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Introducing remarks

the pseudo-spectral (PS) methods are methods to solve partial
differential equations (PDE)

they originate roughly in 1970

the PS methods have successfully been applied to

- fluid dynamics (turbulence modeling, weather
predictions)

- non-linear waves

- seismic modeling

- MHD

we have applied them to plasma turbulence simulations,
and to the non-linear interaction of grav. waves with plasmas
(together with |. Sandberg and L. Vlahos ... part | of two talks !)



Basic principles of the pseudo-spectral method

the ‘pseudo-spectral’ in the method refers to the spatial part of
a PDE

example: a spatial PDE

Lu(x) = s(x), xeV
b.c.: f(u(y)) = 0, y € 0V

L: a spatial differential operator (e.g. L = od,, +d,,, etc.)

wanted: numerical solution uN(x) such that the residual R

R(x):= LuN(x) - s(x)

is small — but how do we define the smallness ?



e general procedure:

1. choose a finite set of trial functions (expansion
functions) ¢, j = 0,..N-1,
and expandI uN in these functions

N—1
W)= ¥ di¢i(x)
7=0

2. choose a set of test functions y,,, k =0,1,2, ... N-1 and
demand that

(xnR)=0  for n=0,1...N-1 (scalar product)

» ‘spectral methods’ means that the trial functions ¢, form
a basis for a certain space of global, smooth functions
(e.g. Fourier polynomials)

(global: extending over the whole spatial domain of
interest)
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remark: the solution at the collocation points is exact, in between them
we interpolate the solution

what trial functions to choose ?

1. periodic b.c.: trigonometric functions
(Fourier series)
2. non-periodic b.c.: orthogonal polynomials
(main candidate: Chebyshev polynomials)

in our applications, we assume periodic b.c. and use Fourier series
— A-iki
O; (x) = e x

(periodic b.c. ok if arbitrary, large enough part of an extended plasma is
modeled, not bounded by stellar surfaces)

simulation box
O plasma
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DFT™ [’agh(kgn(wn) —s(zn) =0

i;h(k;) — DFT[s(zn)](k;) = O









Temporal integration
The idea is to move the initial condition to Fourier space, and to do
the temporal integration in Fourier space, since there we have ODEs

since we have a set of ODEs, in principal every numerical scheme
for integrating ODEs can be applied

often good is Runge-Kutta 4t order, adaptive step-size

4% order RK: du/dt = F(u,t) (u has N components)
u™t=un+1/6(r, + 2r, + 2r; + r,)
r,=AtF(unt,)

(
r,=AtF(u"+ 1/2r,, t, + 1/2A t)
ry=AtF(u"+ 1/2r,, t, + 1/2A t)
r,=AtF(u"+r;t +At) At
adaptive step-size:
(for efficiency of the code)

advance At, and also At/2 + At/2, ' | | t
compare the results with prescribed accuracy, At/2

depending on the result make At smaller or larger At/2



How to treat non-linearities

assume there is a term p(z)u(z) in the original PDE

we are working in F-space, using DFT, so at a given time we have
available p*; and u”,

pu corresponds to a convolution in F-space, but convolutions are
expensive (CPU time !) and must be avoided (~ N?)

the procedure to calculate (pu)*; is as follows (~ N log, N):

1. given at time t are p* and u*,
2. calculate p, = DFT-(p*) and u, = DFT-'(u*))
3. multiply and store w, = p,u,
4. move w, to F-space, w*, = DFT(w,)
5. use w7 for (pu)*,
Fourier space direct space
{p™}, {u™} DET- {Pnh, {un}
fw*) el (Wt = {p,un}




with wave-vectors k; = 2nj/NA, j = —=N/2,..N/2
and grid-points z, = nA, n=0,1,.... N — 1,
i e. the modes are ¢2mijn/N

e2mi(GHIN)n/N 1 —= 2 1.0,1,2,...
k=2n(j +IN)/(NA)

k=2m5/NA

ki = —m,—-37/4,..,—n/4,0,7/4,..,37/4,m






Aliasing and nonlinearities

* assume we have a non-linear term pu in our PDE, and
p(z) =sin(k, z), u(z) = sin(k, z),
with k4, k2 from our set of available wave-vectors k;

* Now
pu ~ -cos[(k+k,) z] + cos[(kz-k4)z],
and k,+k, may lie outside our range of k’s,
and the available Fourier amplitudes might get aliased !

