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Abstract. It is usually believed that we know everything to be known for any separable
Hamiltonian system, i.e. an integrable system in which we can separate the variables in some

coordinate system (e.g. see Lichtenberg and Lieberman 1992, Regular and Chaotic Dynamics,
Springer). However this is not always true, since through the separation the solutions may be
found only up to quadratures, a form that might not be particularly useful. A good example is

the two-fixed-centers problem. Although its integrability was discovered by Euler in the 18th
century, the problem was far from being considered as completely understood. This apparent
contradiction stems from the fact that the solutions of the equations of motion in the confocal
ellipsoidal coordinates, in which the variables separate, are written in terms of elliptic inte-

grals, so that their properties are not obvious at first sight. In this paper we classify the
trajectories according to an exhaustive scheme, comprising both periodic and quasi-periodic
ones. We identify the collision orbits (both direct and asymptotic) and find that collision orbits

are of complete measure in a 3-D submanifold of the phase space while asymptotically col-
lision orbits are of complete measure in the 4-D phase space. We use a transformation, which
regularizes the close approaches and, therefore, enables the numerical integration of collision

trajectories (both direct and asymptotic). Finally we give the ratio of oscillation period along
the two axes (the ‘rotation number’) as a function of the two integrals of motion.
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1. Introduction – Motivation

Our interest to the two-fixed-centers problem (2FCP) has been motivated by
the work of Jakas (1995, 1996) on the interpretation of experiments con-
cerning the acceleration of electrons in atomic collisions of ions with atoms.
In these experiments the maximum energy of the emerging electrons is of the
order of the energy of the incoming ions. If the acceleration mechanism is a
single step process, then due to conservation of momentum and energy the
maximum gain in velocity of an electron is 2vi, where vi is the velocity of the
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incoming ion. Since the electron is more than a thousand times less massive
than any ion, (for a proton mp ¼ 1840me), we see that Ee � Ei implies ve � vi
and the acceleration cannot be a one-step process. Jakas (1995) considered
the 2FCP as a first approximation for the motion of the electron in the
electrostatic field of two ions and suggested that, in this approximation, the
electron follows a stable periodic figure-8 orbit around them. In trying to
assess the efficiency of this acceleration mechanism, we realized that the
periodic orbit suggested by Jakas exists but it is not stable. Moreover we
found that all orbits ‘close’ to the periodic one migrate slowly to either of the
two centers, where they experience large accelerations and it is, therefore,
impossible to follow them numerically. Since we were not able to find a
complete solution of the problem in the literature, we decided to initiate a
systematic study.

The motion of a point mass, moving in the gravitational field of two fixed
attracting centers, is a problem first posed by Euler in the 18th century, as an
intermediate step towards the solution of the famous three-body problem.
Euler himself, in a series of three papers (Euler, 1766, 1767a, b), was able to
integrate the equations of motion for the two-dimensional (2-D) case, i.e. the
case where the point mass moves on a plane containing the two attracting
centers. Almost a century later Jacobi (1842) showed that the corresponding
potential of the full 3-D case is separable in prolate spheroidal coordinates.
Another century later Erikson and Hill (1949) found, in explicit form, the
third integral of motion of the full three-dimensional (3-D) case (besides the
other two ‘classical’ ones, i.e. the total energy and the angular momentum
about the axis passing through the two centers). Since then the problem has
been considered as a non-exciting example of a separable potential and it is
included, as such, in many textbooks of Theoretical Mechanics.

That this is not the case can be understood by the multitude of interesting
applications, which appeared in the literature after the paper by Erikson and
Hill. Thus, the problem of the two fixed centers has been used, among others,
in the calculation of satellite trajectories in the gravitational field of the Earth
(Alexeev, 1965; Marchal, 1966, 1986), in the calculation of the energy levels
of the positive ion of the hydrogen molecule, Hþ

2 , (Strand and Reihardt,
1979) and in the acceleration of electrons in atomic collisions (Jakas, 1995,
1996). Generalized forms of the problem have been considered as well, such
as the finite dipole (Howard and Wilkinson 1995), the repulsive dipole
(Kallrath, 1992) and the equally charged two black holes system (Contopo-
ulos, 1990, 1991).

