
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 21 (2004) 1773–1789 PII: S0264-9381(04)67846-4

Dynamics and stability of the Gödel universe
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Abstract
We use covariant techniques to describe the properties of the Gödel universe and
then consider its linear response to a variety of perturbations. Against matter
aggregations, we find that the stability of the Gödel model depends primarily
upon the presence of gradients in the centrifugal energy, and secondarily on
the equation of state of the fluid. The latter dictates the behaviour of the
model when dealing with homogeneous perturbations. The vorticity of the
perturbed Gödel model is found to evolve as in almost-FRW spacetimes, with
some additional directional effects due to shape distortions. We also consider
gravitational-wave perturbations by investigating the evolution of the magnetic
Weyl component. This tensor obeys a simple plane-wave equation, which
argues for the neutral stability of the Gödel model against linear gravity-wave
distortions. The implications of the background rotation for scalar-field Gödel
cosmologies are also discussed.

PACS numbers: 04.20.Cv, 98.80.Jk

1. Introduction

The Gödel universe is an exact solution of the Einstein field equations, which is both stationary
and spatially homogeneous [1]. The model, which is of Petrov type D, is also rotationally
symmetric about each point and contains a perfect-fluid matter source whose 4-velocity is
a Killing vector [2]. Gödel’s universe is known for its unusual global properties. The
most intriguing among them is the existence of closed timelike curves, which violates global
causality and makes time travel theoretically possible in this spacetime. Hermann Weyl had
first suggested in 1921 that time travel might occur in general relativity [3] as a consequence
of ‘very considerable fluctuations in the spacetime metric’ but he believed that the fluctuations
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‘necessary to produce this effect do not occur in the region of the world in which we live’.
It was clear that this causal anomaly could arise for some distorted geometry and hence for
some distribution of mass and energy. Kurt Gödel showed that the required distribution could
be extremely simple and his discovery initiated the study of the global properties and causal
structure of Einstein’s equations [4]. At first, attention was almost entirely focused upon the
properties of the equations of motion in the Gödel universe [5–7] and an interesting overview
of these investigations has recently been given by Ozsváth and Schücking [8]. Subsequently,
Gödel’s solution has also triggered a considerable amount of work on rotating solutions of the
Einstein field equations and rotational cosmological models (see [9–13] for a representative
list). For further details and an extensive discussion the reader is referred to the recent review
articles by Krasiński [14–16] and Obukhov [17]. Although the Gödel spacetime is not a
realistic model for our universe, it is an important theoretical laboratory for investigating a
range of global properties of the spacetime structure in different gravity theories. Recent
studies of quantum computation [18, 19] have shown that the presence of closed timelike
curves in spacetime provides for a new physical model for quantum computation in compact
regions. A quantum computer with access to closed timelike curves can solve NP-complete
problems with only a polynomial number of quantum logic gates. A series of studies on the
possibility of closed timelike paths in string theories [20–26] has also drawn on the insights
gained from the detailed study of the Gödel spacetime and its generalizations to arbitrary
space dimensions [27, 28], considering the constraints of possible holographic principles
[29] and investigating the accessibility of information in different parts of the spacetime
[30].

The Gödel universe is a member of the family of homogeneous spacetimes together
with the Einstein static and de Sitter universes. In recent years close attention has
been paid to the stability of the de Sitter universe and its physical significance for the
consequences of inflation in the early stages of our universe. Under physically realistic
conditions on the energy–momentum tensor of matter, all perturbations to isotropy and
homogeneity will be seen to fall off exponentially rapidly within the event horizon of
a geodesically moving observer in the de Sitter universe [31–33]. This result, in its
different technical expressions, is known as the cosmic no hair theorem. The stability
of the Einstein static universe has also been examined in a covariant fashion and reveals
a more intricate dependence on material content than is conventionally reported [34, 35].
We will complement these detailed studies of the stability of the de Sitter and Einstein
static homogeneous spacetimes with a covariant study of the stability of the Gödel universe.
Despite the past interest in the causal structure of the Gödel model there have been few
perturbative studies of its properties and these have been confined to the investigation
of the effects of the global rotation on the evolution of scalar density perturbations in
the papers of Silk [36, 37]. Here, we investigate the stability with respect to scalar,
vector and tensor perturbation modes using the gauge covariant formalism of Ellis and
Bruni [38]. In the process we show that the background vortical energy contributes to
the gravitational pull of the matter, while its gradients add to the pressure support. The
balance between these two agents effectively determines the stability of the Gödel universe
against matter aggregations. By examining the rotational behaviour of the perturbed model,
we explain how shape distortions can increase or decrease its overall rotation. We also
introduce a set of linear covariant constraints, which isolate the pure tensor perturbations, and
analyse their propagation on the rotating Gödel background. Our results argue for the neutral
stability of these gravitational-wave distortions. Finally, we consider some of the effects of
spatially homogeneous perturbations and discuss the compatibility of scalar fields with the
symmetries of the Gödel spacetime.



