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Abstract. It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact
that has put in question their presumed long term stability. Previous numerical results suggest a

slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital
elements space is still an open problem. In this paper, we tackle this problem by means of
extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered

Trojans is integrated for 4 Myrs and their Lyapunov time, TL, is estimated. The ones following
chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The
results of these experiments are presented in the form of maps of TL and the escape time, TE, in

the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in
which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the
TE ¼ 1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability
region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans,

which showed that 17% of the numbered Trojans are unstable over the age of the solar system.
We show that the size distributions of the stable and unstable populations are nearly identical.
Thus, the existence of unstable bodies should not be the result of a size-dependent transport

mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that
surrounds the stability zone, a statistical correlation between TL and TE is found.
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1. Introduction

Today, almost 100 years since the discovery of (588) Achilles, more than
1,200 numbered and multi-oppositioned Trojans are known (see the AstDys
database, hamilton.dm.unipi.it/cgi-bin/astdys/astibo), orbiting around Jupi-
ter’s Lagrangian points. These bodies are in a 1:1 resonance with Jupiter,
performing tadpole librations about the stable equilibria of the restricted
problem, which are located at a relative mean longitude equal to p/3 (L4) or
)p/3 (L5), with respect to Jupiter. Recently, the stability of these orbits,
previously taken for granted, has been put to question.

The numerical results of Milani (1993, 1994) were the first to show that a
number of Jupiter Trojans follow chaotic orbits. Although the integration
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time was small by today’s standards (5 Myrs), these experiments have re-
vealed some possible routes of escape at the borders of the Trojan region,
related to secular resonances. Subsequently, Levison et al. (1997) were the
first to present numerical results, indicating a slow dispersion of the Trojan
swarms, on a time scale shorter than the age of the solar system. In their runs
it was shown that the region of effective stability (for 4.5 Gyrs) is smaller
than the one found analytically by Rabe (1967). This is in fact the most
extensive long-term numerical integration of Trojans to date. The possibility
of real Trojans escaping from the swarms in the future, due to the destabi-
lizing effect of the v16 and other high-order secular resonances, was shown by
Tsiganis et al. (2000a) and Dvorak and Tsiganis (2000). The role of secular
resonances was extensively studied by Marzari and Scholl (2002).

Analytical works on the long periodic motion of the Trojans are numerous
and a complete list cannot be presented here. We should point out though
that several important papers have been published recently, starting from the
work of Érdi (1988, 1997). More refined models on the long periodic libration
of the Trojans were published by Namouni and Murray (2000) and Nesvorný
et al. (2002). The secular effect of additional perturbing bodies or of an
oblate planet were studied by Morais (1999, 2001).

Milani (1993) defined and computed (synthetic) proper elements for the
Trojans, which allowed him to search for families. Later, Beaugé and Roig
(2001) presented a semi-analytic theory for Trojan proper elements, based on
an asymmetric expansion of the disturbing function and on the principle of
adiabatic invariance. This work, along with an increased sample of real
bodies, allowed them to confirm and improve the results of Milani (1993),
concerning the existence of at least two robust families (those of Menelaus
and Epeios, both around L4).

The first attempt to compute the extent of the stability region for Trojan-
type motion was made by Rabe (1967), who studied the linearized equations
of motion. Nowadays, there exist more refined analytical techniques, based
on the construction of Nekhoroshev-type normal forms. The effective sta-
bility region is defined as an open domain of initial conditions around a torus
of given frequencies (e.g., in our case the resonant torus corresponding to the
Lagrangian points L4,5), for which the time, s, needed to change the actions,
J, by a given small amount, say |J(s))J(0)| 6 e , is larger than the age of the
solar system. This mathematically well defined and quite elegant approach
suffers from the limitations of all strongly constrained theories. From the
technical point of view, the 1:1 resonance seems to be even more difficult to
tackle, compared to other resonances. Also, the models, in which these
techniques are applied, are too simplified, to represent a realistic long-term
evolution for Jupiter Trojans. As a result, the width of the stability region
found by these methods is typically very small, compared to the one which
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can be determined numerically. These points are discussed in detail in Celletti
and Giorgilli (1991), Giorgilli and Skokos (1997) and Skokos and
Dokoumetzidis (2001).

