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Abstract. When one thinks of the solar system, he has usually in mind the picture based on
the solution of the two-body problem approximation presented by Newton, namely the ordered
clockwork motion of planets on fixed, non-intersecting orbits around the Sun. However, already
by the end of the 18th century this picture was proven to be wrong. As discussed by Laplace and
Lagrange (for a modern approach see [3] or [2]), the interaction between the various planets leads
to secular changes in their orbits, which nevertheless were believed to be corrections of higher order
to the Keplerian elliptical motion.

This idea has changed completely the last decades. Now it is well know that the solar system was
created from a state of chaotic interactions of planetesimals, primordial bodies the size of a small
asteroid, and that since this time many episodes of cataclysmic collisions have shaken all major
planets, due to the pronounced chaotic motion of the minor bodies. A new discipline has emerged
out of the above new ideas, which is based on the statistical approach to chaotic motion of bodies, in
particular those in the asteroid belt. At the same time it has been understood that non-gravitational
forces, in particular the Yarkovsky effect, may play an important role on the long-time evolution of
the trajectories of kilometer-sized bodies.
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1. KEPLERIAN MOTION (2 BODIES)

1.1. Newtonian approach
The equations of motion of one planet in orbit around the Sun are given by substituting

the force of gravitational attraction between the two bodies

M m�F = G �r (1)
r3

into Newton’s second law of motion

d2�r�F = m�a = m (2)
dt2

whereM and m define, respectively, the masses of the Sun and the planet,G the
gravitational constant andr the distance between the bodies.

It was known since the time of Newton that the above differential equation can be
solved exactly. The bounded solutions of atest particlemoving around the Sun are
ellipses, with semi-major axis

G M
a = − (3)

2E
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FIGURE 1. Definition of true (v), eccentric (E) and mean (M) anomaly.

and eccentricity

e=

√
1+

2Eh2

G 2M 2 (4)

whereh denotes the angular momentum andE the energy (withE < 0). The orbit on the
plane of the ellipse is given, in planar polar co-ordinates, by the function

r =
a(1−e2)

1+ecos(v)
(5)

where the polar anglev is the true anomaly. The position of the planet on its orbit is
given by the functionv(t), which is known in anindirect way. The true anomaly,v, is
related to theeccentric anomaly, u, through the relation (see Fig. 1)

cos(v) =
cos(u)−e

1−ecos(u)
(6)

The functionu(t), in turn, is found by solvingKepler’s equation

u−esin(u) = n(t − t0) (7)

wheret0 is the time of perihelion passageand themean orbital frequency(or mean
motion) of the planet is given by Kepler’s third law

n =
√

G M a−3/2. (8)

The study of an integrable conservative dynamical system is greatly facilitated if one
goes to Hamiltonian formalism and writes the corresponding Hamiltonian in a special
set of canonical co-ordinates(Ii ,θi), known asaction-angle variables. Then the “new”
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Hamiltonian is innormal form, i.e. it depends only on the actions,Ii . In this case, as it is
evident from Hamilton’s equations of motion,

dIi
dt

= −∂H

∂θi
,
dθi

dt
=

∂H

∂ Ii
(9)

the actions,Ii , are constants of the motion and the angles,θi, are linear functions of
time. A simple inspection shows that neitherv nor u are increasing linearly with time.
The only angle with this property is themean anomaly,

M = n(t − t0) (10)

and, as we will see in what follows, it is indeed the conjugate angle co-ordinate of an
action-angle pair that transforms the Hamiltonian of the problem to a normal form. The
“physical” interpretation of this angle is that it measures the percentage of the area of
the ellipse spanned by the position vector within time (t − t0) (as the motion takes place
at constant area velocity).

1.2. Hamiltonian approach

The Hamiltonian of the two-body problem in a heliocentric1 co-ordinate system and
in spherical co-ordinates(ρ,θ,φ) is:

H =
1
2

(
p2

ρ +
pθ

2

ρ2 +
p2

φ

ρ2sin2θ

)
− G M

ρ
(11)

where, as in the previous section, we treat the planet as a test particle. The planet follows
an elliptical orbit on thex-y plane (usually referred to asinvariant plane), with thex-
axis pointing from the Sun to the vernal equinox,γ, and thez-axis pointing to the north
pole of the celestial sphere (see Fig. 2). The position of the planet, at each time, is
fully defined by 6 constants, the so-calledorbit elements: the semi-major axis, a, the
eccentricity, e, the inclination, i, the longitude of the ascending node, Ω, theargument
of perihelion, ω, and theepoch of perihelion passage, t0. The first two constants give
the shape of the ellipse, the next three are the Euler angles and give theorientationof
the ellipse in space (Fig. 2) and the last one, in connection with eq.(8), gives the mean
anomaly of the planet.