Dynamics and stability of the Gödel universe 1775

2. Covariant characterization of the Gödel universe

2.1. The irreducible kinematical variables

The covariant description of the Gödel universe, with respect to its irreducible kinematical
quantities, has been given in [39] (see also [4, 40]). Here, we will briefly introduce and extend
this description and also present the associated constraints.

Relative to a timelike 4-velocity field ua (normalized so that uau
a = −1) that is tangent

to the worldlines of the fundamental observers, the Gödel spacetime is covariantly described
by [39]

� = 0 = u̇a = σab, and ωa �= 0. (1)

Therefore, with the exception of the vorticity (ωa), the rest of the kinematical variables, namely
the volume expansion (�), the shear (σab) and the acceleration (u̇a), vanish identically. We
note that ∇bωa = 0, so ensuring that the vorticity vector associated with the 4-velocity field
ua is covariantly constant.

2.2. The twice-contracted Bianchi identities

The stationary nature of the Gödel solution means that there are no propagation equations:
they have all been transformed into constraints. For example, on using the twice-contracted
Bianchi identities we obtain the standard conservation laws for the energy and momentum
densities. When applied to the Gödel spacetime, the latter yield the constraints

µ̇ = 0 and Dap = 0, (2)

where µ and p are the matter density and isotropic pressure, respectively3. Here, an overdot
indicates differentiation along ua (e.g. µ̇ = ua∇aµ). Also, Da = ha

b∇b is the covariant
derivative operator orthogonal to ua , and hab = gab + uaub is the associated projection tensor.

2.3. The Ricci identities

Covariantly, the kinematic evolution is determined by a set of three propagation equations
and three constraints, all of which are derived from the Ricci identities ∇[a∇b]uc = Rdcbau

d ,
where Rabcd is the spacetime Riemann tensor. In Gödel’s universe, the Raychaudhuri equation,
which describes the volume evolution of a fluid element, reduces to

1
2κ(µ + 3p) − 2ω2 − � = 0, (3)

with κ = 8πG and ω2 = ωaω
a . Note how the rotation balances the gravitational attraction

of the matter, as well as that of the (negative, see section 2.5) cosmological constant. Thus,
in the Gödel model the vorticity has assumed the role played by the (positive) cosmological
constant in the Einstein static universe. Of the two remaining propagation equations, the shear
evolution formula takes the form

Eab + ω〈aωb〉 = 0, (4)

where Eab is the electric component of the Weyl tensor4. The vorticity propagation equation,
on the other hand, is trivially satisfied. Two of the three kinematical constraints, the shear

3 Originally, Gödel’s solution was given for dust (i.e. µ �= 0, p = 0,� �= 0). However, through the transformation
µ → µ′ = µ + p and � → �′ = � + κp, the Gödel spacetime can be reinterpreted as a perfect-fluid model.
4 Angle brackets are used to indicate orthogonally projected vectors and the projected, symmetric and trace-free part
of second rank tensors.



1776 J D Barrow and C G Tsagas

divergence and the vorticity divergence, are also trivially satisfied, while the gravito-magnetic
constraint leads to

Hab = 0, (5)

with Hab being the magnetic counterpart of Eab. It should be emphasized that the latter is not
covariantly constant (i.e. ∇cEab �= 0). Instead, one can use equation (4) to show that

Ėab = 0 = DcEab, (6)

in agreement with the stationary nature and spatial homogeneity of the Gödel spacetime.
Clearly, result (6b) also guarantees that DbEab = 0 = curl Eab.

