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Abstract We study the problem of critical inclination orbits for artificial lunar satellites,
when in the lunar potential we include, besides the Keplerian term, the J2 and C22 terms and
lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the incli-
nation and the argument of pericenter do not remain both constant at the same time, as is the
case when only the J2 term is taken into account. Instead, there exist quasi-critical solutions,
for which the argument of pericenter librates around a constant value. These solutions are
represented by smooth curves in phase space, which determine the dependence of the quasi-
critical inclination on the initial nodal phase. The amplitude of libration of both argument
of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to
<0◦.1 for both quantities, when a uniform rotation of the Moon is taken into account. The
values of J2, C22 and the rotation rate strongly affect the quasi-critical inclination and the
libration amplitude of the argument of pericenter. Examples for other celestial bodies are
given, showing the dependence of the results on J2, C22 and rotation rate.

Keywords Lunar artificial satellite · Critical inclination · C22

1 Introduction

The motion of an artificial satellite around an oblate body has been extensively studied during
the past decades, by several authors. The interest was mainly focused on the effect of the
J2 term of the expansion of the potential in spherical harmonics which leads to a critical
value of the inclination, equal to 63◦.43 (Allan 1970; Hughes 1981; Jupp 1988). The critical
orbits have constant inclination and argument of pericenter. This, combined with a reso-
nance in mean motion, results in a repeat ground track orbit. Molniya and Tundra type orbits,
widely used to cover the communications of high latitude areas, take advantage of that feature
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228 S. Tzirti et al.

(Liu and Innanen 1986; Delhaise and Henrard 1993). Apart from these critical orbits,
near-polar periodic orbits would be of interest (Ferrer et al. 2007).

In the case of the Earth, this approximation describes quite well the actual case, as the
small value of C22 does not cause significant perturbations to the critical inclination. The
Moon, however, exhibits a different behavior. The parameter C22 cannot be neglected, since
its value is only nine times smaller than J2. (De Saedeleer and Henrard, 2006,hereafter
DSH06) studied the lunar case, showing that the critical inclination depends on the initial
phase of the ascending node. They also showed that, when only the effect of the C22 term is
considered, the critical inclination becomes 39◦14′, no matter what the initial nodal phase is.
In their derivation the time variation of the averaged inclination was neglected, most likely
being considered small on the assumed time scale.

As will be shown in the following, under the combined effect of J2 and C22 terms (or C22

alone), the averaged inclination does not remain constant, but performs long periodic oscil-
lations, whose characteristics depend on the model. The only exceptions are the stationary
points on the plane of inclination—nodal longitude which do not correspond to a constant
value of the argument of pericenter (contrary to the ‘J2’ model). The time evolution of the
inclination causes variations in the argument of pericenter of similar order of magnitude.
Under those circumstances, the term ‘critical inclination’ becomes meaningless. At the same
time, a strong dependence of the ‘critical inclination’ on the longitude of the ascending node
was found in DSH06. We will show that, when the rotation of the Moon is taken into account,
the previously described phenomena are considerably weakened.

It is also interesting to study what the situation is for other celestial bodies, whose physical
parameters may be quite different from those of the Moon, as can be found e.g. in Bertotti
et al. (2003) for Mars, in Anderson et al. (1997) for Europa and in Anderson et al. (2001)
for Callisto. The asteroid 433 Eros and the Earth (parameters taken from DSH06) are also
considered as limiting cases, as the former has a very large value of C22, compared to J2,
while the latter a very small one (see Table 1). Moreover, these bodies have widely different
rotational periods, varying from some hours (Eros) to almost a month (Moon). This char-
acteristic helps us to appreciate the contribution of the rotation rate to the properties of the
orbits.

