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Abstract

The non-linear interaction of a strong Gravitational Wave with the plasma
during the collapse of a massive magnetized star to form a black hole, or
during the merging of neutron star binaries (central engine) was investigated.
Under certain conditions this coupling may result in an efficient energy space
diffusion of particles. Superposition of many such short lived accelerators,
embedded inside a turbulent plasma, may be the source for the observed
impulsive short lived bursts. In several astrophysical events, gravitational
pulses may accelerate the tail of the ambient plasma to very high energies
and become the driver for many types of astrophysical bursts.
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1. Introduction

The interaction of Gravitational Waves (GW) with the plasma and/or the electro-
magnetic waves propagating inside the plasma, has been studied extensively (DeWitt
& Breme (1960); Cooperstock (1968); Zeld́ovich (1974); Gerlach (1974); Grishchuk
& Polnarev (1980); Denisov (1978); Macdonald & Thorne (1982); Demianski (1985);
Daniel & Tajima (1997); Brodin & Marklund (1999); Marklund, Brodin & Dunsby
(2000); Brodin, Marklund & Dunsby (2000); Brodin, Marklund & Servin (2001);
Servin et al. (2000); Servin, Brodin & Marklund (2001); Moortgat & Kuijpers
(2003), Vlahos et al. (2004); Voyatzis et al. (2006)). All well known approaches
for the study of the wave-plasma interaction have been used, namely the Vlasov-
Maxwell equations (Macedo & Nelson (1982)), the MHD equations (Papadopoulos
& Esposito (1981); Papadopoulos et al. (2001); Moortgat & Kuijpers (2003)) and
the non-linear evolution of charged particles interacting with a monochromatic GW
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(Varvoglis & Papadopoulos (1992)). The Vlasov-Maxwell equations and the MHD
equations were mainly used to investigate the linear coupling of the GW with the
normal modes of the ambient plasma, but the normal mode analysis is a valid ap-
proximation only when the GW is relatively weak and the orbits of the charged
particles are assumed to remain close to the undisturbed ones. Several studies have
also explored, using the weak turbulence theory, the non-linear wave-wave interac-
tion of plasma waves with the GW (see Brodin et al. (2000)).

The strong nonlinear coupling of isolated charged particles with a coherent GW
was studied using the Hamiltonian formalism (Varvoglis & Papadopoulos (1992);
Kleidis, Varvoglis & Papadopoulos (1993); Kleidis et al. (1995)). The main con-
clusion of these studies was that the coupling between GW and an isolated charged
particle gyrating inside a constant magnetic field can be very strong only if the GW
is very intense. This type of analysis can treat the full non-linear coupling of the
charged particle with the GW but looses all the collective phenomena associated
with the excitation of waves inside the plasma and the back reaction of the plasma
onto the GW.

Vlahos et al. (2004) re-investigate the non-linear interaction of an electron with a
GW inside a magnetic field, using the Hamiltonian formalism. Their study is appli-
cable at the neighborhood of the central engine (collapsing massive magnetic star,
see Fryer, Holz & Hughes (2002); Dimmelmeier, Font & Muller (2002); Baumgarte
& Shapiro (2003)) or during the final stages of the merging of neutron star bina-
ries (Ruffert & Janka (1998); Shibata & Uryu (2002)). A strong but low frequency
(10 KHz) GW can resonate with ambient electrons only in the neighborhood of
magnetic neutral sheets and accelerates them to very high energies in milliseconds.
Relativistic electrons travel along the magnetic field, escaping from the neutral sheet
to the super strong magnetic field, and emitting synchrotron radiation. Vlahos et al.
(2004) propose that the passage of a GW through numerous localized neutral sheets
will create spiky sources which collectively produce the highly variable in time.

2. The Hamiltonian formulation of the GW-particle interaction

The motion of a charged particle in a curved space and in the presence of a
magnetic field is described by a Hamiltonian, which, in a system of units m = c =
G = 1, is given by

H(xα, pα) =
1

2
gµν(pµ − eAµ)(pν − eAν) =

1

2
, α, µ, ν = 0, ..., 3. (1)

gµν = gµν(xα) are the contravariant components of the metric tensor of the curved
space and Aµ = Aµ(xα) are the components of the vector potential of the magnetic
field (Misner, Thorne & Wheeler (1973)). The variables pα are the generalized
momenta corresponding to the coordinates xα, and their evolution with respect to
the proper time τ is given by the canonical equations

dxα

dτ
=

∂H

∂pα

,
dpα

dτ
= − ∂H

∂xα
. (2)
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A constant magnetic field ~B = B0~ez is assumed and is produced by the vector
potential

