is also shown in
Fig. 7 for comparison); the characteristic curves of each of these
resonances, in the x–T space, do not intersect the T = p2π line.
Thus, as in the case of the 12/7 resonance studied in Paper I, a
homoclinic loop, which would divide the polar plane into three
ur in the elliptic problem. (Right) The trace of the monodromy matrix is plotted
2 and no bifurcation can occur in the z direction.
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FIG. 4. The same quantities are plotted as in Fig. 3, but for the 18/7 resonance. The same comments apply also to this case.

FIG. 5. The same as Figs. 3 and 4 but for the 22/9 resonance. Again, no bifurcations can occur in the elliptic or the 3-D problem.

FIG. 6. The same as Figs. 3–5 but for the 13/6 resonance. Again, the conclusions about the continuation properties of the family of periodic orbits are the

same. Note that tr(A) approaches the critical value for 0.5 < x(0) < 0.7 but never reaches it (the calculations were performed with an accuracy of 10−14 in all
cases).
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FIG. 7. The same as Figs. 3–6 but for the 5/2 resonance (shown for comparison). There are two points (values of x(0)) at which the period of an orbit becomes

equal of 4π . These points define the eccentricity of two resonant periodic orbits of the elliptic problem. As in Fig. 6 many points approach the tr(A) = 2 line (right
panel) but no bifurcation point exists for the 3-D problem.
As mentioned above, a different approach to resonant mo-
tion, in the framework of the three-body problem, consists in
constructing an averaged Hamiltonian valid in the vicinity of
the resonance under consideration. This is achieved by expand-
ing the disturbing function and keeping, usually, only the lowest
degree secular terms plus the cosine terms associated with this
resonance (one invokes the averaging principle to get rid of the
rest). For this model to be realistic, the gross topology of the
phase space of the averaged problem should be as close as pos-
sible to that of the nonaveraged problem. Thus the location of
the fixed points of the averaged model and their stability char-
acter should be the same as those of the periodic orbits of the
nonaveraged problem. However, as discussed in Hadjidemetriou
(1993b) and also in Paper I, one usually encounters the problem
of “losing,” misplacing, and even changing the stability char-
acter of these fixed points, through the averaging process. For
example, in the case of the 3/1 resonance discussed in the fol-
lowing, the model of Wisdom (1983), being truncated to low
degree in e, did not include the high-eccentricity fixed points.
Thus, transport to e > 0.5 could not be predicted by this model.
There are two ways to overcome this problem, namely (i) us-
ing higher degree or local expansions of the disturbing function
or (ii) adding a correction term to the averaged Hamiltonian.
Klafke et al. (1992), using the former way, and Hadjidemetriou
(1993a), using the latter, recovered the high-eccentricity fixed
points of the 3/1 resonance. The difference turned out to be
significant as transport to e ≈ 0.9 can explain the existence of
the Sun-grazing 3/1 escapers that was noted by Farinella et al.
(1994).

In order to appreciate the action of the unstable resonant pe-
riodic orbits and their connection to large-scale transport, we
show an example for the 3/1 resonance in Fig. 8. This figure
was computed using the corrected averaged model introduced

by Hadjidemetriou (1993a). In both panels one can see two pairs
of equilibria, each pair consisting of one stable and one unstable
fixed point. These fixed points are the intersections of two stable
and two unstable families of 3/1 resonant periodic orbits with
the considered energy surface, H= const. There are two low-
eccentricity fixed points (stable at � − �J = 0 and unstable
at � − �J = π ) and two high-eccentricity fixed points (stable
at � − �J = π and unstable at � − �J = 0). As can be seen
in the left panel, small-eccentricity chaotic orbits can be trans-
ported to e ∼ 0.4 (in this system of polar coordinates e is the
distance from the center), by entering the chaotic layer asso-
ciated with the homoclinic orbit around the small-eccentricity
fixed point. In fact it is the island of libration, around which
the trajectory wanders, that leads to this eccentricity increase,
within a short time scale (half the secular libration period).
The same picture holds also for orbits starting in the vicinity
of the high-eccentricity fixed point. For this value of H, how-
ever, the two chaotic layers are disconnected. For higher values
of H (see right panel) an heteroclinic intersection can cause an
initially low-eccentricity orbit to “jump” to much higher val-
ues of e ∼ 0.9 by wandering, first, around the libration island
of the low-eccentricity fixed point and, afterward, around the
libration island of the high-eccentricity fixed point. It is easy to
imagine that the absence of a libration island and the associated
homoclinic layer, i.e., the absence of resonant periodic orbits,
implies that such a rapid growth of the eccentricity cannot take
place.

