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Abstract. The evolution of the eccentricity of particular aster-
oidal trajectories in the 2:1 resonance is analysed by a spec-
tral scheme. This analysis is an alternative 1o the well known
analysis based on the computation of Liapunov exponents. The
method can be used to estimate the long time evolution of a tra-
jectory from a segment considerably shorter than the one needed
for a Liapunov exponent calculation,

The particular trajectories analysed by our method may be
divided into two classes: (a) those appearing to be unstable, in
the sense that their eccentricities become overcritical within the
time interval of our numerical integrations, which, in turn, im-
plies close encounters with a planet (Mars, the Earth or Jupiter)
and (b) those appearing, in the above sense, to be stable. Trajec-
tories are computed in the frame of four models: (i) the ellip-
tic restricted three body problem (ERTBP) modet with a fixed
value of 0.048 for Jupiter’s eccentricity, e, (ii) the ERTBP
model with a fixed ey > 0.0535, (iii) the ERTBP model with an
artificially oscillating e ; with amplitudes corresponding to the
full problem, including all outer planets, but with a frequency
not corresponding to the real problem, and (iv) the six-body
problem Sun - outer planets - asteroid.

The main results are: (a) There are trajectories which are
stable in model (i} and which are chaotic as well as unstable in
models (ii)-(iv). This suggests that chaos sets on when Jupiter’s
eccentricity exceeds a certain threshold value. This is not uni-
versal all over the 2:1 resonance region. (b} Trajectories which
are stable in all four models are chaotic in models (i1}-(iv) ac-
cording to our spectral analysis.

Key words: chaotic phenomena - celestial mechanics, stellar
dynamics — minor planets

1. Introduction
It has been proposed by several authors (e.g. sce Wisdom 1982,
1983, 1987, Yoshikawa 1989, 1991) that the creation of the Kirk-

wood gaps in the asteroidal belt is associated with the chaolic
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increase of asteroids’ eccentricities. The mechanism proposed
is based on the fact that, if the eccentricity of an asteroid ex-
ceeds a critical value (depending on the resonance associated
with the gap), then its trajectory crosses the orbit of a major
planet (usually Mars or Earth). It is expected that the asteroid
will be removed from the resonance region by a close encounter
with the planet. Also close encounters with Jupiter are possible.
This scenario seems to work in the framework of the elliptic
restricted three-body problem (ERTBP) in most of the reso-
nances corresponding to main gaps, except for the case of the
2:1 resonance. In this case, numerical integrations of trajecto-
ries in the frame of the ERTBP for Jupiter masses and eccen-
tricities corresponding to the present system (i.e. e; = 0.048
and m j/(mjy + Mg) = 0.001) failed to reach overcritical eccen-
tricities within time intervals of some million years, except for
asteroidal trajectories starting at the outer boundary of the res-
onance region {Yoshikawa 1991). Several authors showed that
this problem may be overcome for certain trajectories, if a more
realistic model is used instead of the ERTBP: either the general
four-body problem (Wisdom 1987; Yoshikawa 1989, 1991}, as
confirmed by us, or a variant of the ERTBP in which Jupiter’s
eccentricity is considered to have an artificial sinusoidal vari-
ation with period T, ; (Varvoglis 1991, hereafter referred to as
Paper I).

A brief inspection shows that the above models differ from
the standard ERTBP by introducing threc "new” phenomena: (a)
the variation of e 7 itself, (b) the ensuing increase of ey beyond
the present value of 0.048, and (c) the variatton of Jupiter’s lon-
gitude of perihelion. It is not clear which one of the above three
"new” phenomena is the dominant reason for the appearance of
overcritical eccentricities in the asteroidal trajectories. The re-
sults of Varvoglis (1993, hereafter referred to as Paper IT) show
that the variation of e alone, even between values lower than
0.048, is probably sufficient to cause the appearance of over-
critical eccentricities. However this result was based solely on
a simple inspection of the evolution of e{t} and not on a “strict”
numerical criterion.

