

Main topics

- Introductory remarks
- Observational constrains for the accelerated particles
- Basic mechanisms for particle acceleration
- The sun as particle accelerator
- Open problems

Introduction

- In astrophysics Hydrodynamics and MHD are the dominant tools for almost all the problems.
- There are good reasons for this and most of them have been outlined from several speakers this week.
- But.... There are several problems, one of them is the topic of my talk, which falls outside the domain of the MHD theory.
- Physicists, as more scientists, are pragmatic people and search not were the problem is but only were there is light so they can find something.

The velocity distribution and the Vlassov equation

- The velocity distribution $f_j(\vec{v}, \vec{r}, t)$
- The evolution of the velocity distribution

$$\frac{\partial f_j}{\partial t} + \vec{v} \cdot \nabla f_j + (\vec{E} + \vec{v} \times \vec{B}/c) \cdot \nabla_{\vec{v}} f_j = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

 Maxwell's Equations witch evolves E and B using

$$\rho = e(\int (f_i - f_e) d\vec{v} \\ \vec{j} = e \int (f_i - f_e) \vec{v} d\vec{v}$$

Forms of velocity distributions

- Plasma in Equilibrium
 - Maxwellian (minimum energy state)
- Non Equilibrium plasma
 - Two Mawellians with different temperatures and densities
 - Non-Thermal plasma Maxwellian+ power law tail

'Anomalous' Collisions and Diffusion Equation

- Diffusion of particles inrandom E-fields.
 Particles executing random walks inside such environment (see more on Kaspar's talk)
- Fokker Planck (the simplest form)

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial v} D_{vv} \frac{\partial f}{\partial v}$$

$$D = \frac{\langle v(t)v(t+\tau) \rangle}{\tau}$$

What current observations can tell to the theorists

 In fact.. a lot... so much that scared most solar physics theorists and are currently doing something else.... accretion disks, black holes AGN's (remember that physicist are pragmatic people...)

Electrons (large flare)

- 10³⁷ e s⁻¹ > 20 keV
- for ~ 100 s
- 100 MeV maximum
- 3x10³¹ ergs > 20 keV
- Energy equipartition
- Simultaneous with ions
- Acceleration from thermal distribution
- Replenishment

lons (large flare)

- 10³⁵ p s⁻¹ > 1 MeV
- for ~ 100 s
- I GeV maximum
- 3x10³¹ ergs > 1 MeV/n
- Energy equipartition
- Simultaneous with electrons
- Acceleration from thermal distribution
- Abundance enhancements
- Replenishment

More...

- Energy is released in footpoints (ususaly two or more..)
- Ions and Electrons seem to choose different footpoints-diferent loops?
- Radio emission suggest the presence of beams (type III), shocks (type II), microwaves (trapped particles in complex topologies?)
- Acceleration prior to the flare and long after

Mean Electron Spectrum: Temporal evolution

Mean Electron Spectrum: Temporal evolution

Energy, keV

P. Grigis

Electron spectrum at 1AU

Oakley, Krucker, & Lin 20044quila 31/3/

Typical electron spectrum can be fitted with broken power law:

Break around: 30-100 keV Steeper at higher energies

Solar energetic particles at 1AU (Krucker-Kontar)

Abundance Enhancements

Ion	Ambient	Mass	Charge-	Observed
	Abundance	Number	to-mass	Enhancement
	Relative to	A	Ratio	in SEPs Relative
	Н		Q/A	to Coronal
Η	1	1	1.0	
³ He	$\approx 5 \times 10^{-4}$	3	0.67	≈2000
⁴ He	0.036	4	0.5	normal
С	2.96×10^{-4}	12	0.5	normal
Ν	$7.90 \mathrm{x} 10^{-5}$	14	0.5	normal
0	6.37×10^{-4}	16	0.5	normal
Ne	9.68×10^{-5}	20	0.40	≈3
Mg	1.25×10^{-4}	24	0.42	≈3
Si	9.68×10^{-5}	28	0.43	≈3
Fe	8.54×10^{-5}	56	0.23	≈10
Kr	1.41×10^{-8}	85	0.13	≈100
		(mean)		
Xe	8.66×10^{-10}	128	0.11	≈1000
		(mean)	31/3/2006	

What the observation do not say

- Magnetic topology in the corona
- Location of energy release
- How to connect the magnetic energy release mechanisms with particle acceleration?
- What is the role of MHD in predicting the evolution of a flare, if most energy goes to energetic particles?

Acceleration Mechanisms

- Direct E-fields-Reconnection?
- Stochastic acceleration by Waves (MHD and whistlers) ?
- Shocks wave acceleration?
- Does any of these work for the Sun?