An important element of resonant dynamics in the elliptic
problem are the so-called secondary resonances, i.e., commen-
surabilities between the critical argument, σ , and the longitude
of pericenter, φ = � − �J , in the averaged problem, of the
form σ̇ + kφ̇ ≈ 0. The respective cosine terms appear explicitly
in the expansion of the disturbing function of the elliptic prob-
lem, forming the “resonance-multiplet.” The width in a of each
term of the multiplet with k �= 0 is also a function of Jupiter’s

eccentricity. If we study each term separately (this implies a
second averaging), it creates a pendulum-like picture in phase
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FIG. 8. The phase space in the vicinity of the 3/1 resonance (from Hadjidemetriou 1993a). The coordinates are e cos(� − �J ), e sin (� − �J ). In the left
panel one sees the homoclinic loop encircling the island of libration (centered at � − �J = 0) of the low-eccentricity periodic orbit, which drives chaotic orbits
up to e ≈ 0.4 (Mars-crossing values) within half the secular libration period. The effect of heteroclinic intersections with the high-eccentricity resonance is seen
in the right panel (taken for a different energy value), where wandering around the large libration island (centered at � − � = π ) leads to large-scale transport
J
in eccentricity, up to e ∼ 0.9 (Sun-grazers).

space. Their central fixed points are located at a different value
of a = ak. These fixed points correspond to periodic orbits of
the averaged problem and to 2-D tori of the three-degrees-of-
freedom (planar) nonaveraged problem. Murray and Holman
(1997) applied Chirikov’s criterion and showed that overlapping
of these resonances can produce large-scale chaos, resulting in a
“random-walk” behavior of a and an associated “random-walk”
in e. Their analytic results fitted numerical data very well in most
of the resonances they studied in the outer belt. We emphasize
that this model for chaos does not depend upon the existence of
resonant periodic orbits of the nonaveraged problem. In fact the
absence of resonant periodic orbits, for which both σ and φ are
stationary, is a condition for this model to be valid, as it ensures
that no mechanism for fast eccentricity growth exists. In this
respect the chaos found in the resonances studied in the present
paper should be attributed to the overlap of the multiplet terms.
The question now is how efficient this resonance-overlap is for
our inner-belt commensurabilities. If a connected chaotic region
that covers a wide eccentricity range (up to Jupiter-crossing val-
ues of e) is formed, then chaotic orbits will diffuse away. This
diffusion can be quite slow, depending on the order of the res-
onance, the distance from Jupiter, and the initial value of the
eccentricity, in accordance with Murray and Holman (1997). If,
on the other hand, the overlap is not so exhaustive, then there
can be a set of chaotic trajectories restricted within thin layers of
the phase space for which large-scale transport should not be ex-
pected within a reasonably short time scale. We believe that this

is the situation that one should refer to as stable chaos. Murray
and Holman (1997) also discussed the possibility of existence of
barriers to transport in phase space, but their calculations show
that, if they exist, they form a set of negligible measure in the
resonances they studied.

3.3. 3-D Problem

The above analysis is restricted to coplanar orbits. A more
complete analysis of the dynamics requires the study of the
continuation of the families of periodic orbits in a 3-D con-
figuration space. This is done by adding the z component to
the equations of motion and computing, for each one of the pe-
riodic orbits of the 2-D problem, the trace of the monodromy
matrix, A, for infinitesimally small displacements along the z
direction. The periodic orbit is then said to be vertically sta-
ble if the trace of the monodromy matrix, tr(A), is absolutely
smaller than 2; otherwise it is unstable. The periodic orbits for
which tr(A) = ±2 are the vertical critical orbits from which a
family of periodic orbits bifurcates to the 3-D space. Checking
the vertical stability of the periodic orbits in each family (see
Figs. 3–6), we found that no periodic orbit can bifurcate in the z
direction. Thus, there are no periodic orbits in the 3-D circular
problem for any of the above four resonances. This result also im-
plies that large-scale instabilities cannot be driven by inclination
variations.

