*L*_X-*M* Relations and Group Outskirts

Thomas Reiprich, Bonn http://dark-energy.net + Many Collaborators (-> See Slides)!

 Several preliminary slides/figures have been removed compared to the original version of this talk. Sorry for the inconvenience.

HIFLUGCS L_X - M_{hyd} Relation

- For an overview and results of the Chandra/ HIFLUGCS cosmology work listen to Gerrit's talk (Schellenberger+TBS).
- ~60 brightest clusters in the sky.
- ~100 ks Chandra data per cluster.

HIFLUGCS L_X - M_{hyd} Relation

z~0.05

Schellenberger+TBS

HIFLUGCS L_X - M_{hyd} Relation

Schellenberger+TBS

HIFLUGCS L_X - M_{hyd} Relation

Schellenberger+TBS

Small But Well-Selected Samples With High-Quality Data

Mass/Redshift Distribution of Some Weak Lensing Mass Comparison Samples

Doria, Shafiee+TBS

Expected eROSITA Mass/Redshift Distribution.

Color code: Number of clusters in Log10

9

HIFLUGCS L_X-M_{dyn} Relation ~200 Cluster Galaxy Velocities Per Cluster

From 400d Weak Lensing ($z \sim 0.5$): $M_{X,Chandra}/M_{WL} \sim 1.0 (R_{500})$ $M_{X,XMM}/M_{WL} \sim 0.8 (R_{500})$ Weak Indications for Mass-Dependent Bias

 L_X-M_{hyd} relation for complete local galaxy group sample, for the first time including detailed selection effect correction procedure. \Rightarrow Indications for gradual steepening of slope. Single powerlaw probably too simple. \Rightarrow Fitting functions provided. Lovisari+15

12

Outskirts

- Gaseous properties of many galaxy cluster outskirts have been explored with Suzaku (e.g., Reiprich+13 for a review).
- Galaxy group outskirts much less well studied, with partially contradicting results (e.g., Humphrey+12, Su+13).

• => More group observations required.

Galaxy Group Outskirts

Suzaku Thoelken+16

Chandra Snapshots to Remove AGN

Temperature and Metallicity Profiles

Thoelken+16

Gas Mass Fraction @ R_{200} < Universal

No Entropy Drop @ R₂₀₀

Similar For Another Group (Wong+16)

250e-07 257e-07 271e-07 3.00e-07 3.57e-07 4.73e-07 7.01e-07 1.15e-06 2.07e-06 3.88e-06 7.49e-06

No Entropy Drop @ R₂₀₀

Wong+16

The Future: Systematically Discover the Unexpected

eHIFLUGCS

From G. Schellenberger

Hydro-simulations Roediger+15

Schellenberger & Reiprich (2016) (adapted image from Chandra Press Office)

Summary

- $L_{\rm X}$ - $M_{\rm hyd}$, $L_{\rm X}$ - $M_{\rm dyn}$, $L_{\rm X}$ - $M_{\rm WL}$
- $M_{\rm hyd}/M_{\rm WL}$ (M)
- Group Outskirts
- Complete Stripping