Since the work of Levison et al. (1997), most numerical work has been
oriented towards short-term numerical integrations of large sets of initial
conditions, aiming to unveil the resonant structure of the Trojan swarms, and
define a stability region in terms of regular/chaotic motion. Important results
on this topic have been published by Marzari et al. (2003) and Nesvorný and
Dones (2002). However, the most complete work on this subject was pre-
sented in this meeting by Robutel et al. (2005) in the same volume. We
should also point out the numerical work of Michtchenko et al. (2001),
where the important role of the great inequality on Trojan motion was
shown, in an indirect way. In that paper it was shown that, if Jupiter and
Saturn ever crossed the 5/2 resonance during their early migration, the
Trojans would not have survived. Gomes (1998) also studied the effect of
planetary migration on Trojans, showing that a near 2/1-resonant config-
uration for Jupiter and Saturn would also lead to a fast depletion of the
swarms.

One has to take care though, since an asteroid undergoing chaotic
motion will not necessarily escape from the Trojan region, within the age
of the solar system. We remind the reader that ~30% of the main-belt
asteroids follow chaotic orbits with Lyapunov times TL 6 105 yrs, but
many of them have very stable proper elements over Gyr-long time spans.
In this paper, we report the results of extensive numerical experiments,
performed with the purpose of defining an ‘effective stability’ region for
Trojan-type orbits and comparing with the distribution of real Jupiter
Trojans, in orbital elements space. The term ‘effective stability’ refers not
only to regular (quasi-periodic) orbits, but also to chaotic orbits which,
however, can wander at the border of the stability region, without escaping
within the lifetime of the solar system. The stability region is defined in
terms of two quantities, which provide complementary information: (i) the
Lyapunov time, TL, which measures the (inverse of the) local rate of
exponential divergence for chaotic orbits, and (ii) the escape time, TE,
which denotes the time needed for a Trojan to encounter Jupiter within a
small distance and escape from the tadpole zone.

The structure of this paper is as follows. The way of appropriately
selecting initial conditions for the numerical experiment is described in Sec-
tion 2. The core of our results is given in Section 3, in the form of grey-scale
maps, which allow us to define the stability region in the space of proper
elements and compare it with the distribution of real Trojans. It is shown that
~14% of the real Trojans are outside the stability region. This result is
confirmed by a 4.5 Gyr integration of the 247 real Trojans found on chaotic
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orbits with TL < 4 · 105 yrs. By estimating the diameters of the observed
bodies, we show that the existence of unstable Trojans cannot be the result of
a size-dependent process and that it is most likely the outcome of slow
chaotic diffusion. For the chaotic region surrounding the effective stability
zone, a power-law statistical correlation between TL and TE is found (Section
4). The conclusions of our study and a discussion on open problems are given
in Section 5.

2. Numerical Set-up

The physical model we consider consists of the Sun and the four giant planets
(Jupiter, Saturn, Uranus and Neptune), fully interacting through Newtonian
pointmass gravitational forces. The Trojan (test-particle) is subjected to the
forces of the massive bodies. The equations of motion are numerically inte-
grated, using the 2nd order mixed variable symplectic algorithm (MVS) of
Wisdom and Holman (1991), as it is implemented in the SWIFT package
(Levison and Duncan, 1994). The time step used in our runs was dt ¼ 0.1 yrs,
i.e., smaller than 0.01TJ , where TJ the orbital period of Jupiter. This inte-
gration scheme is not appropriate when close encounters between bodies
occur. However, in the experiments presented here, we are only interested in
calculating the escape time of a Trojan and not in following its subsequent
evolution. Thus, as described above, we define the escape time of a Trojan as
the time at which it approaches Jupiter within 2 Hill’s radii, at which point
we stop integrating its orbit.

The initial conditions for the Trojans were selected in such a way so that,
for each value of the inclination, i, a ‘representative plane’ of initial condi-
tions was studied. By this we mean that the initial conditions were chosen as
to provide a first approximation to proper elements, so that a comparison
with the real Trojan population could be made. To do this, we used the
model of Érdi (1988) for the long-period motion of a Trojan, in the frame of
the elliptic restricted three-body problem, as the basis of our selection.