The complete set of canonical action-angle variables for the two-body problem are
the Delaunay actionsL,G,H and anglesl ,g,h, which are defined by the relations

L =
√

G M a l = M (12)

G =
√

G M a(1−e2) g = ω (13)

1 Note that if we had selected abarycentricsystem instead, we should change its origin every time we
would like to “add” a new body in our model!
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FIGURE 2. Definition of the six orbital elements.

H =
√

G M a(1−e2)cosi h = Ω (14)

The Hamiltonian, in these variables, becomes simply

H ∗ = −G 2M
2

2L2 (15)

The anglel = n(t − t0), which is increasing linearly with time, gives thepositionof the
body on the ellipse, while the other two angles are constants. The Delaunay variables,
however, have a weak point, since the angleω is not defined fori = 0 and the angleM
is not defined fore= 0. This problem is solved if we go tomodifiedDelaunay variables:

Λ =
√

G M a l = ϖ +M (16)

Γ = Λ(1−
√

1−e2) γ = −ϖ (17)

Z = Λ
√

1−e2(1−cosi) ζ = −Ω (18)

which are, as well, action-angle variables for the two-body problem. The two new angles
are thelongitude of perihelion, ϖ = Ω+ω, and themean longitude, λ = ϖ + l .

In these variables the Hamiltonian has the same functional form as eq. (15)

H ∗ = −G 2M
2

2Λ2 (19)

In this form becomes obvious the most important property of the two-body problem,
the degeneracy, since the Hamiltonian depends only on one (out of three) action. The
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frequenciesϖ̇ and Ω̇ are equal to 0 and, therefore,besidesthe three actions, there
exist two more integrals of motion: the orientation anglesϖ andΩ. As a result of the
degeneracy, there is onlyonenon-zero frequency,

λ̇ =
∂H ∗

∂Λ
(20)

which is independent ofΓ andZ. That is why all bounded orbits of the two body problem
are periodic and the period of the orbit does not depend on eccentricity or inclination.

2. THE RESTRICTED THREE-BODY PROBLEM

The next, justslightlymore complicated than the two body problem, is the model of the
restricted three-bodyproblem. In this model our planetary system is approximated by
three bodies: one large (the Sun), one small (Jupiter) in afixed(circular or elliptic) orbit
around the Sun and a massless body (a small planet or an asteroid)2. The problem posed
is to find the trajectory of the third, massless body. The corresponding Hamiltonian
(again in a heliocentric frame of reference) is:

H =
(

�p2

2
− G M

r

)
−G m′

(
1

‖�r −�r ′ ‖ −
�r ·�r ′
r ′3

)
= H ∗ −G m′R (21)

where p and r are the momentum and position of the third body,M is the mass of
the Sun,m′ and r ′ the mass and position of Jupiter andR is thedisturbing function,
which gives the “perturbation” of Jupiter to the orbit of the asteroid. We note that, apart
from the disturbing function, the Hamiltonian of the three-body problem is identical to
eq.(11).

Depending on whether Jupiter is moving on a circular or elliptic orbit and on whether
the third body is restricted to move on the invariant plane or not, the restricted three-
body problem may have from two degrees of freedom (circular-planar) to three plus
time (elliptic-3D). In all cases we use a “particular” system of units, whereM +m′ = 1,
a′ = 1, G = 1, µ = m′

M+m′ , µ1 = 1− µ and T ′ = 2π or n′ = 1, so thatλ ′ = n′t + λ ′
0

(where by primes we denote Jupiter’s elements). The modified Delaunay variables for
the Hamiltonian (21) in these units become

Λ =
√

µ1a l = ϖ +M (22)

Γ = Λ(1−
√

1−e2) γ = −ϖ (23)

Z = Λ
√

1−e2(1−cosi) ζ = −Ω (24)

and the Hamiltonian in this co-ordinate system is written as

H = − µ2
1

2Λ2 −µR(λ ,γ,ζ ,Λ,Γ,Z;λ ′(t)) (25)

2 The massive bodies are usually namedprimaries.
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The equations of motion of the third, massless, body are

Λ̇ = µ
∂R

∂λ
λ̇ =

µ2
1

Λ3 −µ
∂R

∂Λ
(26)

Γ̇ = µ
∂R

∂γ
γ̇ = −µ

∂R

∂Γ
(27)

Ż = µ
∂R

∂ζ
ζ̇ = −µ

∂R

∂Z
(28)

First conclusion: We see that the “elements” of the trajectory of the third body are not
constants any more, but their variations are of orderO(µ) ≈ 0.001. That is why we
introduce the notion ofosculatingelements, i.e. elements of an ellipse which istangent
to the real trajectory of the third body and which would be followed by the bodyif the
second primary would suddenly disappear.

