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ABSTRACT

The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic
field was studied, using the resistive magnetohydrodynamic (MHD) equations. We have shown that fast-magnetosonic modes, prop-
agating normal to the magnetic field, grow exponentially and saturate at high values, due to the resistivity. We also demonstrate
that Jeans-like instabilities can be enhanced inside a resistive fluid and that the formation of condensations influence the growing
magnetosonic waves.
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1. Introduction

Magnetic fields are known to have a widespread presence in our
Universe, being a common property of the intergalactic medium
in galaxy clusters (Kronberg 1994). Reports on Faraday rotation
imply significant magnetic fields in condensations at high red-
shifts (Kronberg et al. 1992). Large-scale magnetic fields and
their potential implications for the formation and the evolution
of the observed structures have been the subject of theoreti-
cal investigation (see Thorne 1967; Jacobs 1968; Ruzmaikina
& Ruzmaikin 1971; Wasserman 1978; Zel’dovich et al. 1983;
Adams et al. 1996; Barrow et al. 1997; Tsagas & Barrow 1997;
Jedamzik et al. 1998; Barrow et al. 2006, etc.). Magnetic fields
observed in galaxies and galaxy clusters are in energy equiparti-
tion with the gas and cosmic rays (Wolfe et al. 1992). The origin
of these fields, which can be astrophysical, cosmological or both,
remains an unresolved issue.

If magnetism has a cosmological origin, as observations
of µG fields in galaxy clusters and high-redshift protogalax-
ies seem to suggest, it could have affected the evolution of the
Universe (Giovannini 2004; Barrow et al. 2006). There are sev-
eral scenarios for the generation of primordial magnetic fields
(e.g. see Grasso & Rubinstein 2001). Most of the early treat-
ments were Newtonian, with relativistic studies making a re-
cent appearance in the literature. A common factor between al-
most all the approaches is the use of the MHD approximation,
namely the assumption that the magnetic field is frozen into an
effectively infinitely conductive cosmic medium (i.e. a fluid of
zero resistivity). With a few exceptions (e.g. see Fennelly 1980;
Jedamzik et al. 2000; Vlahos et al. 2005), the role of kinetic
viscosity and the possibility of non-zero resistivity have been
ignored. Nevertheless, these aspects are essential for putting to-
gether a comprehensive picture of the magnetic behavior, par-
ticularly as regards the non-linear regime. The electric fields
associated with the resistivity can become a source of particle

acceleration, while the induced non-linear currents may react
back on the magnetic field (Vlahos et al. 2005).

Many recent studies have used a Newtonian or a Friedmann–
Robertson–Walker (FRW) model to represent the evolving
Universe and super-imposed a large-scale ordered magnetic
field. The magnetic field is assumed to be too weak to destroy the
FRW isotropy and the anisotropy, induced by it, is treated as a
perturbation (Ruzmaikina & Ruzmaikin 1971; Tsagas & Barrow
1997; Durrer et al. 1998). Current observations give a strong mo-
tivation for the adoption of a FRW model but the uncertainties
on the cosmological Standard Model are several. Therefore, the
limits of the approximations and the effects one may lose by ne-
glecting the anisotropy of the background magnetic field should
be investigated. The formation of small-scale structures and the
excitation of resistive instabilities in Bianchi-Type models have
been explored (Fennelly 1980). Nevertheless, the excitation of
MHD-waves in curved spacetime and their subsequent tempo-
ral evolution is far from being clearly understood (Papadopoulos
et al. 2001).

In the present article we explore the evolution of a magne-
tized resistive plasma in an anisotropic cosmological model. We
begin with a uniform plasma driving the dynamics of the curved
spacetime (the so-called zeroth-order solution). This dynami-
cal system is subsequently perturbed by small-scale fluctuations
and we study their interaction with the anisotropic background,
searching for imprints on the temporal evolution of the perturba-
tions’ amplitude.

In Sect. 2, we present the system of the field equations ap-
propriate to describe the model under consideration. In Sect. 3,
we solve this system analytically, to derive the zeroth-order so-
lution. In Sect. 4, we extract the first-order perturbed equations.
In Sect. 5, we derive the dispersion relation for the magnetized
cosmological perturbations and in Sect. 6, we perform a numer-
ical study of their evolution, using a fifth-order Runge–Kutta–
Fehlberg temporal integration scheme. In Sect. 7, a perturbation
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analysis over purely gravitational fluctuations reveals an inher-
ent Jeans-like instability.

Our results suggest that in a resistive plasma, within an inter-
val of 1011 s after the beginning of the interaction process, fast-
magnetosonic modes are excited, growing exponentially in time
and saturate at high values. In this way, magnetic field pertur-
bations can be retained at large amplitudes, for sufficiently long
time-intervals (∆t ∼ 1012 s), resulting in the enhancement of the
ambient magnetic field (dynamo effect). In addition, the resistive
plasma enhances the condensations that can be formed within
the anisotropic fluid due to gravitational instability, which, in
turn, influences the growth of the magnetosonic waves.

