

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

Angular correlation studies of the cosmic X-ray background: A new frontier of LSS studies with X-ray surveys

Author Alexander Kolodzig (Fellow at KIAA)

Collaborators Marat Gilfanov (MPA,IKI), Gert Hütsi (MPA), and Rashid Sunyaev (MPA,IKI)

Acknowledgement Mirko Krumpe, Mike Anderson, Kari Helgason, Nico Cappelluti, Günther Hasinger, & Nicolas Clerc

Publication Submitting in 06/2016

Meeting Hot spots in the XMM sky, Conference, Mykonos Island, Greece, 15.06.2016

Cosmic X-ray background (CXB)

ROSAT PSPC All-Sky: Soft X-ray Background (Trümper 1990, Freyberg+1999)

17.06.2016

The resolved CXB – state of the art

- ~75% of CXB emission is due to point sources with fluxes of
 ~10⁻¹⁷ erg/s/cm² (0.5-2.0 keV)
 (based on 4Msec Chandra-Deep-Field-South (CDFS), Xue+2011)
- Seperated into source types:
 - ~71% Active Galactic Nuclei (AGN)
 - ~3% Normal Galaxies
 - ~1% Stars

→ Resolved CXB shows the formation and accretion history of SMBHs over cosmic time

The unresolved CXB

~75% associated with point sources (S> ~10^{-17} erg/s/cm^2)

 ${\sim}70\%$ associated with AGN

^{3%} Normal Galaxies

~78% resolved (S> \sim 4x10⁻¹⁷ erg/s/cm²) (point and extended sources) ~22% unresolved

Hickox+2007: ~1.0x10⁻¹² erg/s/cm²/deg² in 1.0-2.0 keV ~22% CXB emission

~50% unassociated

~50% associated with optical/IR point sources

→ ~10% of CXB remain unassociated (based on 0.02 deg² → cosmic variance)

Our CXB study

Our Data: 9 deg² XBOOTES survey

- Advantages for angular correlation studies:
 - largest Chandra survey
 - most accurate measurement of CXB fluctuations to date
 - previous studies : ~0.1 deg² (e.g. Helgason+2014)
 - Chandra's angular resolution: highest in X-rays
 - measure angular scales down to arcsec-regime!
 - \rightarrow unique access to small-scale clustering regime (< 1 Mpc)
 - Chandra Instrumental Background:
 - low, stable, well understood (e.g. Hickox & Markevitch 2006)
- Properties:
 - 126 contiguous observations (use 118)
 - Unresolved emission:
 - Total Surface Area: ~7 deg^2 (82%)
 - Ave. Exposure Time per Obs.: ~4.3 ksec
 - Total Exposure Time: ~0.5 Msec
 - Point-Source sensitivity: $\sim 2 \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$ (0.5-2.0 keV)

Energy Spectrum of unresolved emission (0.5 - 2.0 keV)

LSS studies with the unresolved CXB - Kolodzig et al.

Total extragalactic emission: consistent with previous studies (1.0 - 2.0 keV)

Unresolved extragalactic emission: Components (0.5 - 2.0 keV)

 $\begin{array}{ccc} 10^{-20} & 10^{-18} & 10^{-16} \\ \text{Lower limit for log(N)-log(S) integration} \\ \text{of X-ray point sources [erg cm}^{-2} \text{ s}^{-1}] \end{array}$

Angular correlation studies of the unresolved CXB

Computing Power Spectrum:

CXB fluctuations for $< 17^{\circ}$

LSS studies with the unresolved CXB - Kolodzig et al.

CXB fluctuations for $< 17^{\circ}$

LSS studies with the unresolved CXB - Kolodzig et al.

CXB fluctuations for $< 17^{\circ}$

CXB fluctuations for $< 17^{\circ}$

CXB fluctuations for <17': first full describtion

LSS studies with the unresolved CXB - Kolodzig et al.

Unresolved AGN population of XBOOTES

- Properties:
 - Contribution to unresolved CXB: ~30%
 - Redshift: Median z ~ 1.0 (67%: 0.4 < z < 2.3)
 - Luminosity: Median $L \sim 10^{42.6} \text{ erg/s}$ (67%: $10^{41.0} < L < 10^{43.6} \text{ erg/s}$)
- Model uncertainties:
 - Flux-Conversion: < ~30%</p>
 - $Log(N)-Log(S): < \sim 15\%$ (for shot-noise term)
 - Clustering model:
 - $\theta < 2$ ' for z<1 corresponds to < 1.3 Mpc/h \rightarrow 1-halo
 - Theoretical prediction & our assumption: 1 AGN per DMH
 - Possibility: some fraction of DMH with more than 1 AGN
 - ightarrow higher accuracy and better modeling needed

Krumpe+2014

2-halo

Galaxy clusters cause the excess for >2'?!

