<u>Constraints from Galaxy</u> <u>Cluster in the photometric Euclid Survey</u>

Barbara Sartoris

University of Trieste

INAF - Osservatorio Astronomico di Trieste

Cluster cosmology

Three essential tools are required for cluster cosmological:

- an efficient method to identify clusters over a wide redshift range
- a robust observable estimator of the cluster mass

a method to compute the selection function
 (or equivalently the survey volume within which clusters are found)

B. Sartoris

The Euclid mission

		SURVE	YS							
	Area (deg2)			Description						
Wide Survey	15,000 (required)		Step and stare v	vith 4 dither p	ointings per step.					
	20,000 (goal)									
Deep Survey	40		In at leas	st 2 patches of	$f > 10 \text{ deg}^2$					
			2 magnitudes deeper than wide survey							
		SURVEYSDescriptionDescriptionTest of Step and stare with 4 dither pointings per step.In at least 2 patches of > 10 deg ² 2 magnitudes deeper than wide surveyPAYLOADNISP20.763×0.722 deg ² NIR Imaging PhotometryNIR SpectroscopyY (920- 1146nm), nm)24 mag24 mag 55 point source3 10 ⁻¹⁶ erg cm-2 s-1 3.55 unresolved ling flux16 arrays 2k×2k NIR sensitive HgCdTe detectors								
Telescope		1.2 m Korsc	h, 3 mirror anasti	gmat, f=24.5	m					
Instrument	VIS			NISP						
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		0.76	$63 \times 0.722 \text{ deg}^2$	2					
Capability	Visual Imaging	NIR	Imaging Photon	netry	NIR Spectroscopy					
Wavelength range	550– 900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm					
		1146nm),	nm)	2000nm)						
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	$3 \ 10^{-16} \text{ erg cm-} 2 \text{ s-} 1$					
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line					
		source	source	source	flux					
Detector	36 arrays			16 arrays						
Technology	4k×4k CCD		2k×2k NIR set	nsitive HgCd7	Te detectors					
Pixel Size	0.1 arcsec		0.3 arcsec		0.3 arcsec					
Spectral resolution					R=250					

B. Sartoris, A. Biviano, C. Fedeli, J. Bartlett, S. Borgani, M.	Forecast on constraints from galaxy
Costanzi, C. Giocoli, L.Moscardini, J.Weller, B. Ascaso, S.	cluster in the photometric Euclid survey
Bardelli, S.Maurogordato, and P. Viana (published on	
MNRAS	

Barbara Sartoris+ arXiv:1505.02165

Selection function of cluster photometric survey

Selection function of cluster photometric survey

Euclid will detect $\sim 2 \ 10^5$ objects at $0.2 \le z \le 2$, $\sim 4 \ 10^4$ objects at z > 1for the 5 σ selection function.

By lowering the detection threshold down to 3σ , these numbers rise up to an order of magnitude.

 5σ galaxy overdensity

15000 sq deg

Barbara Sartoris+ arXiv:1505.02165

Cluster number density

$$N_{l,m} = \Delta \Omega \int_{z_l}^{z_{l+1}} dz \frac{dV}{dz d\Omega} \int_{M_{l,m}^{ob}}^{M_{l,m+1}^{ob}} dM^{ob}$$
$$\int_{0}^{\infty} dM n(M, z) p(M^{ob} || M) .$$
Self – calibration method:
Probability of assigning a mass
M_{obs} to a cluster of M_{true} is a
ognormal distribution

$$p(M^{\rm ob}|M) = \frac{\exp[-x^2(M^{\rm ob})]}{\sqrt{2\pi\sigma_{\ln M}^2}}$$

where:
$$x(M^{\rm ob}) = \frac{\ln M^{\rm ob} - \ln M_{\rm bias} - \ln M}{\sqrt{2\sigma_{\ln M}^2}}$$