2. The field equations

We consider an axisymmetric Bianchi-Type I cosmological
model, driven by an anisotropic and resistive perfect fluid, in
the presence of a time-dependent magnetic field, B = B(t)x̂. The
corresponding line-element is written in the form

ds2 = −dt2 + R2(t)dx2 + S 2(t)[dy2 + dz2]. (1)

The evolution of a curved spacetime in the presence of mat-
ter and an e/m field is determined by the gravitational field
equations

Rµν −
1
2
gµνR = +8πGTµν (2)

(in the system of units where � = 1 = c), together with the
energy-momentum conservation law

T µν;ν = 0 (3)

and Maxwell’s equations

Fµν;ν = 4πJµ, (4)

Fµν;λ + Fνλ;µ + Fλµ;ν = 0. (5)

In Eqs. (2)–(5), Greek indices refer to the four-dimensional
spacetime (Latin indices refer to the three-dimensional spatial
section) and the semicolon denotes covariant derivative. Rµν and
R are the Ricci tensor and the scalar curvature with respect to the
background metric gµν, while G is Newton’s gravitational con-
stant. Fµν is the antisymmetric tensor of the e/m field and Jµ is
the corresponding current density.

The energy-momentum tensor consists of two parts

T µν = T µνfluid + T
µν
em. (6)

The first part is due to an anisotropic perfect fluid source of the
form

T µνfluid = ρu
0u0 + piu

iui + pig
ii (7)

where ρ(t) is the energy density, pi(t) are the components of the
anisotropic pressure and the axial symmetry of the metric (1)
implies that p2(t) = p3(t). uµ = dxµ/ds is the fluid’s four-
velocity, satisfying the conditions uµuµ = −1 and hµνuµ = 0,
with hµν = gµν + uµuν being the projection tensor.

The second part is due to the ambient e/m field

T µνem =
1

4π
(FµαFνβgαβ −

1
4
gµνFαβF

αβ) (8)

where for E = 0 and B // x̂, the non-zero components
of the Faraday tensor in the curved spacetime (1) read (see
Appendix A)

F23 =
Bx

S 2
= −F32. (9)

The current density Jµ may be determined by the invariant form
of Ohm’s law

Jµ = neeuµ +
1
η

Fµνuν (10)

where ne is the locally measured charge density and η is the (fi-
nite) electric resistivity, in units of time. As a consequence of
the Maxwell equations, we obtain Jµ;µ = 0. Assuming that that
the fluid has zero net-charge, i.e. ne = 0, Eq. (10) reduces to
Jµ = 1

ηFµνuν. A vanishing net charge indicates that the perfect
fluid consists of at least two components.

3. The background solution

We look for axisymmetric Bianchi-Type I cosmological solu-
tions to the Einstein-Maxwell equations (Appendices A and B),
representing the background metric of our problem. In this case,
Eqs. (2) reduce to

2

(
ṘṠ
RS

)
+

(
Ṡ
S

)2

= 8πGρ(t) +GB2(t)

−2
S̈
S
−

(
Ṡ
S

)2

= 8πGp1(t) −GB2(t)

−
(

R̈
R
+

S̈
S

)
−
(
ṘṠ
RS

)
=8πGp2(t) +GB2(t) (11)

(the dot denotes time-derivative) and Eqs. (4), (5) yield

∂t[S 2B(t)] = 0. (12)

Equation (12) has a clear physical interpretation: the magnetic
flux through a comoving surface normal to the direction of the
magnetic field is conserved.

On the other hand, the continuity Eq. (3) results in
(Appendix C)

∂t

[
ρ(t) +

B2

8π

]
+

Ṙ
R

[
p1(t) − B2

8π

]
+ 2

Ṡ
S

[
p2(t) +

B2

8π

]

+

(
Ṙ
R
+ 2

Ṡ
S

) [
ρ(t) +

B2

8π

]
= 0 (13)

and the particles’ number conservation law reads

ρ̇ +

(
Ṙ
R
+ 2

Ṡ
S

)
ρ = 0. (14)

The system of Eqs. (11)–(14) admits the exact solution

R(t) =

(
t
t0

)
, S (t) =

(
t
t0

) 1
2

ρ(t) = ρ0

( t0
t

)2
B(t) = B0

( t0
t

)
p1(t) = p10

( t0
t

)2
, p2(t) = −p20

( t0
t

)2
(15)

where the index “0” stands for the corresponding values at
t = t0 and t0 marks the beginning of the interaction between
magnetized plasma and curved spacetime. Solution (15) repre-
sents an anisotropic cosmological model in which the large-scale
anisotropy along the x̂-axis is due to the presence of an ambient
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magnetic field. The combination of Eqs. (11) and (15) indicates
that, initially, the total energy density is given by

ρ0 +
B2

0

8π
=

5

32πGt2
0

(16)

and the difference between fluid’s pressure and the pressure of
the magnetic field along the two anisotropic spatial directions is
equal

p10 −
B2

0

8π
=

1

32πGt2
0

p20 −
B2

0

8π
=

1

32πGt2
0

· (17)

Equations (17) lead us to identify

p10 = p0 = p20 (18)

i.e. initially, when R(t0) = S (t0), the two components of the
anisotropic pressure were equal in absolute value, something
that is confirmed also by Eq. (13). Furthermore, with Eqs. (16)
and (17), we obtain

p10 + 2p20 =
3
5

⎛⎜⎜⎜⎜⎝ρ0 + 6
B2

0

8π

⎞⎟⎟⎟⎟⎠ (19)

which, according to Eq. (18), results in the equation of state for
the matter-energy content at t = t0

p0 =
1
5

⎛⎜⎜⎜⎜⎝ρ0 + 6
B2

0

8π

⎞⎟⎟⎟⎟⎠ . (20)

For B0 = 0, i.e. as regards the perfect fluid itself, we obtain
that, initially, p0 =

1
5ρ0. Since p0 <

1
3ρ0, our model corre-

sponds to a semi-realistic cosmological model of Bianchi Type I.
These models are crude, first order approximations to the actual
Universe when we use currently available theories and observa-
tions (Jacobs 1969).