Although the 2FCP is a separable dynamical system, the qualitative
behavior of its solutions was, up to now, not very well understood, probably
due to the fact that the solutions are expressed in the form of elliptic func-
tions. One thorough attempt for the classification of the solutions has been
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done by Deprit (1962), but this publication is not easily available. The ex-
austive classification by Alexeev (1965) is of limited usefulness as well, since
only the abstract is available in English. A similar work, but restricted only to
a subclass of the solutions, has been carried out by Strand and Reinhardt
(1979). Finally Contopoulos and Papadaki (1993) calculated the initial
conditions and the characteristic exponents of many periodic trajectories and
completed the classification by Charlier (1902). However the above authors
did not construct a phase portrait of the dynamical system.

2. Basic Hamiltonian – Equations of Motion

In the present work we focus our interest on the (simpler to study) 2-D case
of the problem, where the trajectory of the third body lies on a plane and we
assume, without loss of generality, that the third body has unit mass. Then
the Hamiltonian of the dynamical system is written, in cartesian co-ordinates,
x–y, as

Hðx; y; px; pyÞ ¼
p2x
2
þ
p2y
2
� a1
r1

� a2
r2

� E ð1Þ

where a1 ¼ 2l, a2 ¼ 2ð1� lÞ (l 2 ½0; 1� is the mass parameter),

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ y2

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ y2

q
. We note that, in the variables

used in Equation (1), the distance between the two centers is equal to
a1 þ a2 ¼ 2 ¼ �a. For later use (Equation (7)) we define also the asymmetry
mass parameter, b, which is equal to b ¼ a1 � a2 ¼ 4l� 2. We note however
that in the numerical examples we restrict our attention to the case of equal
masses, so that l ¼ 0:5 and, therefore, b ¼ 0.

Following Euler (1766, 1767a, b) and Jacobi (1842; see also e.g. Charlier,
1902; Thirring, 1977; Strand and Reinhardt, 1979), we write the
above Hamiltonian in elliptic–hyperbolic coordinates, through the canonical
(point-)transformation:

n ¼ r1 þ r2
2

; g ¼ r1 � r2
2

ð2Þ

Then the ‘old’ variables, as functions of the ‘new’, are given by

x ¼ ng ð3Þ

y ¼ ðsign yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þð1� g2Þ

q
ð4Þ

px ¼
gðn2 � 1Þpn þ nð1� g2Þpg

n2 � g2
ð5Þ
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py ¼ ðsign yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þð1� g2Þ

q
ðnpn � gpgÞ

n2 � g2

¼ y

n2 � g2
ðnpn � gpgÞ ð6Þ

The Hamiltonian H, in the new variables ðn; g; pn; pgÞ, becomes

H ¼ 1

n2 � g2
1

2
ðn2 � 1Þ2p2n þ anþ 1

2
ð1� g2Þ2p2g þ bg

� �
ð7Þ

Finally we change the time scale, by multiplying the Hamiltonian function
by n2 � g2, noting that this quantity is positive everywhere except when the
moving body collides with one of the two centers, in which case it is equal to
zero. At the same time we switch to the extended phase space, where the
additional co-ordinate is time, t, and the corresponding momentum, pt, is
equal to �E, where by E we denote the numerical value of the Hamiltonian
function (Equation (7)). The new Hamiltonian, Kðn; g; s; pn; pg; psÞ,

K ¼ 1

2
ðn2 � 1Þ2p2n þ anþ ptn

2 þ 1

2
ð1� g2Þ2p2g þ bg� ptg

2 ð8Þ

has in the extended phase space a numerical value equal to zero.
We observe that the Hamiltonian is the sum of two parts, Kn and Kg, the

first depending only on n and pn and the second only on g and pg. Since the
value of the Hamiltonian is by definition zero, the two parts should have
opposite values, and satisfy the relation

