

CLUSTER SELECTION FUNCTIONS FOR NEXT-GENERATION SURVEYS

Begoña Ascaso

Marie Curie Fellow at the Astroparticle et Cosmologie (APC) Laboratoire /CNRS

Collaborators:

Jim Bartlett (APC), Mariana Penna-Lima (APC), Simona Mei (Observatoire de Paris), Txitxo Benítez (IAA), Renato Dupke (ON)

OUTLINE

- 1 Next-generation surveys.
- 2 Creating realistic mock catalogues
- 3 Mass-Observable Relation
- **4** Cluster selection functions

APPLES TO APPLES: A²

Cluster-related project to

- 1. Use the same mock catalogues to compare photometry and photo-z properties
- 2. Obtain cluster Selection Functions and Mass-Observable relations
- 3. Forecast cosmological constraints

Stage IV Optical Surveys considered:

- Euclid
- LSST
- J-PAS

OUTLINE

Next-generation surveys.

- 2 Creating realistic mock catalogues
- 3 Mass-Observable Relation
- **4** Cluster selection functions

EUCLID IN A NUTSHELL

http://www.euclid-ec.org/

SURVEYS						
	Area (deg2)		Description			
Wide Survey	15,000 deg ²		Step and stare with 4 dither pointings per step.			
Deep Survey	40 deg ²			In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey		
Wavelength range	550– 900 nm	Y (920- 6nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm
Sensitivity	24.5 mag 10σ extended source Shapes + Photo	24 mag 5σ point source $\sigma = 1.5 \times 10^{-2}$		24 mag 5σ point source	24 mag $5\sigma \text{ point}$ source z of p	$3 10^{-16}$ erg cm-2 s-1 3.5 σ unresolved line flux $n=5\times10^7$ galaxies

LSST IN A NUTSHELL

	Survey Property	Performance			
	Main Survey Area	18000 sq. deg.			
	Total visits per sky patch	825			
	Filter set	6 filters (ugrizy) from 320 to 1050nm			
	Single visit	2 x 15 second exposures			
	Single Visit Limiting Magnitude	u = 23.5; g = 24.8; r = 24.4; l = 23.9; z = 23.3; y = 22.1			
	Photometric calibration	2% absolute, 0.5% repeatability & colors			
enigms 1189 u band, all props. CoaddH5 75' 	enigma. 1188 g band, all props. CeaddHS	0 -0.5 -0.50 -0.15 -0.0 -0.15 -0.0 -0.15 -0.0 -0.15 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.			
enigma_1188 i band, all props: CoaddM5	enigma_1188 z band, all props. CoaddM5	enigma_1188 y band, all props: CoaddM5			

-0.45

-0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 CoaddM5 (coadded m5 - 26.8)

-0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 CoaddM5 (coadded mS - 26.1)

-0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 CoaddM5 (coadded m5 - 24.9)

J-PAS IN A NUTSHELL

http://j-pas.org

8600 sq. deg. survey with 56 filters with 136A width, 100A spacing I^222 2.5m tel. + 5sq. Deg. Cam, 1.2Gpix, etendue=1.5xPS2 Starting in September 2016.

Sierra de Javalambre

Pico del Buitre 1957m, 40º02N, 01º01'W
Very dark site, B~22.8 (solar cycle minimum)
Excellent seeing (median 0.71, ~2yr data)
Clear nights (53%), 20yr. baseline

OAJ CIVIL WORK FINAL DESIGN

OAJ

March 2014

OUTLINE

Next-generation surveys.

Creating realistic mock catalogues

- 3 Mass-Observable Relation
- **4** Cluster selection functions

WORKING WITH COSMOLOGICAL SIMULATIONS

Starting from the 500 deg² EUCLID public lightcone mock catalogue *(Merson et al. 2013)* down to H=24 AB

- N-body simulation from the Millennium Run
- Semi-analytic models of galaxy formation (Galform)

We used PhotReal (Ascaso et al. 2015b) to create four new mock catalogues:

- Euclid-Pessimistic (using an optical counterpart just from DES)
- Euclid-Optimistic (using an optical counterpart from DES+LSST)
- LSST
- J-PAS

MAIN MOTIVATION

Use PhotReal to add parameters to existing mock catalogues:

- Realistic photometry, colors and photometric errors
- Realistic photometric redshifts and derived parameters
- Realistic P(z)

