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Overview of this talk

Star formation measurements:
infrared — traces intense dust-
obscured star formation

Infrared

Chandra - |

| ﬂé;’ (.

AGN measurements: X-rays
— penetrate high obscuration
and emission from host is
typically weak (most efficient

selection of AGNs)

Georgantopoulos; Vignali talks

Spitzer

Focus on AGN-SF connection of distant X-ray AGNs (bulk of BH and galaxy growth)

Kalfountzou talk on AGN-SF connection for radio-loud AGN



Motivation for studying
AGN-SF connection



Broad connection from AGN and SF cosmic histories
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Factor ~1500x offset between BH accretion and SFR cosmic
histories in broad agreement with Mg-M,,, relationship



Relic evidence from Mg,-M_,, relationship
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[Spheroid mass] Driver: Star formation (gas accretion)
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(e.g., Magorrian et al. 1998, Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002; Marconi & Hunt 2003; Haring &
Rix 2004; Gultekin et al. 2009; Shankar et al. 2016)



Why this seems crazy: huge difference in size scales

Black-hole-galaxy: ~10? difference in size scale (grape-Earth)
Radius of influence of the black hole: <103 that of the galaxy

This suggests some sort of regulation between AGN
activity and star formation



Regulation: outflow - the AGN as the driver/boss

Sgringel et al. (2005)

SFR [ Mg/ yr]

A ~few x10" M_
Springel et al. (2005)

The winds/outflows from
the AGN could provide
an “arm” for the black
hole to orchestrate kpc-

scale star formation

(e.g., Di Matteo et al. 2005; Granato et al. 2004; Hopkins et al. 2006; Lapi et al. 2014)
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Regulation: inflow - the galaxy as the driver/boss

Regulated gas inflow? Star-formation regulated growth!?
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Can be challenging to distinguish
between all these scenarios due to
uncertain gas inflow/outflow timescales

Alexander & Hickox (2012) (i.e., driven by same gas supply)



Measuring star-formation rates
in the far-IR waveband



Measuring star-formation rates: far-IR emission

Both emit strongly at infrared wavelengths

|deally, decompose the SED but often just the *
far-IR luminosity is used (e.g., Herschel),

which is typically star-formation dominated
unless a luminous AGN
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Effect of AGN on star-formation rate measurements
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Key message: AGN contaminate/increase average SFR over 250um photometry by >2 for
luminous/dominant AGN — can be higher for individual sources and shorter wavelengths



The AGN-SF connection of X-ray AGNs



SF in distant AGNs tracks SF galaxies — on average

Mullaney et al. (2012)
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Also Lutz et al. (2010), Mullaney et al. (2010); Shao et al. (2010); Rosario et al. (2012, 2015); Harrison et al. (2012); Santini et al. (2012)



ALMA reveals similar SF extent in FIR bright AGN

High resolution (~1-3 kpc) ALMA 870um data of some z>1.5 X-ray AGNs and star-forming galaxies (SMGs)
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Harrison et al. (2016)

No clear differences in galaxy wide SF environment — SF extent and surface density for
X-ray AGNs comparable to SF galaxies. Caution: only a few FIR-bright AGN observed.



What about the L .-L,\ relationship?

Early Herschel results of mean L for L,g\ bins showed a large amount of diversity

Positive relationship

Predominantly flat
relationship
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Now clear the mean L¢.-L ,\ relationship is flat

Mean Lgg for L,y bins for X-ray AGN: remarkably flat relationship
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At first this seemed an absurd result — how can a flat Lge-L gy
relationship be consistent with the Mg;-M,,, relationship?



Key to understanding this: changes in accretion rate

AGNs likely vary on short timescales when compared to and star formation
- so the observed L, can vary substantially for a (relatively) constant Lg;

A fluorescent bulb at 1000 frames per second

Mullaney et al. (2012); Hickox et al. (2014)

SF: comparatively constant with time

AGN: more variable with time




Expectations from simple accretion variability model
Mean Lgg for Lgy bins for X-ray AGN
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So when take account of mass, redshift,
and AGN variability all X-ray AGN reside
in SF galaxies - right?

No this is only for the mean SFR - need to
calculate a more refined quantity: SFR
distributions, which requires deeper data




Using ALMA to constrain the SFR distribution

Few X-ray AGN detected by ALMA but upper limits ALMA 870um
valuable: updated SFRs place them below typical star- of X-ray AGN
forming galaxies

Majority: undetected
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Mullaney et al. (2015); Scholtz et al. (in prep); Stanley et al. (in prep)




ALMA shows not all X-ray AGN reside in SF galaxies

Relative distribution of SFRs: AGN Key message: a typ|ca| X-ray AGN does
median lower than for SF galaxies . .
not appear to reside in a SF galaxy
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Key messages from this talk

Measuring accurate SFRs in AGN can be challenging,
particularly when AGN:SF ratio is high

Most critical for high-luminosity or low-z AGN (where SF low)

Mean SFRs for X-ray AGN consistent with typical SF galaxies

Need to take into account redshift, mass, and AGN variability

But tentative differences found in the distribution of SFRs —
many X-ray AGN reside in more quiescent galaxies

However, it is unclear what is the driver — regulation from AGN gas
outflows or galaxy/SF gas inflow timescale to get to BH?

...and now for something a (bit) different



X-SERVS: New X-ray survey
of the LSST/DES Deep-Drilling Fields
X-SERVS Fields Expegted Source Yields
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Ultimate aim: 14 deg? solid-angle coverage in total — factor of ~ 7 improvement over COSMOS alone (4.5
deg? allocated so far). Reduces cosmic variance and allows robust studies of large-scale structures.

Observations: can be done with XMM-Newton and/or Chandra — aiming for 50 ks XMM-Newton depth,
so that we sample the AGN populations producing the bulk of cosmic accretion power.

Overall: expect 11,000 AGNs and 760 X-ray groups/clusters. Contact: me or email niel@astro.psu.edu




Primary Science Goals for X-SERVS

SMBH growth across the full range of cosmic environments
from voids to massive clusters.

Links between SMBH accretion and star formation.
Improved measurements of the z ~ 4-7 AGN space density.

Constraints upon z > 10 direct-collapse black holes via
X-ray/NIR cross correlation.

Rare and luminous sources — e.g., luminous type 2 quasars,
extreme X-ray/optical sources, intrinsically X-ray weak AGNs,

SMBH pairs, X-ray bright but radio-faint jets.

Cosmology with clusters and groups.



Incredible Legacy Value: Likely the Best
Multiwavelength Fields for Decades

Fantastic Current/Scheduled Coverage of ap AF;N .
X-SERVS Multiwavelength Coverage Spectral Energy Distribution
: oY
RO
o X
5 " | ?.
) . ;
. t