3.4. Summary
According to the results presented in this section, the most
efficient mechanism (in terms of amplitude modulation vs the
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associated time scale) for eccentricity growth in three-body mod-
els, i.e., resonant periodic orbits, does not exist in the resonances
under study. There are now two ways an asteroid on a chaotic
orbit can follow to reach a planet-crossing value of e. If the
overlap condition is met for the terms of the resonant multi-
plet, a slow eccentricity diffusion typically occurs. If resonance-
overlap is not so efficient, there will be a set of confined chaotic
orbits for which the only way to diffuse in action space is
through Arnol’d diffusion. Of course the time scales involved
may be longer than the age of the Universe. We believe that
one should differentiate between these two types of motion.
The former one is a kind of “slow chaos,” quantitatively de-
scribed by the model of Murray and Holman (1997), while the
latter one is the behavior for which we believe that the termi-
nology stable chaos is most appropriate. In the following sec-
tion we are going to present numerical results that support this
claim.

The situation may change if more than one perturbing planet
is included in the model. The precession of Jupiter’s orbit, in-
duced by its interaction with the other planets, results in the “pul-
sation” of mean motion resonances. Also, secular resonances
can come into play. Note, however, that no first-order (linear)
secular resonance is located near the mean motion commen-
surabilities studied in this paper (see Knežević et al. 1991), at
least for low inclinations (i < 15◦). Of course, we cannot know
a priori whether the mean motion resonance can force the per-
ihelion or nodal frequency to vary so much that a low-order
secular resonance occurs inside the mean motion one, although
these high-order resonances are probably too weak to do so. An
analytic study of asteroid motion in this framework is beyond
the purpose of the present paper. Finally, for high values of the
eccentricity, the possibility of resonance-overlap between adja-
cent mean motion resonances cannot be neglected, although the
13/6 is the only case which is close to a low-order resonance (the
2/1).

4. LONG-TERM EVOLUTION OF FICTITIOUS ASTEROIDS

To verify the results presented above and to understand the
behavior of stable-chaotic orbits, we performed a numerical
experiment. The evolution of a group of fictitious asteroids
was studied, in the frame of both the 3BP model and the OSS
model.

We initially set 20 particles in the vicinity of each of the
four resonances studied. Each group of 20 particles is set on
a 5 × 4 regular grid in the (e, i) space, with 0.05 < e < 0.25
and 5◦ < i < 20◦, while the semi-major axis, a, and the three
angles, �, ω, and M , are set equal to those of the real ASC
belonging to the respective resonance. The integration tech-
nique and the parameters used are the same as the ones in
Section 2 and the total integration time was set to 107TJ ≈
120 Myr, unless some particle encountered Jupiter within a
distance equal to Hill’s radius, whence it was considered as

“ejected.”
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TABLE II
Percentage of Orbits Affected by Resonance in the OSS Model

rL(t) (%)
Group Type A (%) Type B (%) decaying

18/7 10 65 65
22/9 0 25 60
11/4 70 30 100
13/6 30 15 85

This initial configuration does not guarantee that the whole
group will be initially inside the libration zone of the resonance.
Two criteria were used to identify those orbits that are affected by
the resonance. In the beginning, a short-time (2 × 104TJ years)
integration was performed and the critical argument

σ = (p + q)λJ − pλ − q�, (2)

which corresponds to the resonance of the circular problem, was
monitored. Those orbits, for which the critical argument librates
or alternates chaotically between libration and circulation, were
labeled as Type-A orbits, while those lying close to the libra-
tion zone, for which the argument is slowly circulating, were
labeled as Type-B orbits. The percentages of Type-A and -B
orbits differ for each resonance and for each of the two models
studied; the exact numbers for the OSS model can be found in
Table II. The percentage of orbits initially in resonance is ap-
preciable for the 11/4 and 13/6 cases. Recall that the effective
width in semi-major axis of a qth-order resonance is propor-
tional to eq and for q = 11 (18/7) and q = 13 (22/9) it should
be extremely small, making it difficult to plan an initial con-
figuration of in-resonance particles. We did not examine any of
the other critical arguments associated with the resonances stud-
ied here. By processing the output of the long-term integration,
we found a larger number of particles that were actually af-
fected by the resonance than the one determined initially by the
behavior of σ . The new criterion used was the exponential de-
cay of the autocorrelation function of the semi-major axis time
series (see Section 4.3). For the OSS model the difference bet-
ween the population of predetermined resonant orbits and the
ones found by processing the output is larger (see also Table II).
The set of orbits that comply with the second criterion includes
all Type-A orbits, the vast majority of Type-B orbits, as well as
other orbits that did not seem to be affected by resonance in the
short-term integration.