4. The cosmological perturbations

For any dynamical system, much can be learnt by investigating
the possible modes of small-amplitude oscillations or waves. A
plasma is physically much more complicated than an ideal gas,
especially when there is an externally applied magnetic field. As
a result, a variety of small-scale perturbations may appear. We
first assume a uniform magnetized plasma in curved spacetime
as background, which is perturbed by small scale fluctuations. In
this article, the evolution of the background is described by the
solution (15).

Accordingly, we introduce first-order perturbations in the
Einstein-Maxwell equations, by decomposing the physical vari-
ables of the fluid as

ρ(t, z) = ρ(t) + δρ(t, z) (21)

px(t, z) = p1(t)

py(t, z) = p2(t) − δp(t, z) (22)

pz(t, z) = p2(t) + δp(t, z)

and we insert the perturbed values (21) and (22) into
Eqs. (11)−(14), neglecting all terms higher than or equal to the

second order. The pressure perturbation δp(t, z) introduces a lon-
gitudinal acoustic mode, propagating along the ẑ-direction and
therefore

δp(t, z) = C2
s δρ(t, z) (23)

where Cs is the speed of sound. The four-velocity of the plasma
fluid is perturbed around its comoving value, uµ = (1, 0, 0, 0), as

uµ(t, z) = (1 + δu0(t, z), 0, 0, δuz(t, z)). (24)

Then, the condition uµuµ = −1, to the first leading order, implies

δu0(t, z) = 0 (25)

and, therefore, u3(t, z) = δuz(t, z). Accordingly, ρ(t, z)u3(t, z) =
ρ(t)δuz(t, z) + O2.

As regards the perturbations of the e/m field, we consider that
they correspond to a transverse e/m wave, propagating along the
ẑ-axis (k//ẑ)

E(t, z) = δEy(t, z)ŷ (26)

B(t, z) = B(t)x̂ + δBx(t, z)x̂. (27)

Therefore, the non-zero components of the Faraday tensor in
curved spacetime are modified as follows

F02 =
1
S
δEy(t, z) = −F20

F23 =
1

S 2
[B(t) + δBx(t, z)] = −F32. (28)

In what follows, we take into account the so-called Cowling ap-
proximation (Cowling 1941), admitting that δgµν = 0. Therefore,
the evolution of the perturbed quantities is governed only
by the energy-momentum tensor conservation, together with
Maxwell’s equations.

To begin with, we perturb the particles’ number conservation
law: accordingly, Eq. (C.3) yields

∂t(δρ) + ρ(t)∂z(δuz) + δρ

(
Ṙ
R
+ 2

Ṡ
S

)
= 0. (29)

We continue with Maxwell’s equations. Then, from Eq. (B.2),
using Eqs. (21), (22), (24) and (25), we obtain

−∂t(δE
y) +

1
S
∂z(δB

x) − δEy
(

Ṙ
R
+

Ṡ
S

)
=

4π
1
η

[δEy + S B(t)δuz]. (30)

Now, Eq. (B.3) becomes

∂t(S 2δBx) − S ∂z(δEy) = 0. (31)

The conservation Eq. (C.2) results in

∂t

[
ρ(t)δuz −

1
4πS

B(t)δEy
]
+

1
S 2
∂z

[
δp +

1
4π

B(t)δBx

]

+

(
Ṙ
R
+ 2

Ṡ
S

) [
ρ(t)δuz − 1

4πS
B(t)δEy

]
= 0 (32)

while, to the first leading order, Eq. (C.1) collapses to an iden-
tity. Equations (29)–(32) are the linearly independent first or-
der perturbed Einstein-Maxwell equations in the curved back-
ground (1). In the flat spacetime – zero resistivity limit, they
reduce to Eqs. (10.53a), (10.9) and (10.53c) of Jackson (1975),
respectively.
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To develop the theory of small-amplitude waves in
curved spacetime, we search for solutions to the linearized
Eqs. (29)−(32) in which all perturbation quantities are propor-
tional to the exponential

exp

[
i

(
kz −

∫ t

ωdt

)]
(33)

following the so-called adiabatic approximation (Zel’dovich
1979; Birrell & Davies 1982; Padmanabhan 1993). In this con-
text, the (slowly varying) time-dependent frequency of the wave
is defined by the eikonal

Ω =

∫ t

ωdt (34)

through the relation

ω =
dΩ
dt
· (35)

Notice that, in Eq. (33), z is the comoving coordinate along the
ẑ-axis and k is the comoving wave-number. In an expanding
Universe, the corresponding physical quantities are defined as
zph = zS (t) and kph = k/S (t), so that kphzph = kz.