Second conclusion: We see that in the three-body problem there exist two sets of
frequencies, which differ by more than one order of magnitude. High frequency (short
period)

λ̇ −1 = O(1) ≈ 3-8 yrs

(as it can be calculated from Kepler’s law in the region of the asteroid belt) and low
frequency (long period)

g−1 = γ̇−1 ≈ s−1 = ζ̇ −1 ≈ O(µ) ≈ 1,000 - 10,000 yrs.

Therefore the perihelion of the osculating ellipse and the ascending nodeare varying
with a period≥ 1,000 years.

Third conclusionThe problem possessesresonances. As we will see, the Fourier
series expansion ofR contains trigonometric terms, whose derivatives are of the form

sin(∑
i

kiθ̇i) (29)

whereki are integers (positive, negative or zero) andθ̇i are frequencies. Whenever this
sum is zero, aresonanceexists. Resonances, which aredensein phase space, are the
cause of the famoussmall divisors problem, which introduceschaosin the solutions of
the problem, as it was shown by Poincaré. As a result, the solution of eqs. (27-29) is
non-analyticwith respect to the initial conditions and, therefore, itcannotbe written as
power serieswith respect toµ. But there was always the need to calculate the motion
of the planets. That is why we still use thesecular theoryof the three-body problem
developed by Laplace and Lagrange at the end of the eighteenth century, although we
know that it leads to non-convergent series solutions, which are valid only for a limited
time interval.
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3. SECULAR THEORY

3.1. Secular Hamiltonian

The expansion ofR is one of the older problems in Celestial Mechanics3. It has the
general form:

R = ∑
p,q,ki

Ap,q,ki(a,e, i,a′,e′, i′)cos(pλ +qλ ′ +k1ϖ +k2ϖ′ +k3Ω+k4Ω′) (30)

= ∑
p,q,ki

Ap,q,ki(a,e, i,a′,e′, i′)cosψp,q,ki

whereeachcoefficientAp,q,ki is a power series ofa/a′,e,e′,sn,sn′, with sn= sin(i/2).
For every combination of angles in eq.(30), the coefficient of theleading term of the
corresponding Taylor series has the form

Amax
p,q,ki

= fp,q,ki(a/a′)e|k1|e′|k2|sn|k3|sn′|k4| (31)

By keepingonly the termsAmax
p,q,ki

, the disturbing function,R, takes the form

R = ∑
p,q,ki

fp,q,ki(a/a′)e|k1|e′|k2|sn|k3|sn′|k4| cosψp,q,ki (32)

The secular theory is a method of solving approximately the equations of motion origi-
nating from the above Hamiltonian. The first step is to averageH over the “fast” angles
λ ′ andλ . The “averaged” Hamiltonian is

〈H 〉λ ,λ ′ = H ∗ − µ
4π2

∫ 2π

0

∫ 2π

0

(
∑

p,q,ki

Amax
p,q,ki

cosψp,q,ki

)
dλ dλ ′ = (33)

− µ1

2Λ2 −µ ∑
0,0,ki

Amax
0,0,ki

cos(k1ϖ +k2ϖ′ +k3Ω+k4Ω′).

Then λ is an ignorable co-ordinate,Λ becomes an integral of motion and, as a con-
sequence, the osculating semi-major axis,a, of the orbit of the third body isconstant.
Therefore we may drop it from the Hamiltonian. Moreover, since the orbit of Jupiter is
fixed, Ω′ andω′ are constants and we may take them equal to zero as well. Then the
Hamiltonian becomes

Hsec= µ ∑
ki

Amax
ki

cos(k1ϖ +k3Ω) (34)

The appearance ofµ as a factor in front of the Hamiltonian has the following conse-
quence. If wedivide the Hamiltonian byµ, in order to simplify it, we have tomultiply
time byµ, in order to keep the canonical form of the equations of motion. This implies
that the “unit” of time is much longer in the secular solution, in agreement with the fact
that the corresponding time scale, as we already showed, is of the order ofµ−1.

