Exploring the Intracluster Magnetic Fields through Radio and X-ray Observations

M. Takizawa, I. Takahashi (Yamagata Univ.), T. Ozawa, H. Nakanishi, T. Akahori (Kagoshima Univ.) and others

JVLA S- and X-band polarimetry of the merging cluster Abell 2256 Ozawa et al. (2015) PASJ, 67, 110

> Hot spots in the XMM sky: Cosmology from X-ray to Radio Mykonos Island, 17 June 2016

Observational Evidence of Intracluster Magnetic Field (1): Radio Halos / Relics

Non-thermal radio emission from merging clusters of galaxies

synchrotron radio

 $\gamma \sim 10^4$ electrons + 0.1-10 μ G B

Hard X-ray will be emitted through Inverse compton with CMB

Abell 2319 with Radio Halo Rosat X-ray image (colors) Radio image (contours) Feretti et al. (1997)

60

1RXS J0603.3+4214 with "Toothbrush"Radio Relic Suzaku X-ray image (colors) Radio image (contours) Itahana et al. (2015), Evening Session Today

Observational Evidence of Intracluster Magnetic Field (2):

- **Faraday Rotation**
- Polarized plains of linear polarized radio wave rotate when propagating through the magnetized plasma.

$$\Delta\theta = \frac{2\pi e^3}{m^2 c^2 \omega^2} \int_0^d nB_{\parallel} ds.$$

 Polarized radio sources observations in and behind clusters suggest random magnetic field structures.

Depolarization because of random magnetic fields

External Faraday Dispersion

Polarized

source

Plasma with random magnetic field (ICM)

 Because of frequency dependence of FR(Δθ∝ω⁻²), depolarization is more prominent in lower frequency (or longer wavelength).

$$p_{\rm EFD} = p_0 e^{-S}$$
$$S = 2\sigma_{\rm RM}^2 \lambda^4$$

Burn's law (Burn 1966) p_{EFD} : observed fractional polarization p_0 : intrinsic fractional polarization σ_{RM} : standard deviation of RM X-ray (red&yellow) 1369MHz (blue&contours) (Clarke&Ensslin 2006)

Abell 2256

- Well-known local (z=0.0581) merging cluster
- Two components in member galaxy l.o.s. velocity distribution (Berrington et al. 2002)
- Two distinct peaks in X-ray image(Briel et al. 1991, etc)
 Only one example of direct detection of ICM internal motions(~1500km/s) (Tamura et al. 2011)
 Radio halo and relics (Clarke&Ensslin 2006, etc)

Observations

TADIE 1. Details of the VLA & JVLA observations of Abell 2256.						
Frequency*	Bandwidth*	Config.*	Date	Time*	Project*	
(MHz)	(MHz)			(h)		
1369/1417	25/25	D	1999-Apr-28	5.9, 5.9	AC0522	
1513/1703	12.5/25	D	1999-Apr-29	3.5, 5.5		
1369/1417	25/25	С	2000-May-29	2.5, 2.5	AC0545	
1513/1703	12.5/12.5	С	2000-May-29	3.6, 3.6		
1369/1417	25/25	С	2000-Jun-18	2.5, 2.5		
1513/1703	12.5/25	С	2000-Jun-18	4.1, 3.5		
16 windows [†]	128	С	2013-Aug-25	1.2	13A-131	
S-band			2013-Aug-26	1.2		
<u> </u>			2013-Aug-29	1.2		
16 windows [‡]	128	С	2013-Aug-18	1.3	13A-131	
X-band			2013-Aug-19	1.3		

* Column 1: observing frequency; Column 2: observing bandwidth; Column 3: array configuration; Column 4: dates of observation; Column 5: time on source; Column 6: NRAO project code.

[†] 2051/2179/2307/2435/2563/2691/2819/2947/3051/3179/3307/3435/3563/3691/3819/3947.

* 8051/8179/8307/8435/8563/8691/8819/8947/9051/9179/9307/9435/9563/9691/9819/9947.

multi-band polarimetric observations, to explore the magnetic field trough depolarization and rotation measure
 S-band (2051-3947MHz)

 X-band (8051-9947MHz)
 August 2013, JVLA

 L-band (1369-1703MHz) archive data of VLA

Radio images

relic, source A--Z (point sources such as radio galaxies)
 In S-band, polarized components are detected from relic, A, and B
 In X-band, polarized components are detected only from source A (relic is out of FOV).

FPOL = $\frac{\sqrt{Q^2 + U^2}}{I}$. The Relic

Fractional polarization spectra of the radio relic FPOL=p exp(-S), (Burn's law) p: intrinsic FPOL, S = $2\sigma_{RM}^2 \lambda^4$ Fractional polarization specta have two distinct strucures (~0.8GHz, ~ 3GHz)

- Random magnetic field between the relic and us cause depolarization.
- However, a simple external Faraday dispersion (EFD) model cannot reproduce this kind of spectral shape.
- There might be two depolarization components
 ???

Plasma with random magnetic field (ICM)

Polarized source (radio relic)

simple EFD

• •

Depolarization toward the Radio Relic

Rotation Measure

Table 3. The average and standard deviation of RM.					
Target	$\langle \mathrm{RM} \rangle^*$	$\sigma_{ m RM}{}^*$	reference		
	$ m rad\ m^{-2}$	$ m rad\ m^{-2}$			
Relic	-44	7	Clarke & Ensslin (2006)		
Relic	-34.5	6.2	this work		
Source A	-24.9	65.5	this work		
Source B	-34.1	10.5	this work		

* (RM) and σ_{RM} are the average and standard deviation of RM, respectively.

 ϕ vs λ^2

<RM>~ -30 rad/m²

This value is consistent with a contribution from the Galactic component

 In relic, σ_{RM} is significantly smaller than that of sources A.

 \rightarrow The relic is located in the nearer side of the observer in the cluster

Merger geometry and relic formation scenario

Considering small σ_{RM} value, relic is likely located nearer side of us in the cluster.

This fact favors "Late phase scenario".

Clarke&Ensslin(2006)

Summary

- S- and X-band polarimetric observations were made with JVLA for well-known merging cluster Abell 2256 with radio relics.
- Fractional polarization spectra of the relic have characteristic structures, which can be reproduced assuming that two depolarization components are located along the line-of-sight.
- Considering small value of σ_{RM}, it is suggested that the radio relic is located at the nearer side of us. This indicates that a late phase scenario of merger is preferable.
- Ozawa et al. (2015) PASJ, 67, 110

Magnetic Fields toward Source A and B

Faraday Tomography for the relic

- Farady tolmography(QU-fit, Ideguchi et al. 2014) for the relic
- Two polaried sources at different Faraday depth are necessary.
- Note: In QU-fit, information about polarization angles is also used. However, we can locate polarized sources only in the Faraday depth space (not real space).

Intracluster Magnetic Field

- There is random magnetic field in the intracluster space, whose typical strength is ~ µG.
 - Shyncrotron radio halos/relics
 - Faraday rotation measure
- P_B~0.01P_{th} not important?
 - suppression of fluid instabilities
 - suppression of heat conduction
 - Particle acceleration (magnetic turbulence, shock)

Not only field strength, but also field structures are important.