2.4. The Bianchi identities

The Bianchi identities provide two pairs of propagation and constraint equations for the
conformal curvature, which is monitored through the electric and the magnetic parts of the
Weyl tensor. When applied to the Gödel spacetime, the Ė-equation gives

E〈adεb〉cdωc = 0, (7)

while the Ḣ -equation is trivially satisfied. Note that, when (4) is taken into account, the
above constraint also becomes trivial. On the other hand, the divEab and divHab constraints
associated with the Bianchi identities lead to

Daµ = 0 (8)

and

κ(µ + p)ωa + 3Eabω
b = 0, (9)

respectively. Results (2a) and (8) combine to ensure that ∇aµ = 0, while from equation (3)
we obtain ṗ = 0. In other words, both the energy density and the isotropic pressure of the
matter that fill Gödel’s universe are covariantly constant quantities.

2.5. Further constraints

Additional constraints are obtained by contracting (4) along ωa and substituting the result into
equation (9). Then one finds that

κ(µ + p) = 2ω2, (10)

which also measures the total inertial mass of the Gödel universe. On using this result, we can
recast equation (3) as

κ(µ − p) = −2�, (11)

to guarantee that � � 0 as long as p � µ. The cosmological constant vanishes only when
the fluid has a maximally stiff equation of state, with p = µ. Thus, for conventional matter
sources, the Gödel spacetime has non-positive �. This restriction is relaxed when dealing with
the Newtonian analogue of the Gödel universe (see below). From (10) and (11) it becomes
clear that, given the equation of state of the matter, only one of µ, ω or � is needed to determine
the other two. Finally, constraints (10) and (11) combine to give

κµ + � − ω2 = 0, (12)

which is the Gödel analogue of the Friedmann equation.
The generic rotation of the Gödel universe means that the fluid flow lines are not

hypersurface orthogonal and, therefore, there are no integrable spatial sections. Nevertheless,
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one can still employ the generalized Gauss–Codacci equation to evaluate the orthogonally
projected Ricci tensor. Applied to the Gödel model, the latter reads

Rab = 2
3 (κµ + � − ω2)hab, (13)

which by means of constraint (12) ensures that Rab vanishes.

2.6. The Newtonian analogue

There is a simple Newtonian counterpart to the rotating Gödel universe in the case of zero
pressure that has been explored by Ozsváth and Schücking [41] (see also [42]) following
Gödel [43]. If we consider a pressureless fluid of constant density µ rotating rigidly with
constant angular velocity ω about the z-axis so �v = (−ωy,ωx, 0) then, by integrating the
Euler equation

∂�v
∂t

+ �v · ∇�v = −∇	, (14)

we find that the Newtonian gravitational potential is

	 = 1
2ω2(x2 + y2) (15)

where now ∇ indicates ordinary partial derivatives. This solves the Poisson equation with
cosmological constant term (c = 1),

∇2	 + � = 1
2κµ, (16)

if

2ω2 ≡ 1
2κµ − �. (17)

We see that this Newtonian result coincides with the relation (3) for the Gödel solution in the
p = 0 case and, in contrast to general relativity, can be satisfied even for � = 0 and some
� > 0 values. In general relativity the additional geometrical constraint (11) leads to the
stronger relation,

ω2 ≡ 1
2κµ, (18)

for Gödel’s solution, which therefore requires � < 0.