3 J. Pierce, Astron. J.1, 1, 1849.
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FIGURE 3. The linear solution of the secular theory for the osculating eccentricity

3.2. Linear Secular Theory

In the new Hamiltonian (35),µ is not anymore a “small” parameter. Therefore in order
make expansions, we have to use other small parameters, such as the eccentricities and
inclinations of the planets which, as a rule, are small. We expandHsecand keep terms
Aki up to secondorder in the small quantitiese,e′, i, i′. This “truncated” Hamiltonian
defines alinear system of differential equations of motion, whose solution is

ecosϖ = ef or +ePcos(gt+β) (35)

esinϖ = ePsin(gt+β) (36)

i cosΩ = i f or + iPcos(st+δ) (37)

i sinΩ = iPsin(st+δ) (38)

The quantitiesef or andi f or are calledforced elementsof the trajectory and

• ef andi f (namedforced eccentricityandinclination, respectively) depend only (a)
on themotion of primaries(mass - eccentricity) and (b) on the ratio,a/a′ of the
semi-major axis of the third body to that of Jupiter,

• eP andiP (namedproper eccentricityandinclination, respectively) depend only on
the motion of the third body.

The values ofef or and i f or are proportional, correspondingly, toe′ and i′. I.e. in the
planar circular three body problem we haveef or = i f or = 0.

The solution is better understood graphically (Fig. 3): the osculating eccentricity
varies periodically with time and in the plane(h= ecosϖ,k= esinϖ) describes a cycle:

e2 = e2
f +e2

P +2ef eP cos(gt+β) (39)
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A similar relation holds for the osculating inclination. In this way we see that, in
this approximation, eccentricity and inclination are evolving independently. They are
decoupled.

The quantitieseP andiP areintegrals of motionand are calledfreeor proper elements.
The variablesΓ,Z arenot actions for thesecular problem. But we can define, through a
series of canonical transformations,newactions

Γ = Γ(eP), Z = Z(iP) (40)

which, together with the angles

γP = −ϖP = −(gt+β) (41)

ζP = −ΩP = −(st+δ) (42)

define a set of action-angle variables. The quantities(g,s) are theproper frequenciesof
the motion of the third body. The values ofg andsdependonlyona/a′ andµ.

The method ofaveraging is the first step of an algorithm, which calculates the
normal formof the Hamiltonian of the three-body problem. With this algorithm we
construct, step by step, a canonical transformation, such that in the new variables the
“new” Hamiltonian is a function of the “new” actions only. Therefore the new canonical
variables areaction-angle variablesof the new Hamiltonian and the equations of motion
are solved trivially. The “bad news” is that, in this transformation, which involves a
power series inµ,e,e′, i, i′, appearsmall divisors, i.e. resonant combinations of the
frequencies

∑
i

kiθ̇i = 0. (43)

Therefore the transformation is onlyformal, in that the series does not converge!

4. THE MULTI-PLANETARY PROBLEM

In this model we haveN− 2 “planets” moving onknownorbits around the Sun and
we try to calculate the trajectory of a small “massless” body. By applying the same, as
above, method, we find the solution for the massless body as

ecosϖ = ePcos(gt+β)+
N−2

∑
j=1

Bjejcos(gjt +β j) (44)

esinϖ = ePsin(gt+β)+
N−2

∑
j=1

Bjejsin(gjt +β j) (45)

i cosΩ = iPcos(st+δ)+
N−2

∑
j=1

∆ j i j cos(sjt +δj) (46)

i sinΩ = iPsin(st+δ)+
N−2

∑
j=1

∆ j i j sin(sjt +δj) (47)

621

Downloaded 09 Apr 2010 to 128.154.203.245. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



where the constants(Bj ,∆ j) depend ona/a′ and the constants(ej , i j) are the components
of the eccentricities and inclinations of the planets (which, in this case are considered
asosculating elements, i.e. they are allowed tovary with time, but in a known way).
The frequenciesgj andsj are thefundamental frequenciesof the planetary system and
describe the “precession” of the planets andβ j ,δj are the phases of the planets for the
considered epoch. These 4j −2 constants4 are known to a high precision.

In sum, the results of the secular theory of our planetary system are as follows:

• The semi-major axesof the planets areconstantsof the motion, away from reso-
nances and in the absence of non-gravitational forces

• The osculating eccentricities and the inclinations are varying with very longsecular
periods(of the order of 104−105 years).