5. The dispersion relation

Before discussing the temporal evolution of the perturbation
quantities, it is important to trace what kind of waveforms are
admitted by this system. We have to derive their dispersion rela-
tion, D(k, ω) = 0, at t = t0. Provided that certain kinds of modes
(such as acoustic, magnetosonic etc.) do exist, they can be ex-
cited through their interaction with the anisotropic spacetime.
An additional excitation, due to the non-zero resistivity, is also
possible (Fennelly 1980).

Accordingly, we assume a wave-like expansion for the per-
turbation quantities of the form

δρ = Aρei(kz−
∫ t
ωdt), δuz = Auei(kz−

∫ t
ωdt) (36)

δEy = AEei(kz−
∫ t
ωdt), δBx = ABei(kz−

∫ t
ωdt) (37)

δp = Apei(kz−
∫ t
ωdt) = C2

s Aρei(kz−
∫ t
ωdt). (38)

Although the background quantities depend on time, in the
search for a dispersion relation at t = t0, we treat the pertur-
bation amplitudes (Ais) as constants. In this way, our search for
potential waveforms at t = t0, is not disturbed by the inherent
non-linearity introduced for t > t0. Nevertheless, once the poten-
tial waveforms are determined, their interaction with the curved
spacetime in the presence of an external magnetic field implies
that for t > t0 the time-dependence of their amplitudes is a priori
expected. Using Eqs. (36), Eq. (29) is written in the form

(HR + 2HS − iω)δρ = −ikρ(t)δuz (39)

where we have set

HR =
Ṙ
R

and HS =
Ṡ
S
· (40)

Furthermore, using Eqs. (37), Eq. (30) reduce to[
iω −

(
HR + HS +

4π
η

)]
δEy = −i

k
S
δBx +

4π
η

S B(t)δuz (41)

while Eq. (31) becomes

(2HS − iω)δBx = i
k
S
δEy. (42)

Finally, Eq. (32) yields

[ρ̇(t) + (HR + 2HS − iω)ρ(t)]δuz + i
k

S 2
C2

s δρ =

1
4π

[
d
dt

(
B(t)
S

)
+(HR+2HS −iω)

B(t)
S

]
δEy−i

1
4π

kB(t)δBx. (43)

With the aid of Eqs. (12) and (14), the combination of
Eqs. (39)−(43) results in

[−ω2 + k2
phC2

s − iω(HR + 2HS )]

×[(iω + HR + HS −
4π
η

)(2HS − iω) − k2
ph] =

4π
η

u2
A(HR + 2HS − iω)

×[(HR − HS − iω)(2HS − iω) + k2
ph] (44)

where u2
A = (B2

0/4πρ0) is the (dimensionless) Alfvén velocity.
Equation (44) is the dispersion relation which determines the
possible waveforms admitted by this dynamical system for all
t ≥ t0.
ω, as defined by Eqs. (34) and (35), has the usual meaning of

the angular frequency of an oscillating process only in the short-
wavelength (high-frequency) regime of the mode k (Mukhanov
et al. 1992). In other words, the wave description in curved
spacetime makes sense only when the physical wavelength along
the direction of propagation [λph = λS (t)] is much smaller than
the corresponding horizon length [�HS = H−1

S (t)], i.e.

λph � �HS . (45)

Equation (45) implies that, in the anisotropic background (1), the
wave description makes sense as long as

ω, kph � HR, HS (46)

for all t ≥ t0. In this limit, Eq. (44) becomes surprisingly trans-
parent, namely

(ω2−k2
phC2

s )(ω2−k2
ph)+iω

4π
η

[
ω2(1+u2

A)−k2
ph(C2

s +u2
A)

]
=0. (47)

The vanishing of the real part results in acoustic (ω = kphCs) and
e/m (ω = kph) waves, while the vanishing of the imaginary part
results in fast-magnetosonic waves

ω2(1 + u2
A) = k2

ph(C2
s + u2

A). (48)

In the zero-resistivity limit (ideal plasma), the obvious modes
expected are the magnetosonic modes, which we recover. On the
other hand, in most astrophysical situations we have (Jackson
1975)

u2
A � C2

s . (49)

In this case, Eq. (47) reads

(ω2 − k2
phC2

s )

(
ω2 + i

4π
η
ω − k2

ph

)
= 0. (50)
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According to Eq. (50), in the very high frequency limit where
no acoustic waves are admitted, we are left with a waveform
governed by the dispersion relation

ω2 + i
4π
η
ω − k2

ph = 0 (51)

which yields

e−i
∫ t
ωdt ∼ e−

2π
η t. (52)

This result has a clear physical interpretation: all the very-high-
frequency perturbations of the dynamical system are suppressed
due to the finite resistivity. Therefore, the only modes that sur-
vive in a resistive cosmological model are the (low-frequency)
MHD modes. In the next section, we discuss the evolution of
these modes.

6. Numerical study of the MHD mode

In order to study the temporal evolution of the magnetosonic
modes for t ≥ t0, we assume that their amplitudes are no longer
time-independent

δρ = ρ̃(t)ei(kz−
∫ t
ωdt), δuz = ũ(t)ei(kz−

∫ t
ωdt) (53)

δEy = Ẽ(t)ei(kz−
∫ t
ωdt), δBx = B̃(t)ei(kz−

∫ t
ωdt) (54)

δp = p̃(t)ei(kz−
∫ t
ωdt) = C2

s ρ̃(t)e
i(kz−

∫ t
ωdt). (55)

In Eqs. (53)–(55), the wave-number k is related to the fre-
quency ω through Eq. (48) and, once again, we have taken into
account the equation of state for the perfect fluid.