According to Érdi (1988), the first term in the expansion of the long
periodic variations of a Trojan’s semi-major axis, a, and relative mean lon-
gitude, k)k¢, is given by

a� a0 ¼ df sin hþOðd2f Þ
k� k0 ¼ �p=3þDf cos hþOðD2

f Þ ð1Þ
where primed quantities refer to Jupiter. The amplitude of libration in semi-
major axis, df (in AU), is related to the amplitude of libration, Df (in radians),
of the critical argument, r = k)k¢, through
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df ¼
ffiffiffiffiffiffi

3l
p

a0Df � 0:2783Df ð2Þ
where l is the ratio of Jupiter’s mass to the total mass of the system. In the (r,
a)a¢) plane, each Trojan orbit has the shape of a topological cycle, centered
approximately at the Lagrangian point (at ± p/3), and the angle h is the
angle between the a ¼ a¢ axis and the ‘position vector’ of the Trojan, mea-
sured from ±p/3. During the motion, the angle r librates approximately
between ±p/3)Df and ± p/3 + Df, while h circulates. In our experiments,
we chose initial conditions around L4, with h ¼ p/2, i.e., r ¼ p/3 and
a ¼ a¢ + df.

When a fi a¢ the values of the forced eccentricity and inclination become
equal to the (osculating) values of Jupiter’s elements. Érdi’s model shows that
the libration adds only 2nd-order corrections to these values. Then, by selecting
the longitude of pericenter of the Trojan, �x, and its eccentricity, e, through

�x ¼ �x0 þ p=3

e ¼ e0 þ ef
ð3Þ

and the longitude of the node, W, and inclination, i, through

X ¼ X0

i ¼ i0 þ if
ð4Þ

the eccentricity offset, ef, and the inclination offset, if, become approximate
proper elements, in the framework of the elliptic restricted three-body
problem. Hereafter we will refer to the elements ef, if and Df as eccentricity,
inclination and libration width, dropping the subscripts. This choice of initial
conditions implies that all test particles have initially a mean anomaly equal
to that of Jupiter, M ¼M¢.

Following the above described scheme, we constructed four sets of initial
conditions, for 0� £ i £ 30� with a step of 10�. Each of these sets consisted of
806 orbits, set on a 31 · 26 grid on the (D, e) plane, with 0 £ e £ 0.25 and
0� £ D £ 45� (the step size being dD ¼ 1�.5 and de ¼ 0.01).

Our first numerical experiment consisted in integrating these 3224 orbits
for tint ¼ 4 Myrs, along with the variational equations. This time is enough
to obtain an estimate of TL, provided that the latter is actually not larger
than ~10% tint (see next section). Subsequently we selected only orbits having
TL < 400,000 yrs to perform our second experiment, which consisted in
integrating these new sets of orbits for tint ¼ 1 Gyr.

3. Strong Chaos versus Effective Stability

The solution of the variational equations provides us with a time series for
the norm of the deviation vector, v(t), for each orbit. For chaotic orbits this
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quantity grows exponentially in time, so we can compute the mean growth
rate (i.e. a short time approximation of the Lyapunov Characteristic Num-
ber), c, by performing a linear least-squares fit on the t ) ln[v(t)/v(0)] curve.
Then, TL ¼ 1/c. This procedure is followed automatically in our code.

It is known, however, that, in order to have an acceptable estimate using
this procedure, the integration time should be long enough for c to have
achieved a constant value (see Milani, 1993). A quantitative check of con-
vergence can be made, and its results are shown in Figure 1, for the sample of
667 numbered Trojans found in the catalogue of proper elements, distributed
by the AstDys database. The correlation coefficient, r2, of the fit, used to
obtain the slope, is plotted against the inverse of the slope, i.e., TL. One can
immediately realize that the quality of the fit drops as TL increases. Since we
are forced to set a limit as to what we consider as a ‘good approximation,’ we
arbitrarily chose to accept any value of TL which was obtained by fit, pro-
vided that r2 ‡ 0.75. Thus, as can be inferred from the plot, for a measure-
ment yielding TL > 400,000 yrs (i.e. longer than about 1/10 of our
integration time span), we cannot decide whether the orbit is mildly chaotic
or regular. For this reason, we decided to exclude orbits with
TL > 400,000 yrs from our second experiment of long-term evolution, and
concentrate on orbits for which we can claim that they are chaotic, on an
acceptable significance level. Concerning our test particle runs, the above
described selection method lead us to discard about 25% of them from the
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Figure 1. The correlation coefficient of the fit, r2, as a function of the value of the inverse of
the slope, i.e., TL, for a sample of 667 numbered Trojans. For TL>0.1 tint » 400,000 yrs, r2

drops below 0.75. Had we selected a different value for tint, the functional form would not have
changed, but the r2 ¼ 0.75 limit would have shifted towards 0.1 tint.
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second experiment. As for the numbered Trojans, 246 bodies (out of 667, i.e.
37%) follow chaotic orbits with TL<400,000 yrs, while the rest could be
considered as following stable orbits.

