Complexity in solar and stellar active regions

Loukas Vlahos

History

- More than 20 years ago on the skylab workshops (Vlahos et al.) and then ten years ago Miller et al. wrote a nice review which is highly cited in the literature even today. In both reviews, the main goal was to contrast the known acceleration mechanisms (E-fields, Turbulence, shocks) with observations. The energy release (magnetic reconnection and flows) was hided on the background of the analysis.
- In the Miler et al. review you left with the impression that turbulence is the wining mechanism

History

- A long list of outstanding problems were mentioned and open observational issues were listed.
- The recent observations added to the Miller list even more constrains, the most important been that "if the energy carried by the high energy particles reaches as high as 30-40% of the total energy... acceleration should be part of the energy release picture.
- So let us try to place the accelerator on the framework of evolving active regions.

Outline

- Active regions as driven non linear systems
- Spatially self-similar, small-scale energy release
- Power-law statistics
- The solar atmosphere as an externally driven turbulent system
- Turbulent self-organization: Critical or non-critical?
- Formation of stable and unstable current sheets
- Particle dynamics in fractal current sheets
- Active regions as particle accelerators
- Summary

Sunspots and active regions

Sunspots in a full disk magnetogram

MDI magnetogram around an active region

Multi-scale diagnostics of solar structures

Fractal and multi-fractal methods in the hunt for a tale-telling pattern:

Abramenko et al. (2003)

Structure functions: $S_{q}(r) = \left\langle \left| B_{z}(\overline{x} + \overline{r}) - B_{z}(\overline{x}) \right|^{q} \right\rangle \sim (r)^{\zeta(q)}$

The fractal dimension:

EBs are fractal structures

AR magnetic fields are multi-fractal structures

Wavelets, shapelets, automatic pattern recognition, phase diversity, deconvolution techniques, applied to magnetograms, EUV and X-ray images, CMEs, etc.

Significant focus / an arsenal of novel tools

Pre-flare / Quiescent evolution of solar ARs

- A large number of likely unstable <u>fractal</u> volumes at low altitudes $(\leq 10 \text{Mm})$
- Free energies showing power-law distribution; index nearly insensitive to the critical threshold
- Free energies of the order $10^{24} 10^{26} erg$ An <u>avalanche</u> necessary to achieve a flare

Turbulent-driven self-organization appears as an inherent feature in solar ARs irrespectively of whether these ARs are quiescent or flare/CME -prolific

SIPWII 04

Statistical properties of Thin Current Layers (TCL)

Numerical method

Three dimensional time-dependent resistive MHD equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{u}), \\ \frac{\partial (\rho \mathbf{u})}{\partial t} &= -\nabla \cdot (\rho \, \mathbf{u} \otimes \mathbf{u} + \underline{\tau}) - \nabla p + \rho \, \mathbf{g} + \mathbf{J} \times \mathbf{B}, \\ \frac{\partial e}{\partial t} &= -\nabla \cdot (e \mathbf{u}) - p \, \nabla \cdot \mathbf{u} + Q_{\text{Joule}} + Q_{\text{visc}}, \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E}, \\ \mathbf{E} &= -(\mathbf{u} \times \mathbf{B}) + \eta \mathbf{J}, \\ \mathbf{J} &= \nabla \times \mathbf{B}, \\ p &= \rho T \, \frac{\mathcal{R}}{\tilde{\mu}}, \end{aligned}$$

- · 6th order partial derivatives
- · 5th order interpolation
- · 3rd order predictor-corrector time stepping
- · Stretched staggered grid 1d, 3d
- \cdot Periodic and closed BC
- · Damping zone top-bottom
- . Hyperdiffusive scheme, 4th order quenced diffusion operators

Emergence into a null corona Formation of coronal loops

Valaaitiaa

- The tube is more buoyant in the middle
- Fieldlines expand in three directions
- Strongly azimuthal nature at the top
- Fan-like shape of the expanding field.

Hinode Solar Optical Telescope

Solar magnetic field rises vertically from a sunspot and adopts a fan-like shape.