We decompose the time-dependent amplitude of the pertur-
bations (53)−(55) into a real and an imaginary part, as

ρ̃(t) = ρR(t) + iρI(t)

ũ(t) = uR(t) + iuI(t) (56)

Ẽ(t) = ER(t) + iEI(t)

B̃(t) = BR(t) + iBI(t) (57)

that reduces Eqs. (29)–(32) to the following first order system

ρ̇R + ωρI − ρ0

( t0
t

)2
kuI +

2
t
ρR = 0 (58)

ρ̇I − ωρR + ρ0

( t0
t

)2
kuR +

2
t
ρI = 0 (59)

ĖR + ωEI + k
( t0

t

)1/2
BI +

3
2t

ER + 4π
1
η

ER

+4π
1
η

B0

( t0
t

)1/2
uR = 0 (60)

ĖI − ωER − k
( t0

t

)1/2
BR +

3
2t

EI + 4π
1
η

EI

+4π
1
η

B0

( t0
t

)1/2
uI = 0 (61)

ḂR + ωBI +
1
t

BR + k
( t0

t

)1/2
EI = 0 (62)

ḂI − ωBR +
1
t

BI − k
( t0

t

)1/2
ER = 0 (63)

ρ0u̇R + ωρ0uI +

(
1

4πt0
+

1
η

)
B0

( t0
t

)1/2
ER

+
1
η

B2
0uR − kC2

s

(
t
t0

)
ρI = 0 (64)

ρ0u̇I − ωρ0uR +

(
1

4πt0
+

1
η

)
B0

( t0
t

)1/2
EI

+
1
η

B2
0uI + kC2

s

(
t
t0

)
ρR = 0. (65)

We integrate numerically the system (58)–(65), using a fifth
order Runge-Kutta-Fehleberg scheme with variable integration
step. The time is measured in units of t0 and, therefore, τ = t

t0
≥

1. In terms of τ, the physical wave-number reads kph = k/
√
τ and

the Hubble parameter along the yz-plane is written in the form
HS = (2τt0)−1. According to Eq. (45), for a certain value of τ, a
wave is well inside the horizon as long as

k � 1

2
√
τt0
· (66)

The validity of Eq. (66) for long τ-intervals determines the ap-
propriate values of the comoving wave-number. Now, the analy-
sis depends on where do we place the initial time, t0.

According to the Standard Model (Kolb & Turner 1990),
after nucleosynthesis the Universe goes on expanding and cool-
ing until t ∼ 1013 s. At that time, the temperature drops to
the point where electrons and nuclei can form stable atoms (re-
combination). Before that time, during the so-called radiation
epoch, photons couple strongly with matter, the main constituent
of which is in the form of plasma. Therefore, the latest time at
which plasma could play a role of cosmological significance is
the recombination time (tR = 1.2 × 1013 s). In the limiting case
where t0 = tR, the condition (66) reads k � 1√

τ
× 10−14 s−1 and,

therefore, an appropriate choice for k would be k = 10−12 s−1.
In order to decide on the initial values of the unperturbed

quantities, we write Eq. (16) in ordinary units, namely

ρ0c2 +
B2

0

8π
=

5c2

32πGt2
0

· (67)

We adopt a typical behavior for the energy-density, valid at
the late stages of the radiation epoch (see Weinberg 1972,
Eq. (15.6.42))

ρ0c2 = 1.45αT 4 (68)

where T is the temperature and α is the black-body constant. At
the time of recombination (t0 = 1.2 × 1013 s, T = 4000 K),
we obtain ρ0 ≡ ρ0c2 = 2.8 erg/cm3, which, through Eq. (67),
is effectively a choice on B0, namely B0 � 7 Gauss. Notice that
this value lies barely within limits of the constraint

ρ0c2 >
B2

0

8π
, (69)

a necessary condition to retain the anisotropy of the metric
(Thorne 1967). Extrapolation of this result along the lines of
Eq. (15) to the present epoch (tp � 15 × 109 y) suggests that,
today, the corresponding magnetic field should be Bp � 6.6 ×
10−10 Gauss. This value lies within limits of the upper bound for
the present-day magnetic field strength, arising from the large-
angular scale anisotropy of the microwave radiation background
(MRB) at last scattering (Barrow et al. 1997, 2006)

B < 4 × 10−9 Gauss. (70)
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We estimate the amount of distortion which the expansion
anisotropy along the x-axis (caused by the unperturbed magnetic
field) induces on the microwave pattern at the present epoch. The
contribution of a large-scale coherent magnetic field to the mi-
crowave quadrupole anisotropy is given by (Madsen 1989)

∆T
T
� (1 + z)

B2
p

8πεp
(71)

where Bp and εp denote the present values of the magnetic field
and the background radiation energy-density, z is the redshift at
which the anisotropy begins to grow (in our case, at the recom-
bination time where z � 1100). The present value of the mi-
crowave background temperature is Tp = 2.8 K, corresponding
to an energy-density of εp � 4.7 × 10−13 erg/cm3 for the radi-
ation field. Accordingly, our analysis suggests that the present-
day quadrupole anisotropy along the x-axis should be