4.1. Stability of Mean Elements

Performing the average (see Eq. (1)) in the orbital elements,
as in the case of the real ASCs, we found that the trajectories of
most of the particles show a remarkable stability with time. If
may use the mean value, 〈XP〉, and the magnitude of its standard
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FIG. 9. The mean values of the averaged elements (squares), along with the corresponding error bars, are plotted on the planes (e , a ) (left) (sin I , a )
P P P P

(right). All orbits started in the vicinity of the 11/4 resonance are shown except for the four escapers in the OSS integration (see text). The top panels show the
su
results of the 3BP model, while the bottom panels are for the OSS model. The re

deviation,

σ (XP) =
√√√√ M∑

i=1

(XP(ti ) − 〈XP〉)2

M
, (3)

where M is the number of windows used to cover the initial time
series of the osculating elements, to quantify orbital stability. Let
us now review the results for each of the four groups/resonances
separately.

4.1.1. The 11/4 Region

The coordinates of each point in Fig. 9 are the 〈XP〉 val-
ues of each particle (in the respective axes), while the length
of the error bars is equal to σ (XP). In the 3BP model, 80%
of the particles show extremely small variations of the aver-
aged elements, with typical values for σ (XP) of order σ (a) ∼
2 × 10−6 AU, σ (e) ∼ 2 × 10−5, and σ (sin I ) ∼ 5 × 10−6. The
rest of the particles (20%), having initially e ≥ 0.2, show larger

variations, with the maximum values of the standard deviations
being σ (a) = 0.002 AU, σ (e) = 0.01, and σ (sin I ) = 0.007. In
lts are discussed in the text.

the frame of the OSS model, the situation is different, as one can
derive from the size of the error bars in Fig. 9 (bottom panel). The
majority of the particles (70%), regardless of their initial eccen-
tricity, have standard deviations with values σ (a) ∼ 0.0003 AU,
0.005 < σ (e) < 0.02, and 0.001 < σ (sin I ) < 0.008. Only two
particles (10%) have standard deviations about one order of mag-
nitude smaller than these typical values. Finally, four
escapes (20%) were recorded (not shown in Fig. 9), with initial
inclination i = 20◦ and eccentricities e = 0.05, 0.1, 0.15, and
0.25. The escape times were 12.4, 22.9, 105.8, and 55.9 Myr,
respectively. However, the mechanism that leads these particles
to escape is not the 11/4 mean motion resonance, as will be
shown in Section 4.2.

4.1.2. The 18/7 Region

Figure 10 is the counterpart of Fig. 9 for the group of parti-
cles started in the vicinity of the 18/7 resonance. We can see
that the variations of the averaged elements are again very small

for the vast majority of the particles (90%) in the 3BP model,
with typical values for the standard deviations being σ (a) ∼
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FIG. 10. The same as Fig. 8 but for the particles starting in

3 × 10−6 AU, σ (e) ∼ 2 × 10−5, and σ (sin I ) ∼ 8 × 10−6. The
remaining two cases (10%), with e = 0.15 initially, have σ (a) ∼
10−4 AU, σ (e) ∼ 10−4, and σ (sin I ) ∼ 10−5. In the OSS model,
the variations tend to become larger, although they are still very
small. For initial eccentricities e ≤ 0.15 and inclinations i ≤
15◦, the standard deviations have values σ (a) ∼ 5 × 10−6 AU,
σ (e) ∼ 10−4, and σ (sin I ) ∼ 2 × 10−5. For higher values of the
initial eccentricity the above values are higher and also tend
to increase with increasing inclination. The typical values be-
come σ (a) ∼ 2 × 10−4 AU; σ (e) ∼ 4 × 10−4 (with some cases
at e = 0.25 reaching up to σ (e) ∼ 0.0013), and σ (sin I )
∼ 2 × 10−4.

4.1.3. The 22/9 Region

The situation for the particles that start close to the 22/9 re-
sonance (Fig. 11) is even less exciting than the 18/7 case. In the
3BP model, all particles have σ (a) ∼ 10−6 AU, σ (e) ∼ 10−5,
and σ (sin I ) ∼ 5 × 10−6. In the OSS model, these values be-
come σ (a) ∼ 2 × 10−5 AU, σ (e) ∼ 4 × 10−5, and σ (sin I ) ∼

−5
 (for 90% of the particles), which are still extremely
ese values are the smallest found among the four reso-
e vicinity of the 18/7 resonance, where (2) Pallas is located.

nances studied, indicating that this is the most stable region. Only
two cases (initially at i = 15◦ and e = 0.2, 0.25), with larger
values of the standard deviations, namely σ (a) ∼ 2 × 10−4 AU,
σ (e) ∼ 0.01, and σ (sin I ) ∼ 0.001, are found.