2.7. The closed timelike curves

The most intriguing property of the Gödel spacetime is the existence of closed timelike curves,
which makes time travel a theoretical possibility and has ensured an enduring interest in the
model [44–47]. To demonstrate the presence of such closed timelike worldlines, consider the
line element of the original Gödel solution (i.e. with p = 0 and metric signature -2) written
in cylindrical coordinates (r, z, φ)

ds2 = 4a2[dt2 − dr2 − dz2 + (sinh4 r − sinh2 r)dφ2 + 2
√

2 sinh2 rdφdt], (19)

with 1/a2 = κµ = −2� [1]. Then, introducing the coordinate transformation t → t̃ =
2at, r → r̃ = 2ar, z → z̃ = 2az and φ → φ̃ = φ, transforms the above line element into

ds2 = dt2 − dr2 − dz2 + 4a2
[
sinh4

( r

2a

)
− sinh2

( r

2a

)]
dφ2 + 4

√
2a sinh2

( r

2a

)
dφdt,

(20)

where the tildas have been suppressed. Clearly, if for some r = r0 the quantity sinh4(r/2a)−
sinh2(r/2a) is positive, the circle defined by r = r0, t = 0 = z will be timelike
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everywhere [1]. Thus, on using (10) with p = 0, the condition r > 2 ln(1 +
√

2)/
√

κµ

for the existence of such closed timelike curves reads

r > RG ≡
√

2 ln(1 +
√

2)

ω
, (21)

where RG denotes the radius of the observer’s ‘causal region’. Hence, RG → ∞ as ω → 0,
which means that the weaker the rotation of the model the more ‘remote’ the closed timelike
curves become. Alternatively, one might say that the faster the Gödel universe rotates
the smaller its causal region becomes. Note that one can include the fluid pressure in
equation (21) by simply using the transformation µ → µ̃ = µ + p.

3. The perturbed Gödel universe

3.1. Conservation laws

For a perfect fluid, the energy density and the momentum density conservation laws are given
by the nonlinear expressions

µ̇ = −(µ + p)�, (22)

and

(µ + p)u̇a = −Dap, (23)

respectively. These formulae also hold after we have linearized about the Gödel background.
In that case, however, we can substitute the zero-order relation µ + p = 2ω2 on the right-hand
side of (22). Also, when dealing with a barotropic perfect fluid (i.e. for p = p(µ)), we have
Dap = c2

s Daµ, where c2
s = dp/dµ is the square of the adiabatic sound speed.

3.2. Density perturbations

Consider a general spacetime filled with a single barotropic perfect fluid. The nonlinear
evolution of density inhomogeneities is monitored by the system [38]

Ḋ〈a〉 = w�Da − (σab − ωab)Db − (1 + w)Za, (24)

Ż〈a〉 = − 2
3�Za − (σab − ωab)Zb − 1

2κµDa + a �u̇a + aAa − 2aDa(σ
2 − ω2), (25)

where Da = (a/µ)Daµ,Za = aDa� and w ≡ p/µ by definition5. Also

� = κµ − 1
3�2 − 2(σ 2 − ω2) + A + � (26)

defines � and Aa = DaA with A = ∇au̇a . The 4-acceleration satisfies the momentum-density
conservation law, which for adiabatic perturbations is given by equation (23). The projected
vectors Da and Za , respectively, describe local inhomogeneities in the matter energy density
and in the volume expansion [38]. Note that in an exact Gödel universe Daµ = 0 = Da�.
Hence, Da andZa vanish identically to zero order and therefore both satisfy the gauge-invariant
requirements [48].

The scalar � plays an important and subtle role via its coupling with the 4-acceleration
in equation (25). In particular, the sign of � determines the effect of the pressure gradients
associated with u̇a . When � is positive these gradients will add to the gravitational pull of the

5 The background scale a, which has been introduced to make D and Z dimensionless and appears in equations (24),
(25), is a characteristic dimension of the Gödel universe corresponding to the radius of the smallest closed timelike
curves [1, 37].
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density inhomogeneities. Otherwise, they will contribute to the pressure support. The subtlety
in � is that the vorticity adds to the effect of the ordinary matter, whereas the shear opposes
it. This is a purely relativistic effect, with no known Newtonian analogue. Note that in exact
FRW models � = 0, which explains why the aforementioned behaviour has passed relatively
unnoticed [38].

