AGN feeding and feedback: beyond sub-grid physics

Andrea Negri

In collaboration with Marta Volonteri

Hot spots in the XMM sky: Cosmology from X-ray to Radio Friday 17 June 2016

~last decade: hydro cosmological simulations

dark matter + stars + gas Evolution of the large scale structure

Illustris simulation

Huge dynamical range! <a href="https://www.englishingtonspicelessing

dark matter + stars + gas Evolution of the large scale structure

Illustris simulation

Huge dynamical range! currenly impossible to simulate

Simulations are forced to adopt lower resolution

~ 6 kpc for MassiveBlack at z=0 (Di Matteo+2012)
 ~ 1 kpc for Horizon-AGN (Dubois+2012)
 > 750 pc Illustris (10 pc hydro, Vogelsberger+14)
 350 pc EAGLE simulation, z=0 (Schaye+14)

need to resort to subgrid models for BH accretion

Illustris simulation

Andrea Negri – AGN feeding and feedback

ions

Subgrid models for BH accretion

Subgrid models for BH accretion

Various models are present in literature, most of them based on **Bondi** accretion

$$\dot{M}_{BH} = \alpha \frac{4\pi G^2 M_{BH}^2 \rho}{c_s^3}$$

formal solution of:

- spherically symmetric accretion problem
- adiabatic, no feedback, no rotation

Subgrid models for BH accretion

Various models are present in literature, most of them based on **Bondi** accretion

$$\dot{M}_{BH} = \alpha \frac{4\pi G^2 M_{BH}^2 \rho}{c_s^3}$$

formal solution of:

- spherically symmetric accretion problem
- adiabatic, no feedback, no rotation

In simulations we have:

- non spherical accretion
- multiphase gas
- rotation

How accretion is implemented

$$\dot{M}_{BH} = \alpha \frac{4\pi G^2 M_{BH}^2 \rho}{c_s^3}$$

ρ and c_s are calculated using information on the surrounding gas, plenty of ways (every code/author)

- Volume weighted (GADGET, Booth+09, Vogelsberger+13)
- Mass weighted (Dubois+12)
- ISM subgrid model (hot/cold phase, Pelupessy+07)
- •Global mass w. averages from all the cells (Choi+2012)
- •Direct accretion of hot and cold gas when hydro is more resolved than gravity (Steinborn+15)

Sometimes it is not even mentioned!

How accretion is implemented

$$\dot{M}_{BH} = \alpha \frac{4 \pi G^2 M_{BH}^2 \rho}{c_s^3}$$

α (~100-300) is a **boost factor**, depends on resolution and sub-grid models of ISM

- **Constant** (Springle+05, Dubois+12, Curtis+15)
- Depends on ISM density (Booth+09, Steinborn+15)
- Depends on feedback (Vogelsberger+13)
- •Sometimes not used (Pelupessy+07, Choi+12)
- •Sometimes is not even mentioned!

How accretion is implemented

$$\dot{M}_{BH} = \alpha \frac{4\pi G^2 M_{BH}^2 \rho}{c_s^3}$$

 α (~100-300) is a **boost factor**, depends on

Philosophy behind α :

Low resolution: ISM cold phase not resolved Bondi radius not resolved

- ρ underestimated
- c_s overestimated

BH accretion rate underestimated

Past attemps to compare few schemes with simulation employing Bondi accretion (again?!)

see Wurster+13, Elahi+16

A simple idea

Comparison with

Sims with same setup but with Bondi accretion: • Different schemes of weighting •Different resolution

A simple idea

Simulations of an isolated galaxy:

High resolution ~ 0.1 pc (cold and hot phase)
Well resolved Bondi radius for all the T
No parametrized accretion

Comparison with

Sims with same setup but with Bondi accretion: • Different schemes of weighting •Different resolution

Simulations in a nutshell

Code: ZEUSMP (modified in Novak et al. 2011)

- •2D axisymmetric
- $\bullet M_{\rm BH} = 3 \times 10^7 \, M_{\odot}$
- $R_{bondi} = 0.1 \text{ pc at}$ T=10⁸ K

- •Mechanical Feedback from broad absorption line (BAL) winds
- Radiative feedback
- Compton heating/cooling
- •r from 0.1 pc to 250 kpc
- Radiative cooling

Simulations in a nutshell

Code: ZEUSMP (modified in Novak et al. 2011)

•r from 0.1 pc to 250 kpc

Radiative cooling

cooling – accretion – feedback – hot bubble cycle

cooling – accretion – feedback – hot bubble cycle

CHAOTIC ACCRETION

cooling – accretion – feedback – hot bubble cycle

CHAOTIC ACCRETION

Feedback self-limits accretion to sub-Eddington values

What happens with Bondi?

 We keep the same grid
 Define accretion radius r_{acc}
 Calculate ρ and c_s as mass weighted inside r_{acc}
 no boost factor

Computational grid

Bondi high resolution mass weighted Explored r_{acc} = 3, 30, 300 pc

Andrea Negri – AGN feeding and feedback

Bondi high resolution

Sims with large r_{acc} there is a stronger feedback but a larger gas mass to heat/sweep away to stop the accretion

Bondi high resolution

Sims with large r_{acc} there is a stronger feedback but a larger gas mass to heat/sweep away to stop the accretion

Bondi high resolution

Sims with large r_{acc} there is a stronger feedback but a larger gas mass to heat/sweep away to stop the accretion

Bondi high resolution volume weighted

Opposite situation! In this case the accretion is dominated by hot mode

Bondi high resolution volume weighted

Opposite situation! In this case the accretion is dominated by hot mode

Bondi low resolution mass weighted NO AGN

The central resolution is 3, 30 and 300 pc

The expected trend is recovered in absence of AGN feedback

Bondi low resolution mass weighted full feedback

The central resolution is 3, 30 and 300 pc

Same trend as in the high resolution runs

Bondi low resolution mass weighted full feedback

Same trend as in the high resolution runs

Bondi low resolution mass weighted

Again, at low resolution the AGN feedback is less efficient

Take home points

- Force people to write EVERYTHING on papers
- The adopted method used to calculate the Bondi accretion rate is relevant
- The common assumption of low resolution = low accretion is not verified in presence of feedback
- Efficency of (mechanical) feedback in stopping accretion is low at low resolution