∆T
T

∣∣∣∣∣
x
� 4.06 × 10−5 (72)

i.e. almost four times larger than the corresponding COBE result.
Taking into account that, initially, the unperturbed quanti-

ties are of the order of unity, we normalize all the perturbation
quantities at t = t0, to 0.01 in cgs units. On the other hand, ini-
tially, the equation of state for the perfect fluid admits C2

s = 0.2,
while, for the resistivity we adopt the Spitzer relation (Krall &
Trivielpiece 1973)

η = 10−2
( T
eV

)3/2

s. (73)

In a radiation-dominated background, we have (Kolb & Turner
1990)

( T
eV

)
=

106

√
t (s)

(74)

and therefore, during recombination, Eq. (64) results in η =
0.0645 s. In order to demonstrate how η may trigger instabili-
ties, we consider three cases, namely η = 0.0645 s, η = 0.0745 s
and η = 0.0870 s.

The output of the numerical integration consists of the elec-
tric and the magnetic field perturbations’ amplitude

|δEy| =
√

E2
R + E2

I (75)

|δBx| =
√

B2
R + B2

I (76)

and illustrates their temporal evolution. In Fig. 1, we present the
magnetic field perturbation versus time. We consider two cases:

– For η = 0 (ideal plasma), the magnetic field perturbation
grows steeply at early times. It appears that the interaction
of the perturbed quantities with the anisotropic spacetime
results in the amplification of the convective field δEy1 =
−S B(t)δuz, which is the only one to survive in the ideal-
plasma-limit [e.g. see Eq. (30)]. Through Faraday’s law, any
amplification in the convective field leads to an analogous
growth in δBx, at the expense of the cosmological expan-
sion. Accordingly, after exhausting any available energy, the
magnetic field perturbation reaches a maximum value before
it is suppressed due to the cosmological redshift.
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Fig. 1. The time-evolution of the magnetic field perturbation, for B0 =
7 Gauss and for several values of the resistivity η (s). Notice that, for
η � 0, the perturbation’s amplitude is saturated, acquiring large values
for long enough time intervals.

– On the other hand, for η � 0, the magnetic field perturbation
also increases rapidly at early times after t0 (∆t ∼ 1011 s),
reaching values up to 3 times its initial one. However, in
this case, the perturbation’s amplitude is saturated, acquir-
ing sufficiently large values for long enough time intervals
(∆t ∼ 1012 s). This is due to the fact that, besides the con-
vective field δEy1, a non-zero resistivity also favors convec-
tive currents (δEy2 = η δJ

y). For η � 0, the lhs of Eq. (30)
corresponds, through Ampere’s law, to an electric current.
Accordingly, now, the energy available to be absorbed by
the perturbed quantities is larger and therefore the magnetic
perturbation remains at high levels for longer time intervals.
As a result, after saturation, the magnitude of δB constitutes
a fraction of 5×10−3 of the unperturbed value of the magnetic
strength. In this case, the quadrupole anisotropy induced in
the MRB along the x-axis reads

∆T
T

∣∣∣∣∣
x

(1 + z)
B2

8πε
�

(
1 + 2

δB
B

)
(77)

resulting in

∆T
T

∣∣∣∣∣
x
� 4.10 × 10−5 (78)

i.e. the corresponding value is enlarged by 1%.

The numerical results indicate a completely different behav-
ior for the electric field perturbation (Fig. 2). Not only are the
growth rate and the highest value of δEy slightly smaller than
the corresponding values of δBx, but, also, the suppression rate
of the perturbation’s amplitude is much larger than that of δBx,
resulting in a rapid decrease of the electric field at late times.
It appears that the expanding Universe disfavors strong electric
fields.

We conclude that, for reasonable values of the resistivity, the
magnetic field perturbations lead to a real instability, acquiring
large values for sufficiently long time-intervals. The influence of
resistivity in triggering instabilities in anisotropic cosmological
models has been the subject of research in the past (Fennelly
1980). To the best of our knowledge, however, this is the first
time that a direct connection between the resistivity and the sat-
uration of the perturbations’ amplitude at high values for long
time intervals is suggested and discussed.
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Fig. 2. The time-evolution of the electric field perturbation, for B0 =
7 Gauss and for several values of the resistivity η (s). Notice that, in this
case, there is no saturation.

7. Jeans-like instabilities

The question that arises now is whether the cosmological model
under consideration admits other kinds of instability and what
their role is in connection to the resistive one. To answer this
question, we study the evolution of purely gravitational perturba-
tions, examining whether they admit a growing behavior (Jeans
instability) or not.

In the absence of e/m fields (and their fluctuations), one is
left with the system of perturbation equations

(HR + 2HS − iω)δρ = −ikρ(t)δuz (79)

[ρ̇(t) + (HR + 2HS − iω)ρ(t)]δuz = −i
k

S 2
C2

sδρ (80)

the combination of which yields[
ρ̇

ρ
+ (HR + 2HS ) − iω

]
[(HR + 2HS ) − iω] = −

k2

S 2
C2

s . (81)

Taking into account the particle number conservation law,
Eq. (81) results in

ω2 + iω(HR + 2HS ) − k2
phC2

s = 0 (82)

describing damped acoustic waves. With respect to ω, Eq. (82)
is a second order algebraic equation with roots

ω1,2 = −i
HR + 2HS

2
±

√
k2

phC2
s −

(
HR + 2HS

2

)2

(83)

provided that

kphCs ≥
HR + 2HS

2
· (84)

In this case, the energy-density perturbations (36) reduce to

δρ =
Aρ

S
√

R
eikz∓i

∫ t
ωRdt (85)

where ωR is given by

ω2
R =

k2

S 2
C2

s −
(

HR + 2HS

2

)2

· (86)
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Fig. 3. The time-evolution of the energy density perturbation for several
values of the coordinate wave-length λ in terms of λc.