4.1.4. The 13/6 Region

Again the results are presented graphically, in Fig. 12. In the
3BP model, particles that start with e ≤ 0.15 (and regardless
of their initial inclination) have σ (a) ∼ 2 × 10−6 AU, σ (e) ∼
8 × 10−6, and σ (sin I ) ∼ 5 × 10−6. For larger initial eccentrici-
ties we find σ (a) ∼ 2 × 10−4 AU, σ (e) ∼ 0.004, and σ (sin I ) ∼
0.005. In the OSS model, the group shows again different behav-
ior between the small- and large-eccentricity particles. For initial
e ≤ 0.15, the standard deviations are 10−5 < σ (a) < 10−4 AU,
σ (e) ∼ 3 × 10−4, and σ (sin I ) ∼ 5 × 10−5. For e ≥ 0.2 the
variations become rather significant, with typical values of
σ (a) ≥ 0.001 AU,σ (e) ∼ 0.01, andσ (sin I ) ∼ 0.008. This value
of σ (a) is the largest one among all cases studied in this numeri-
cal experiment. The σ (e) and σ (sin I ) values are also the largest
ones, together with those measured in the 11/4 region (OSS

model).
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FIG. 11. The same as Figs. 8 and 9 but for the group of particles starting close of the 22/9 resonance. This is the most “stable” region of the ones studied here.
4.1.5. Summary

These results clearly demonstrate the stability of the orbits of
the integrated particles, at least for times of the order of 120 Myr.
Although this would be expected for orbits that were, initially,
out of resonance (at least in the 3BP case), it also holds for the
chaotic orbits, for which TL ∼ 104 years. Moreover, the differ-
ences between the 3BP and the OSS models are not significant,
with the exception of the high-inclination (i > 20◦) part of the
11/4 region (a ∼ 2.65 AU). Note also that the high-eccentricity
part of the 13/6 region shows typically larger variations in semi-
major axis than the rest of the cases. This can be understood in
terms of the close proximity of mean motion (jovian and three-
body) resonances at a > 3 AU.

4.2. The Role of Secular Resonances

Let us now treat separately the four 11/4-escapers found in
the OSS integration. We note that, in the initial short-time

integration, all these particles were found to follow Type-A or-
bits and, in particular, the critical argument σ = 11λJ − 4λ −
7� was found to alternate chaotically between libration and
circulation. However, the 11/4 resonance cannot account for
the variations in e and i that lead to escape. This remark, which
supports the theoretical reasoning described in Section 2 and
the difference of the numerical results for this resonance be-
tween the two models, can be understood by the results shown
in Figs. 13 and 14.

We examined a list of permissible combinations of secular
arguments that could be resonant and, therefore, explain the
eccentricity variations of these orbits. The combinations tested
are the ones that Nobili et al. (1989) found in the LONGSTOP1B
integration to be the highest amplitude modes of planetary pre-
cession (see Tables 4 and 5 of their paper). The values of the
secular frequencies were taken from Laskar (1990) and the ini-
tial proper phases (at t = 0) were taken from Bretagnon (1974).
A large number of overlapping pericentric secular resonances
were found to govern the evolution of high-inclination orbits
at a � 2.65 AU, a picture similar to that found by Dvorak and
Tsiganis (2000) in the Trojan swarms (but for nodal resonances).

Most of these resonances are nonlinear (i.e., the corresponding
critical arguments involve more than one planetary argument)
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time series varies also quasi-periodically between the values ±1.
For chaotic motion (more generally, for a stochastic process),

4 The word “action” is commonly misused by many authors to denote the
quantities that constitute the actions of the integrable problem, i.e., the Kepler
problem.

5 The autocorrelation time, τc, of a discrete time series is defined as the time
FIG. 12. The same as Figs. 8–10 but for the 13/6 group

and have periods in the range 40,000–52,000 years. However,
the most important one for the evolution of these orbits turns
out to be the ν6 resonance, which is ultimately responsible for
the escape. The corresponding critical argument, � − �S, is
seen in both cases (Figs. 13 and 14) to change from libration to
circulation in an erratic manner. Two other arguments (one for
each case) are also shown in these figures. The fact that many ar-
guments show similar behavior at the same time indicates that the
corresponding resonances overlap. Thus, in realistic models, the
dynamical evolution of stable-chaotic orbits may change with
time, owing to secular resonances that do not occur in simple
three-body models.