Kn � �Kg � c ð9Þ
In this way we have separated the variables and, at the same time, we have

recovered the integral of Erikson and Hill (1949), as expressed by Strand and
Reinhardt (1979)

G ¼ � 1

n2 � g2
ðg2Kn þ n2KgÞ ð10Þ

since simply

G � c ð11Þ

3. Classification of Orbits

Following Charlier (1902), Deprit (1962) and Strand and Reinhardt (1979),
the orbits may be classified, according to the available region of configuration
space defined by the values of the two integrals of motion, into three basic
classes (see Figure 1). In the first class, P1, belong the trajectories that lie
within an elliptic annulus encircling the two attracting centers. In the second
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class, P2, belong the trajectories that lie within a simply connected region
that contains both attracting centers. Finally in the third class, P3, belong the
trajectories that lie within two disconnected regions, each one containing one
of the attracting centers. The configuration space and the most characteristic
periodic orbits are shown in Figure 2. For any value of the energy integral,
one unstable isolated periodic orbit of class P2 lies on the y-axis (g ¼ 0) and a
pair of stable periodic orbits of class P1 lie on an ellipse (n ¼ const:), one
orbit described clockwise and the other counter-clockwise (e.g. see Broucke,
1980; Meletlidou and Ichtiaroglou, 1999). These orbits may be easily iden-
tified on a surface of section, from the hyperbolic and elliptic, correspond-
ingly, structure of the invariant curves in their vicinity (see Figure 3). The
figure-8 orbit however does not appear explicitly on the surface of section.
The reason is that, as we were able to conjecture from numerical evidence, all
periodic orbits, besides those mentioned above, are non-isolated. Therefore
the structure of the invariant curves in their vicinity is parabolic and their
characteristic exponents are zero. Indications of this general property were
found numerically by Contopoulos and Papadaki (1993).

In an integrable dynamical system all trajectories are either periodic or
quasi-periodic. However in the case of the two-fixed-centers problem the
situation appears more complicated. The reason is that, usually, we tend to
consider a dynamical system as integrable if its Hamiltonian can be expressed

Figure 1. The three main classes of orbits, as defined in the c–E space.
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in action-angle variables. A necessary condition for this is that the available
phase space region is compact. However this is not immediately obvious in
the case of the two-fixed-centers problem. On a surface of section there are
invariant curves, of clearly positive measure, which tend to infinity, in the
momentum axis, in an unusual way: invariant curves for consecutive values
of the second integral are not nested, but they seem to intersect at infinity
(Figure 3). This behavior can be understood by observing that, due to the
form of the Hamilton’s equations of motion

Figure 2. (a) (Left) The figure-8 non-isolated periodic orbit (dot-dashed) and the only isolated
ones: unstable (3-dot-dashed line) and stable (solid line) orbits on an elliptic, n–g, coordinates
grid. (b) (Right) A non-periodic trajectory of class P3. It fills densely the available configu-
ration space defined by the zero velocity curve and, therefore, approaches arbitrarily close the
attracting center.

Figure 3. Surface of section plot for several non-periodic trajectories: (a)P1 class, dashed curves,
(b) P2 class, dotted and dashed-dotted curves, (c) P3 class, solid and dashed-3-dotted curves.
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_qi ¼
oH

opi

we have that

pn ¼
1

n2 � 1

dn
dt

; pg ¼
1

1� g2
dg
dt

ð12Þ

Therefore if the derivatives on the right-hand side are not equal to zero, at
least one of the momenta tends to infinity as the moving particle approaches
one of the two attracting centers. A simple calculation of surface of section
plots shows, indeed, the existence of this kind of trajectories, which we call
asymptotic collision trajectories. In what follows we show that asymptotic
collision trajectories, which are very difficult to be studied numerically due to
the ever increasing values of the momenta, form a set of complete measure.