5. RESONANCES

5.1. Types of resonances

Due to the order of magnitude differences in the values of the frequencies involved,
we distinguish twobasictypes of resonances:

• Orbital resonances appear in both the three-body and the planetary problem, be-
tween themean longitudeof a planet,λ ′, and that of the massless body,λ . We say
that an asteroid is in the region of an orbital resonancep/(p+ q) with a planet if
we have that

pλ̇ − (p+q)λ̇ ′ ≈ 0. (48)

The location of orbital resonances, to zero-th order, is given by Kepler’s law:

ares = a′[p/(p+q)]2/3 (49)

and is independent ofeandi (because of the degeneracy).
• Secular resonances appear only in the multi-planetary model, between the frequen-

cies(g,s) and the proper frequencies of our planetary system

pϖ̇P +qΩ̇P +∑
j
(kjϖ̇j + l jΩ̇ j) = 0 (50)

In particular the resonances(g = gk) or (s = sk) are symbolized asνk and ν1k,
respectively and are calledfirst-order apsidal(νk) or nodal(ν1k) resonances.

5.2. Resonant dynamics

The linear secular theory, presented so far, assumes that there exist no resonances,
either orbital of secular. However we can find a similar solution if the motion takes place

4 Because the angular momentum is a constant of the motion, one(si ,δi) pair is equal to zero.
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in a region where existsjust oneresonant condition, through the following algorithm.

• Make the resonant combination a new angle co-ordinate, say,θ1, through a canon-
ical transformation

• Perform anormalizationfor all the other actions,exceptthe one whose conjugate
angle is theresonant angle.

It is easy to show that the “new” Hamiltonian is integrable. It does not depend on
the anglesθ2,θ3, ..., so that the corresponding actionsI2, I3, ... are integrals of motion.
Therefore they are constants and can be treated as parameters. The Hamiltonian contains
only one pair of conjugate variables,θ1, I1, so that it hasonly one degree of freedom.
Then it is integrable by definition and we can,in principle, write the corresponding last
integral of motion. The topology of the phase space of a 1-D Hamiltonian is, locally,
similar to that of the pendulum. Therefore we can use the analytical solution of the
pendulum, to describe the evolution of (θ1, I1).

6. PROPER ELEMENTS AND ASTEROID FAMILIES

The secular Hamiltonian (35) isintegrableand, therefore, is has as many first integrals
of motion as degrees of freedom. Among all possible sets of integrals of motion the
one of physical interest is the set {aP,eP, iP }. These are theproper elementsof the
asteroid’s orbit. As a result, we can classify asteroids through their proper elements,
provided that their orbit is neither resonant nor chaotic. In practice these two restrictions
are not really strict. In cases where the orbit is close toa single resonance, we can
construct a secular integrable Hamiltonian as well, as discussed in the previous section,
so thatresonantproper elements may be defined. Finally in cases where the orbit is
close to two or more resonances, it is chaotic. In this case the secular Hamiltonian gives
a very bad approximation of the real motion, but proper elements may be of some use for
time intervals less than the Lyapunov time (i.e. the time after which a chaotic trajectory
“forgets” its initial conditions).

If the asteroids are plotted in proper elements space, we can distinguish that some
of them are clearly “clustered” in groups, theasteroid families. Today we believe that
asteroid families consist of the breakup pieces of catastrophic collisions between large
parent bodies.

7. BEYOND “CLASSICAL” SOLAR SYSTEM DYNAMICS

7.1. Chaos

Many of the solar system bodies follow chaotic trajectories. This is due to the fact
that they are under the influence of more than one resonances. The secular theory and
the proper elements presented here hold for ordered trajectories. What about the chaotic
ones? One possible solution of this problem, that appeared recently in the literature, is
a statistical approach. In this method we assume that asteroids are diffusing in action
(equivalently, proper element) space and we follow the evolution of an ensemble of
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FIGURE 4. Chaotic chronology of the Veritas family. The actual distribution of asteroids is fitted to a
Gaussian with aσ corresponding to an age of 8.9 Myrs.

asteroids in this space by using a diffusion equation of the form

∂P
∂ t

=
∂
∂ I

(
D
2

∂P
∂ I

)
(51)

in which enters only one parameter, thediffusion coefficient D(I). If we can calculate
D(I), either analytically [4] or numerically [9], we can then solve the equation and find
the evolution of the initial distributionP(I0,0). In the simplest possible case, where
the diffusion coefficient is constant and the space where the asteroids are diffusing is
considered infinite, the solution is the well knownFick’s law, a Gaussian centered atI0
with a dispersionσ2 = Dt.

