COHERENT MOTIONS OF ICM AND DARK MATTER IN SYNTHETIC CLUSTERS OF GALAXIES AND THEIR IMPACT ON KINETIC SZ MAPS

Marco De Petris

🔣 "Sapienza" University , Rome, Italy

A Contraction of the Contraction

Department of Physics

in collaboration with A.S. Baldi¹, F. Sembolini^{1,2}, G. Yepes², L. Lamagna¹ and E. Rasia^{3,4}

(1) Department of Physics – University La Sapienza – Rome (Italy)

(2) Departamento de Fisica Teorica - Universidad Autonoma de Madrid - Madrid (Spain)

(3) INAF, Osservatorio Astronomico di Trieste - Trieste, (Italy)

(4) Department of Physics, University of Michigan (USA)

Outline

Topic Is it present a coherent matter rotation inside clusters of galaxies?

Testbed MUSIC-2, a large catalogue of synthetic clusters of galaxies How to observe

Kinetic Sunyaev-Zel'dovich effect, among the others ...

Why clusters rotation?

Do clusters have a non null angular momentum to investigate about their formation?

What about the impact of tidal torques from the surrounding matter, such as in galaxy formation, [Peebles, ApJ 1969] or simply an off-axis merging event [Ricker ApJ1998; Ricker & Sarazin ApJ 2001]?

Does the IntraCluster Medium coherent rotation follow the Dark Matter one?

MUSIC (Marenostrum-mUltidark SImulations of galaxy Clusters) http://music.ft.uam.es/

A catalogue of synthetic clusters, extracted from 2 large volume hydrodynamic simulations, to perform (*also*) SZ science:

[Sembolini F., MDP et al. MNRAS +13]

MUSIC-1 : resimulated clusters from MareNostrum Universe, a non-radiative SPH simulation with 2 billion particles (2x1024³ gas and dark matter) in a 500 h⁻¹Mpc cubic box [Gottlöber & Yepes ApJ 2007]

164 objects $10^{14}h^{-1}M_{\odot} < M < 2 \cdot 10^{15}h^{-1}M_{\odot}(82 \text{ relaxed} + 82 \text{ irregular} ("Bullet like"))$ with radiative physics (cooling + SFR + UV photoionization + SN feedbacks) WMAP 1($\Omega_{M} = 0.3$, $\Omega_{b} = 0.045$, $\Omega_{\Lambda} = 0.7$, $\sigma_{8} = 0.9$, n = 1.0, h = 0.7) [Spergel et al. 2003]

MUSIC-2 : resimulated clusters from MultiDark Simulation, a Dark Matter only N-body simulation with 9 billion particles (2048³ dark matter) in a 1 h⁻¹Gpc cubic box [Prada et al. 2011] >500 clusters M>10¹⁴h⁻¹M_☉ >2000 clusters M>10¹³h⁻¹M_☉ with radiative physics (cooling + SFR + UV photoionization + SN feedbacks), non radiative (NR) and now also with AGN. WMAP7+BAO+SNI ($\Omega_{M} = 0.27$, $\Omega_{b} = 0.0469$, $\Omega_{A} = 0.73$, $\sigma_{8} = 0.82$, n = 0.95, h = 0.7) [Komatsu et al. 2011]

MUSIC-2 >500 clusters M>10¹⁴h⁻¹M_☉ + >2000 clusters M>10¹³h⁻¹M_☉ 3 flavours

1) non radiative (NR) and

two with radiative physics 2) cooling + SFR + UV photoionization + SN feedbacks (CSF) and 3) feedback from active galactic nuclei (AGN).

4 objects with radiative physics (CSF) at z=0

The same object with radiative (CSF) and non radiative (NR) physics at z=0

MUSIC-2 Massive clusters (258 objects M>5·10¹⁴M_o @ z=0 NR, CSF and AGN)

Spin parameter to highlight the presence of rotation for the *k* component (gas or DM)

[Baldi A.S., MDP et al. submitted MNRAS 2016, arxiv:1606.02148]

MUSIC-2 Massive clusters (258 objects M>5·10¹⁴M_o @ z=0 NR, CSF and AGN)

Spin parameter to highlight the presence of rotation for the *k* component (gas or DM)