One drawback of the direct trajectory integration method is
that the integration time needed for detecting the appearance of
overcritical eccentricities is usually very long (of the order of
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Fig. 1a. Power spectrum of trajectory IVSaM with e min = 0.03,
€rmaz = 0.00 and T,y = 113.23 T;. In this one, as well as in the
rest of the figures, the sampling period, f;” ! is approximately equal to
6 years

several million years, at least) and, in any case, unpredictable,
making the investigation of this hypothesis rather difficult. An-
other drawback of the direct integration method is that it does
not reveal the dominant mechanism causing the eccentricity in-
crease, at least in the frame of the standard ERTBP or any other
many-body problem model. Note, however, that this drawback
can be waived if we assume appropriate (artificial) frames in-
stead of the conventional mentioned above.

In this work we perform frequency analysis on time-series of
dynamical variables constructed through numerical integration
of trajectories. This scheme, which has been proposed by Voy-
atzis & Ichtiaroglou (1992), is faster than the direct numerical
integration in assessing the chaotic or non-chaotic character of
orbits, since it requires a, usually, shorter integration time, and
thus it enables a more efficient numerical study of the problem.
It can give also objective (numerical) answers to the "degree”
of chaotic properties of each trajectory. Moreover, this method
can answer to the question which of the three "new” phenom-
ena (a)-(c) discussed above is sufficient to change the apparent
non-chaotic character of a trajectory in the standard ERTBP. It
should be noted that the above method has already been applied
with very good results in the case of a mapping describing the
motion of asteroids near the 3:1 resonance (Hadjidemetriou &
Voyalzis 1993).

2. Description of the method

The method applies to any Hamiltonian dynamical system
which can be considered as a perturbed integrable system, Tt
is based on the analysis of time series containing the numerical
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Fig. 1b. Power spectrum of trajectory IUaM with e rpin =0.03, € jrmax
=0.06and T, ;= 11323 T,

log f

Fig.1c. Same as Fig. 1a, except that T.; = 1113.23 T;. Although
the trajectory may be classified as “chaotic” from a segment 40,000
years long, for confirmation reasons the integration was followed over
400,000 years. The part of the trajectory between 40,000 and 400,000
years corresponds to the left of the dashed line

values of an integral of motion of the integrable system, calcu-
lated along the trajectory of the perturbed system. In the case
of the three-body problem we may select for this integral the
ecceniricity of the small body, which is, in the unperturbed case
of the two-body problem, an integral of motion. The method
is simple and easy to implement. It is based on the behaviour
of the power spectral density, P(f), of the time series in the
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low frequency domain: If the low band of the spectrum con-
verges almost exponentially to zero as f — 0, then the trajec-
tory considered is classified as ordered. On the other hand, if
the spectrum converges to a, usually significant, finite value or
if it diverges to infinity (like 1/f*, o > 0)as f — 0, then the
trajectory is classified as chaotic. If one makes the reasonable
assumption that, since here we are dealing with a dynamical
system with more than two degrees of freedom, a chaotic tra-
Jjectory will eventually reach the critical eccentricity or will, at
least, reach a significantly larger eccentricity than the one at the
beginning, then this method may be used to "predict” the tong
time behaviour of any trajectory by just looking at a modest-size
time interval. It should be noted that the ”degree of stochastic-
ity” of a trajectory is a local property. On the other hand the
eccentricity increase is due to transport of a trajectory in phase
space, which is a global property. Therefore different dynami-
cal systems might give similar P{f) curves, but totally different
rates of transport. Therefore use of P(f} to compare transport
rates might be meaningful only among trajectories of the same
dynarmical systern.

The behaviour of the low frequency band emerges clearer
when the lower cut-off frequency, fi.in, of P{f) is decreased,
which corresponds to an increase of the time interval covered by
the time series. There is, up to now, no firm theoretical estimate
for the optimum value of f,,.,. However practice has shown
that, as a rule, a good selection is { frn/ fo) = 10~*, where f;
represents the sampling frequency (which is of the order of the
basic frequency of the trajectory, in our case Jupiter’s period
of revolution, T'5). In this paper we use, following this rule,
numerical integrations over no more than 10° years with very
good results. This time interval is considerably less than the
million-years numerical integrations required to obtain over-
critical eccentricities in some of the “difficult” trajectories of
the 2:1 resonance. Numerical errors play a minor role in such
short integration times.