Nuisance Parameters

$$\ln M_{\text{bias}}(z) = B_{M,0} + \alpha \ln (1+z)$$

$$\sigma_{\ln M}^2(z) = \sigma_{\ln M,0}^2 - 1 + (1+z)^{2\beta}.$$

$$p_{\text{nuisance, F}} = \{B_{M,0} = 0, \alpha = 0, \sigma_{\ln M,0} = 0.2, \beta = 0.125\}$$

Sartoris+10

sartoris@oats.inaf.it

Barbara Sartoris+ arXiv:1505.02165

Lima & Hu '05

Cluster power spectrum

$$\bar{P}_{l,m,i}^{cl}(\mu,k,z_l) = \frac{\int_{z_l}^{z_{l+1}} dz \,\frac{dV}{dz} \,\tilde{n}^2(z) \,\tilde{P}(\mu,k,z)}{\int_{z_l}^{z_{l+1}} dz \,\frac{dV}{dz} \,\tilde{n}^2(z)}$$

Averaged cluster power spectrum

Comoving volume element

Cluster mass function convolved with the observable mass scaling relation

$$\tilde{n} = \int_0^\infty dM \, n(M, z) \, [\operatorname{erfc}(x_m) - \operatorname{erfc}(x_{m+1})].$$

$$\tilde{P}(k,\mu,z) = \left(b_{eff} + f\mu^2\right)^2 D^2(z) P(k)$$

Cluster power spectrum

Sartoris+12

Barbara Sartoris+ arXiv:1505.02165

Majumdar & Mohr '03

Cluster power spectrum

$$\bar{P}_{l,m,i}^{cl}(\mu, k, z_l) = \frac{\int_{z_l}^{z_{l+1}} dz \frac{dV}{dz} \tilde{n}^2(z) \tilde{P}(\mu, k, z)}{\int_{z_l}^{z_{l+1}} dz \frac{dV}{dz} \tilde{n}^2(z)}$$
Comoving volume element
Cluster redshift space distosrtion contribution to
w0-wa constraints for a wide X-ray survey
(WFXT)
$$\tilde{P}(k, \mu, z) = \left(b_{eff} + f\mu^2\right)^2 D^2(z) P(k)$$
Satoris+12
$$\bar{P}_{k,m,z}^{cl}(\mu, k, z_l) = \left(b_{eff} + f\mu^2\right)^2 D^2(z) P(k)$$
Averaged cluster power
spectrum
$$\bar{P}_{k,m,z}^{cl}(\mu, k, z_l) = \left(b_{eff} + f\mu^2\right)^2 D^2(z) P(k)$$

Barbara Sartoris+ arXiv:1505.02165

The statistical methods and the constraints on DE

	$N_{500,c}/\sigma_{\mathrm{fi}}$	$_{\rm eld} \ge 3 E_{\rm eld}$	uclid phot	ometric cl	uster sele	ction			
Parameter arrays: Constraints:	FoM	Δw_0	Eqs. 16 & Δ <i>w_a</i>	28 ΔΩ _m	$\Delta \sigma_8$	Eqs. 22 & 28 Δγ	Eqs. 20 & 28 Δ f _{NL}	Eqs. 26 & 28 $\Delta\Omega_{\nu}$	
NC+PS NC+PS+known SR NC+PS+known SR+Planck	73 291 802	0.037 0.034 0.017	0.38 0.16 0.074	0.0019 0.0011 0.0010	0.0032 0.0014 0.0012	0.023 0.020 0.015	6.67 6.58 4.93	0.0015 0.0013 0.0012	
NC+PS+known SR+Planck	$\frac{N_{500,c}/\sigma_{\rm fit}}{209}$	$eld \ge 5 Ed$ 0.034	<i>uclid</i> phot 0.12	ometric clu 0.0022	uster sele 0.002	1.5	· · · · · · · · · · · · · · · · · · ·	NC 🕻	
Fisher matrix: $F_{ij} \equiv - < \frac{\partial^2 1}{\partial p_i}$	$rac{\mathrm{n}\mathcal{L}}{\partial p_j} >$	>			X	1 0.5		+known SR +Planck prior 5σ	
$\boldsymbol{p} = \{\Omega_{\rm m}, \sigma_8, w_0, w_a, w_a, w_b \} = w_0 + w_a (1 - w_b)$	Ω_k, Ω_k	ь, <i>Н</i> ₀ , л	n _S }			-0.5 -1 -1.5 -1.15 -1.	1 -1.05 -1 W	1 -0.95 -0.9	