$\lambda_{\kappa} = \frac{L_{\kappa}}{\sqrt{2GM_{\rm vir}R_{\rm vir}}} M_{\kappa}$	$P(\lambda)d\lambda = rac{1}{\lambda\sqrt{2\pi\sigma}} \exp\left(-rac{\ln^2(\lambda/\lambda_0)}{2\sigma^2} ight) d\lambda$				
$_{0.10}$ 0.90 ± 0.04 NR	Work	$\lambda_{0,\mathrm{DM}}$	$\sigma_{\rm DM}$	$\lambda_{0,\mathrm{gas}}$	$\sigma_{ m gas}$
MQ 0.05	Bullock et al. (2001)	0.035	0.5	_	_
0.00	Van den Bosch et al. (2002)	0.040	0.56	0.039	0.57
$_{\odot 0.10}$ 0.91 ± 0.05 $^{\rm CSF}$.	Sharma & Steinmetz (2005)	0.0287	0.5329	0.0412	0.430
Q 0.05	Gottlöber & Yepes (2007)	0.0351	0.6470	0.0462	0.6086
	Macciò et al. (2008)	0.034	0.59	_	_
$0.10 0.91 \pm 0.04 \qquad \text{AGN}$	Bryan et al. (2013)	0.0354	0.62	_	_
W	this work, NR	0.0289	0.5674	0.0333	0.5470
₩ 0.05	this work, CSF	0.0288	0.5638	0.0330	0.5489
0.00	this work, AGN	0.0289	0.5755	0.0330	0.5416
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda_{ m tot}$	$\lambda_{\rm DM}$		$\lambda_{\rm gas}$	
		$\lambda_{0,\mathrm{DM}}$		$\lambda_{0,gas}$	
		0.0289	0	.0333	

[Baldi A.S., MDP et al. submitted MNRAS 2016, arxiv:1606.02148]

MUSIC-2 Relaxed clusters (146 objects (56%)) $\Delta r = 0.10 \cup M_{sub}/M_{vir} = 0.10$ MUSIC-2 Rotating clusters (7 objects (3%)) $\lambda_{gas} > \lambda_{gas,crit} = 0.07$ Specific angular momentum for ICM: amplitude and direction

MUSIC-2 Relaxed clusters (146 objects (56%)) $\Delta r = 0.10 \cup M_{sub}/M_{vir} = 0.10$ MUSIC-2 Rotating clusters (7 objects (3%)) $\lambda_{gas} > \lambda_{gas,crit} = 0.07$ Tangential and turbulent velocity r-profiles for ICM and DM (rotating clusters)

[Baldi A.S., MDP et al. submitted MNRAS 2016, arxiv:1606.02148]

MUSIC-2 Relaxed clusters (146 objects (56%)) $\Delta r = 0.1$ MUSIC-2 Rotating clusters (7 objects (3%)) $\lambda_{gas} >$ Circular velocities distribution and radial profiles

 $v_{\rm circ}~({\rm km~s^{-1}})$

$$\Delta r = 0.10 \ \text{U} \ M_{\text{sub}}/M_{\text{vir}} = 0.10$$
$$\lambda_{\text{gas}} > \lambda_{\text{gas,crit}} = 0.07$$

 $v_{\rm circ}(r) = \sqrt{GM(r)/r}$ $\langle v_{\rm circ} \rangle = (1365 \pm 145) \, \rm km \, s^{-1}$ $v_{\rm circ}(r) = v_{c0} \left[\frac{\ln(1+r/r_0)}{r/r_0} - \frac{1}{1+r/r_0} \right]$ 2250NR NR $v_{\rm circ}(r) ~({\rm km~s^{-1}})$ relaxed 3 counts 1750 125010 5 750 $35 \\ 30 \\ 25 \\ 20 \\ 15$ CSF CSF $v_{\rm circ}(r) \; ({\rm km \; s^{-1}})$ 1750counts 125010 $\mathbf{5}$ 750 $35 \\ 30 \\ 25 \\ 20 \\ 15$ AGN AGN $v_{\rm circ}(r) \; ({\rm km \; s^{-1}})$ counts 1750 1250 10 5 7501200 1300 1400 1500 1600 1700 1100 0.1 0.20.30.40.50.60.70.80.91.0 0.0

> [Baldi A.S., MDP et al. submitted MNRAS 2016, arxiv:1606.02148] M. De Petris "Hot spots in the XMM sky" 18/06/2016

 $r (R_{\rm vir})$

MUSIC-2 Relaxed clusters (146 objects (56%)) MUSIC-2 Rotating clusters (7 objects (3%)) ICM tangential velocity radial profiles

$$\begin{array}{lll} \Delta r = 0.10 \ \ {\rm U} \ \ M_{\rm sub}/M_{\rm vir} = 0.10 \\ \lambda_{\rm gas} \ > \ \lambda_{\rm gas, crit} = \ 0.07 \end{array}$$

[Baldi A.S., MDP et al. submitted MNRAS 2016, arxiv:1606.02148] M. De Petris "Hot spots in the XMM sky" 18/06/2016