Linearizing equations (24), (25) about the Gödel universe and keeping only the zero-order
component of (26) we obtain

Ḋa = ωabDb − (1 + w)Za, (27)

Ża = ωabZb − 1
2κµDa + a�u̇a + aAa + 2aDaω

2, (28)

with

� = κµ + 2ω2 + � = 3ω2 > 0, (29)

since κµ − ω2 + � = 0 in the exact Gödel spacetime. Also, A = Dau̇a to first order and u̇a is
still given by equation (23). Then, the system (27), (28) reads

Ḋa = ωabDb − (1 + w)Za, (30)

Ża = ωabZb − 1

2
κµDa − 3aω2

µ(1 + w)
Dap − a

µ(1 + w)
Da(D

2p) + 2aDaω
2 (31)

where ω2 = κµ(1 + w)/2 to zero order (see equation (10)). Compared to the perturbed FRW
case, the nonzero rotation of the Gödel background has added four extra terms to the system
(30), (31). They are the first term on the right-hand side of (30), and the first, third and
the last term on the right-hand side of (31). Note the second of the three vorticity terms in
equation (31), which is proportional to ω2 and adds to the overall gravitational pull. This
relativistic effect seems to suggest that rotational energy also has ‘weight’. Indirectly, it also
seems to favour the de Felice and the Barrabès et al interpretation [49, 50] of the Abramowicz–
Lasota ‘centrifugal force reversal’ effect [51, 52]. The third vorticity term in (31), on the other
hand, is triggered by inhomogeneities in ω2 and will also appear in a Newtonian treatment. It
can resist the collapse, thus mimicking the effects of the ordinary pressure gradients. As we
shall see below, the stability of the Gödel universe depends crucially on which of these two
terms dominates over the other.

Density perturbations are related to gradients in the vorticity and the curvature by means
of the Gauss–Codacci equation, according to which the linearized projected Ricci scalar is
given by R = 2(κµ − ω2 + �). The above immediately implies the linear relation

κµDa = aDaω
2 + 1

2aDaR, (32)

between Da, Daω
2 and DaR.

3.3. Two alternative types of perturbations

Following (32) we may consider two types of density perturbation, first by setting DaR = 0
and then by assuming that Daω

2 = 0. For simplicity, we will label the former isocurvature and
the latter perturbations under rigid rotation. In general one does expect these two pertrurbation
types to propagate independently. However, this approximation scheme simplifies the
system (30), (31) and we can investigate the effects of global rotation on the evolution of
density perturbations analytically.
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3.3.1. Isocurvature perturbations. Setting DaR = 0 in equation (32) means that aDaω
2 =

κµDa and the linear system (30), (31) takes the form

Ḋa = ωabDb − (1 + w)Za, (33)

Ża = ωabZb +
3

2
κµ

(
1 − c2

s

)
Da − c2

s

1 + w
Da(D

bDb), (34)

where we have used the background relation ω2 = κµ(1 + w)/2 and the barotropic
expression Dap = (

µc2
s

/
a
)
Da . The projected divergence of these equations, multiplied by the

background scale a, gives the set of equations governing the linear evolution of isocurvature
density perturbations in a perturbed Gödel universe.

�̇ = −(1 + w)Z, (35)

Ż = 3

2
κµ

(
1 − c2

s

)
� − c2

s

1 + w
D2�, (36)

where � = aDaDa and Z = aDaZa by definition6. Note that the scalar � describes local
matter aggregations and it is the covariant analogue of the standard density contrast δρ/ρ.
The system (35), (36) leads to the following wavelike equation for the evolution of matter
aggregations:

�̈ = − 3
2κµ(1 + w)

(
1 − c2

s

)
� + c2

s D2�, (37)

and subsequently leads to

�̈(k) = −
[

3

2
κµ(1 + w)

(
1 − c2

s

)
+

k2c2
s

a2

]
�(k), (38)

assuming the decomposition � = ∑
k�(k)Q

(k) with Da�(k) = 0. Note that Q(k) are locally
defined scalar harmonics with Q̇(k) = 0 and D2Q(k) = −(k2/a2)Q(k). The last equation has
an oscillatory (i.e. neutrally stable) solution as long as −µ � p � µ. Note that the stability
of the isocurvature modes is guaranteed even when the fluid pressure vanishes.

Incorporating Daω
2 in equation (34) has increased the overall resistance of the model

against the gravitational pull of the matter, since gradients in the rotational energy act like
pressure gradients. Their presence is responsible for the stability of the linear isocurvature
perturbations demonstrated in (38).