A0 = A1 = A3 = 0, A2 = B0(x
1 + c0), c0 : const., (3)

and that a GW propagates in a direction ~k of angle θ with respect to the direction
of the magnetic field. In that case the nonzero components of the metric tensor are
(see Ohanian (1976); Papadopoulos & Esposito 1981) g00 = 1 and

g11 = 1−a sin2 θ cos ψ
−1+a cos ψ

g22 = −1
1+a cos ψ

g33 = 1−a cos2 θ cos ψ
−1+a cos ψ

g13 = g31 = (−a/2) sin 2θ cos ψ
−1+a cos ψ

,
(4)

where a is the amplitude of the GW and ψ = kµx
µ = ν(sin θx1 + cos θx3 − x0). The

parameter ν is the relative frequency of the GW, i.e. ν = ω/Ω, where Ω = eB0/mc
is the Larmor angular frequency. The scaling eB0 = 1, thus Ω = 1 is used.

In the above formalism, the coordinate x2 is ignorable, so p2 = const.. By setting
the constant c0 in Eq. (3) equal to p2 we get an appropriate gauge that reduces by
one degree of freedom the Hamiltonian (Eq. (1)), which takes the form

H =
1

2

(
p2

0 −
1− as2

θ cos ψ

1− a cos ψ
p2

1 −
1− ac2

θ cos ψ

1− a cos ψ
p2

3 +
2αsθcθ cos ψ

1− a cos ψ
p1p3 − x2

1

1 + a cos ψ

)
,

(5)
where we use the notation cθ = cos θ and sθ = sin θ for brevity. The canonical
transformation of variables (x0, x1, x3, p0, p1, p3) → (χ, q, φ, I, p, J) is applied and
the generating function used is

F (x0, x1, x3, I, p, J) = x0I + x1p + ν(sθx
1 + cθx

3 − x0)J.. (6)

The relation between the old and the new variables is given by the equations

χ = x0, I = p0 + p3/cθ

q = x1, p = p1 − (sθ/cθ)p3

φ = ν(sθx
1 + cθx

3 − x0) J = p3/(cθsθ).
(7)

In the new variables the Hamiltonian (Eq. (5)) takes the form

H =
1

2

(
I2 − 2IνJ − 2sθνJp− 1− as2

θ cos φ

1− a cos φ
p2 − q2

1 + a cos φ

)
. (8)

Since the variable χ is ignorable, I is a constant of motion and Eq. (8) can be studied
as a system of two degrees of freedom, where I is a parameter. The variables q and
p are associated with the gyro-motion. H is of mod(2π) with respect to the angle-
variable φ and the variable J is related linearly with the energy γ = (1− υ2)−1/2 of
the particles according to the equation

γ = I − νJ. (9)

The equations of motion are

q̇ = −sθνJ − 1−as2
θ cos φ

1−a cos φ
p ṗ = q

1+a cos φ

φ̇ = −νI − sθνp J̇ = a
2

(
q2

(1+a cos φ)2
− c2θp2

(1−a cos φ)2

)
sin φ,

(10)
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where the dot means derivative with respect to the proper time τ . Furthermore,
Eq.(8) can be written as a perturbed Hamiltonian in the usual way, i.e.

H = H0 + aH1 + a2H2 + ..., (11)

where
Hm = −(c2

θp
2 + (−1)mq2) cosm φ, m ≥ 1 (12)

are the perturbation terms and

H0 =
1

2
(I2 − 2IνJ − 2sθνJp)− 1

2
(p2 + q2) (13)

is the integrable part of the system that describes the unperturbed helical motion
of the particle in the flat space. Considering action-angle variables (J1, J2, φ1, φ2),
Eq.(13) takes the form

H0(J1, J2) =
I

2
− IνJ1 +

s2
θν

2

2
J2

1 − J2, (14)

where φ1 = φ, J1 = J and

J2 =
1

2π

∮
pdq =

1

2
(I2 − 2IνJ + s2

θν
2J2 − 1) , φ2 = arcsin

( ±q√
2J2

)
.

Therefore, the unperturbed system is isoenergeticaly non-degenerate for θ 6= 0
(Arnol’d, Kozlov & Neishtadt (1987)) and the gyro motion of the particles is rep-
resented by trajectories that twist invariant tori with angular frequencies ω1 =
∂H0/∂J1 and ω2 = ∂H0/∂J2. The periodic or quasi-periodic evolution of the trajec-
tories depends on whether the rotation number, defined by

ρ =
ω1

ω2

= νI − s2
θν

2J1 = ν(c2
θI + s2

θγ), (15)

is rational or irrational, respectively.
Most of the invariant tori will persist with the presence of the perturbation in-

troduced by the GW, if the amplitude is suficiently small, according to the KAM
theorem (Arnol’d et al. (1987)). The orbits of the particles remain close to the
unperturbed ones but their projection on the x1 − x2 plane is not exactly circular
and periodic. Close to the resonant tori, where ρ is rational, the Poincaré-Birkhoff
theorem applies; a finite number of pairs of stable and unstable periodic trajectories
survive, producing locally a pendulum like topology in phase space (Sagdeev, Usikov
& Zaslavsky (1988)).