We note here that the pattern of variations of the semi-major
axis indicates possible action of three-body mean motion res-
onances, something that one also has to expect in complicated
many-body models (especially close to a � 3 AU; see
Morbidelli and Nesvorný 1999), and this may contribute to a
“drifting” of the trajectory in the orbital elements’ space. Unfor-
tunately no direct evidence, in terms of critical arguments, can
be presented here, due to technical difficulties resulting from the
” of our integration (large output interval, not saving
ements for Saturn, etc.).
of particles. The variations become visible for e > 0.15.

4.3. Long-Time Correlations

In Paper I we showed that one of the properties of stable
chaos in the 12/7 resonance is long-time correlated motion, as
it appears in the evolution of the eccentricity- and inclination-
related Delaunay “actions,” 4

G =
√

a(1 − e2), H = G cos i. (4)

This means that the autocorrelation time,5 τc, of the above time
series is much longer than the Lyapunov time. Recall that the am-
plitude of the autocorrelation function, r (t), of a quasi-periodic
at which the magnitude of the autocorrelation function, r (t), becomes smaller
that 1/e ≈ 0.368 without increasing again.
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FIG. 13. Time evolution of the 11/4-escaping orbit starting at e = 0.05, i = 20◦. The osculating semi-major axis (top), eccentricity, and inclination are shown.
The bottom two panels show the critical arguments corresponding to the ν6 resonance (noted as ν1 in the figure), defined by 〈�̇ 〉 ≈ g6, and the 〈�̇ 〉 ≈ −g5 + g6 + g7
(bottom) nonlinear secular resonance (noted by ν2). These two secular resonances seem to overlap. Note the correlation between the librations of the ν6 critical
argument and the eccentricity variations.
on the other hand, r (t) should decay exponentially with time.
One would expect that the autocorrelation time would be of the
order of TL. This, however, may not hold for all the actions. For
(522) Helga we have shown that, although τc(L) for L = √

a
(the action conjugate to the mean longitude, λ) is of the order
of TL ∼ 104 years, the e-folding time of the G(t) and H (t) time
series is longer than 103TL.

It turns out that this property is, indeed, common to all cases
of stable chaos found in the present study too. We computed
the τcs of all three actions for every orbit in the OSS model,

using the records of the first 105TJ ≈ 12 Myr. Some typical r (t)
series, representative of the different types of behavior found,
are shown in Fig. 15. We concentrate on the set of orbits for
which rL(t) (the autocorrelation function of the L time series)
shows a decaying behavior with time; this property implies that
the motion is chaotic. Most of these orbits show the follow-
ing characteristic: rL(t) decays exponentially with time on a
relatively short time scale, while the autocorrelation functions
of the G and H time series vary almost quasi-periodically,
with the maximum amplitude being almost constant with time.
In this respect, these orbits show exactly the same behavior
as Helga’s. For the escapers, on the other hand, all r (t) series

decay exponentially with time, and on very similar time scales.
A few particles show a slow decay of the amplitude of the rG(t)
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FIG. 14. The same as Fig. 13 but for the 11/4-escaping orbit starting at e = 0.25, i = 20◦. The critical arguments shown here are the ones corresponding to
the 〈�̇ 〉 ≈ g5 + g6 − g8 nonlinear resonance (noted by ν1) and the ν6 resonance (noted by ν2; bottom). From the beginning the orbit is inside the ν1 resonance,
which induces small-amplitude variations that cannot be easily identified from the osculating eccentricity time series. However, at the same time, it acts as a

“mediator,” injecting the particle into the ν6 resonance after t ≈ 48 Myr. After some librations inside the ν6 resonance zone, the particle eventually becomes a
Jupiter-crosser.
and rH(t) time series, with the function resembling a “damped
oscillator.” A few exceptions to this general picture, for which
all three r (t)s decay on a similar time scale but do not escape,
are found among the high-eccentricity orbits of 13/6 particles,
where three-body resonances, but also the 2/1 mean motion
resonance with Jupiter, are probably playing an important role,
as already mentioned.