3.3.2. Perturbations under rigid rotation. Setting Daω
2 = 0 in equation (31) and using the

barotropic fluid relation Dap = (
µc2

s

/
a
)
Da , transforms the system (30), (31) into

Ḋa = ωabDb − (1 + w)Za, (39)

Ża = ωabZb − 1

2
κµ

(
1 + 3c2

s

)
Da − c2

s

1 + w
Da(D

bDb). (40)

Multiplying the above with the characteristic background scalar a and then taking their scalar
parts, as before, we obtain

�̇ = −(1 + w)Z, (41)

Ż = −1

2
κµ

(
1 + 3c2

s

)
� − c2

s

1 + w
D2�, (42)

6 In deriving equation (35) we have used the linear result aDaḊa = �̇ + aωabDaDb . An exactly analogous relation
for the expansion gradients has been used to obtain (36).
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which leads to the following wavelike equation for �(k):

�̈(k) =
[

1

2
κµ(1 + w)

(
1 + 3c2

s

) − k2c2
s

a2

]
�(k), (43)

on using the harmonic decomposition � = ∑
k�(k)Q

(k) of the previous section. For dust
(i.e. w = 0 = c2

s ) there is no pressure support and � grows unimpeded. In the presence of
pressure, however, there is an effective Jeans length given by

λJ = cs

ω
√

1 + 3c2
s

, (44)

since κµ(1 + w) = 2ω2 to zero order. Inhomogeneities on scales exceeding λJ collapse under
the gravitational pull of the matter, but short wavelength perturbations oscillate like sound
waves. Interestingly, the Jeans scale given above is comparable to RG, namely to the radius
of the smallest closed timelike curves (see equation (21)). This means that the causal regions
of a Gödel universe containing a fluid with nonzero pressure are stable with respect to linear
matter aggregations.

By setting Daω
2 = 0 we have removed the supporting effect of the centrifugal energy

gradients from equation (31). This is the reason for the instability pattern associated with
(43). The only effect of the Gödel background is via the rotational energy contribution to the
overall gravitational pull (see also section 3.2). As a result, the above given Jeans scale is
smaller than that of the almost-FRW models [53]. Note that the Jeans criterion found here is
analogous to that obtained in [37].

3.4. Directional effects on density perturbations

The rotation of the Gödel universe introduces a preferred direction because of the background
vorticity vector. The analysis of density perturbations given in the previous sections examines
the evolution of the scalar �, which describes the average matter aggregation and therefore it
does not pick out any directional effects. These, however, are incorporated in Da , the projected
vector that describes variations in the density distribution as seen between two neighbouring
observers. To reveal the directional effects of the background rotation it helps to implement
an additional splitting of the Gödel space, along and orthogonal to the vorticity vector. As a
first step, we introduce the unit vector na = ωa/ω (where ω = √

ωaωa) parallel to ωa and use
it to define the two-dimensional projection tensor

fab = hab − nanb, (45)

with fab = f(ab), fabn
b = 0, fa

bfb
c = fa

c and fa
a = 2. This projects into the 2D space

orthogonal to ωa . Employing (45) we define the gradient D̃a = fa
bDb, with naD̃a = 0, and

introduce the decomposition Da = D̃a + nan
bDb orthogonal to and along the rotation axis.

Then, the density gradients split as

Da = D̃a + D̃na, (46)

where D̃a = fa
bDb = (a/µ)D̃aµ is the density perturbation orthogonal to na and

D̃ = naDa = (a/µ)naDaµ is the density perturbation parallel to the rotation axis. Similarly
we write Za = Z̃a + Z̃na , with Z̃a = aD̃a� and Z̃ = anaDa�, for the expansion gradients.