Barbara Sartoris+ arXiv:1505.02165

Impact of scaling relations

Barbara Sartoris+ arXiv:1505.02165

CLASH + CLASH-VLT + Subaru

Projected mass profiles from different analyses

B. Sartoris

Projected mass profiles from different analyses

MACS1206

25 20 Galaxy dynamics (J *M* [10¹⁴ M_©] "Caustic" kinematio 15 Weak lensing analy Strong lensing anal 10 10 $M_{\rm p}(R) \left[10^{14} \ {\rm M_{\odot}}
ight]$ 5 0 2 0 3 4 r [Mpc] NFW best fit (combined Je X-ray (Chandra) hydrostatic mass 0.1 0.5 2 З 5 1 R [Mpc] Umetsu+12 Biviano+13 Balestra,BS+15

MACS 0416

B. Sartoris

Observable- mass scaling relation calibration

Errors expected on the mean mass of clusters in bins of $\Delta \log M200$, c = 0.2 and $\Delta z = 0.1$.

At lower mass systems because their larger number compensates for their lower individual S/N measurements.

Observable- mass scaling relation calibration

Number of cluster galaxies with spectroscopic redshifts available in stacks of clusters in bins of Δ log M = 0.2 and $\Delta z = 0.1$, as a function of redshift.

The estimate is done only for clusters with a mass limit above that required for a minimum of 5 members with redshift. \rightarrow This requirement stops the red curve

The statistical noise in the velocity dispersion estimate of a sample of ~ 500 cluster members translates into a 30% statistical noise in the mass estimate.

Impact of selection function

Barbara Sartoris+ arXiv:1505.02165

Impact of high redshift clusters

Relative FoM for number counts in the 3σ Euclid photometric cluster selection, as a function of the limiting redshift z_{max} of the survey, i.e. the ratio between the FoM evaluated over $0.2 \le z \le z_{max}$ and the FoM evaluated over $0.2 \le z \le 2.0$.

FoM =
$$\frac{1}{\sqrt{\det\left[\operatorname{Cov}\left(p_{i}, p_{j}\right)\right]}}$$

sartoris@oats.inaf.it

Barbara Sartoris+ arXiv:1505.02165

Constraints on deviation from GR

$N_{500,c}/\sigma_{\text{field}} \ge 3$ Euclid photometric cluster selection										
Parameter arrays: Constraints:	FoM	Δw_0	Eqs. 16 8 Δ <i>w_a</i>	28 ΔΩ _m	$\Delta \sigma_8$	Eq	s. 22 & 28 Δγ	Eqs. 20 & 28 Δ f _{NL}	Eqs. 26 & 28 ΔΩ _ν	
NC+PS NC+PS+known SR NC+PS+known SR+Planck	73 291 802	0.037 0.034 0.017	0.38 0.16 0.074	0.0019 0.0011 0.0010	0.0032 0.0014 0.0012		0.023 0.020 0.015	6.67 6.58 4.93	0.0015 0.0013 0.0012	
Λ	$N_{500,c}/\sigma_{\text{field}} \ge 5 \text{ Euclid photometric cluster selection}$									
NC+PS+known SR+Planck	209	0.034	0.12	0.0022	0.0026		0.034	6.74	0.0020	
$\boldsymbol{p} = \{\Omega_{\rm m}, \sigma_8, w_0, w_0\}$ $\frac{d\ln D(a)}{d\ln a} = \Omega_{\rm m}^{\gamma}(a)$	$(\alpha_a, \Omega_k, \alpha_k)$	$\Omega_{\rm b}, H_{ m 0}$), <i>n</i> _S , γ	'}		α 8	0.845 0.84 0.835 0.835 0.83 0.825 0.82		NC+PS +known SR +Planck prior 5σ	
$\boldsymbol{p}_{\text{nuisance, F}} = \{B_{M,0} = 0, c\}$	$\alpha = 0, \alpha$	$\tau_{\ln M,0} =$	= 0.2, <i>β</i>	= 0.125	}		0.815	0.5 0.52	0.54 0.56 γ	0.58 0.6

