Complexity in solar and stellar active
regions
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History

 More than 20 years ago on the skylab workshops
(Vlahos et al.) and then ten years ago Miller et al.
wrote a nice review which is highly cited in the
literature even today. In both reviews, the main goal
was to contrast the known acceleration mechanisms
(E-fields, Turbulence, shocks) with observations. The
energy release (magnetic reconnection and flows)
was hided on the background of the analysis.

* Inthe Miler et al. review you left with the
impression that turbulence is the wining mechanism



History

* Along list of outstanding problems were
mentioned and open observational issues were
listed.

* The recent observations added to the Miller list
even more constrains, the most important been
that “if the energy carried by the high energy
particles reaches as high as 30-40% of the total
energy... acceleration should be part of the
energy release picture.

* So let us try to place the accelerator on the
framework of evolving active regions.



Outline

E Active regions as driven non linear systems

B Spatially self-similar, small-scale energy release

E Power-law statistics

F The solar atmosphere as an externally driven turbulent system
E Turbulent self-organization: Critical or non-critical?

¥ Formation of stable and unstable current sheets

Particle dynamics in fractal current sheets
F Active regions as particle accelerators

E Summary
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Sunspots and active regions

Sunspots in a full disk magnetogram
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Multi-scale diagnostics of solar structures

Fractal and multi-fractal methods in the hunt for a tale-telling pattern:
Abramenko et al. (2003)
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Georgoulis et al. (2002)
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100 Structure functions:
s = SR (=) @
The fractal dimension: Sq(r):<‘Bz(X+r)_Bz(X)‘ >N(r)c
EBs are fractal structures AR magnetic fields are multi-fractal structures

Wavelets, shapelets, automatic pattern recognition, phase diversity, deconvolution
techniques, applied to magnetograms, EUV and X-ray images, CMEs, etc.

Significant focus / an arsenal of novel tools
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Pre-flare / Quiescent evolution of solar ARs

Vlahos & Georgoulis (2004)

@ A large number of likely unstable fractal volumes at low altitudes ( glOMm)

@ Free energies showing power-law distribution; index nearly insensitive to the critical threshold

@ Free energies of the order l()24—1026erg - An avalanche necessary to achieve a flare

Turbulent-driven self-organization appears as an inherent feature in solar

ARs irrespectively of whether these ARs are quiescent or flare/CME -prolific
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Statistical properties of Thin Current
Layers (TCL)
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Numerical method

Three dimensional time-dependent resistive MHD equations

dp
% = —V-(E‘u}_pv'u'FQJoule"‘QviﬁCv
B
— = —_VxE
ot e
E = —(uxB)+nl,
J = VB
R
p = pl —,
J7i

- 6th order - partial derivatives

- 5th order - interpolation

- 3rd order - predictor-corrector - time stepping

- Stretched staggered grid 1d, 3d

- Periodic and closed BC

- Damping zone top-bottom

. Hyperdiffusive scheme, 4" order quenced diffusion operators



Emergence into a null corona
Formation of corgonal loops
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- The tube 1s more buoyant in the middle
- Fieldlines expand in three directions
- Strongly azimuthal nature at the top

- Fan-like shape of the expanding field.





The solar corona
@ An externally driven, non-linear dynamical system

Abbet & Fisher, ApJ, 2002 Amari et al., ApJ, 2003



Formation of current sheet + collapse
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s of the MHD rmocdels

@ MHD models with a turbulent evolution exhibit complexity, spatio-
temporal intermittency, and self-similarity in the resulting distributions

Georgoulis et al, ApJ, 1998









Inside a collapsing current sheet







Envisioned situation in the solar atmosphere

Abbett & Fisher (2002) Dmitruk et al. (2002)

@ The solar atmosphere: An externally driven, dissipative, non-linear dynamical system

@ Vector potential / Velocity field : A few coherent, large-scale structures (inverse cascade)
@ Free magnetic energy / Vorticity: Numerous small-scale structures (direct cascade)