In recent years the diffusion equation method has been used to attack some problems
hard to solve through traditional approaches. One such example is the estimation of
the age of the Veritas asteroid family through chaotic chronology, by assuming that the
members of the family on chaotic orbits originated from the breakup of a parent body
after a catastrophic collision [8]. The result, 8.9 Myrs, (Fig. 4) agrees very well with the
estimate of 8.3 Myrs made by back integration of the members of the family on ordered
orbits [5].

7.2. Non-gravitational forces

As mentioned above, in the case where the orbit of an asteroid is non-resonant or
it is affected by a single resonance, the secular theory implies that the semi-major
axis is a constant of the motion and the proper eccentricity and inclination remain
constant. But even if the orbit is affected by two or more resonances, in which case it is
chaotic, numerical integrations have shown that, although eccentricity and inclination
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are varying in proper elements space, the semi-major axis is hard to change.5 The
only way to “break” effectively the invariance of the semi-major axis is through non-
gravitational forces. The most important mechanism for transport in semi-major axis
space, for kilometer-size bodies, is theYarkovsky effect, the recoil force acting on a
spinning asteroid by the emission of infrared radiation.

The last years the Yarkovsky effect has been invoked in order to interpret otherwise
difficult to understand phenomena. One such application was the accurate modelling of
the motion of the asteroid Golevka [6] and the shape of the 7:3 Kirkwood gap [10]. In
the first example it was shown that the very accurate measurements of the position and
velocity of Golevka were not consistent with pure gravitational motion and could be
understood only by assuming the action of the Yarkovsky effect. In the second example
it was shown that the existence of asteroids with dynamical life-time of 107 years in
the 7:3 Kirkwood gap can be understood only by assuming that what we observe is just
a dynamical equilibrium between the transport of asteroids out of the resonant region
and the injection of new asteroids from the adjacent Eos and Koronis asteroid families
through the action of the Yarkovsky effect.

7.3. Simulations

The two approaches of studying the evolution of our planetary system under the
influence of only gravitational forces (secular theory or statistical description of chaotic
motion) are only the two “extreme” cases. For all “intermediate” cases a satisfactory
appropriate theory does not exist today and, therefore, these cases have to be studied
numerically. Indeed, the motion of a large number of bodies can be studied consistently,
including the “hard to model” collisions and/or close encounters, provided that one has
the appropriate computer power to follow their evolution for time intervals of the order
of the age of the solar system. The last years this approach has gained momentum,
through the continuous increase of speed and memory of “classical” computers or the
use of dedicated machines. Interesting examples of this new approach are (a) the initial
evolution of the outer solar system [7], (b) the simulation of the creation of the Moon
through the impact of a Mars-sized body on Earth [1] and (c) the triggering of planetary
formation, through the interaction of planetesimals of a protoplanetary disk with a close
approaching star [11].

In the first example it has been shown, through a simulation on “traditional” com-
puters, that the outer planets were created in a far more “compact” configuration than
today’s and that they were transported to their present places through a process called
migration, caused by their interaction with a disk of planetesimals. In this way one may
understand not only the present values of eccentricities and inclinations of the outer
planets, but as well the phenomenon of theLate Heavy Bombardmentof the inner plan-
ets by a swarm of Kuiper belt objects,∼ 700 Myrs after the creation of the solar system

5 This result stems from the degeneracy of the Kepler’s problem: the resonances are ata 
 ares for
all values ofe, i in the asteroid belt. The semi-major axis,a, undergoes non-periodic but zero-average
variations aroundares, unlesse increases so much, that overlapping with a nearby resonance is possible.
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(i.e. 3.9 Gyrs ago).
The other two simulations were performed using a GRAPE machine, a dedicated

computer accelerator which calculates the gravitational forces betweenN bodies. In the
first of them it has been shown that most of the debris of such an impact are not ejected on
hyperbolic orbits but remain in orbit around the Earth, forming a disk of “satellesimals”.
It was shown that the such a disk will end up in the creation of a satellite, in the same way
that planetesimals create finally the planets, through successive disrupting and sticking
collisions.

In the second we have shown that parabolic encounters between gas-free protoplan-
etary disks result into (i) the exchange of material between the disks, and (ii) the re-
structuring of the initial disk, into a “core” of nearly circular and co-planar orbits and an
extended 3-D cloud of eccentric and inclined bodies. These processes may prove to be
particularly important for the formation of planets and small-body belts.
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