Since the system is of two degrees of freedom, we can study its evolution by using
the Poincaré sections PS = {(φ, γ), q = 0, H = 1/2} choosing specific sets of the
parameters a, I, ν and θ. In the numerical calculations, which will follow, we set
I = 1. For the unperturbed system (a = 0) the sections show invariant curves
γ =const. For a 6= 0 some typical examples are shown in Fig.1.

For small values of a (Fig.1a), the invariant curves are perturbed slightly and
only close to the most significant resonances their deformation becomes noticeable.
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(a) (b)
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Figure 1: Typical Poincaré sections on the plane (φ, γ) of the perturbed system for
ν = 5, θ = 45o and a) a = 0.001 b) a = 0.01 c) a = 0.02 and d) a = 0.1.

Increasing further the perturbation parameter a, the width of the resonances in-
creases and homoclinic chaos becomes more obvious close to the hyperbolic fixed
points (Fig.1b). The existence of invariant curves, which confine the resonant re-
gions, guarantees the bounded variation of the particle’s energy (∆γ = O(

√
a)) for

the chaotic trajectories.
When the amplitude a exceeds a critical value ac, overlapping of resonances takes

place and large chaotic regions are generated (Fig.1c) (see also Chirikov (1979)).
Particles with initial energy γ greater than a critical value γc may follow a chaotic
orbit which diffuse to regions of higher energy, and this will lead them to very high
energies in short time scales. For relatively large values of αc << α < 1, the islands
of regular motion, which survive from the resonance overlapping, are gradually de-
stroyed and chaos extends down to relatively low energy particles (Fig.1d). The
chaotic part of the phase space will be called “the chaotic sea”.

The dynamics, presented by the Poincare sections in Fig.1, is typical for the
majority of parameter values. Generally, the critical values ac and γc determine
the conditions for possible chaotic diffusion. The dynamics of the charged particles
shows some exceptional characteristics when the frequency of the GW is comparable
to the Larmor frequency of the unperturbed motion, particularly when 1 ≤ ν <
3. For such parameter values, stochastic behavior will appear when γ = 1 and
for sufficiently large perturbation values large chaotic regions are generated and
diffusion, even for particles with very low initial energies, will be possible. An
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(a) (b)
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Figure 2: Poincaré sections on the plane (φ, γ) a) a = 0.2, ν = 2, θ = 45o b)a =
0.2, ν = 1, θ = 5o.

example is shown in Fig.2a.
The evolution of the particles changes character when the direction of propagation

of the GW is almost parallel to ~B. In this case, chaos disappears, and the particles
undergo large energy oscillations. As it is shown in Fig. 2b, a particle, starting even
from rest (γ ≈ 1), will be driven regularly to high energies (γ > 20) and returns back
to its initial energy in an almost periodic way. In a realistic, non infinite system,
several particles may escape from the interaction with the GW before returning back
to low energies. At θ = 0 the system is integrable and the energy of the particles
shows regular slow oscillations with an amplitude proportional to a (see Voyatzis et
al. (2006) for details).

3. Chaotic diffusion and particle acceleration

In the previous section, we showed that chaotic diffusion is possible for a ≥ ac and
for the particles with γ ≥ γc. Such conditions are necessary but not sufficient for
acceleration, since islands of regular motion may be present inside the wide chaotic
region (see for example Fig. 2).

In Fig. 3a the evolution of γ along a temporarily trapped chaotic orbit (γ < γc)
and an orbit which undergoes fast diffusion is shown, using a = 0.02. In Fig. 3b
we plot the orbit of a particle which on the average is not gaining energy and the
average rate of energy gain of 200 particles. The diffusion rate of the particles in
the energy space is initially fast but for time t > 5000 it starts to slow down. The
time t is normalized with the gyro period 2π/Ω We study next the evolution of an
energy distribution N(γ, t = 0) of electrons interacting with the GW. In Fig. 4a we
follow the evolution of 3× 104 particles forming initially a cold energy distribution
N(γ, t = 0) ∼ δ(γ− 3), where δ is the Dirac delta function i.e. all particles have the
same initial energy γ = 3. A large spread in their energy is achieved in short time
scales, and for t = 1000, a non-thermal tail extending up to γ = 100 is formed.