2 Hamiltonian of the problem and equations of motion

We consider an artificial satellite in orbit around the Moon. We use a rotating frame whose
origin is at the center of the Moon, the x axis passes through the longest lunar meridian

Table 1 The values of the parameters J2, C22 and the angular velocity expressed in normalized units†, for
433 Eros, Callisto, Europa, Moon, Mars and Earth

J2 C22 nM J2/C22 J2/nM C22/nM

433 Eros 0.117344 0.0533278 0.270416 2.20075 0.433777 0.197104

Callisto 32.7 × 10−6 10.2 × 10−6 0.001682 3.20588 0.019445 0.006065

Europa 389 × 10−6 117 × 10−6 0.006234 3.32479 0.062398 0.018767

Moon 202 × 10−6 22.271 × 10−6 0.000769 9.07009 0.262719 0.028965

Mars 1959 × 10−6 63.17 × 10−6 0.018940 31.0116 0.103432 0.003335

Earth 1082.6 × 10−6 1.57 × 10−6 0.016380 689.554 0.066092 0.000096

† The gravitation constant G, the mass of the primary and its radius are all equal to 1. See Section 4.
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Quasi-critical orbits for artificial lunar satellites 229

Fig. 1 Orientation of the orbit in space. The arrows indicate the direction of the angles

and the x − y plane coincides with the lunar equatorial plane (see De Saedeleer 2006 for a
detailed discussion). This frame rotates at the rate of the Moon’s mean synchronous rotation
nM (see Fig. 1). The potential, written in selenographic coordinates, has the general form
(Vallado 2001; Sidi 2002; Bertotti et al. 2003)

V = −µ

r

∞∑

n=0

(
R

r

)n n∑

m=0

Pnm(sin φ) [Cnm cos mλ + Snm sin mλ] (1)

where µ = GM, R is the mean equatorial radius of the Moon, (λ, φ) are the selenographic
longitude and latitude, respectively, r the selenocentric distance of the satellite, Cnm and
Snm the non-normalized gravity coefficients and Pnm the Legendre Polynomials of degree n
and order m. For m = 0, we get the zonal harmonic coefficients, for which we will use the
notation Jn = −Cn0. Considering only the effects of the J2 and C22 terms, and including the
lunar rotation, the Hamiltonian of the problem has the following form (DSH06):

H = H0 + HJ2 + HC22 + HnM (2)

H0 is the Keplerian term, while HJ2 and HC22 express the perturbing terms. HnM describes
the rotation of the Moon. In selenographic coordinates, the previous equation can be written
as

H =
(

u2

2
− µ

r

)
+ εµ

r3 P20 (sin φ) + δµ

r3 P22 (sin φ) cos 2λ − nM pλ, (3)

where the term u2/2 − µ/r is the unperturbed (Keplerian) Hamiltonian of the problem,
ε = J2 R2, δ = −C22 R2, P20(sin φ) = (3 sin2 φ − 1)/2 and P22(sin φ) = 3 cos2 φ. The
angles φ, λ and the distance r can be written as functions of the semi major axis a, the
eccentricity e, the inclination I of the orbit relative to the equatorial plane, the longitude of
the ascending node �, the argument of pericenter ω and the mean anomaly M . Reverting to
the canonical set of Delaunay variables [l, g, h, L , G, H ], which are defined here as follows:
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l = M, g = ω, h = � − nM t

L = √
µa, G =

√
µa

(
1 − e2

)
, H =

√
µa

(
1 − e2

)
cos I

and averaging over the fast angle, l, the following first order averaged Hamiltonian was
obtained by DSH06:

H̄ = − µ2

2L2 + εµ4

4G3L3 − 3εµ4 H2

4G5L3
+ 3δµ4

2G3L3 cos 2h − 3δµ4 H2

2G5L3
cos 2h − nM H (4)

We have checked that the same first order result can be obtained using the simpler method
described in Roy (1982). Moreover, we checked that the second order terms, with respect to
the perturbations, are indeed negligible in the absence of nearby commensurabilities between
the mean motion of the satellite and the rotation rate of the Moon. We did so writing Eq. 3 in
Delaunay elements, expanding up to degree 4 in eccentricity (see Murray and Dermott 1999)
and applying the Lie transform method, as presented by Morbidelli (2002). Note that, here,
the orbital elements [a, e, I,�, ω, M] are defined in an inertial frame, while the Delaunay
variables are defined in the rotating frame described above. However, the transformation only
affects the definition of the nodal longitude h.