The results of the two runs can be visualized in Figures 2–5. The top
panels are grey-scale maps of logTL, while the bottom panels are grey-scale
maps of logTE, both TL and TE measured in years. Each figure corresponds
to a different set of initial conditions, i.e., a different initial value of i.

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

6.0

6.0

6.0

6.0

5.0

5.0

5.0

5.0

4.0

4.0

4.0

3.0

3.0

3.0

D (deg)

e

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

9.0

5.0

5.0

6.0

6.0

6.0

7.0

7.0

7.0

7.0

8.0

8.0

8.0

8.0

9.0

9.0

9.0

D (deg)

e

Figure 2. Maps of log TL (top) and log TE (bottom) for i ¼ 0�. Each grey level corresponds to
a change by one order of magnitude. In each panel the real Jupiter Trojans are superimposed,

as discussed in the text. The open dots denote the stable Trojans (i.e., TL>400,000 yrs), while
the full dots denote the chaotic ones. Note that, in all cases (see also next figures), the
distribution of real Trojans follows the shape of the stability zone, but ~14% of the real objects

lie outside the TE ¼ 1 Gyr limiting curve.
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Figure 2 contains the plots for i0 ¼ 0�, Figure 3 for i0 ¼ 10�, Figure 4 for
i0 ¼ 20� and Figure 5 for i0 ¼ 30�. On each panel all numbered Trojans with
proper inclination in the range i0)5� £ i £ i0+5� are superimposed (obvi-
ously, for i0 ¼ 0�, only bodies with i < 5� are shown). The open dots cor-
respond to bodies on regular orbits (i.e., TL P 400,000 yrs), while the full
dots correspond to bodies following chaotic orbits. As expected, the chaotic
objects are located at greater distances from the nominal location of the
Lagrangian point. This projection technique allows us to compare roughly
the 1 Gyr effective stability region, defined by the numerical integration of
test particles, with the distribution of the real Trojans.
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Figure 3. The same as Figure 2, but for i ¼ 10�. Also note the existence of real Trojans in
highly unstable regions (e.g., object 46676), with TL<105 yrs and TE<108 yrs.
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As can be seen in Figures 2–5, ~86% of the real Trojans are projected
inside the TE P 109 yrs region, following the shape of the limiting 1 Gyr
contour. The remaining 14% (between 12 and 16%, depending on the
inclination) is projected outside the stability zone. Note also that ~3% of the
real Trojans is projected on highly unstable regions, defined by TL O 105 yrs
and TE O 108 yrs. Such an extreme example is asteroid (46676) (see Fig-
ure 3). Integrating its nominal orbit we found that it actually escaped from
the L4 region after TE ¼ 7.2 Myrs, a time which agrees well with the location
of this object in Figure 3 (the border of the 107 yrs contour). The time
evolution of its orbital elements is shown in Figure 6. We should note that, a
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Figure 4. The same as Figure 2, but for i ¼ 20�. Note that the extent of the stability region in
D shrinks, with respect to the low-inclination cases.
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significant fraction of chaotic orbits with TL<400,000 yrs, does not escape
within 1 Gyr. Thus, our region of effective stability also contains chaotic
orbits. The extent of the effective stability region, as given from our results, is
comparable to the one calculated by Levison et al. (1997), which is smaller
than the one initially calculated by Rabe (1967). However, by integrating a
much bigger sample of initial conditions, selected as described in Section 2,
we are able to demonstrate for the first time the dependence of the size and
shape of the effective stability region on the inclination of the Trojans. As can
be seen in the figures, for small values of D, the stability region extends up to
emax ¼ 0.2, for any value of i. On the other hand, for nearly circular orbits,
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Figure 5. The same as Figure 2, but for i ¼ 30� In this case, Dmax ¼ 25�, for nearly circular

orbits.
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the stability region shrinks from Dmax ¼ 35� to Dmax ¼ 25�, as i increases
from 0� to 30� It is evident from the plots that the distribution of the real
Trojans in the (D, e) plane follows the shape of the effective stability region,
as the latter is defined for the corresponding value of i.

Based on these results, we could conclude that ~14% of the real Trojans
follow orbits which are not stable over the age of the solar system. This of
course has to be shown by direct numerical integration of the numbered
Trojans. We performed this experiment, setting our integration time to
1 Gyr. Indeed, out of the 246 numbered Trojans with TL<400,000 yrs, 53
escaped within 1 Gyr, i.e.~8% of the total population (667 objects). This
number differs from our initial estimate, mainly due to three limiting factors
of the above representation: (i) the uncertainty on the approximate proper
elements, defined for the test particles, (ii) the projection of the real Trojans
on only four planes, with respect to their proper inclination, and (iii) the
dependence of the width of the ‘actual’ effective stability region (for 4.5
Gyrs), on the integration time.