MOCKS TRANSFORMED WITH PHOTREAL

ALHAMBRA	J-PAS	J-PAS	LSST	EUCLID-W	EUCLID-D
Merson+13	Zandivarez+14	Merson+13	Merson+13	Merson+13	Merson et al. in prep
N-body simulation (Millenium)+SA M (Galform)	N-body simulation (Millenium)+SA M (<i>Guo+11</i>)	N-body simulation (Millenium)+SA M (Galform)	N-body simulation (Millenium)+SA M (Galform)	N-body simulation (Millenium)+SA M (Galform)	N-body simulation (Millenium)+SA M (Galform)
200 deg ²	17.6 deg ²	500 deg ²	500 deg ²	500 deg ²	20 deg ²
F814W<24.5	i<22.5	H<24.0	H<24.0	H<24.0	H<27.0
0 <z<2< td=""><td>0<z<2< td=""><td>0<z<3< td=""><td>0<z<3< td=""><td>0<z<3< td=""><td>0<z<6< td=""></z<6<></td></z<3<></td></z<3<></td></z<3<></td></z<2<></td></z<2<>	0 <z<2< td=""><td>0<z<3< td=""><td>0<z<3< td=""><td>0<z<3< td=""><td>0<z<6< td=""></z<6<></td></z<3<></td></z<3<></td></z<3<></td></z<2<>	0 <z<3< td=""><td>0<z<3< td=""><td>0<z<3< td=""><td>0<z<6< td=""></z<6<></td></z<3<></td></z<3<></td></z<3<>	0 <z<3< td=""><td>0<z<3< td=""><td>0<z<6< td=""></z<6<></td></z<3<></td></z<3<>	0 <z<3< td=""><td>0<z<6< td=""></z<6<></td></z<3<>	0 <z<6< td=""></z<6<>
${ m M_h}{>}10^{10}{ m M_{\odot}}$	${ m M_h}{ m >}10^8{ m M_{\odot}}$	${ m M_h}{ m >}10^{10}{ m M_{\odot}}$	${ m M_h}{ m >}10^{10}{ m M_{\odot}}$	${ m M_h}{ m >}10^{10}{ m M_{\odot}}$	${ m M_h}{ m >}10^{10}{ m M_{\odot}}$
Ascaso et al. 2015a, MNRAS, 452, 549	Zandivarez et al. 2014, A&A, 561, 71	Ascaso et al. 2016a, MNRAS, 456, 4291	Ascaso et al. 2015b, MNRAS, 453, 2515	Ascaso et al. 2015b, MNRAS, 453, 2515	Euclid consortium

OUTLINE

Next-generation surveys.

2 Creating realistic mock catalogues

3 Mass-Observable Relation

4 Cluster selection function

COSMOLOGY WITH CLUSTER COUNTS

$$\frac{dN}{dM_{obs}dz} = \Phi(M_{obs}, z, \Omega) \int dMP(M_{obs}|M, z) \frac{dN}{dVdM} \frac{dV}{dzdM_{obs}}$$

Selection function Mass-Observable relation

CLUSTERS IN THE OPTICAL

COSMOLOGY WITH CLUSTER COUNTS

$$\frac{dN}{dM_{obs}dz} = \Phi(M_{obs}, z, \Omega) \int dMP(M_{obs}|M, z) \frac{dN}{dVdM} \frac{dV}{dzdM_{obs}}$$

Selection function Mass-Observable relation

OPTICAL CLUSTERS ARE COMPLICATED!

- Completeness / Purity computation
- Definition of a cluster / halo
- Matching procedures
- Mass / Richness cuts imposed in cluster / halo catalogues

CLUSTER OPTICAL DETECTORS

MATCHED FILTER TECHNIQUES

Matched Filter (*Postman et al.* 1996, 2002)

Adaptative Kernel (Gal et al. 2000, 2003, 2006)

Hybrid Matched Filter (Kepner et al. 1999)

Adaptative Matched Filter (Kim et al. 2002)

3D-Matched Filter (*Milkeraitis et al. 2010*)

Adami & MAzure Cluster Finder

(Durret et al. 2011, 2015) **Bayesian Cluster Finder** (Ascaso et al. 2012, 2014a, 2015a)

GEOMETRICAL TECHNIQUES

Voronoi Tessellation (Kim et al. 2002, Ramella et al. 2001, Lopes et al. 2004), Counts in cells (Couch et al. 1991, Lidman & Peterson 1996),

Percolation FoF Algorithm (Dalton et al. 1997)

RED SEQUENCE METHODS

MaxBCG (Koester et al. 2007)

The Cluster Red Sequence Method (Gladders & Yee 2000, 2005)

Cut-and-enhance (Goto et al. 2002) C4 clustering algorithm (Miller et al. 2005) RedMaPPer (Rykoff et al. 2014) RedGold (Licitra et al. 2016)

CLUSTER OPTICAL DETECTORS

MATCHED FILTER TECHNIQUES

Matched Filter (*Postman et al.* 1996, 2002)

Adaptative Kernel (Gal et al. 2000, 2003, 2006)

Hybrid Matched Filter (Kepner et al. 1999)

Adaptative Matched Filter (Kim et al. 2002)