The first-order averaged equations of motion are

l̇ = ∂H̄/∂L (5)

L̇ = −∂H̄/∂l = 0 (6)

ġ = ∂H̄/∂G = − 3εµ4

4G4L3

(
1 − 5

H2

G2

)
+ 3δµ4

2G4 L3 cos 2h

(
−3 + 5

H2

G2

)
(7)

Ġ = −∂H̄/∂g = 0 (8)

ḣ = ∂H̄/∂ H = −nM − 3εµ4 H

2G5L3
− 3δµ4

G5L3
H cos 2h (9)

Ḣ = −∂H̄/∂h = 3δµ4 H

G3L3 sin 2h − 3δµ4

G5L3
H2 sin 2h (10)

We are going to study four different models: The ‘J2 + C22’, ‘C22’, ‘C22 + nM ’ and ‘J2 +
C22 + nM ’ models, each of them taking into account the terms indicated by its label.

2.1 Definition of the quasi-critical inclination

The critical inclination in the ‘J2’ model is defined as the constant value of I for which the
time derivative of g is zero. This value (if there is one) corresponds to a fixed point in the
(h, H) phase diagram, i.e. a periodic orbit (Ḣ = ḣ = 0). If ġ = 0, but Ḣ �= 0 and ḣ �= 0,
which is the case in more complicated physical models, we cannot use the term ‘critical’ value
of inclination, as the time evolution of H (or, equivalently I ) and h will lead to changing
values of I and ġ. Having in mind applications of constant g, we can search for solutions,
for which the mean value of the argument of pericenter remains constant (〈ġ(t)〉t = 0) and,
preferably, the amplitude of libration is small. As will be shown later, these solutions corre-
spond to smooth curves in the phase diagram (see Figs. 2, 3). We define them as quasi-critical
orbits. We draw attention to the fact that the initial values (h0, H0) that give quasi-critical
orbits belong to the same curve, a trajectory of the averaged system. Thus, there exists in fact
a single critical value of the action A (i.e. the area enclosed by the curve)

A =
∮

Hdh
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Quasi-critical orbits for artificial lunar satellites 231

Fig. 2 Phase diagrams for the ‘J2 +C22’ model. The two diagrams show the cases of Moon (left) and Callisto
(right), for which the critical curves (bold lines) are outside and inside the separatrix, respectively. The dashed
line (left panel) corresponds to the solution of DSH06

Fig. 3 Phase diagrams for the ‘C22’ (left) and ‘C22 + nM ’ model (right) for the case of Moon. The phase
diagram for the ‘J2 + C22 + nM ’ model is very similar to that of the ‘C22 + nM ’ model

It is not an easy task to solve the system of differential equations 7–10 for the functions
g(t), G(t), h(t), H(t). Nevertheless, it is separable, since g is an ignorable coordinate, and
integrable. In this case it can be found an expression for H(h), by solving the differential
equation obtained by dividing Eqs. 9 and 10. The solution is

H(h) = −C ± √
C2 + (C1 − A cos 2h) (D + B cos 2h)

D + B cos 2h
(11)

The parameters A, B, C and D are defined as follows

A = 3δµ4

G3L3 (12)

B = − 3δµ4

G5L3
(13)

C = −nM (14)

D = − 3εµ4

2G5L3
(15)

The expression that gives the integration constant C1 as a function of the initial conditions
H0 and h0 is

C1 = 2C Ho + DH2
o + A cos 2ho + B H2

o cos 2ho (16)
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Substituting H(h) in Eq. 7, we get an expression for ġ(h). Dividing ġ(h) by (9), we have an
expression for dg(h)/dh, which has the form

g′(h) = dg(h)

dh
= ġ(h)

ḣ(t)
=

[
−40G10 L6nM

2 − 60G5 H0 L3nMε} µ4 + 9G2ε2µ2

− 45H0
2ε2µ8 − 72G2δ2µ8 cos2 2h + 90G2δεµ8 cos 2h0 − 90H0

2δεµ8 cos 2h0

− 6δµ4 cos 2h[20G5 H0 L3nM +3G2εµ4+15Ho
2εµ4−30(G2−H0

2)δµ4 cos 2h0]
+ 20G10 L6nM W

]
/
[
6G6L3µ4W (ε + 2δ cos 2h)

]
(17)

where

W =
{
(2G5L3nM + 3H0εµ

4)2 + 36G2δ2µ8 cos2 2h − 18(G2 − H0
2)δεµ8 cos 2h0

+ 6δµ4 cos 2h[4G5 H0 L3nM + 3G2εµ4 − 6(G2 − H0
2)δµ4 cos 2h]

}1/2
G−5L−3

(18)