Starting from equations (30) and (31), using the barotropic fluid relation Dap = c2
s Daµ,

expressing Da(D2p) with respect to D2(Dap) (by changing the order of the covariant
derivatives), and then applying the decomposition introduced above, we obtain

¨̃Da = 2
(
1 − 2c2

s

)
εabcω

b ˙̃Dc + 1
2κµ(1 + w)

(
2 + c2

s

)
D̃a + c2

s D2D̃a − 2(1 + w)aD̃aω
2, (47)
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for density perturbations orthogonal to na and

¨̃D = 1
2κµ(1 + w)

(
1 + 3c2

s

)
D̃ + c2

s D2D̃ − 2(1 + w)anaDaω
2, (48)

for those along the rotation axis. This reveals a qualitatively different evolution for
perturbations orthogonal and parallel to ωa . The gravitational pull of the matter gets stronger
along the rotation axis as the fluid sound speed increases above the c2

s = 1/2 threshold. The
role of the background vorticity, on the other hand, is more pronounced orthogonal to the
rotation axis and depends on the nature of the medium and on the vector product εabcω

b ˙̃Dc.
Note that the effects of pressure gradients and of gradients in the centrifugal energy density,
orthogonal and parallel to ωa , are effectively identical.

One can obtain more quantitative results by looking at certain particular cases. For
example, consider inhomogeneities parallel to the rotation axis and assume that the vorticity
gradients do not change along this direction (i.e. set naDaω

2 = 0). Then, it is easy to show
that D̃ is unstable for dust and that there is an associated Jeans length when the fluid has
nonzero pressure, as predicted in [37]. Alternatively, we may allow for naDaω

2 �= 0 and
assume isocurvature perturbations (i.e. set aDaω

2 = κµDa). In that case, inhomogeneities
parallel to the rotation axis are neutrally stable, they oscillate, for all types of matter with
w, c2

s � 0. Thus, the evolution of density perturbations in the direction of the rotation axis is
identical to that of average matter aggregations.

The supporting role of the gradient Daω
2 against inhomogeneities orthogonal to the

rotation axis is also clear, at least for perturbations of the isocurvature type. In this direction
the background vorticity has an additional effect conveyed by the first term in the right-hand
side of equation (47). This is harder to quantify, however, as it depends in an intricate way on
the nature of the fluid and on the orientation of the vector εabcω

b ˙̃Dc. Interestingly, the effect
of this term is reversed as the sound speed of the medium crosses the c2

s = 1/2 threshold7.

3.5. Vorticity perturbations

Rotation is controlled by a pair of nonlinear propagation and constraint equations given
respectively by

ω̇〈a〉 = − 2
3�ωa − 1

2 curl u̇a + σabω
b, (49)

and

Daω
a = u̇aω

a. (50)

The same expressions also hold when we linearise about the Gödel background, although then
only the zero-order vorticity vector contributes to the right-hand side of (49) and (50). For a
barotropic fluid the vorticity propagation formula takes the linearized form

ω̇〈a〉 = − 2
3

(
1 − 3

2c2
s

)
�ωa + σabω

b. (51)

When deriving the above we have used the barotropic expression u̇a = −[
c2

s

/
(µ + p)

]
Daµ

for the 4-acceleration, the conservation law (22), and taken into account that on a rotating
background the projected gradients of scalars do not commute. All these guarantee that
curl u̇a = −2c2

s �ωa .
Part of the rotational behaviour seen in equation (51) is already familiar from studies

of the perturbed FRW universes. In particular, we see that expansion leads to less rotation

7 The projected vector D̃a contains information about scalar-matter aggregations as well as for turbulence and
distortions in the density distribution of the fluid. One should be able to isolate and extract this information by
developing further the decomposition introduced via (45) and (46). This, however, goes beyond the scope of this
paper.
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when c2
s < 2/3, but increases it as ωa ∝ a3c2

s −2 in models with a stiffer equation of state
for the matter. In the case of contraction the situation is, obviously, reversed—at least until
the nonlinear terms cease to be negligible. The background rotation of the Gödel universe,
however, has introduced additional effects which propagate through the shear term in the
right-hand side of (51). To get some idea of impact of the shear, we will assume that ωa

is a shear eigenvector (i.e. set σabω
b = σωa , where σ is the associated eigenvalue). Then,

equation (51) simplifies to

ω̇〈a〉 = −[
2
3

(
1 − 3

2c2
s

)
� − σ

]
ωa. (52)

Accordingly, when σ > 0 the extra shear coupling will increase the overall rotation of the
model, but it will lead to a reduction otherwise.