Spectral analysis of time series constructed by generalised
co-ordinates, ¢;(¢), or momenta, p,{¢) (or, in general, functions
of them, as it is the case with e(?)) provides also information
on the stability of the trajectory: the presence of a strong line
in the spectrum at the low frequency region indicates that the
trajectory is near a separatrix (e.g. see Powell & Percival 1979;
Beloshapkin & Zaslavskii 1993). The occurrence of the “'sep-
aratrix index” in a trajectory is not always associated (in our
models) with overcritical eccentricities and, hence, with "in-
stability” (in the sense introduced in this paper). This is due
to the fact that a trajectory near a separatrix is not necessarily
within the chaotic phase space strip containing the separatrix.
Alternatively, the trajectory might lie in the chaotic strip, but the
Liapunov characteristic exponents may be very close to zero.
In this latter case the drifting” of the trajectory in phase space
might be vanishingly slow. This shows that, according to our cri-
terton, asteroid trajectories starting near unstable periodic orbits
do not become necessarily Mars (or Jupiter) crossers, at least
within time intervals of physical importance.
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Fig. 2a. Power spectrum of trajectory IVSaM of Paper I with e; con-
stant and equal to 0.03

log f

Fig. 2b. Power spectrum of trajectory IV SaM of Paper II with e; con-
stant and equal to 0.06. For the meaning of the dashed line see Fig. 1¢

3. Results and discussion

Before presenting typical results of our method, we would like
to give here the basic conclusions that may be drawn from them.
By examining trajectories of the variant-ERTBP model intro-
duced in Paper I (which can differentiate phenomencn (a) from
phenomenon (b)) we have arrived at the conclusion that either
one of these phenomena may be sufficient to cause the required
increase of the asteroid’s eccentricity. Note that phenomenon
(¢) has not been examined in the framework of the variant-
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ERTBP maodel (iii}, since the artificially low T,y used in the
model changes in this case the dynamics of the problem by in-
troducing unreasonably high additional non-inertial “forces”.
However, we applied our method to trajectories calculated in a
six-body model (Sun, four outer planets and the asteroid, model
iv), where the behaviour of the trajectories is expected to ap-
proach the “real” problem. One would expect that these tra-
Jectories should show a more pronounced chaotic behaviour,
since the perturbation is more complex, what we exactly have
observed.

The power spectral density was calculated with the sub-
routines FFTB2 and FFT87B2 of Berland’s “Numerical Tool-
box” and a Hann filter (in order to suppress the continuum and
any sidelobes). Applying our method to the variant ERTBP
model we used the trajectory families IVS and IU of Paper
II, which were integrated numerically for various values of
€Jmin: €Jmaz and Tey and for a time interval of 8192 = di-
mensionless units, which corresponds to approximately 40,000
years. In Figs.1 we give typical power spectra for the be-
haviour of the eccentricity of trajectories IUaM (Figs. 1a and
lc) and IVSaM (Fig. 1b). All three trajectories were calculated
for egmin = 0.03, ermar = 0.06 while T,; = 113.23T; for
trajectorics 1a and b and 7,7 = 1113.237; for trajectory lc.
In Figs. 1, as well as in the rest of the figures, frequency in the x-
axis is measured in units of the sampling frequency, f, while the
power spectral density, P(f), in the y-axis is measured in arbi-
trary FFT units. In Fig. 1a we can see that enough quasiperiodic
features remain in the time interval examined, but the spectrum
seems to converge to a non-zero (but relatively low, of the order
1073} value, which shows that the trajectory is mildly chaotic.
In Fig. 1b we see that at the low band the spectrum diverges,
probably as 1/ %, an indication of complete chaos. Figure 1¢ is
qualitatively similar to Fig. 1a, except that the spectrum shows
at the low frequency limit a convergence to a lower value. This
difference may be attributed to the fact that the period of varia-
tion of Jupiter’s eccentricity in Fig. lc is taken ten times longer
than in Fig. 1a. It is interesting to note that these results are con-
sistent with those of Tables 1 and 2 of Paper 11, where we see
that trajectory IVSaM (Fig. 1a) attains overcritical eccentricities
within 5 10% years, while trajectory TUaM (Fig. 1b) within only
2 10* years. This is an indication that the "degree of stochastic-
ity” of a trajectory, estimated through the shape of P(f) in the
present method, is related to the time interval needed for this
trajectory to attain overcritical eccentricities.