MUSIC-2 Massive clusters (258 objects M>5·10¹⁴M_o @ z=0 NR, CSF and AGN)

Angular momenta direction for ICM and DM and vs ICM spin parameter

How to observe

How to infer the presence of possible cluster rotation by observations? multi- λ and multi-obs approaches

 ✓ Optical obs of velocity of member galaxies [Tovmassian, Ap 2015 and Manolopoulou M. & Plionis M., 2016, submitted & see POSTER ⇒]

 ✓ Doppler shift on ICM X-ray emission lines [Dupke & Bregman, ApJ 2001, & see Ettori's TALK]

or X-ray surface brightness maps ellipticity

[Fang et al., ApJ 2009 and Bianconi et al. MNRAS 2013]

✓ kinetic-Sunyaev-Zel'dovich effect due to ICM motions

[Chluba J. & Mannheim K. A&A 2002, Cooray A. & Chen X. ApJ 2002] Solid-body assumption due to the limited information about gas motions since high-resolution simulations of clusters at the time were limited to DM only

How to observe

How to infer the presence of possible cluster rotation by observations?

multi- λ and multi-obs approaches

Discrete sampling

✓ Optical obs of velocity of member galaxies
 [Tovmassian, Ap 2015 and Manolopoulou M. & Plionis M., 2016, submitted & see POSTER ⇒]

Diffuse sampling

✓ Doppler shift on ICM X-ray emission lines

[Dupke & Bregman, ApJ 2001, & see Ettori's TALK]

or X-ray surface brightness maps ellipticity

[Fang et al., ApJ 2009 and Bianconi et al. MNRAS 2013]

✓ kinetic-Sunyaev-Zel'dovich effect due to ICM motions

[Chluba J. & Mannheim K. A&A 2002, Cooray A. & Chen X. ApJ 2002] Solid-body assumption due to the limited information about gas motions since high-resolution simulations of clusters at the time were limited to DM only

kinetic Sunyaev-Zel'dovich Effect observations

k-SZE: depends on the **systematic motions** of the scattering electrons, ICM *i.e.* the scattering medium, that also causing the *th*-SZ effect, is moving relative to the CMB monopole (Doppler effect)

$$\Delta I_k = -i_0 h(x) \frac{V_r}{c} \tau \qquad \Delta T_k = -T_{\rm CMB} \frac{V_r}{c} \tau$$

Toy Model [Cooray A. & Chen X. ApJ 2002] Map of CMB temperature fluctuations assuming a solid-body approach = dipole

$$\frac{\Delta T}{T}(\theta, \phi) = \sigma_{\mathbf{T}} e^{-\tau} \eta(\theta) \cos \phi \sin i$$

electron density weighted by the rotational velocity component Gas radial profile (*King*, ...) $\eta(\theta) = \int_{d_c\theta}^{R_{vir}} \frac{2r \, dr}{\sqrt{r^2 - d_c^2 \theta^2}} n_e(r) \omega d_c \theta \qquad \rho_{gas} = \rho_0 \left(1 + \left(\frac{r}{r_c}\right)^2\right)^{-3\beta/2}$ $\omega = \frac{3\lambda V_c c^2 f^2(c)}{R_{vir} h(c) \sqrt{cg(c)}} \text{ Angular velocity} \text{ (NFW DM profile, c)}$

M. De Petris "Hot spots in the XMM sky" 18/06/2016

cold & hot spots

kinetic Sunyaev-Zel'dovich Effect observations The dipole in a nutshel

M. De Petris "Hot spots in the XMM sky" 18/06/2016

kinetic Sunyaev-Zel'dovich Effect observations MUSIC-2 Rotating clusters

DM and gas rotation axis almost coincident results that by k-SZE we can also infer on DM angular momentum

High angular resolution instruments to map kinematic SZ effect towards clusters at a frequency around 200 GHz are necessary such as an example NIKA2 camera at the 30-m IRAM telescope [Monfardini et al. 2014]) +

X-ray band obs with future satellites such as Athena [Barcons et al. 2015] +

Comparison with rotating Abell/ACO clusters with SDSS DR10 spectroscopy [Manolopoulou M. & Plionis M., 2016, submitted]

Conclusions

- A small fraction of relaxed massive MUSIC-2 clusters show a coherent rotation of ICM and DM with fixed orientation along the radius;
- This result is almost independent on the physical models to describe ICM properties;
- A simple model to describe the tangential velocity radial profile is derived;
- Among several observational approaches, kSZE observations could detect clusters ICM rotation.

thank you for your attention