Basic equation for non relativistic particles

$$m_j \frac{d\vec{v}}{dt} = q_j \left(\vec{E}(\vec{r},t) + \frac{\vec{v} \times B(\vec{r},t)}{c} \right) - \nu m \vec{v}$$

$$m_j \vec{v} \cdot \frac{d\vec{v}}{dt} = q_j \vec{v} \cdot \vec{E}(\vec{r}, t) - \nu m v^2$$

1. Sub-Dreicer Electric Fields

- Uses: Long (~10⁹ cm) weak (< 10⁻⁴ V cm⁻¹) fields
- Geometry: Field-aligned in the loop or normal to an arcade
- Mechanism: Runaway acceleration (Dreicer 1960; Knoepfel & Spong 1979)

Strengths

- Runaway physics well understood (Fuchs et al. 1986)
- Models have been successful for HXR and radio emission (Holman & Benka 1992)

Weaknesses

- Maximum electron energy ~100 keV
- Need lots (~10¹²) of current channels
- Replenishment is difficult (Emslie & Henoux 1995)
- Ion acceleration is untenable (Holman 1995)
- Native distributions are flat
- Current Channel formation/stability ?

Runaway Distributions

- Uses: Long (~10⁹ cm) strong (>>1 V cm⁻¹) fields
- Geometry: Large (thin!) current sheet above an arcade of loops
- Mechanism: Direct acceleration with drift escape

Magnetic Field Configuration

Strengths

- Hopeful for HXR emission (e.g., Litvenenko 1996; Martens 1988)
- Maximum electron energy ~1 GeV
- Simple geometry
- Replenishment is natural

Weaknesses

- Ion acceleration very questionable
- Particle distributions not calculated
- Electron holes are actually doing the acceleration (Drake et al.)
- Stability of very thin sheet ?

- The mechanism for gradual events; prime importance at astrophysical sites
- Uses: Large-scale (Ellison & Ramaty 1985) or an ensemble of smaller shocks (Anastasiadis & Vlahos 1991)
- Geometry: In or around the loop(s)
- Mechanism: Diffusive or shock drift

Strengths

- Actual acceleration mechanism is well studied
- Ion acceleration (a few MeV) is possible (Decker & Vlahos 1986)

Weaknesses

- Distributions mostly unknown (Ellison & Ramaty 1985)
- Replenishment?
- Ion abundance enhancements not likely
- Type II emission not typical
- Generation unspecified

4. Fermi Acceleration (Stochastic)

- Uses: Large-amplitude (δB / B ≈ 1) plasma waves, or magnetic "blobs"
- Geometry: Waves distributed throughout the loop(s), on both open and closed field lines.
- Mechanism: Adiabatic collisions with moving scattering centers (Fermi 1949; Davis 1956)

Strengths

- Oldest flare acceleration mechanism (Parker & Tidman 1958)
- Energizes ions (Ramaty 1979; Miller et al. 1990) and electrons (Gisler 1992; LaRosa et al. 1994)
- Simple geometry (cospatial return currents)

Weaknesses

- No ion abunance enhancements
- Maximum electron energy ?
- Consistent modeling parameters not used
- "outdated"
- Formation of turbulence ?

5. Resonant Acceleration (Stochastic)

- Uses: low-amplitude (δB/B << 1) plasma waves
- Geometry: Waves distributed throughout the loop, on both open and closed field lines
- Mechanism: Resonance with either the transverse wave E-field (cyclotron) or the parallel B-field (Landau)

Quasilinear Simulation

$$\begin{split} \frac{\partial N_e}{\partial t} &= -\frac{\partial}{\partial E} \left\{ \left[A_e + \left(\frac{dE}{dt} \right)_{\rm Ce} \right] N_e \right\} + \frac{1}{2} \frac{\partial^2}{\partial E^2} \left[(D_e + D_{\rm Ce}) N_e \right] - \\ & \frac{N_e}{T_e} + S_e \quad , \\ \frac{\partial N_i}{\partial t} &= -\frac{\partial}{\partial E} \left\{ \left[A_i + \left(\frac{dE}{dt} \right)_{\rm Ci} \right] N_i \right\} + \frac{1}{2} \frac{\partial^2}{\partial E^2} \left[(D_i + D_{\rm Ci}) N_i \right] - \\ & \frac{N_p}{T_p} + S_p \quad , \\ \frac{\partial W_{\rm TFM}}{\partial t} &= \frac{\partial}{\partial k} \left[k^2 D_{\rm FM} \frac{\partial}{\partial k} \left(k^{-2} W_{\rm TFM} \right) \right] - \gamma_{\rm FM} W_{\rm TFM} + S_{\rm FM} \quad , \\ \frac{\partial W_{\rm TA}}{\partial t} &= \frac{\partial}{\partial k_{\parallel}} \left(D_{\parallel \parallel} \frac{\partial W_{\rm TA}}{\partial k_{\parallel}} \right) - \gamma_{\rm A} W_{\rm TA} + S_{\rm A} \end{split}$$

Strengths

- Employs lowamplitude waves
- Successful for both ions (e.g., Barbosa 1979) and electrons (e.g., Petrosian et al.)
- Simple geometry (cospatial return currents)
- Required for ³He enhancement
- Unified ion/electron acceleration model possible (Miller 1998)

Weaknesses

- Source of turbulence is not firmly established
- Plasma wave zoo => collection of unrelated (?) models
- Fast variation of the wave amplitude to accomplish many peaks with changing slopes
- Connectivity to the energy release (reconnection)

An important statment

- None known theory ca capture all the details known to us from the current observations
- All theories seem to have partial success.
- What is missing?