@ Dissipation (flares): Triggered locally, [rapidly spreading over the AR (domino effect)]

Turbulence !
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Activity in all spatial scales / Scale invariance

Results from the Very high Angular Resolution Ultraviolet Telescope (VAULT)
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wwwsolar.nrl.navy.mil/rockets/vault

(Courtesy of Angelos Vourlidas)

4/12 “Quiet” Sun indistinguishable from active regions in small spatial scales



Ubiquitous small-scale energy release

SoHO/MDI 01/25/00;+1:2:

Courtesy of Pariat et al. (2004)
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Approx. 81% (38/47) of EBs
brightenings (Ellerman bombs) OVere associated with magnetic bald
3-hr period patches, separatrices or QSLs

Evidence of self-similarity in small-scale energy dissipation processes
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Quantifying the statistics of solar activity
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Moreover, power laws are found in the events’ peak activity, total duration, rise and
decay times, area coverage, inferred volumes, etc.

@ Intermittency and self-similarity (scale invariance) evident in space and time

@ What is the cause of the observed complexity ?
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Expected consequences of turbulence
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Dmitruk et al. (1998) Dmitruk & Gomez (1997)

@ Hierarchical self-organization, which gives rise to tremendous spatial complexity
@ Spatial self-similarity (scale invariance & fractal structures)
@ Intermittency in the energy release process

@ Power laws in the statistical behavior of the system
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Self-Organization: deterministic or stochastic?

Fragos et al. (2004) Mcintosh &
Charbonneau (2001)

@ Both seem to be at work:

» Stochastic self-organization (percolation) reproduces emergence of magnetic flux

» Deterministic self-organization (SOC) reproduces the triggering of dissipative events
@ Spatiotemporal fractality and multi-fractality evident in both cases

@ Cascades (avalanches) in the energy release process

@ A critical loss of equilibrium possibly responsible for avalanches

But what is the nature of the critical threshold, if any?
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Three-dimensional structure of the electric field

Isosurfaces of the electric filed at different times
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Distribution function of the electric field

1078 108 10~ 1072 107



Kinetic energy distribution function of electrons
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A ‘Turbulent’ Field Model

(stochastic but not resonant accelerator)
(Azner+Vlahos, APJL, 2004)
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Winter School on Turbulence,
Montegufon, Firenze, 3-7 October, 2005



acceleration within local dissipation regions
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Electron Acceleration

Energy jumps at
dissipation regions

Winter School on Turbulence,
Montegufon, Firenze, 3-7 October, 2005
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Particle acceleration in stochastic current
sheets

(Rim Turkmani et al, ApJL2004, AA 2005)

e Particles injected at random positions
within an MHD box

— Protons 0.027 kev
— Electron 1.16 kev

* Initial velocity fixed in amplitude, random i
direction

» Acceleration time scale

much shorter than

MHD time scale

» B and E are scaled;

» initial values:
= B: Mean ~ 1.0 (0.89 - 1.08)
= E: Mean ~ 7e-4 (e-5 - e-2)

Winter School on Turbulence,
Montegufon, Firenze, 3-7 October, 2005



Distribution Functions

«100,000 proton in 100 G magnetic field run for 1 ms

100 000 Pretan in 1.5e6 cm leng loop

eTwo parts power law o ~ 60 Mevin 0.3 ms




dN/dE /N

Turkmani et al
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Using the X-CA model
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Sporadic formation of current sheets
Vlahos, Isliker and Lepreti (ApJ, June 10,2004)

Winter School on Turbulence,
Montegufon, Firenze, 3-7 October, 2005



Sporadic formation of current sheets
Vlahos, Isliker and Lepreti (ApJ, June 10,2004)
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Conclusions

W Self-Orga Self-simil

* The driver: convection zone

» Spontaneous or driven formation of current sheets
 Threshold for stable and unstable current sheet-

- Self organized critical state of active regions

* Collapse of current sheets

» Network of current sheets

« Fully developed turbulence in active region

« Particle dynamics on unstable current sheets

* Very good correlation with observations
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