

SZ cosmology Status & future directions

Jean-Baptiste Melin CEA Saclay, France

Hot spots in the XMM Sky: Cosmology from X-ray to Radio

2016 June 16

Outline

- Sunyaev-Zeldovich (SZ) catalogues
- Cosmology from SZ cluster counts
 → tension & possible solutions
- Future directions

Detecting the hot gas in halos with the SZ effect

Sunyaev and Zeldovich 1970,1972

Detecting the hot gas in halos with the SZ effect

Detecting the hot gas in halos with the SZ effect

Credit: ACT

Credit: ESA

Blind SZ catalogues

Main properties of the three catalogues

Warning: non-uniform redshift knowledge for Planck, PSZ2 should contain z>0.6 objects not visible here

Outline

- Sunyaev-Zeldovich (SZ) catalogues
- Cosmology from SZ cluster counts
 → tension & possible solutions
- Future directions

Cosmology from cluster counts

Cluster abundance and evolution are very sensitive to cosmological parameters $\sigma_8 \ \Omega_m$

 \rightarrow independent from primary CMB, BAO, SNIa

The cosmological samples

Highly reliable candidate sub-samples + Selection function under control

The Planck SZ cosmological analysis

Observations $\frac{dN}{dz}$ (need redshifts !)**TO BE COMPARED WITH**Predictions $\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz \, dM_{500} \, d\Omega}$ \uparrow
completeness \uparrow
mass function
Tinker et al. 2008
Watson et al. 2013

Completeness (z, M₅₀₀)

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\hat{\chi} = \int dY_{500} \int d\theta_{500} P(z, M_{500} | Y_{500}, \theta_{500}) \chi(Y_{500}, \theta_{500}, l, b)$$
function of (z, M₅₀₀) need scaling laws function of (θ_{500}, Y_{500}) depends on cosmology independent of cosmology

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1}$$

$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1}$$
$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

α, Y* determined on X-ray data

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1},$$
$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

1-b : bias between X-ray and true mass $M_{500,x}=(1-b)M_{500}$

Simulations indicate 1-b=0.8 (but high dispersion !) We used 1-b=0.8 with a flat prior in [0.7,1] **in 2013**

Mass bias priors 2015

Von der linden et al. 2014 Ho	ekstra et al. 20	015
K	-	
Prior name	Quantity	Value & Gaussian errors
Weighing the Giants (WtG)	1 - b	0.688 ± 0.072
Canadian Cluster Comparison	1	
Project (CCCP)	1 - b	0.780 ± 0.092
CMB lensing (LENS)	1/(1-b)	0.99 ± 0.19
Baseline 2013	1 - b	0.8 [-0.1, +0.2]

Notes. CMB lensing directly measures 1/(1 - b), which we implement in our analysis; purely for reference, that constraint translates approximately to $1 - b = 1.01^{+0.24}_{-0.16}$. The last line shows the 2013 baseline — a reference model defined by 1 - b = 0.8 with a flat prior in the [0.7, 1] range.

NEW (CMB halo lensing) !!!

Hasselfield et al. 2013

X-ray cluster analyses?

See also F. Pacaud talk on preliminary XXL-100-GC counts

CFHTLens and DES cosmic shear?

The DES Collaboration 2015

How to reconcile Planck CMB and SZ counts?

- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

Tension can disappear if primary CMB is used with clusters to constrain the Y-M normalisation and cosmo parameters jointly

→1-b=0.58 ± 0.04

larger $\sum m_{\nu}$ further reconciles the results. When we combine the SPT_{CL} and *Planck*+WP datasets with information from baryon acoustic oscillations and supernovae Ia, the preferred cluster masses are 1.9 σ higher than the Y_X calibration and 0.8 σ higher than the σ_v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the

How to reconcile Planck CMB and SZ counts?

• Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$

New physics? Neutrino mass?

- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

Planck CMB+SZ and the neutrino masses

Planck SZ: a non-zero neutrino mass helps but...

Planck Results XXIV 2015

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?

- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$

• Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$

• Primary CMB?

Selection function of SZ surveys?

Planck Results XX 2013

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$

Primary CMB?