A new look....on an old problem

- Flares are symptoms of the construction and evolution of active region.
- Known Particle acceleration are lucking the global stressed magnetic magnetic topology to host them.
- So we come back to the missing link of MHD and Kinetic effects

discontinuities from the photosphere

How do you define an unstable discontinuity

• We mark the points were (Parker's criterion)

 $\vec{J}_c \sim \nabla \times \vec{B}$

is satisfied and multiply this volume with the magnetic energy in excess the potential energy

Evolving active regions build up constantly magnetic discontinuities.... (Fragos, Rantziou, Vlahos, AA, 2004)

Evolving active regions build up constantly magnetic discontinuities... (Fragos, Rantziou, Vlahos, AA, 2004)

Dynamic motion of the photosphere builds constantly magnetic discontinuities (Fragos, Rantziou, Vlahos, AA, 2004)

A New approach to an old problem

• From one current sheet to millions

The MHD incompressible equations are solved to study magnetic reconnection in a current layer in slab geometry:

Periodic boundary conditions along y and z directions

Dimensions of the domain: $-l_x \leq x_y, \quad 0 < y < 2\pi l_y, \quad 0 < z < 2\pi l_z$

Description of the simulations Incompressible, viscous, dimensionless MHD equations:

$$\frac{\partial \mathbf{V}}{\partial t} = -(\mathbf{V} \cdot \nabla)\mathbf{V} - \nabla P + (\nabla \times \mathbf{B}) \times \mathbf{B} + \frac{1}{R_{\nu}} \nabla^2 \mathbf{V}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \frac{1}{R_M} \nabla^2 \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{V} = 0$$

R_M and R_v . Are the kinetic and magnetic Reynolds numbers.

Three-dimensional structure of the electric field

Isosurfaces of the electric field at different times

t=50

t=200

Three-dimensional structure of the electric field

Isosurfaces of the electric field at different times

t=50

t=200

Particle acceleration

Relativistic equations of motions:

$$\frac{d\mathbf{r}}{dt} = \mathbf{v} \qquad \qquad \frac{d\mathbf{p}}{dt} = e\mathbf{E} + \frac{e}{c}\mathbf{v} \times \mathbf{B}$$
$$\mathbf{p} = \gamma m \mathbf{v} \qquad \qquad \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The equations are solved with a fourth-order Runge Kutta adaptive step-size scheme.

The electric and magnetic field are interpolated with local 3D interpolation to provide the field values where they are needed L'Aquila 31/3/2006

HXR bremsstralung spectrum

solve the MHD equations inside a simple loop atmosphere (Galsgaard)

$rac{\partial \rho}{\partial t}$	=	$- \boldsymbol{\nabla} \cdot \rho \mathbf{u},$
$rac{\partial ho \mathbf{u}}{\partial t}$	=	$-\boldsymbol{\nabla}\cdot\left(\rho\mathbf{u}\mathbf{u}+\underline{\tau}\right)-\boldsymbol{\nabla}\boldsymbol{P}+\mathbf{J}\times\mathbf{B}+\mathbf{F}_{e},$
$\frac{\partial e}{\partial t}$	=	$- abla \cdot (e \mathbf{u}) - P abla \cdot \mathbf{u} + Q_{ ext{Joule}} + Q_{ ext{visc}},$
$rac{\partial {f B}}{\partial t}$	=	$- \mathbf{ abla} imes \mathbf{E},$
\mathbf{E}	=	$-(\mathbf{u} imes \mathbf{B}) + \eta \mathbf{J},$
J	=	$ abla imes {f B}$

Density profile along the loop

Temperature along the loop

The stochastic loop model (Galsgaard)

- 3D MHD experiment of photospherically driven slender magnetic flux tubes
- Continued random driving of the foot points (incompressible sinusoidal large scale shear motions)
- Reconnection jets generate secondary perturbations in B
- Formation of stochastic current sheets

Particle acceleration in stochastic current sheets (Rim Turkmani et al)

- Particles injected at random positions within an MHD box
 - Protons 0.027 kev
 - Electron 1.16 kev
- Initial velocity fixed in amplitude, random in direction

- Acceleration time scale much shorter than MHD time scale
- B and E are scaled; initial values:
 - B: Mean ~ 1.0 (0.89 1.08)
 - E: Mean ~ 7e-4 (e-5 e-2)

Scaling with loop dimensions

Acceleration scales linearly with the spatial scale of the loop

My summary

- The photospheric motions drive the formation of unstable discontinuities
- Fast, slow, organized and random flows are all part of the photospheric activity
- New emerging flux adds complexity to this picture and enhances the concentration of magnetic discontinuities
- The extrapolated force free magnetogram holds important information for the activity of the complex AR.