Barbara Sartoris+ arXiv:1505.02165

Constraints on deviation from GR

Barbara Sartoris+ arXiv:1505.02165

Constraints on Non-Gaussianity

$N_{500,c}/\sigma_{\text{field}} \ge 3$ Euclid photometric cluster selection										
Parameter arrays: Constraints:	FoM	Δw_0	Eqs. 16 & Δ <i>w_a</i>	28 ΔΩ _m	$\Delta \sigma_8$	Eqs. 22 & 28 Δγ	Eqs. 20 & 28 Δf_{NL}	Eqs. 26 & 28 ΔΩ _ν		
NC+PS NC+PS+known SR NC+PS+known SR+Planck	73 291 802	0.037 0.034 0.017	0.38 0.16 0.074	0.0019 0.0011 0.0010	0.0032 0.0014 0.0012	0.023 0.020 0.015	6.67 6.58 4.93	0.0015 0.0013 0.0012		
Λ										
NC+PS+known SR+Planck	209	0.034	0.12	0.0022	0.0026	0.034	6.74	0.0020		

$$\boldsymbol{p} = \{\Omega_{\mathrm{m}}, \sigma_{\mathrm{8}}, w_{\mathrm{0}}, w_{\mathrm{a}}, \Omega_{k}, \Omega_{\mathrm{b}}, H_{\mathrm{0}}, n_{\mathrm{S}}, f_{\mathrm{NL}}\}$$

$$\Phi = \Phi_{\rm G} + f_{\rm NL} \left(\Phi_{\rm G}^2 - \langle \Phi_{\rm G}^2 \rangle \right)$$

Barbara Sartoris+ arXiv:1505.02165

$N_{500,c}/\sigma_{\text{field}} \ge 3$ Euclid photometric cluster selection									
Parameter arrays: Constraints:	FoM	Ε Δ <i>w</i> 0	Eqs. 16 8 Δ <i>w_a</i>	28 ΔΩ _m	$\Delta \sigma_8$	Eqs. 22 & 28 Δγ	Eqs. 20 & 28 Δf_{NL}	Eqs. 26 & 28 $\Delta\Omega_{\nu}$	
NC+PS NC+PS+known SR NC+PS+known SR+Planck	73 291 802	0.037 0.034 0.017	0.38 0.16 0.074	0.0019 0.0011 0.0010	0.0032 0.0014 0.0012	0.023 0.020 0.015	6.67 6.58 4.93	0.0015 0.0013 0.0012	
Λ	$N_{500,c}/\sigma_{\text{field}} \ge 5$ Euclid photometric cluster selection								
NC+PS+known SR+Planck	209	0.034	0.12	0.0022	0.0026	0.034	6.74	0.0020	
0.85 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.85 0.84 0.84 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.85 0.84 0.85 0.84 0.85									
$\rho_{m} \rightarrow \rho_{CDM} = \rho_{m} - \rho_{b}$ $P_{m} \rightarrow P_{CDM}(k) = P_{m}(k) \left[\frac{\Omega_{CDM} T_{CDM}(k)}{(\Omega_{b} + \Omega_{C})} \right]$ $NC + PS$									
.78 0 0.001 0.002 0. Ω.,	+Planck pr	ior	0.005	$p_{ m n}$	uisance, F =	$= \{B_{M,0} = 0, \alpha\}$	$c = 0, \sigma_{\ln M,0}$	$= 0.2, \beta = 0.12$	

Barbara Sartoris+ arXiv:1505.02165

°80