The distribution of the autocorrelation times for L is shown
in Fig. 16a. It is rather asymmetric, with a tail of ≈20% of

5
the particles having τc > 2 × 10 years, but the median of the
distribution is τc(L) = 20,000 years, i.e., of the order of the
Lyapunov time, TL. To calculate the value of τc we first cal-
culated the “envelope” of r (t) and then imposed an exponential
fit on the resulting time series. For the other two actions, we had
to use longer records (up to ≈50 Myr) for the calculation of r (t).
This, however, did not change the results much. The extremely
slow decay of r (t) results in an underestimate of τc, in general,
for G and H . Thus the distributions shown in Figs. 16b and 16c
are to be considered as indicative of the great difference in the
time scale of correlation loss among the three actions. The me-

dians of these distributions are τc(G) = 21 Myr and τc(H ) = 15
Myr, respectively, i.e., of the order of 103TL.
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FIG. 15. The autocorrelation function r (k) as a function of the time-lag k. The unit of time is 102TJ. Each three-panel figure shows r (k) for the L , G, and H
time series (top to bottom). (a) For a regular orbit all three functions vary quasi-periodically with time. (b) For the escapers, all three functions decay exponentially
(on the average), with time, on a very similar time scale. (c) (d) The typical behavior of stable-chaotic orbits. rL(t) decays exponentially fast, while rG(t) and
rH(t) vary quasi-periodically with time. (e) A few particles show a slow decay for rL(t)—the other two functions are again quasi-periodic (f) The typical behavior

for rL(t) accompanied by a slow decay of rG(t) and rH(t), which retain a strong quasi-periodic component, resembling the amplitude of oscillation of damped
harmonic motion.
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FIG. 15—Continued
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FIG. 15—Continued
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FIG. 16. The distribution of autocorrelation times for the (a) L = √
a,

(b) G = L
√

1 − e2, and (c) H = G cos i time series. The median time for L is
of the order of TL, while for the other two actions the median time is of the order
of 103TL.

5. DISCUSSION AND CONCLUSIONS

In this paper we continued our work on the phenomenon
of stable chaos, which we began in Paper I by studying the
motion of (522) Helga and the associated 12/7 jovian reso-
nance. The conclusion of our previous work was that Helga’s

unusual motion is ultimately related to the absence of 12/7
resonant periodic orbits in the elliptic problem. This property
ND HADJIDEMETRIOU

produces an intriguing topology of the phase space near this
resonance, which persists also under the influence of all outer
planets. The stickiness hypothesis, which led us to that study,
was not completely consistent with our numerical results and,
in particular, the clear evidence of chaotic motion provided by
the evolution of the critical argument. We argued that the no-
tion of stickiness should be extended to incorporate trajectories
for which chaotic nature is evident from the behavior of σ but
which are semiconfined in eccentricity and inclination, due to
the “mechanism” described above, within narrow regions of the
phase space. What is implied by the last sentence is that the
orbit seems to be sticky around an object in phase space which
has dimensionality lower than that of the energy manifold. One
can imagine the picture in the context of an autonomus three-
degrees-of-freedom Hamiltonian system, such as the averaged
3-D elliptic restricted problem. Motion seems to take place close
to a 4-D submanifold, M, of the 5-D energy manifold, with
M being the Cartesian product of a 2-torus with an annulus,
M = T(2) ⊗ {S1 ⊗ ∆},∆ ⊂ R. The radii of the 2-torus are re-
lated to the proper values of e and i , for which the motion is
stable, while the chaos is evident in the third action (i.e., the
semi-major axis), which is bounded inside the annulus by the
resonance condition.

The study of resonant periodic orbits for the 11/4, 18/7, 13/6,
and 22/9 resonances, in the present paper, showed that the same
property holds for these cases also. Moreover, the numerical re-
sults showed that escape due to these resonances does not occur,
at least for times of the order of 120 Myr, even when all giant
planets are taken into account. Thus, we can conclude that the
particular structure of the phase space, i.e., the absence of res-
onant periodic orbits, can lead to semiconfinement of chaotic
orbits for times exceeding the Lyapunov time by many orders of
magnitude. Compared to other resonances, where strong insta-
bility appears, as is the case with the 3/1 and 2/1 resonances, we
could say that the topology of the phase space in these latter two
resonances is very different from that of the 11/4, 18/7, 13/6,
and 22/9 resonances that we consider in this paper. The reason
is that in the 3/1 and 2/1 cases unstable periodic orbits exist
both in the elliptic problem and in the 3-D problem. In a sense,
the topology of the phase space, in the resonances studied here,
looks more like the topology far from a resonance, rather than
the typical resonant topology in places where gaps in the distri-
bution of asteroids appear. This is true for a three-body model.
However, in the vicinity of the 11/4 resonance (a � 2.65 AU)
and for i ∼ 20◦ the evolution of asteroids is strongly influenced
by a number of pericentric secular resonances, most notably
the ν6 resonance, which can enhance chaotic diffusion in the
space of proper elements and lead to escape from the main
belt. Indications for the action of three-body mean motion reso-
nances were also found, especially close to the 13/6 resonance
(a ∼ 3.1 AU).