Besides the above result, it is interesting to show that the
present method could be used to differentiate between the ef-
fects of phenomena (a) and (b) concerning the appearance of
overcritical eccentricities, In Figs, 2a and 2b we show the power
spectrumn of trajectory IVSaM for a constant value of e (i.e. for
the standard ERTBP model) equal to 0.03 (2a) and 0.06 (2b).
In Fig.2a we see that the power at the low band converges to
zero, showing a clearly non-chaotic behaviour. However Fig. 2b
shows a clear convergence of P(f) to a value of the order 10—,
which indicates that at e ; = 0.06 the trajectory IVSaM is chaotic
and may, therefore, reach overcritical eccentricities. By repeated
numerical experiments, using the set of trajectories IVS and VS
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Fig.3a. Power spectrum of trajectory 1VS8aM with ey, = 0.01,
€rmaz =0.04and T, =113.23 T
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Fig. 3b. Same as Fig. 3a, exceptthat T,y =1113.23 T';. For the meaning
of the dashed linc see Fig. 1c

of Paper II, we found that the “critical” value of e is close to
0.055. Now e; > 0.055 within an interval of 20,000 years in a
complete period of 54,000 years. During the high-e ; time inter-
vals, the trajectory becomes chaotic and its eccentricity may in-
crease by a small amount, while during the low-e; intervals the
eccentricity stays, on the average, constant. The accumulation
of the small eccentricity increases during the high-e; intervals
might total an overall eccentricity increase beyond the critical
value. Therefore this mechanism, alone, might be sufficient for
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Fig. 4a. Power spectrum of trajectory of the full six body model with
starting values a = 3.27 AU, e = 0.20,1 = 5°, o = 151°)
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Fig. 4b. Power spectrum of trajectory of the full six body model with
starting values a = 3.28 AU, e = 0.25,1=5°, 0 = 151°

the appearance of high ecceritricities in the trajectories at the
2:1 resonance.

In Figs. 3 we show the power spectrum of trajectory IVSaM
for e jmin = 0.01, € jmee =0.04 and T,y = 113.23 T'; (Fig. 3a)
and T, y = 1113.23 T’y (Fig. 3b). The values of € j4n and € ymoe
were selected in such a way, as to have the same amplitude
with the actual case (0.03-0.06) but with an ¢ ,,,,, value well
below 0.055, where chaotic behaviour appears for constant e .
P(f) in these figures as well presents an obvious convergence
to non-zero values in the low band, which is more pronounced

395

e
_3_
v—-\ 1
N R
(ST
= i
=
—_
e
-11 T T T

Fig. 4c. Power spectrum of trajectory of the full six body model with
starting values @ = 3.28 AU, e = 0.25,i = 5°, ¢ = —30°)

in the case with the lower period of variation of ey (Fig. 3a).
Therefore we may conclude that the variation of e solely may
induce chaotic behaviour into a trajectory, leading to an increase
of its eccentricity, even when € .. does not exceed the critical
value 0.055.