» k,+k2 outside range if k,+k, > m,
and the amplitude appears wrongly in the range of k's at
K +tko—27 (1=-1, j,+j2-N), the DFT is aliased

K, +k -2 K, K, K, +k,
L



De-aliasing

Several methods exist to prevent aliasing:
zero-padding (3/2-rule), truncating (2/3-rule), phase shift

we apply 2/3-rule:
- simple to apply,
- low cost in computing time
Basic idea:
set part of the amplitudes to zero always prior to (non-linear)

multiplications:
0 0

| | |
N2 K 0 K N2

full index range of k-vectors: [-N/2,N/2]
— keep the sub-range [-K K] free of aliasing

method: set Fourier amplitudes u*; = 0 in [-N/2,-K] and [N/2,K]
why does this work ? and how to choose K ?



-N/2 K 0 K N/2
let j and s be in [0,K]
if j+s > N/2 (outside range), then the amplitude corresponding to j+s
will be aliased to j+s-N

we demand that j+s-N < -K (in the not used part of the spectrum),
the largest j, s in the range are j=s=K: j+s-N <= 2K-N

i.e. we demand 2K-N <-K  or K<N/3

we set K = N/3 = (2/3) N/2: ‘2/3-rule’

-N/2 K 0 K N/2

forj, s in [K,N/2] and j+s > N/2 the amplitude is aliased to j+s-N,
which may lie in [-K,0], but we do not have to care,
the amplitudes at j and s are set to zero

= the range [-K,K] is free of aliasing



non-linearities, de-aliased

« assume you need to evaluate DFT(p.,u;), having given
the Fourier transforms p;* and u;*:

Fourier-space direct space
pj*a uj*
p*, u* — 0, for j > (2/3) N/2

DFT
Pns Uy

= Wn = pn un



Stability and convergence

... theory on stability on convergence ...

reproduce analytically known cases

reproduce results of others, or results derived in different
ways

test the individual sub-tasks the code performs

monitor conserved quantities (if there are any)

apply fantasy and physical intuition to the concrete
problem you study, try to be as critical as you can
against your results



u(x,t) = 3a?/ COShQ% (ozz — oz3t)
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(01 = 70a0) V36 + vg(1 + 70y = rdiv V.00, + { V3 6,6} + uV* (¢ + Tn)

[0 + i"ﬂﬂy} n+ (v, - '1"9:]'3!."2{{' = {ﬂ:- 'i'l' + DVn

100 120




Example 3

 relativistic MHD equations, driven by a gravitational wave

« emphasis on the full set of equations, including the non-linearities
— numerical integration
— pseudo-spectral method, de-aliased,
N=256, effective number of k-vectors: (2/3) 128 = 85

« we use mgy = 5 kHz, so that kg, =~ 106 cm-,
and the range of modeled k’s is chosen such that
kGW =9 kmin

| | |
0 85 128

i.e. the 1-D simulation box has length 9 x the wave-length of the
grav. wave

« ... to be continued at 15:30, by I. Sandberg

(Isliker / Sandberg / Vlahos)



Concluding remarks

Positive properties of the pseudo-spectral (PS )method:

 for analytic functions (solutions), the errors decay
exponentially with N, i.e. very fast

« non-smoothness or even discontinuities in coefficients
or the solutions seem not to cause problems

 often, less grid points are needed with the PS method
than with finite difference methods to achieve the same
accuracy
(computing time and memory !)



Negative properties of the pseudo-spectral method:
 certain boundary conditions may cause difficulties

* irregular domains (simulation boxes) can be difficult or
Impossible to implement

« strong shocks can cause problems

* |ocal grid refinement (for cases where it is needed)
seems not possible, so-far