The picture in Figure 3 does not agree with the usual one, where the phase
space of an integrable system is foliated into nested tori. Drawing a surface of
section, however, that does not contain the lines n ¼ 1 or g ¼ �1 shows that
the invariant curves’ segments are joined in such a way, that the foliation
picture is recovered (Figure 4). Indeed, we prove in Section 6, through a
regularization scheme, that the points at infinity lie on a circle, so that the
invariant curves do not really cross. The phase portrait in the regularized
coordinates, the distribution of periodic orbits and their relation to the
rotation curves will be the topic of the next section.

Figure 4. Surface of section at y ¼ 0:25, which does not contain the attracting centers. The

invariant curves (solid lines) reflect now the foliation of phase space. The dashed curve is the
zero-velocity curve.
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4. Regularization of Collisions

The equations of motion in ðn; g; pn; pgÞ, as derived from Equation (8), show
an artificial invariant manifold at collision

n ¼ 1; g ¼ �1; ð13Þ
due to the singularities of the transformation, thus e.g. numerical integration
in these variables cannot go beyond such an event. In order to circumvent
this problem and using the fact that

nP1; �1OgO1 ð14Þ
we apply two ‘natural’ point transformations to each one of the separated
parts of the original Hamiltonian:

n ¼ ch u; pn ¼
pu
sh u

; g ¼ cos v; pg ¼ � pv
sin v

ð15Þ

where by sh() and ch() we represent the functions hyperbolic sine and cosine.
The two integrals of motion in the extended phase space then become

Kuðu; pu; ptÞ ¼
1

2
p2u þ a ch uþ pt ch

2 u � c

Kvðv; pv; ptÞ ¼
1

2
p2v þ b cos v� pt cos

2 v � �c

8><>: ð16Þ

The Hamiltonian function is then written aseK ¼ Ku þ Kv

¼ 1

2
p2u þ a ch uþ pt ch

2 uþ 1

2
p2v þ b cos v� pt cos

2 v � 0
ð17Þ

and the equations of motion become:

dt

ds
¼ @ eK

@pt
¼ ch2 u� cos2 vP0

dpt
ds

¼ � @ eK
@t

¼ 0

du

ds
¼ @ eK

@pu
¼ pu

dpu
ds

¼ � @ eK
@u

¼ �a sh u� 2pt ch u sh u

dv
ds

¼ @ eK
@pv

¼ pv

dpv
ds

¼ � @ eK
@v

¼ þb sin v� 2pt cos v sin v

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ
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Writing down the transformation from the old to the new canonical
coordinates and vice versa, we have

u ¼ arch n ð19Þ

v ¼
arccos g; yP0

2p� arccos g; y < 0

(
ð20Þ

pu ¼ sh u cos v px þ ch u sin v py ð21Þ
pv ¼ �ch u sin v px þ sh u cos v py ð22Þ
x ¼ ch u cos v ð23Þ
y ¼ sh u sin v ð24Þ

px ¼
pu cos v sh u� pv ch u sin v

ch2 u� cos2 v
ð25Þ

py ¼
pu sin v ch uþ pv sh u cos v

ch2 u� cos2 v
ð26Þ

We see that the ambiguity present in Equations (4) and (6) has been
removed by using the convention

sign y ¼ signðuÞ signðsin vÞ ð27Þ
and the orbit is regularly continued through a collision

u ¼ 0; v 2 pZ ð28Þ
In this way the difficulty in following numerically orbits of the classes P2

and P3 for long times is relaxed. In Figure 5 we show the same trajectory

Figure 5. The evolution of a ‘typical’ quasi-periodic trajectory, ‘near’ the figure-8 one. The
initial position of the first segment (t0 ¼ 0:0, t1 ¼ 20, dotted line) is given by the triangle. The
final position of the second segment (t2 ¼ 62, t3 ¼ 94) is given by a square. Notice the qual-

itative difference between the x–y (left) and u–v (right) plots.
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integrated in the ‘old’ and the ‘new’ coordinates. It is obvious that the tra-
jectory is evolving quite regularly in the u–v plane, while it undergoes con-
secutive ‘close-encounters’ in the x–y plane.