Equation (86) represents the dispersion relation for the propa-
gation of the energy-density fluctuations. In the isotropic case,
where HR = H = HS , it yields

ω2
R =

k2

S 2
C2

s −
9
4

H2 (87)

which, with the aid of the corresponding Friedmann equation
H2 = 8πG

3 ρ, reads

ω2
R =

k2

S 2
C2

s − 6πGρ. (88)

Equation (88) is identical to the isotropic (FRW) result, pre-
dicted by Weinberg (1972), in the relativistic theory of small
fluctuations.

In contrast to the high frequency e/m waves (52), as regards
the corresponding energy-density perturbations, propagation is
possible only when their physical wave-number is larger than a
characteristic value arising from condition (84) otherwise, after
some time they become unstable and grow exponentially with
time (Jeans-like instabilities).

Taking into account the background solution (15), Eq. (84)
at t = t0 reads

k ≥ kc =
1

Cst0
= 1.86 × 10−13 cm−1 (89)

and the corresponding Jeans length is given by

λc = 2πCs t0 = 3.37 × 1013 cm. (90)

Propagation of density perturbations with λ > λc is not possi-
ble, for all t ≥ t0 and we are lead to a gravitational instability.
The larger the coordinate wave-length is, the more prominent the
unstable behavior will be (Fig. 3).

Furthermore, one may ask whether the waves with wave-
number around kc in a non-ideal plasma may grow faster than
those in an ideal plasma. For every t > t0, the physical Jeans
length along the x̂-axis [λx = λcR(t)] is larger than the corre-
sponding length along the other two axes [λy = λcS (t) = λz], due
to the background anisotropy, suggesting formation of “cigar-
like” condensations within the anisotropic fluid. Since this fluid
is conductive, these condensations act in favor of electric cur-
rents which may lead to a further amplification of the e/m pertur-
bations, fortifying any pre-existing resistive instability (Fig. 4).
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Fig. 5. The time-evolution of the energy density perturbation, for k = kc

and for several values of the resistivity η (s). We observe that the Jeans
instability becomes more prominent as the resistivity grows.

Therefore, a Jeans-like instability enhances the phenomena re-
lated to the resistivity.

On the other hand, numerical results indicate that waves with
wavelength around kc become more prominent as the resistivity
grows (Fig. 5). This result also has a clear physical interpre-
tation: as we have already seen, any increase in the resistivity
fortifies the surrounding magnetic field. A strong magnetic field
organizes plasma along its lines, favoring any pre-existing con-
densations. Hence, resistive instabilities act in favor of the cor-
responding gravitational ones and vice versa.

8. Discussion

We study the evolution of the magnetosonic waves in a mag-
netized, resistive plasma, which governs the dynamics of an
anisotropic cosmological model. After constructing the general
set of MHD and Einstein equations for the anisotropic cosmo-
logical model (see the Appendices), we solve the field equa-
tions to obtain the zeroth-order solution. In order to determine
the waveforms admitted by this system in the first place, we in-
troduce wave-like perturbations and, neglecting all terms higher
or equal than the second order, we extract the dispersion relation

at t = t0, i.e. at the beginning of the interaction between magne-
tized plasma and curved spacetime. It appears that magnetosonic
modes can be excited due to the anisotropy and the resistivity.
For t ≥ t0, we integrate numerically the perturbed equations,
using the dispersion relation for the fast-magnetosonic waves.

We find that, at early times, both the electric and the mag-
netic field perturbations grow exponentially, at least in the
regime where the linear analysis holds. However there is a major
difference in their behavior in the presence of a non-zero resis-
tivity. For η � 0, the magnetic field perturbation after increasing
to reach values up to 3 times its initial one, is subsequently satu-
rated, remaining at high levels for sufficiently long time intervals
(∆t ∼ 1012 s).

The situation is completely different to the electric field per-
turbation. Not only the growth rate and the highest value of δEy

are slightly smaller than the corresponding values of δBx, but,
also, the suppression rate of the perturbation’s amplitude is much
larger than that of δBx. Accordingly, the electric field decreases
rapidly at late times. It appears that the expanding Universe dis-
favors strong electric fields.