We repeat the same analysis, assuming that the initial distribution is the tail
(v > Vthe, where Vthe is the ambient thermal velocity) of a Maxwellian distribution
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Figure 3: a) The evolution of γ along a trapped in a magnetic island chaotic orbit
for γ(0) = 2.2,φ(0) = π and along a diffusive one for γ(0) = 2.6, φ(0) = 0 (a =
0.02, θ = 45o, ν = 5) b) The evolution of γ along a strongly chaotic orbit (dotted
line) and its average value (solid line) along 200 trajectories starting with γ(0) = 2.0
and a randomly selected φ(0) (a = 0.1, θ = 45o, ν = 5). The time is normalized with
the gyro-period (2π/Ω).
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Figure 4: The evolution of an energy distribution. a) The initial distribution (dotted
line) consists of 3 × 104 particles having γ(t = 0) = 3. b) The initial distributions
is Maxwellian, as it is shown by the dotted curve. Only particles in the tail of the
Maxwellian with γ > γc will be accelerated. The parameters used in both studies
are a = 0.5, ν = 20 and θ = 30o.

(Fig.4b). The distribution of the high energy particle form a long non-thermal tail
analogously to the results reported in Fig.(4a).

The mean energy diffusion as a function of time is plotted in Fig. ??a for a
particular set of parameters, and it has the general form

< γ >∼ td. (16)

From a large number of calculations, we find that the energy spread in time follow
a normal diffusion (d = 0.5) in energy space but as α increases (see Fig. ??b), the
interaction becomes super-diffusive (d ≥ 0.5) in energy space. This allows electrons
to spread fast in energy space and explains the efficient coupling between the GW
and the plasma.

4. Discussion and Summary
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Figure 5: A schematic representation of the thin three dimensional magnetic null
sheets appearing spontaneously and fill densely a driven turbulent magnetized
plasma

Vlahos et al. (2005) propose a new mechanism for efficient particle acceleration
around strong and impulsive sources of GW using the estimates presented above for
the strong interaction of GW with electrons. They assume that in the atmosphere
of the central engine a turbulent magnetic field will be formed. Inside this complex
magnetic topology, a distribution of 3-D magnetic neutral sheets (magnetic null
surfaces) (see Fig. 5)

The GW passing through magnetic neutral sheets and claim that the GW will
enhance dramatically the acceleration process inside the neutral sheet, causing very
intense bursts. We can now list several characteristics of the bursty emission driven
by the model proposed above:

• A fraction of the energy carried by the orbital energy of the neutron stars at
merger will go to the the GW and a portion of this energy will be transferred
to the high energy electrons.

• The topology of the magnetic field varies from event to event, so every burst
has its own characteristics.

• The superposition of many small scale localized sources produces a fine time
structure on the burst.

• The superposition of null surfaces with a power law distribution of the acceler-
ation lengths will result in a power law energy distribution for the accelerated
electrons and an associated synchrotron radiation emitted by the relativistic
electrons.

• The decay of the amplitude of the GW and/or the lack of magnetic neutral
sheets away from the central engine will mark the end of the burst, but not
necessarily the end of other types of bursts since the cooling of the ambient
turbulent plasma has a much longer time scale.

On the basis of these findings, we propose that pulsed GW emitted from the
central engine will interact with the ambient plasma in the vicinity of the magnetic
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Figure 6: (a) The propagation of a GW through a magnetic neutral sheet accelerates
electrons very efficiently. Relativistic electrons stream away from the accelerator and
emit a pulse of synchrotron radiation when they reach the super strong magnetic
fields. The dashed line represents the magnetic field null surface and `acc is the
acceleration length. (b) A collection of magnetic neutral sheets is formed inside
the turbulent atmosphere (region C) of the central engine (region A). A GW pulse
propagating away from the central engine and passing through the region C will form
numerous γ-ray spikes by accelerating particles near the magnetic null surfaces. The
superposition of these spikes form a short lived burst. The total burst duration is
approximately 100s (∆T ∼ ∆L/c) but it is composed by many short spikes lasting
less than a second (`/c). The GW pulse will become very weak and the density of
the magnetic null surfaces will drop dramatically in the region D, and this will mark
the end of the burst.

neutral sheets formed naturally inside externally driven turbulent MHD plasmas.
Magnetic neutral sheets have characteristic lengths ` ∼ 107 − 108 cm and are short
lived 3-D surfaces. Although these structures are efficient accelerators, we are em-
phasizing in this article only the role of the GW passing through these surfaces
since we focus our attention on the very strong and bursty sources. The GW pass-
ing through the neutral sheets will accelerate electrons to very high energies (see
Fig. 6). Relativistic electrons escape from the magnetic neutral sheets radiating
synchrotron emission as soon as they reach the very strong magnetic fields.

A detailed model for the interaction of GW with turbulent MHD plasma is cur-
rently under study, and we hope to develop an even more efficient energy transfer
from the GW to the plasma e.g by triggering the interaction (percolation) of many
null sheets during the passage of the GW. We hope that this may lead us to an
alternative scenario for the still unresolved questions related with the acceleration
mechanism in the atmosphere of the central engines and the physical processes be-
hind the X-ray and GRB.
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