Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys ¹Università Roma Tre

F. Ricci¹, S. Marchesi, F. Shankar, F. La Franca¹, F. Civano Mykonos 15-18 June 2016

Cosmic reionization

The transition from the so called dark ages to an ionized Universe involves the cosmological transformation of neutral hydrogen, which mostly resides in the IGM, into an ionized state.

- Neutral IGM ionized between $6{<}z{<}15$ \rightarrow the Universe is less than 1 Gyr old!
- Evidences: measures of neutral hydrogen absorption in distant QSO and GRB (Fan+02, Kawai+06), integrated depth of Thomson scattering from CMB (Planck collaboration), Gunn & Peterson tests for QSOs..
- UV ionizing photons E>13.6 eV, i.e. $\lambda < 912\text{\AA} \rightarrow \text{available ionizing}$ astrophysical sources: AGN and stars in star forming galaxies.

However, given the properties of observed galaxies and AGN none of the two populations is able to complete alone the reionization at $z{>}6$

Federica Ricci (Roma Tre)

AGN and reionization

The traditional view: AGN+SFGs

$$\epsilon_{912}(z) = \int_{L_{min}} \Phi(L_{UV}, z) L_{UV} dlog L_{UV}$$

- QSO → main contributor up to z = 3, then modest role (steadily decreasing number density)
- 2 SFGs → at z ≥ 4 massive stars in galactic systems provide the additional ionizing flux

But:

- SFGs at z > 5 can keep the IGM substantially ionized only assuming high values of leaking LyC radiation (>0.2, not observed so far, Shapley+06, Vanzella+10)
- Despite significant efforts and the examination of hundreds of galaxies, there exists only a handful of robust detections as of today (Vanzella+10,+16, Smith+16, Guaita+16)

AGN-dominated scenario?

- The Planck measurements of a sudden reionization event at z=8.8 reduces the need for a large LyC background at very early times
- Some multi- λ surveys detected a large number density of faint AGN at high *z*, possibly implying a more substantial AGN contribution to HI reionization \rightarrow new model in which AGN lead the reionization (Madau & Haardt 2015)

However these results are controversial since other groups were not able to confirm these larger number densities (e.g., Weigel+15, Cappelluti+15, Georgakakis+15)

AGN UVLF: UV/OPT-selected type 1 AGN

Usually the 1 ryd ϵ is computed starting from the UV LF of OPT-selected AGN

Federica Ricci (Roma Tre)

AGN and reionization

AGN UVLF: caveats

high-z OPT/UV AGN selection

- possible galaxy contamination (e.g. due to star formation)
- at low luminosity the selection becomes less reliable \rightarrow disagreeing faint-ends

• standard lower limit to compute the ϵ : 0.01L_{*} \rightarrow 5 mag fainter than the break!! EXTRAPOLATION!

AGN UVLF: X-ray could be the solution!

high-z X-ray AGN selection

 no bias toward line-of-sight obscuration, extinction and galaxy dilution → RELIABLE FAINT-END To better constrain the faint-end of the AGN UVLF at high redshift, we test if the XLF can be used as an **unbiased** proxy of the ionizing AGN space density

AGN XLF used

Ueda+14 XLF: LDDE model

- 13 different X-ray surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra and ROSAT
- 0 < z < 5, $42 < logL_{2-10keV} < 46.5 \text{ erg s}^{-1}$
- XLF computed in various absorption ranges (i.e., at different N_H) \rightarrow anti-correlation between the fraction of absorbed objects and the 2-10 keV luminosity (in line with earlier results, Lawrence&Elvis+1982,LaFranca+05, Hasinger+08)
- 2 Vito+14 XLF: PDE model
 - $3 < z \le 5$ and $43 < logL_{2-10keV} < 45$ erg s⁻¹
 - all X-ray population, not divided according to the N_H

3 Marchesi et al. ApJ subm.: new COSMOS-Legacy data

- space density of AGN divided into type-1 and obscured
- up to redshift 6!

We can divide X-ray AGN in different N_H classes!

Ionizing AGN LF: X/UV connection via N_H

XLF converted into UV

A small fraction of the UV emission in the samples of Glikman+11 and Giallongo+15 could be produced by star formation in the host galaxy \rightarrow SFR \sim 5-20 M $_{\odot}$ yr⁻¹ (typical of SFGs at high-*z*, see e.g. Tasca+15) added to the XLF is enough to reproduce their data

AGN outflows and positive feedback could increase the star formation in their host (see, e.g. Cresci+15) and enhance the porosity of the ISM (see, e.g. Giallongo+15, Smith+16, Stark+16)

HI emissivity: comparing X and UV

Federica Ricci (Roma Tre)

HI emissivity

Agreement with other independent estimates of the evolution of the 1ryd AGN only emissivity, all derived under different assumptions

F. Ricci et al. MNRAS submit.

Federica Ricci (Roma Tre)

Implications: AGN can not do it all!

Comoving emission rate of hydrogen Lyman continuum photons as derived from X-ray AGN

$$\dot{
ho}_{QSO}(z) = \int_{
u_{HI}}^{
u_{HeII}} rac{\epsilon_{
u}(z)}{\mathrm{h}
u} \, d
u$$

compared to the minimum rate needed to fully ionize the Universe (Madau+1999) $\dot{\rho}_{ion}(z) = 10^{51.2} \left(\frac{C}{30}\right) \left(\frac{1+z}{6}\right)^3 \left(\frac{\Omega_b h_{70}^2}{0.0461}\right)^2 \,\mathrm{Mpc}^{-3}\,\mathrm{s}^{-1}$

Our findings do not support an AGN-dominated scenario at $z \gtrsim 4$, SFGs contribution must be relevant

Federica Ricci (Roma Tre)

Take home message

- 1 To better constrain the faint end of the AGN LF at high redshift, we investigated whether the XLF could be used as an unbiased proxy of the ionizing AGN space density \rightarrow matching between X-ray $\log N_H < 21 22 \text{ cm}^{-2}$ AGN and the OPT/UV AGN
- 2 X-ray data allow to compute the 1 ryd emissivity up to $z \sim 5$ without any luminosity extrapolation, extending at ~ 5 lower magnitudes than the limits probed by current UV/OPT LF!
- ③ The faint-end of the UV selected AGN LF at z > 4 can be reproduced taking into account a small host galaxy contamination from star formation → star forming systems could harbour mild-obscured AGN that through outflows and positive feedback enhance the porosity of the ISM
- Our updated ionizing AGN emissivities exclude an AGN-dominated scenario at high redshifts, as instead recently suggested by other studies.