CXB fluctuations for <17': first full describtion

LSS studies with the unresolved CXB - Kolodzig et al.

CXB fluctuations for <17': first full describtion

LSS studies with the unresolved CXB - Kolodzig et al.

Assessment of systematics

- Fluctuations of instrumental background → negligible
- Tested efficiency of removing resolved point-sources:
 - Residual counts: ~1% of unresolved CXB \rightarrow negligible
- Tested mask effects (but not corrected) \rightarrow not important (for now)
- Tested different photon-shot-noise estimators → results are robust
- Tested vignetting effects \rightarrow not important (at given S/N)
- Tested deflaring \rightarrow not important (at given S/N)

Extragalactic Origin

• Studies with smaller surveys:

EGS (~0.1 deg²): Helgason+2014

COSMOS (~2 deg²): Li,Hasinger+2016, in prep.

→ Universal feature on the sky ?!

Detect in 1-2keV energy band → Extragalactic origin ?!

Unresolved galaxy cluster population

Redshift: Median: z~0.6 67%: 0.2 < z < 1.3

Luminosity: Median: L ~ 10^{42.7} erg/s 67%: 10^{41.4} < L < 10^{43.8} erg/s

Based on XLF of Ebeling +1997 (rescaled to XBOOTES. agrees with with Rosati+2002, Finoguenov+2007,+2010,+2015)

Excess: Spectral shape

17.06.2016

Excess: Spectral shape agrees with galaxy clusters

Does the excess depend on extended source sensitivity limit? **YES!**

A) Resolved extended sources removed

B) Resolved extended sources retained

(as shown before)

Three selections of XBOOTES fields:118 fields (default) - some contain resolved extended sources26 fields- all contain resolved extended sources76 fields (control)- none contains a resolved extended source

Excess can be explained by galaxy clusters down to ~ 30 "

Clustering Model of galaxy clusters

- Uncertainties for Model amplitude:
 - Flux-Conversion: < ~15%</p>
 - Surface brightness estimate:
 - Log(N)-Log(S) observationally quite uncertain for unresolved part
 - Amplitude increases by factor of ~2, if XLF slope changes by +10% (+2σ)
 - Clustering properties of ICM (one-halo-term):
 - Cheng+2004: Assumes hydrostatic equilibrium of ICM
 - Amplitude can be increased by any non-gravitational effect
 - Observationally and theoretical uncertainties for these effects
 - \rightarrow Our measurement can be utilized to test models with different effects implemented
- Potential:
 - Shape of model defined by spatial structure of ICM (convolved with redshift distribution of galaxy clusters)
 - \rightarrow Measure average ICM profile beyond R₅₀₀ for all nearby galaxy clusters (z<~0.1)

Summary

CXB fluctuations for <17': first full describtion

LSS studies with the unresolved CXB - Kolodzig et al.

Lessons learned

- Chandra survey of ~5ksec and >9deg² can measure CXB fluctuations below
 <17' to <~30% accuracy
 - Important systematics understood (instrumental background negligible)
- Origin of CXB fluctuations below ~ 17 ':
 - Angular scales below ~2': AGN shot noise
 - No need of AGN one-halo-term (at given accuracy)
 - → consistent with theory (e.g. Fanidakis+2013, Leauthaud+2015)
 - Angular scales above ~2': Galaxy clusters (one-halo-term)
 - Discrepancy by factor ~2 between theory and observation
 - ightarrow New observational constraints, needs to be utilized
 - Potential: Measure average ICM profile beyond R_{500} for all nearby galaxy clusters (z<~0.1)
- Future surveys:
 - Larger surveys (>9deg²) :
 - ightarrow Larger angular scales -> study more massive nearby galaxy clusters
 - \rightarrow higher accuracy \rightarrow better constraints (also on AGN one-halo-term)
 - − Deeper surveys (>5ksec): → study galaxy clusters at higher redshift

eROSITA forecast (~50 times better S/N than XBOOTES)

LSS studies with the unresolved CXB - Kolodzig et al.