5. Periodic and Quasi-periodic Motion

The equations of motion of the two-fixed-centers problem can be solved by
quadratures, which involve elliptic integrals and functions (Equations (2.17)
and (2.18) of Strand and Reinhardt, 1979). From the solutions we can cal-
culate the periods of motion along the two axes, g and n, and from them their
ratio, i.e. the ‘rotation number’, in the following way.

5.1. MOTION ALONG THE g-AXIS

The form of the solution of the equation of motion along the g-axis depends
on c and E. For the values of the constants of motion that correspond to the
class P2, the solution is given by Equation (2.17b) of Strand and Reinhardt
(1979), which is a function of the elliptic function cn,

gðsÞ ¼ �g1 cn ð�2EÞ1=2ðg21 þ g22Þ
1=2ðs� s0Þ; k

h i
ð29Þ

where g1 ¼ 1 and g2 ¼
ffiffiffiffiffiffiffiffi
c=E

p
and the argument of the function, k, is given by

the relation

k ¼ g21
g21 þ g22

� �1=2

ð30Þ

Therefore the period, Tg, of the motion along the g-axis is

Tgðc;EÞ ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2Eð1þ c=EÞ
p KðkÞ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2E� 2c
p K

1ffiffiffiffiffiffiffiffiffiffiffi
1þ c

E

q
0B@

1CA ð31Þ

5.2. MOTION ALONG THE n-AXIS

In the same way we see that the solution of the equation of motion along the
n-axis for the class P2, Equation (2.18a), for values of c and E corresponding
to trajectories of class P2, is a function of the elliptic function sn squared,
with the argument of the function, k, given by

k2 ¼ E� cþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ec

p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ec

p ð32Þ
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After some calculations we find that the period, Tn, of the motion along
the n-axis is given by the relation

Tnðc;EÞ ¼
2ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� Ec�4
p K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� cþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ec

pp
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� Ec�4

p !
ð33Þ

It is quite evident that, within a certain range of values of c and E (see
Figure 6) any ratio (or ‘rotation number’)

Rðc;EÞ ¼ Tnðc;EÞ=Tgðc;EÞ ð34Þ
between the two periods can be achieved. Therefore the trajectories belonging
to the class P2 are either periodic or quasi-periodic. In particular, since the
rational numbers are dense in the set of real numbers but of zero measure, we
can conclude that we have two important sets of trajectories.

(1) A dense set of measure zero of initial conditions with Rðc;EÞ 2 Q yielding
periodic motion (Lissajous-figures in the ðu; vÞ, ðu; pvÞ, ðpu; vÞ, ðpu; pvÞ
planes respectively). A special case with R ¼ 2 are the figure-8 orbits.

Figure 6. The ratio of periods along the two degrees of freedom as a function of the two
integrals of motion, c and E.
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(2) A dense set of positive measure of initial conditions with Rðc;EÞ 2 RnQ
involving quasi-periodic motion. Note that each of these orbits may enter
any arbitrarily small neighborhood of both of the foci after sufficiently
long time. According to the terminology we introduced in Section 3, these
are the ‘asymptotic collision orbits.’

A similar reasoning holds for the region P3, except that one single orbit
may collide or nearly collide only withone of the centers. The statements for
the existence of periodic and quasi-periodic orbits, apart from collisions, hold
also for the region P1.