Finally in Figs.4a, 4b and 4c we give power spectra of
three trajectories calculated with the more realistic model of
the full six-body problem. The power spectrum in Fig. 4a indi-
cates homogeneous chaos, with a possible peak at the very low
frequencies, in complete agreement with the fact that this tra-
jectory attained overcritical eccentricitics within 2.5 10° years.
The trajectory in Fig. 4b shows a clear strong peak at a very low
frequency, an indication of the presence of a separatrix in the
close neighbourhood, together with a 1/f® - like behaviour, an
indication of strong chaos. This trajectory attained overcritical
eccentricities in a time interval of 14.5 10° years. It is very in-
teresting to note that the power spectrum of the trajeclory of
Fig.4c, which differs from that of Fig.4b only in the initial
value of the critical argument, shows a strong peak at a low (but
higher than that of Fig. 4b) frequency, together with a clear con-
vergence to a non-zero value (= 107%), an indication of weak
chaos. This trajectory did not attain an overeritical eccentricity
within a time interval of nearly 10® years. A qualitatively very
similar (to that of Fig. 4¢c) power spectrum was found for a tra-
jectory with the same initial conditions as those of Fig. 4a bui
with e = 0.30. We speculate that the last two trajectories, too,
will eventually become Mars/Earth crossers, unless there is a
barrier which separates the now known “unstable chaotic (over-
critical eccentricitics)” from the “stable chaotic” region. Since,
as a rule, we have found that trajectories in the "stable chaotic”
region are close to separatrices (Fig. 4c), we may conjecture that
surviving invariant tori and/or cantori in the neighbourhood of
the separatrix play the role of such a barrier. An asteroid very
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close to the separatrix lies, quite probably, in the corresponding
“chaotic strip’” and might, therefore, escape quickly toregions of
high eccentricities. On the other hand an asteroid not so close to
the separatrix would not be in the chaotic strip and should, there-
fore, migrate to regions of high eccentricities through Arnold
diffusion (i.e.along resonances rather than across them), a pro-
cess that might be longer than the presently available numerical
integration results (or, even, the age of the Solar System). If
the above scenario on how a trajectory may reach overcritical
eccentricities is correct, then spectral analysis of consecutive
segments of a trajectory, possessing a peak at a low frequency
and attaining overcritical eccentricities, should show a, more or
less, monotonous “drift” of this peak towards even lower fre-
quencies. This kind of analysis of trajectories in Figs.4 gave
results which seem to be consistent with the above scenario, as
described in the next section.

4. Conclusions

In concluding we may summarise as follows. The main effort
in this paper was to investigate the effect of the variation of
Jupiter’s eccentricity, e 5, on the degree of stochasticity of aster-
oidal trajectories near the 2:1 resonance as well as on the trans-
port of these trajectories in phase space towards regions of high
eccentricities. The main result is that trajectories, which appear
ordered in the frame of the classical planar elliptical restricted
three body problem for the present value of e 7, become chaotic
when anyone of the “new phenomena” introduced by the addi-
tion of the outer planets to the above model is taken into account
separately. Since the corresponding dynamical system has more
than two degrees of freedom, any chaotic trajectory is expected
to migrate, eventually, to phase space regions of high eccen-
tricity. However it is not known whether the time scale of this
transport, which is expected to depend on the structure of phase
space and the width of the chaotic strips along separatrices, is
less than the age of the Solar System. In order to answer this
question we applied our spectral analysis method to asteroidal
trajectories calculated in the frame of a six-body model, where
all the outer planets are included. We have found that the power
spectral density of trajectories, which attain overcritical eccen-
tricities in a fairly short time interval, show a pronounced peak
at the low frequency regime, an indication that the trajectory
lie close to a separatrix {note that Fig. 4a might be interpreted
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as possessing more than one peaks, smoothed by the filtering
technique used in the analysis). Spectral analysis of segments
of the trajectory of Fig.4b shows a drifting with time of the
low frequency peak to lower frequencies, which is consistent
with the above presented scenario. On the other hand the tra-
jectory in Fig. 4c, has a power speciral density with a peak at
the low frequency band which presents a slow drift to lower fre-
quencies, but it did not attain overcritical eccentricities within
a time interval of a hundred million years. It should be noted
that the initial conditions of this trajectory were selected in a
phase space region where asteroidal appear to be stable in the
sense introduced in the present paper (e.g. Moons & Morbidelli
1993). It is obvious that the problem, which might be of central
importance to the creation and existence of the 2:1 Kirkwood
gap, needs further investigation.
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