We have shown that waves with wave-number around kc are
enhanced in non ideal plasmas.
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Appendix A

We present the closed set of MHD and Einstein equations (in the
system of units where � = 1 = c) for the anisotropic cosmologi-
cal models of Bianchi-Type I

ds2 = −dt2 + R2(t, z)dx2 + S 2(t, z)dy2 + T 2(t, z)dz2 (A.1)

in the presence of an anisotropic perfect fluid, which allows for
acoustic waves along the ẑ-direction

T µνfluid = ρu
µuν + piu

iui + pig
ii (A.2)

and an e/m field of the form

F α̂β̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 Ey 0
0 0 0 0
−Ey 0 0 Bx

0 0 −Bx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.3)

where Greek indices refer to the four-dimensional spacetime and
Latin indices refer to the three-dimensional spatial section. In
Eq. (A.3), F α̂β̂ is the Faraday tensor in flat spacetime. The com-
ponents of the e/m field in curved spacetime are defined by

Fµν = F α̂β̂eµα̂e
ν
β̂

(A.4)

where the non-zero components of the orthonormal tetrad eµα̂ of
the local Lorentz frame for the metric (A.1) are given by

eµ
t̂
= (−1, 0, 0, 0) eµx̂ =

(
0,

1
R
, 0, 0

)

eµŷ = (0, 0,
1
S
, 0) eµẑ =

(
0, 0, 0,

1
T

)
. (A.5)

Therefore, in the curved spacetime (A.1), the non-zero compo-
nents of the Faraday tensor are

F02 =
Ey

S
= −F20

F23 =
Bx

S T
= −F32. (A.6)
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In what follows, the dot denotes the time-derivative, while the
prime denotes differentiation with respect to z. The Einstein
equations, Gµν = 8πG(T fluid

µν + T em
µν ), result in:

The (tt)-component is given by

−
1

T 2

(
R
′′

R
+

S
′′

S

)
+

(
ṘṠ
RS
+

Ṡ Ṫ
S T
+

Ṫ Ṙ
TR

)

− 1
T 2

(
R
′
S
′

RS
+

S
′
T
′

S T
+

T
′
R
′

TR

)
= 8πGρ +G[(Ey)2 + (Bx)2]. (A.7)

The (xx)-component is given by

−R2

(
S̈
S
+

T̈
T

)
+

R2

T 2

(
S
′′

S

)
− R2

(
Ṡ Ṫ
S T

)
+

R2

T 2

(
T
′
S
′

TS

)
=

8πGR2 px −GR2[−(Ey)2 + (Bx)2]. (A.8)

The (yy)-component is given by

−S 2

(
R̈
R
+

T̈
T

)
+

S 2

T 2

(
R
′′

R

)
− S 2

(
ṘṪ
RT

)
− S 2

T 2

(
T
′
R
′

TR

)
=

8πGS 2 py +GS 2[−(Ey)2 + (Bx)2]. (A.9)

The (zz)-component is given by

−T 2

(
S̈
S
+

R̈
R

)
+ (

T ′′

T
) − T 2

(
Ṡ Ṙ
RS

)
−

(
R
′
S
′

RS

)
=

8πGT 2 pz +GT 2[+(Ey)2 + (Bx)2]. (A.10)

The (tz)-component is given by(
Ṙ
′

R
+

Ṡ
′

S
− R

′
Ṫ

RT
− S

′
Ṫ

S T

)
= −8πGT 2ρuz + 2GT EyBx. (A.11)

Appendix B

The Maxwell equations in curved spacetime are written in the
form

Fαβ;β = Fαβ,β + Γ
β
µβF

αµ = 4πJα

Fαβ;γ + Fβγ;α + Fγα;β = 0 (B.1)

where Jα = 1
ηFαβuβ is the current density and η is the electric

resistivity of the fluid. Accordingly, we obtain

−∂tE
y + ∂z(

Bx

T
) − Ey

(
Ṙ
R
+

Ṫ
T

)

+
Bx

T

(
R
′

R
+

S
′

S
+

T
′

T

)
= 4π

1
η

(u0Ey + T Bxuz) (B.2)

and

−∂z(S Ey) + ∂t(S T Bx) = 0. (B.3)

Appendix C

Taking the time and space component of T µν;ν = 0, we obtain the
required equations of motion in a covariant form, namely

∂t

[
ρ(t) +

1
8π

(E2 + B2)

]
+ ∂z

[
ρuz − 1

4πT
EB

]

+
Ṙ
R

[
p1(t) − 1

8π
(−E2 + B2)

]
+

Ṡ
S

[
p2(t) +

1
8π

(−E2 + B2)

]

+
Ṫ
T

[
p3(t) +

1
8π

(+E2 + B2)

]

+

(
Ṙ
R
+

Ṡ
S
+

Ṫ
T

) [
ρ(t) +

1
8π

(E2 + B2)

]
= 0 (C.1)

and

∂t

[
ρuz − 1

4πT
EB

]
+ ∂z

{
1

T 2

[
p3(t) +

1
8π

(E2 + B2)

]}

− R′

RT 2

[
p1(t) − 1

8π
(−E2 + B2)

]

− S ′

S T 2

[
p2(t) +

1
8π

(−E2 + B2)

]

+
T ′

T 3

[
p3(t) +

1
8π

(E2 + B2)

]

+

(
Ṙ
R
+

Ṡ
S
+

Ṫ
T

) [
ρuz − 1

4πT
EB

]

+

(
R′

R
+

S ′

S
+

T ′

T

)
1

T 2

[
p3(t) +

1
8π

(E2 + B2)

]
= 0. (C.2)

In addition, the particles’ number conservation law (ρuµ);µ = 0,
results in

∂t(ρu0) + ∂z(ρuz)

+ρu0

(
Ṙ
R
+

Ṡ
S
+

Ṫ
T

)
+ ρuz

(
R
′

R
+

S
′

S
+

T
′

T

)
= 0. (C.3)
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