6. Density and Measure of Pure Collision Orbits

In order for an orbit to be a pure collision one, it must contain either m1 or
m2. The first case in the three coordinate systems used here is equivalent to

ðx; yÞ ¼ ð�1; 0Þ; ðn; gÞ ¼ ð1;�1Þ or ðu; vÞ ¼ ð0;pþ 2kpÞ; k 2 Z

ð35Þ
while the second is equivalent to

ðx; yÞ ¼ ð1; 0Þ; ðn; gÞ ¼ ð1; 1Þ or ðu; vÞ ¼ ð0; 2kpÞ; k 2 Z ð36Þ
For symmetry reasons we only treat collision with m2. At the very moment

of collision we have (from Equations (22), (23), (26) and (27))

p2u þ p2v ¼ 4 ð37Þ
and

pu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþ cþ 2Þ

p
ð38Þ

pv ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�E� cÞ

p
ð39Þ

from the integrals Ku and Kv respectively (remember that pt ¼ �E!). There-
fore, in momentum space, the initial conditions of true collision trajectories
lie on a circle.

Restricting v to ½0; 2p� one thus has determined the four possible points of
collision in phase space by a single pair ðc;EÞ. Now pick out one of them,
since the others can be treated similarly through symmetry, and consider a
finite length segment of the pseudo-time (s) evolved orbit, passing through it.
Then one can show that, by varying c and E within the region of P2, the
resulting bundle of curve segments spans a 3-D volume of positive 3-D
measure in 4-D space. Now, since any orbit can be regarded as the countable
union of finite length curve segments, the set of initial conditions leading to
collision can be represented as a countable union of 3-D volumes. This union
is of positive 3-D measure in any 3-D subspace projection but of zero 4-D
measure in 4-D space.
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Moreover, when dropping the set of measure zero, for which R 2 Q, from
4-D phase space, one finds that any orbit fills densely a smooth surface,
transverse to all the above mentioned 3-D sets, exhausting the allowed ranges
of motion in each phase space variable respectively. Therefore the 3-D sets of
positive 3-D measure lie dense within a compact subset of 4-D space around
the point of collision, provided a neighborhood of the point P012 (which
corresponds to exact collision) is avoided! Summarizing one thus has a dense
set of measure zero of initial conditions in 4-D phase space of collision orbits.

It should be noted, however, that if the two attracting centers are bodies
with physical, non-zero dimensions, and not mathematical points, then the
asymptotic collision become true collision orbits as well, so that they have a
complete measure in full 4-D space.

7. Summary – Discussion

In this paper we have presented some ‘annoying’ features of the planar two-
fixed-centers problem and we have proposed ways to circumvent them.

We have shown that (bounded) trajectories restricted in configuration
space region that contain either attracting center (classes P2 and P3) cannot
be written in action-angle variables, although the dynamical system is sepa-
rable, because all trajectories in these regions are either collision (of measure
0) or asymptotic collision (of complete measure) orbits. As a result, all tra-
jectories approach arbitrarily close at least one of the two attracting centers,
so that the allowable region of phase space is not compact. The above
problem does not appear for trajectories of class P1. Since almost all of the
applications of the 2FC problem, up to now, were on the motion of artificial
satellites, whose trajectories belong to the class P1 (since the two centers are
in this case located both inside the Earth), the above ‘irregular’ behavior was
so far not appreciated.

By selecting as surface-of-section a phase space plane not containing the
attracting centers, we have found that invariant curves join in a smooth way,
so that an appropriate canonical transformation should ‘regularize’ collisions
and asymptotic collisions. This transformation is given in Section 4. In the
new variables the trajectories are continued through collisions in a consistent
way, so that the numerical integration of quasi-periodic trajectories (which are
the asymptotically collisions orbits) can be computed without any problem.

We have calculated in closed form the rotation number as a function of
the constants of the motion, so that we can determine the initial conditions
for periodic trajectories of any resonance.

Finally we have shown that true collision orbits of class P2 and P3 are of
complete measure in a 3-D sub-manifold but of zero measure in the full 4-D
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space. However if the attracting centers are physical bodies and not mathe-
matical points, then all trajectories become collision orbits and in a finite time
are terminated on either attracting center.
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