We decided to extend our integration for the chaotic numbered Trojans,
going to 4.5 Gyrs. This resulted in 112 chaotic objects, which amounts to
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Figure 6. Time evolution of a, e and i for object (46676). The chaotic evolution of both e and i
is evident. As time progresses, the width of libration in a slowly increases, until the asteroid
encounters Jupiter.
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17% of the total Trojan population, escaping within the age of the Solar
System. The histogram of escape times is shown in Figure 7. One can see that
the number of escaping bodies per unit time decays slowly with time. Note
also that more than half of the integrated objects follow orbits which,
although being chaotic, are stable over the age of the Solar System.

Despite the fact that the existence of unstable Jupiter Trojans has been
known for some years, the mechanism by which they may be generated still
remains an open issue. There are three main possible mechanisms, one could
think of, generating a large fraction of unstable objects: (i) slow chaotic
diffusion from the effective stability region, due to secondary resonances (ii)
collisions, and (iii) drift due to the Yarkovsky thermal effect (see Farinella
and Vokrouhlický, 1999). However, while chaotic diffusion has the same
effect no matter what the size of the body is, collisions and thermal forces
give size-dependent ‘kicks’. Thus, it would be easier for a small body to be
transported away from the Lagrangian point (and outside the stability re-
gion) by mechanisms (ii) and (iii) than it would be for a large body. Hence,
the size distribution of bodies, implanted in the chaotic zone due to mech-
anisms (ii) or (iii), should be different from the size distribution of regular
bodies. In particular, if mechanisms (ii) and (iii) were primarily responsible
for replenishing the chaotic region, there should be a lack of large bodies
among the currently observed chaotic population.

Using the AstDys catalogue of proper elements, we can derive the size
distribution of the Trojans. Fernández et al. (2003) derived the albedo dis-
tribution of Jupiter Trojans, showing that it is characterized by a very tight
concentration of values around ~0.05. Using this estimate and the values of
absolute magnitude, H, reported in the catalogue, an effective diameter, D,
can be calculated for each body. Then we can derive the distribution of
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Figure 7. The fraction of escaping Trojans Nesc/Ntot as a function of time. The size of each bin

is 5�108 yrs.
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diameters for both the regular and the chaotic population of numbered
Trojans. The results are shown in Figure 8. It is evident that the two dis-
tributions are nearly identical. This result clearly suggests that the primary
mechanism responsible for generating unstable objects is chaotic diffusion
through secondary resonances.

It should be noted that the observed Trojans population is only complete
up to H ~ 11–12, and thus there are only 4 bodies with D<10 km in the
catalogue of numbered Trojans. Future observations may reveal a difference
in the small)D tails of these two distributions, since D>10 km bodies are
very little affected by the Yarkovsky effect over 4 Gyrs, but this is not true for
D ~ 1 km bodies. However, the important element here is that the probability
of finding a body as large as 150 km in diameter is the same, in both the
chaotic and the stable region.

4. A Statistical Correlation for Escaping Orbits

Figures 2–5 suggest an approximately smooth decay of both TL and TE, as
we move away from the origin of each plot, i.e. the nominal location of L4 at
(D, e) ¼ (0, 0). This intriguing result lead us to consider the possible existence
of a statistical correlation between these two quantities.

Figure 9 is a log–log plot of TL versus TE for each test particle. As before,
only orbits with good measurements of TL (r2>0.75) were considered. Both
quantities are normalized to the mean revolution period of Jupiter,
TJ � 11:86 yrs. The distribution of points on this plot suggests a power-law
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Figure 8. The diameters (D) distribution of the regular (black) and chaotic (grey) components
of the population of numbered Trojans. The two distributions are normalized with respect to

the total number of bodies in each group.
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trend, TE » aT1
b, between these two quantities. Performing a least-squares fit

on the data we found a ¼ 0.75 ± 0.08 and b ¼ 1.62 ± 0.03. The correlation
coefficient of the fit is r2 ¼ 0.88.

Although the least-squares line seems to fit the data well, it is evident from
the plot that the dispersion of the points is quite large, especially when
moving towards large values of TL. Thus, the simple power-law relation
described is not useful in determining TE by computing TL from a much
shorter integration. On the other hand, as shown in Figure 9, there is a well
defined lower envelope of the scatter plot. This enables us to make a
meaningful extrapolation, which suggests that orbits with TL>650,000 yrs
(top-right corner of the plot), although chaotic, would be most likely stable
over the age of the solar system.