3D-Matched Filter (*Milkeraitis et al. 2010*)

Adami & MAzure Cluster Finder

(Durret et al. 2011. 2015)

Bayesian Cluster Finder (Ascaso et al. 2012, 2014a, 2015a)

GEOMETRICAL TECHNIQUES

Voronoi Tessellation (Kim et al. 2002, Ramella et al. 2001, Lopes et al. 2004), Counts in cells (Couch et al. 1991, Lidman & Peterson 1996),

Percolation FoF Algorithm (Dalton et al. 1997)

RED SEQUENCE METHODS

MaxBCG (Koester et al. 2007)

The Cluster Red Sequence Method (Gladders & Yee 2000, 2005)

Cut-and-enhance (Goto et al. 2002) C4 clustering algorithm (Miller et al. 2005)

RedMaPPer (Rykoff et al. 2014)

RedGold (Licitra et al. 2016)

THE BAYESIAN CLUSTER FINDER

(Ascaso et al. 2012, 2014a, 2015a, 2016a,b)

$$\ln L(X, Y, N_g, R_c, z_c) = \sum_i P(r(x_i, y_i | X, Y, z_c)) L(m_i, z_i | z_c) p(z_i | z_c)$$

$$(Luster Spatial Prof Cluster Lum Prof distrib)$$

The prior (introduction of a CMR, BCG prior)

$$p(X, Y, N_{g}, R_{c}, z_{c}|I) = p(col_{i})p(m_{BCG}(z))$$
Expected Expected Expected cluster colors BCG mag

APPLICATIONS TO REAL SURVEYS

CFHTLS	DLS	ALHAMBRA
Ascaso et al. 2012, MNRAS, 420, 1167	Ascaso et al. 2014a, MNRAS, 439, 1980	Ascaso et al. 2015a, MNRAS, 549, 65
1246 structures ~ 33.7 /deg ²	882 structures ~ 44.1 /deg ²	348 structures ~125.18 /deg ²
0.1 <z <1.2<="" td=""><td>0.25<z<1.2< td=""><td>0.2<z<1.2< td=""></z<1.2<></td></z<1.2<></td></z>	0.25 <z<1.2< td=""><td>0.2<z<1.2< td=""></z<1.2<></td></z<1.2<>	0.2 <z<1.2< td=""></z<1.2<>
$M > 10^{14.2} M_{\odot}$	$M>10^{14}M_{\odot}$	$M>10^{13.6}M_{\odot}$
Good match with optical surveys: <i>Adami et al.</i> <i>2010, Olsen et al. 2008</i> ; and X-ray: <i>Pacaud et al.</i> <i>2009</i>	Good agreement with spectroscopy, WL, X-rays and optical detections. Allow the study of systematic.	Good agreement with COSMOS (+ pretty unknown fields)

MASS-OBSERVABLE RELATIONS

Ascaso et al. 2016 a,b

J-PAS

J-PAS

 $\sigma_{\rm Mh|\,M^*CL^\sim} 0.24$ dex to $M^{\sim} 3 x 10^{13} M_{\odot}$

Euclid

 $\sigma_{\rm Mh|\,M^{*}CL^{\sim}}0.20$ -0.25 dex to $\,M^{\sim}5x10^{13}M_{\odot}$

LSST

 $\sigma_{\rm Mh\,|\,M^{*}CL^{\sim}}0.22$ dex to $M^{\sim}5x10^{13}M_{\odot}$

B. Ascaso

OUTLINE

- 1 Next-generation surveys.
- 2 Creating realistic mock catalogues: PhotReal
- 3 Mass-Observable Relation
- 4 Cluster selection function

COMPLETENESS-PURITY RATES

COMPLETENESS-PURITY RATES

Euclid and LSST

Ascaso et al. 2016b, arXiv:1605.07620

FINAL SELECTION FUNCTIONS

Ascaso et al. 2016b, arXiv:1605.07620

Non optical curves from Weinberg et al. 2013

B. Ascaso

CONCLUSIONS

- Consistent comparison between three next-generation stage IV optical surveys: Euclid / LSST / J-PAS
- Mock catalogues emulating realistically the surveys with PhotReal
- Mass-Observable calibrated relation ($\sigma_{Mh|M^*CL} \sim 0.24$ down to $M^{\sim} 3x 10^{13} M_{\odot}$ for J-PAS and $\sigma_{Mh|M^*CL} \sim 0.20$ dex down to $M^{\sim} 5x 10^{13} M_{\odot}$ for Euclid/LSST.)
- Completeness and purity rates and robust estimation of the selection functions.
- Optical clusters are crucial to sample correctly the mass function. Synergies with X-rays and SZ.

EFGARISTÓ! THANKS!

bego.ascaso.work@gmail.com