In all models, the quasi-critical orbit is defined by the condition

〈
g′(h)

〉
h =

h2∫

h1

g′(h)dh = 0

The mean value of g′(h) can be found by integrating (17) along the corresponding invariant
curve. The appropriate limits (h1, h2) are found by solving the equation H(h) = 0. If the
critical curve in phase space represents a libration, then 0 ≤ h1, h2 ≤ 2π . If the critical
curve belongs to the region of rotations, the equation H(h) = 0 has no real solution and
(h1, h2)=(0, 2π), respectively. The expression (17) is complicated enough and it cannot be
integrated easily. On the other hand, the numerical calculation of the integral gives satis-
factory and precise results. Thus, we calculated numerically the value of

〈
g′(h)

〉
h for initial

conditions 0 ≤ h0 ≤ 360◦ and H0 such that 0 ≤ I ≤ 90◦. For a given value of h, the value of
I for which the integral is equal to zero is the quasi-critical inclination (Iqc). For that value,
the argument of pericenter performs oscillations with period and amplitude that vary from
model to model, but its mean value is constant with time.

3 Analysis and results

We restrict ourselves to orbits close to the surface of the Moon, as the effect of the Earth
cannot be ignored at distances greater than 3R from the center of the Moon (De Saedeleer
2006).

All models mentioned above have a common characteristic: Iqc depends on h0 (to be
precise, on cos 2h0). This is not surprising, since h is present in Eq. 7 and, as we already
said, the critical quantity is the action A. When we ignore the rotation of the Moon, this
dependence is quite strong. Specifically, in the ‘J2 + C22’ model, the Iqc varies from 52◦ to
almost 82◦, for 0 ≤ h ≤ 90◦ (see Fig. 4—left panel). The ‘C22’ model exhibits even stronger
dependence, since Iqc ≈ 26◦.44 for h = 0 and reaches 90◦ for h ≈ 39◦.3. There is no Iqc for
39◦.3 < h < 50◦.7, while for 50◦.7 < h < 90◦ the value of Iqc decreases from 90◦ to 26◦.44
(see Fig. 4—right panel). It is interesting that, in the ‘C22’ model, for h = ±45◦,±90◦ the
argument of pericenter freezes, no matter what the initial I . However, this does not mean that
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Quasi-critical orbits for artificial lunar satellites 233

Fig. 4 Quasi-critical inclination as a function of cos 2h0 for the case of the Moon

Fig. 5 The libration amplitude of g and I for the different models (Moon)

the inclination remains constant as time goes by. Actually, it varies, approaching asymptoti-
cally 180◦ (when ho = 45◦) or 0◦ (when ho = −45◦). This behavior has no effect on g, since
the right hand side of Eq. 7 is now equal to zero. When the lunar rotation is included, it clearly
dominates over the perturbations, in such a way that Iqc ≈ 63◦.4 for the ‘J2 + C22 + nM ’
model (i.e. nearly the same as in the simple ‘J2’ model) and Iqc ≈ 26◦.5 for the ‘C22 + nM ’
model (see Fig. 4).

As regards the libration amplitude of the argument of pericenter (	g) and the inclination
(	I ) of a quasi-critical orbit, it is simply defined here as the difference between the minimum
and the maximum value of g, or I , respectively. Again, ignoring the rotation, the libration
amplitude is quite large. Specifically, for the ‘J2 +C22’ model 	g ≈ 33◦.7 and 	I ≈ 29◦.4,
while for the ‘C22’ model 	g ≈ 25◦.7 and 	I ≈ 127◦.1. Taking into account the rotation,
	g and 	I become at least two orders of magnitude smaller (see Fig. 5), i.e. <0◦.1.

The analytic expression of g′(h) reveals that Iqc and 	g depend on the semi major axis
and the eccentricity of the orbit, both of which are constant in the averaged model. The full
expression (17), including all the parameters ε, δ and nM , is too long and complicated, thus
the exact dependence on a and e is not so clear. In any case, the variations of Iqc and 	g
caused by changes in the initial value of a and e are limited to the second decimal of their
value expressed in degrees. To get a feeling of this, we present a couple of simplified cases.
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Assuming nM = ε = 0, the expression for g′(h) takes the following simple form

g′(h) = −2G2 cos 2h + 5(G5 − H2
0 ) cos 2h0

2G
√

cos 2h[G2 cos 2h + (H2
0 − G2) cos 2h0]

(19)

while when only nM = 0, it becomes

g′(h) = (G2 − 5H2
0 ) ε

δ
− 4G2 cos 2h + 10(G2 − H2

0 ) cos 2h0

2G
√

( ε
δ

+ cos 2h)
[
H2

0
ε
δ

+ 2G2 cos 2h + 2(H2
0 − G2) cos 2h0

] (20)

According to these equations, which are used to obtain Iqc and 	g for given initial conditions,
when nM = 0 there is no dependence on L whereas a dependence on G still exists.