The phenomenology of stable chaos seems to be common

among all jovian resonances that share the property of noncon-
tinuation of resonant periodic orbits. The basic features of this
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type of motion are:

• small values of TL, typically in the range 103–5 × 104 years,
• evident chaotic evolution of the critical angles, σ ,
• stable mean elements for times >103TL, and
• a characteristic spectrum of autocorrelation times, τcs, for

the action time series.

The last feature, which was first noted in Paper I, means that there
exists a striking difference between the values of the autocor-
relation time for the action conjugate to σ (i.e., the semi-major
axis), which is of the order of TL, and the corresponding τc val-
ues for the actions that represent secular motion (i.e., proper
eccentricity and inclination), which may be longer than 103TL.

This implies that the chaotic nature of an orbit in the vicinity
of such a “flawed” resonance is not reflected in its secular evo-
lution, at least for some set of initial conditions. This can be
understood not only by the small variations in the amplitude of
oscillations in e and i but also by the inability of the resonance to
modify significantly the associated secular frequencies, �̇ and
�̇, which is the reason for the strong quasi-periodic component
of r (t).

The chaos observed in these resonances should be attributed
to the overlap among the terms of each resonance multiplet.
Even if resonance-overlap is exhaustive, the characteristic dif-
fusion time for a chaotic orbit may be comparable to the age of
the Solar System, according to Murray and Holman (1997), so
that the terminology stable chaos results in a natural way. How-
ever, assuming a “random-walk” in e associated to the chaotic
wandering of a may not be safe, at least for all sets of initial
conditions. The orbits which we characterize as “stable-chaotic”
have autocorrelation functions for G and H that do not decay
exponentially with time. This is clearly not a typical random
walk. One would expect that, in the resonance-overlap regime,
the eccentricity has a typical irregular evolution (possibly of
very small amplitude), whose uncorrelated “jumps” are visible
on a time scale comparable to the Lyapunov time. This is not
the case for our stable-chaotic orbits. We believe, therefore, that
what we describe as “stable-chaos,” which is a term charac-
terizing the exact same behavior as that of the asteroid (522)
Helga (see Paper I), is not the same type of motion as the one
described by Murray and Holman (1997), which can be a very
“slow chaos” indeed. In fact, we believe, but this is simply a
conjecture, that the phenomenon we describe appears only in
models with more than three degrees of freedom: there seems to
be a set of initial conditions for which a second, local, integral
exists and this results in a nearly quasi-periodic evolution of the
actions, which is what we observe. This is what we described
above as a case of stickiness around an object of dimensionality
lower than that of the energy manifold.

The ability of a mean motion resonance to remove asteroids
from its neighborhood, within a reasonably short time scale
(<100 Myr), depends critically on whether the main family of

resonant periodic orbits of the circular problem is continued to
the elliptic problem and the 3-D problem. This remark can help
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in explaining, partly, the abundance of real-life resonant aster-
oids following chaotic orbits; these objects should be regarded as
cases of stable chaos, since they are permanent members of the
main belt. Also, it can add a small piece to the puzzle concerning
the formation of gaps in the asteroid belt and, in particular, in
explaining why only a small number of gaps, close to low-order
resonances, exist in the main belt, while numerical studies show
that strong chaos, in terms of Lyapunov exponents, is prominent
throughout the belt. Recall that the main Kirkwood gaps are lo-
cated near the 2/1, 3/1, 4/1, and 5/2 mean motion resonances,
all of which are known to posses the property of continuation
of the main family of resonant periodic orbits for more than one
value of the asteroid’s eccentricity (see Hadjidemetriou 1993b
and also Section 2 in this paper for the 5/2 case). Thus, if only
a small number of low-order resonances carry periodic orbits
that are continued in the elliptic problem, these would be the
ones having the ability to “sculpt” a gap inside the main belt, in
the first place. Of course, it is known that the depletion of the
main Kirkwood gaps cannot be explained in the framework of
the elliptic restricted problem, and other mechanisms (primarily
the secular resonances) have to be accounted for. In the rest of
medium-to-high-order mean motion resonances, semiconfined
chaotic motion (i.e., stable chaos) can exist with characteristic
diffusion times, most probably, greater than the age of our Solar
System. A survey of these resonances is currently under way,
with very encouraging initial results.
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