The dynamical and cool core state of Planck SZ-selected clusters

Mariachiara Rossetti (Università degli Studi di Milano – IASF-MI INAF) In collaboration with: F. Gastaldello, D. Eckert M. Della Torre, G. Pantiri, G. Ferioli, P. Cazzoletti

Selection function

If the object selection does not depend only on M and z, we ¹⁰ need to be careful $\widehat{\Sigma}$

A selection bias?

"The majority of newly discovered Planck clusters show evidence for significant morphological disturbances"

(Planck Collaboration 2011, Planck Early results IX)

* Do we expect the Planck selection to be biased towards disturbed objects?

A selection bias?

- * Do we expect the Planck selection to be biased towards disturbed objects? Test with MC simulations: Injection of SZ maps of disturbed/relaxed clusters in simulated sky.
 - in $\frac{10^{-4}}{10^{-4}}$ $\frac{10^{-3}}{10^{-3}}$ $\frac{10^{-2}}{10^{-2}}$

10-1

No significant differences in the selection function.

(Planck 2015 Results, XXVII)

A selection bias?

"The majority of newly discovered Planck clusters show evidence for significant morphological disturbances"

(Planck Collaboration 2011, Planck Early results IX)

* Do we expect the Planck selection to be biased towards dist. objects?NO

* Are Planck SZ-selected clusters really more dynamically disturbed than expected? Compare with Xray selected samples

The method (I)

Offset between X-ray peak and BCG^{*} position as a dynamical indicator (Hudson et al 2010, Sanderson et al 2009, Mann & Ebeling 12)

*BCG= Brightest Cluster Galaxy

The sample (I)

Starting point: PSZ1 cosmological sample 189 clusters with S/N > 7, at high galactic latitude (Planck 2013 results XX) Further cut in S/N: S/N>8 Mimics Planck Selection Allows a more complete X-ray + optical information

132 clusters

128 with public X-ray (Chandra or XMM) observations and BCG identification (literature + archival analysis)

Radius containing a mean density 500 times $\rho_c(z)$

SZ vs X-ray samples (I)

Literature information on the BCG – Xray peak offset available for many samples, often with heterogeneous selection. We compared only with purely X-ray selected samples

SZ vs X-ray samples (I)

Literature information on the BCG – Xray peak offset available for many samples, often with heterogeneous selection. We compared only with purely X-ray selected samples

eMACS (Mann & Ebeling 2012): 10.0 108, most massive high-z (>0.15) objects in RASS data Ason (10¹⁴ M_®) HIFLUGCS (Zhang+, 2011): 1.0 62, Brightest X-ray clusters, local, low mass objects **REXCESS** (Haarsma+2010): 0.1 30, intermediate luminosity and z

"Relaxed" Clusters: Offset < 0.02 R₅₀₀ (Sanderson et al 2009) According to X ray peak – BCG offset: Fewer "relaxed" objects in our sample than in X-ray selected samples Indication of differences in SZ vs X-ray sample

	Relaxed fraction	Rel. Frac null hyp prob
Planck	68/132 <mark>(52±4%)</mark>	
HIFLUGCS	46/62 (74±5%)	0.05%
eMACS	79/108 <mark>(73±4%)</mark>	<0.001%
REXCESS	23/30 (77± 7%)	0.2%

Evolution vs selection effects

Differences between Planck and SZ samples due to different mass and redshift distribution?

* D_{X-BCG} distribution in Planck sample different from ALL X-ray samples

Evolution vs selection effects

Differences between Planck and SZ samples due to different mass and redshift distribution?

* D_{X-BCG} distribution in Planck sample different from ALL X-ray samples

 Compare high-z and high-M subsample from Planck and eMACS: differences still remain

Cool core bias

Relaxed clusters usually feature a centrally peaked density profile, causing a prominent surface brightness peak

It affects X-rays surveys (I_x ≈n_e²,Eckert et al 2010) and is predicted to be small in SZ-surveys (I_{SZ} ≈n_e, Lin et al 2015, Pipino & Pierpaoli 2010), especially with Planck (beam size much larger than core size)

Method (II)

D_{X-BCG} is not a direct indicator of the presence of a prominent density peak Redo the analysis with the concentration parameter (Santos et al 2008)

$$c = \frac{I(R < 40 \text{ kpc})}{I(R < 400 \text{ kpc})}$$

Method (II)

D_{X-BCG} is not a direct indicator of the presence of a prominent density peak Redo the analysis with the concentration parameter (Santos et al 2008)

$$c = \frac{I(R < 40 \text{ kpc})}{I(R < 400 \text{ kpc})}$$

Sample:

Based on the PSZ1 cosmo catalogue (189 high S/N objects)
 153 clusters with Chandra observations

Work in progress:

including also XMM data for the missing clusters

Comparison with 104 eMACS clusters (Mann & Ebeling 2012) on which we performed the same Chandra analysis

Comparison with 104 eMACS clusters (Mann & Ebeling 2012) on which we performed the same Chandra analysis

Comparison with 104 eMACS clusters (Mann & Ebeling 2012) on which we performed the same Chandra analysis

KS statistic D=0.33, Null hyp. Prob. p_o=1.5 10⁻⁶

More cool core and relaxed objects in eMACS than in Planck

2D KS test $P_0=3.7 \ 10^{-4}$

Simulations

Simulations

We can simulate the CC-bias in flux-limited X-ray surveys (Eckert et al 2010).

Assuming the real CC fraction is 0.3, what is the CC fraction in a eMACS-like survey? 0.47-0.54 Observed eMACS 0.59+/-0.05

Summary

- * We measured the dynamical and CC state of Planck Clusters
- * Different distribution in Planck sample and X-ray selected samples
- * Smaller fraction of relaxed and CC objects in Planck
- Not an evolution effect: selection effect (CC bias) affecting X-ray surveys
- * Can we reproduce it with simulations? Work in progress

MR et al. (2016) MNRAS 457,4515 MR et al. in preparation

Electronic tables at:

http://cosmo.fisica.unimi.it/persone/mariachiara-rossetti/measuring-the-dynamical-state-ofplanck-sz-selected-clusters/

Chandra program to follow-up the most massive and high redshift (z>0.5) clusters in the Planck survey (AO15 PI MR)

PSZ2 G282.28+49.94, z=0.57 350 kpc separation btw X-ray peak and galaxy concentration

A new bullet cluster?