The scatter of TE values, around a given value of TL, increases with TL,
i.e., when approaching the stability region. In Hamiltonian systems, it is
known that, as the border of a chaotic region is approached, the geometry of
the phase space becomes highly complex, an effect which leads to temporary
confinement of chaotic orbits, starting close to the border. Consequently the
escape time of such orbits, corresponding to a given narrow range of TL

values, can vary by several orders of magnitude, depending on the duration
of the trapping phase. In terms of asteroid dynamics, this is one manifesta-
tion of the stable chaos phenomenon, first discovered by Milani and Nobili
(1992; see also Tsiganis et al., 2000b, 2002a). We remind the reader that
stable chaos refers to orbits characterized by a small value of TL, but of
extremely stable orbital elements and a value of TE typically larger than
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Figure 9. A statistical correlation between TL and TE. The least squares line gives the power-
law trend. The manifestation of stable chaos, for orbits with TL » 104 yrs, is indicated by the

arrow.
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104 � TL. Such orbits, which are close to the stability boundary, can be seen
on the upper part of Figure 7, for (TL/TJ) ~103.

5. Conclusions and Discussion

In this paper we presented the results of an extensive numerical experiment
on Trojan-type motion. A carefully chosen set of 3224 orbits was integrated
for 4 Myrs. From this set, all chaotic orbits with TL<400,000 yrs were
selected and integrated for 1 Gyr. This experiment took a few months of
CPU time on a custom PC. The purpose was to calculate the two relevant
quantities, defining the stability region of the 1:1 resonance with Jupiter – the
Lyapunov time, TL, and the escape time, TE–in a model containing all four
giant planets.

The basic results of this experiment are given in Section 3 (Figures 2–8).
An effective stability region for 1 Gyr is defined (see Figures 2–5), in the
space of proper elements (D; e; i). For nearly circular orbits, the stability
region shrinks in D as i increases while, for small values of D, the maximum
extent in e is almost constant. As shown in these figures, the distribution of
the numbered Jupiter Trojans follows closely the stability curve, for all values
of i. However, about ~14% of the real Trojans was found to lie outside the
stability region.

A 4.5 Gyr integration of the orbits of 246 chaotic numbered Trojans
confirmed the above estimate. Our result is that 17% of the numbered
Trojans follows orbits which are unstable over the age of the Solar System.
We note that there is another 20% of Trojans undergoing chaotic motion,
but whose orbits are stable over 4.5 Gyrs.

The small escape times of many observed Trojans suggest a constant
leakage of bodies from the stability region towards the large chaotic sea.
However, the mechanism that generates this unstable population was not
known up to now. Analyzing the size distribution of the regular and chaotic
components of the Trojan population (Figure 8), we can conclude that the
main mechanism, by which bodies are delivered from the outshirts of the
stability zone to the chaotic region, is independent of the size of the bodies.
Thus, chaotic diffusion, rather than collisions or thermal effects, is at the
origin of the unstable population.

Chaotic diffusion is the result of higher-order resonant multiplets (either
of mean motion or secular type) inside the 1:1 tadpoles region. Robutel et al.
(2005) have identified several types of resonances, which cross the stability
region. The reader is referred to Figures 1 and 3 of the paper by Robutel
et al. (2005) in this volume. The relevance of each of these types of resonance,
concerning the transport of bodies, remains to be assessed.
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In Section 4 we have found an approximate power-law statistical corre-
lation between the values of TL and TE, for chaotic orbits that escape from
the 1:1 resonance. A similar result, with b » 1.7, was reported by Lecar et al.
(1992), for asteroids of the outer main belt. Murray and Holman (1997) have
shown analytically that such a relationship exists, in the region where all
mean motion resonances of order q ¼ 1 overlap. On the other hand, Shev-
chenko (1998) has shown that a relationship of the form, TE ~ TL

2 can also
be found in the immediate vicinity of the border between regular and chaotic
motion, around a perturbed principal resonance. It is not easy to give an
answer as to which of the two mechanisms we are observing in the case of
Trojans. This is obviously related to the study of secondary resonances in the
vicinity of the 1:1 resonance, which will be the topic of future work.
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Érdi, B.: 1997, ‘The Trojan problem’, Celest. Mech. Dyn. Astr. 65, 149–164.
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