To confirm that the effect of short-period terms on Iqc is negligible, we numerically inte-
grated the full problem (Eq. 3). We use a multi-step numerical integration method, based on
the Adams PECE formulas and local extrapolation. The step-size and order are adjusted at
each step, such that the local error remains smaller than a predefined small parameter (10−14

in our case). This algorithm is thoroughly explained in Shampine and Gordon (1975). For
each model, we integrated a number of orbits with h0 from 0 to 90◦, (step of 5◦), taking
30 different values of H0 in the quasi-critical range. In all cases studied, it was clear that
short-period terms have a minimal effect on the value of the quasi-critical inclination. This
happens since l̇ >> nM , which means that no low-order resonance between the mean motion
of the satellite and the rotation period of the Moon are possible (see examples in Figs. 6, 7).

2 22 2 22

2 22 2 22

Fig. 6 The time evolution of a, e, I and g for the averaged and the full ‘J2 +C22’ model. The initial conditions
considered are a = 4500 km, e = 0.01, I = 52◦.6609, g = 270◦
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Fig. 7 The time evolution of a, e, I and g for the averaged and the full ‘J2 + C22 + nM ’ model. The initial
conditions considered are a = 4500 km, e = 0.01, I = 63◦.4178, g = 270◦

4 Parametric study for different values of the perturbing parameters

Despite the Moon’s shape, which is characterized by a rather large value of C22 and a
relatively slow rotation rate that give rise to the phenomena described above, it is interesting
to examine what happens for other planets or moons, with different values of J2, C22 and
nM . The celestial bodies chosen here are Mars and the Jovian moons Europa and Callisto.
In some plots, Earth and the asteroid Eros are also included. Each of these bodies has differ-
ent characteristics and they were selected in order to cover a sizeable part of the parameter
space. These bodies are used as examples, so the values of their disturbing parameters may
not represent the most accurate values today. As regards Eros, its use is just indicative, as its
physical structure and rotation period are such that it is difficult to choose an orbit far from
resonances and, at the same time, quite close to its surface. To be able to compare the results
for each body on the same basis, we chose orbits for which R/a = 0.35. This corresponds to
a value of a such that the orbit is unaffected by low-order resonances with the rotation period
of the central object (which is quite long for all bodies tested here, except Eros) and also
allows large values of eccentricity, without physical collision. The system of units we use is
defined as follows: we consider that the gravitation constant G, the mass of the primary and
its radius are all equal to 1. Then, the period of a particle that orbits around the primary with
a = R = 1 is T = 2π . The computations are made for two different eccentricities, e = 0.1
and 0.6.
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236 S. Tzirti et al.

4.1 ‘J2 + C22’ model

When the rotation is ignored, g′(h) can be written as a function of the ratio ε/δ (Eq. 20). This
means that, celestial bodies with different mass distributions, but with the same ε/δ, support
the same quasi-critical orbits. The value of ε/δ determines the form of the phase diagram,
extending the region of librations, as it decreases. So, for some ε/δ values the quasi-critical
curve is located inside the separatrix (see Fig. 2 - right panel). As a result, for these ε/δ

values there do not exist quasi-critical values of inclination for every h, as shown in Fig. 8
(left panel). Performing a parametric study for 1 ≤ ε/δ ≤ 100, for a fixed h0 = 50◦, we
found that the libration amplitude of g has for ε/δ ≈ 7.9 a maximum, 	g = 44◦. For the
same ε/δ value, Iqc has a minimum (Fig. 9— left panel). Looking at the phase diagrams
again, this behavior indicates that we are very close to the separatrix.