Primary CMB anisotropies actually constrain A_se^{-2τ}

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\overline{\Omega_{ m b}h^2}$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_{\rm c}h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
100θ _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$
$\overline{\Omega_{\Lambda}}$	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	$0.685^{+0.018}_{-0.016}$
$\Omega_{\rm m}$	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315_{-0.018}^{+0.016}$
σ_8	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012

Planck Results XVI **2013**

Primary CMB?

Planck Results XIII 2015

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	-
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	Planck+WP
100 <i>θ</i> _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	68% limits
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.02205 ± 0.00028
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	0.02203 ± 0.00028 0.1199 ± 0.0027
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	1.04131 ± 0.00063
H_0	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	0.089 ^{+0.012} _{-0.014}
Ω_{Λ}	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.9603 ± 0.0073
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	$3.089^{+0.024}_{-0.027}$
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	$0.685^{+0.018}_{-0.016}$
$\Omega_{ m m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	$0.315_{-0.018}^{+0.016}$
σ_8	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.829 ± 0.012
$\sigma_8\Omega_{ m m}^{0.5}\dots\dots\dots$	0.466 ± 0.013	0.4521 ± 0.0088	0.4514 ± 0.0066	0.4668 ± 0.0098	
$\sigma_8 \Omega_{ m m}^{0.25}$	0.621 ± 0.013	0.6069 ± 0.0076	0.6066 ± 0.0070	0.623 ± 0.011	Planck Results XVI 2013

Primary CMB?

TT,TE,EE+lowP 68% limits 0.02225 ± 0.00016 Planck Intermediate Results XLVII 2016 0.1198 ± 0.0015 Planck+WP 1.04077 ± 0.00032 68% limits $\tau = 0.058^{+0.012}_{-0.012}$ lollipop+PlanckTT; (5) 0.079 ± 0.017 0.02205 ± 0.00028 3.094 ± 0.034 0.1199 ± 0.0027 0.9645 ± 0.0049 1.041<u>31 ± 0.0</u>0063 $0.089^{+0.012}_{-0.014}$ Lollipop + Planck TT lowP + Planck TT 67.27 ± 0.66 0.9603 ± 0.0073 0.6844 ± 0.0091 0.12 $3.089^{+0.024}_{-0.027}$ 0.3156 ± 0.0091 0.09 $0.685^{+0.018}_{-0.016}$ 0.1427 ± 0.0014 0.06 $0.315\substack{+0.016\\-0.018}$ 0.09601 ± 0.00029 0.03 0.829 ± 0.012 0.831 ± 0.013 3.003.053.103.15 $\ln(10^{10}A_s)$ 0.945 0.960 0.975 0.78 0.81 0.84 0.87 σ_8 n_s 0.4668 ± 0.0098 Planck 0.623 ± 0.011

F

Planck Results XIII 2015

Results XVI 2013

Outline

- Sunyaev-Zeldovich (SZ) catalogues
- Cosmology from SZ cluster counts
 → tension & possible solutions
- Future directions

Weak lensing → See E. Rozo talk Caustics → See B. Maughan talk Velocity dispersion → See S. Amodeo talk

We must continue our effort...

Future? Planck SZ alone vs. primary CMB

CMB halo lensing

A&A 578,A21 (arXiv:1408.5633)

CMB-S4

Credit: J. Carlstrom

A joint ground-based US CMB "experiment" ~2025

- ~500,000 detectors
- Arcmin to a few arcmin resolution
- Low frequencies (<300 GHz)

CORE

Answer to ESA call M5 (due Oct. 2016) Launch 2025-2030

- 2,500 detectors (Planck 50)
- ~Planck (a few arcmin) resolution
- 15-20 frequencies (Planck 9) from 60 to 600 GHz

Conclusions

• ACT, SPT and Planck cluster constraints are in good agreement The size/depth of the samples are different and the analyses made independently

• SZ constraints are limited by uncertainties on scaling relations (Y-M)

• But the situation is continually improving with multi-frequency observations of large cluster catalogues (optical, X-ray, SZ)

• Mass scale (1-b) is the key now.

→ Simulation studies, Shear measurements, CMB lensing

• Future experiments (eROSITA 2016, Euclid 2020) will provide additional data which will allow a ~1% mass scale calibration and bring cluster cosmology to the front.

• SZ future: CMB-S4 2025 and CORE 2025-2030