The solar corona

An externally driven, non-linear dynamical system

Amari et al., ApJ, 2003

Formation of current sheet + collapse

Statistics of the MHD models

MHD models with a turbulent evolution exhibit complexity, spatiotemporal intermittency, and self-similarity in the resulting distributions

Georgoulis et al., ApJ, 1998

Inside a collapsing current sheet

Envisioned situation in the solar atmosphere

Abbett & Fisher (2002)

Dmitruk et al. (2002)

- The solar atmosphere: An externally driven, dissipative, non-linear dynamical system
- Vector potential / Velocity field : A few coherent, large-scale structures (inverse cascade)
- Free magnetic energy / Vorticity: Numerous small-scale structures (direct cascade)
- Dissipation (flares): Triggered locally, [rapidly spreading over the AR (domino effect)]

Turbulence !

Activity in all spatial scales / Scale invariance

Results from the Very high Angular Resolution Ultraviolet Telescope (VAULT)

4/12 "Quiet" Sun indistinguishable from active regions in small spatial scales

Ubiquitous small-scale energy release

SoHO/MDI 01/25/00, 12:51 UT

Courtesy of Pariat et al. (2004)

Approx. 81% (38/47) of EBs associated with magnetic bald patches, separatrices or QSLs

Evidence of <u>self-similarity</u> in small-scale energy dissipation processes

Quantifying the statistics of solar activity

Moreover, power laws are found in the events' peak activity, total duration, rise and decay times, area coverage, inferred volumes, etc.

- Intermittency and self-similarity (scale invariance) evident in space and time
- What is the cause of the observed complexity ?

Expected consequences of turbulence

- Hierarchical <u>self-organization</u>, which gives rise to tremendous spatial complexity
- Spatial self-similarity (scale invariance & fractal structures)
- Intermittency in the energy release process
- Power laws in the statistical behavior of the system

Self-Organization: deterministic or stochastic?

Fragos et al. (2004)

McIntosh & Charbonneau (2001)

- Both seem to be at work:
- Stochastic self-organization (percolation) reproduces emergence of magnetic flux
- Deterministic self-organization (SOC) reproduces the triggering of dissipative events
- Spatiotemporal fractality and multi-fractality evident in both cases
- Cascades (avalanches) in the energy release process
- A critical loss of equilibrium possibly responsible for avalanches But what is the nature of the critical threshold, if any?

Three-dimensional structure of the electric field

Isosurfaces of the electric filed at different times

t=50

t=200

Distribution function of the electric field

A '**Turbulent**' Field Model (stochastic but not resonant accelerator) (Azner+Vlahos, APJL, 2004)

Winter School on Turbulence, Montegufon, Firenze, 3-7 October, 2005

Finding: intermittent particle orbits

acceleration within local dissipation regions

Winter School on Turbulence, Montegufon, Firenze, 3-7 October, 2005

Electron Acceleration

Particle acceleration in stochastic current sheets

(Rim Turkmani et al, ApJL2004, AA 2005)

- Particles injected at random positions within an MHD box
 - Protons 0.027 kev
 - Electron 1.16 kev
- Initial velocity fixed in amplitude, random i direction

- Acceleration time scale much shorter than
 MHD time scale
- B and E are scaled;
- initial values:
 - B: Mean ~ 1.0 (0.89 1.08)
 - E: Mean ~ 7e-4 (e-5 e-2)

Winter School on Turbulence, Montegufon, Firenze, 3-7 October, 2005

Distribution Functions

•100,000 proton in 100 G magnetic field run for 1 ms

Turkmani et al

• Velocity distribution

1.0×10⁹

0.0010

 \mathcal{E}_r (statvolt/cm)

L (cm)

1.5×10⁹

b_

0.0100

Using the X-CA model

Sporadic formation of current sheets Vlahos, Isliker and Lepreti (ApJ, June 10,2004)

Winter School on Turbulence, Montegufon, Firenze, 3-7 October, 2005

Sporadic formation of current sheets Vlahos, Isliker and Lepreti (ApJ, June 10,2004)

Conclusions

- The driver: convection zone
- Spontaneous or driven formation of current sheets
- Threshold for stable and unstable current sheet-
- Self organized critical state of active regions
- Collapse of current sheets
- Network of current sheets
- Fully developed turbulence in active region
- Particle dynamics on unstable current sheets
- Very good correlation with observations