4.2 ‘C22’ model

In this case, the parameter δ drops out from Eq. 19. So, the exact value of C22 does not play
any role in that model, for what concerns

〈
g′(h)

〉
. On these grounds, Iqc for all bodies exhibits

exactly the same dependence on the initial value of h.

Fig. 8 Quasi-critical inclination as a function of cos 2h0 for the celestial bodies studied

Fig. 9 The libration amplitude of g as a function of the ratio of the considered perturbations. In the left panel
the value of the quasi-critical inclination as function of J2/C22 is also plotted (dotted line)
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4.3 ‘C22 + nM ’ model

	g—although very small—seems to depend linearly on δ/nM (see Fig. 9—right panel).
The changes induced to Iqc are too small to be worth mentioning. More remarkable changes
appear in the case of very small values of C22 (i.e. Earth) or very slow rotation (small nM ),
both leading to larger values of δ/nM .

4.4 ‘J2 + C22 + nM ’ model

This model contains all three parameters and for that it is the most complicated of all, but
also the most realistic one. Here, the ratios that must be considered are three: ε/δ, δ/nM and
ε/nM , as all of them are present in the expression for g′(h). However, one of them appears
to be the most crucial, δ/nM . Keeping constant the value of J2 and changing the value of
δ/nM , we obtain the diagrams of Figs. 10 and 11.

Fig. 10 	g and Iqc as a function of C22/nM (left panel) and J2/C22 (right panel). In the left diagram the
values of J2 and nM are kept constant, while in the right diagram the constant parameter is C22. The values
of the constant parameters in both cases correspond to the Moon

M

Fig. 11 The quasi-critical inclination as a function of the ratio J2/C22
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Note that the eccentricity, even though present in the equations of all models, has
noticeable effects only when combined with rotation (see Fig. 9—right panel, 10). Otherwise,
its contribution is negligible, as e.g. in Fig. 9 (left panel), where the curves for e = 0.1, 0.6
are nearly one on top of the other.

5 Conclusions

We have shown that when the C22 spherical harmonic is included in the gravitational field
of the Moon, the problem of the ‘critical inclination’ of satellite orbits is quite different
from the simpler ‘J2’ model. In all models, the orbits of the averaged system, for which the
argument of pericenter librates around a mean value (i.e.

〈
g′(h)

〉
h = 0), are defined here as

quasi-critical. The initial conditions (h0, H0) on a quasi-critical orbit define a curve in phase
space, which corresponds to a critical value of the action. Hence, the quasi-critical value of
the inclination is not unique, but depends on h0. Therefore, this dependence is quite different
from the one found by DSH06, where the variations in (h, H ) were not considered. The
dependence is strong when the rotation is ignored. The initial values of the semi major axis
and eccentricity also play a minor role in the values of Iqc. However, rotation smooths out
these effects (at least for values of nM considered here), so that the quasi-critical solutions
of the ‘J2 + C22 + nM ’ model are nearly identical to the critical inclination solution of the
‘J2’ model.

The parametric study for different perturbation strengths and rotation rates revealed that
in the ‘J2 + C22’ model, there is a value of the ratio J2/C22 for which 	g has a maxi-
mum and Iqc a minimum. This value corresponds to the separatrix of the averaged system.
The critical curve of the ‘C22’ model does not depend on δ. In the ‘C22 + nM ’ model, 	g
increases linearly as a function of C22/nM . In the ‘J2 + C22 + nM ’ model the most sig-
nificant parameter is the ratio C22/nM , but the values of J2/nM and J2/C22 must also be
considered.

For lunar satellites, we intend to study in the future the effect of the Earth as a third
body perturbation on inclined satellite orbits (see Jefferys and Moser 1966), which is sig-
nificant at distances greater than 3R (De Saedeleer 2006). The resonance between the rota-
tional and the orbital period of the Moon is expected to change the secular dynamics of the
satellite. In the general case of an artificial satellite orbiting a central body, additional per-
turbing terms (e.g. Palacián 2007) and resonances, between the mean motion of the satellite
and the rotational period of the primary, have to be considered. In that case, the degrees
of freedom of the averaged system will be increased and the long-term stability of the
orbits might be affected by the perturbations, especially for a non-rotating central body. This
future work may lead to more efficient design of artificial satellite orbits, which could also
be used as boundary conditions for Earth-Moon satellite transfers (Perozzi and Di Salvo
2008).
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