To explain the shear effect, recall that positive σ means that there is an extra expansion
along the rotation axis due to the shear effects. Given, the trace-free nature σab, this means
that there is an overall contraction orthogonal to ωa , which explains why rotation increases
when σ > 0. Clearly, the opposite happens when σ is negative.

3.6. Gravitational-wave perturbations

3.6.1. Evolution of the shear. In addition to the vorticity, the shear also affects the
linear evolution of gravitational-wave perturbations. Here we will only present the relevant
propagation and constraint equations, which will be used to analyse linear gravity waves within
a perturbed Gödel universe in the following sections.

For perfect-fluid matter, the nonlinear shear evolution is governed by a set of one
propagation equation and one constraint

σ̇〈ab〉 = − 2
3�σab − Eab + D〈au̇b〉 − σc〈aσb〉c − ω〈aωb〉 + u̇〈au̇b〉, (53)

Dbσab = 2
3 Da� + curl ωa − 2εabcω

bu̇c. (54)

When linearized about the Gödel background, the constraint equation (54) remains the same,
whereas the propagation equation (53) reduces to

σ̇ab = −Eab + D〈au̇b〉 − ω〈aωb〉. (55)

3.6.2. Evolution of the Weyl components. A covariant description of the gravitational waves
is provided by the electric (Eab) and the magnetic (Hab) parts of the Weyl tensor. The two Weyl
components support the different polarization states of propagating gravitational radiation and
obey evolution and constraint equations that are remarkably similar to Maxwell’s equations.
For a perfect fluid, the nonlinear evolution of the two Weyl components is determined by a set
of two propagation equations [54]

Ė〈ab〉 = −�Eab + curl Hab − 1
2κ(µ + p)σab + 2u̇cεcd〈aHb〉d + 3σc〈aEb〉c − ωcεcd〈aEb〉d , (56)

Ḣ 〈ab〉 = −�Hab − curl Eab + 3σc〈aHb〉c − ωcεcd〈aHb〉d − 2u̇cεcd〈aEb〉d , (57)

supplemented by the constraints

DbEab = 1
3κDaµ + εabcσ

b
dH

cd − 3Habω
b, (58)

DbHab = κ(µ + p)ωa − εabcσ
b
dE

cd + 3Eabω
b. (59)
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In addition, the magnetic Weyl tensor is related to the kinematic variables through the nonlinear
constraint

Hab = curl σab + D〈aωb〉 + 2u̇〈aωb〉, (60)

where curl Tab = εcd〈aDcT d
b〉 for any symmetric, orthogonally projected tensor Tab.

Linearized about the unperturbed Gödel background, the propagation equations (56) and
(57) become

Ė〈ab〉 = −�Eab + curl Hab − 3ωcσc〈aωb〉 − ωcεcd〈aEb〉d , (61)

Ḣ ab = −curl Eab − ωcεcd〈aHb〉d − 2u̇cωc〈aωb〉, (62)

on using the zero-order relation (4) to express the background Eab tensor with respect to the
vorticity vector. Similarly, the two constraints (58) and (59) reduce to

DbEab = 1
3κDaµ − 3Habω

b, (63)

DbHab = κ(µ + p)ωa + εabcσ
b
dω

cωd + 3Eabω
b, (64)

while (60) does not change.

3.6.3. Isolating the gravitational-wave perturbations. Given the symmetric and trace-free
nature of Eab and Hab, we can isolate the pure tensor modes, namely the gravitational waves, by
demanding that Eab and Hab are also divergence free at the linear level. In practice, this means
setting the right-hand side of (63) and (64) to zero. When there is no background vorticity, as
in perturbed FRW models, we can isolate the gravity waves by assuming a barotropic fluid (i.e.
setting p = p(µ)) and by switching off both scalar and vector perturbations. This is done by
introducing the linear constraints Daµ = 0 = Da� = ωa , which are consistent to first order
[55–57]. When the background is rotating, however, the aforementioned set of constraints is
not enough. Moreover, switching off the model’s rotation is no longer an option. Here, we
are dealing with the rotating Gödel background, and we will isolate the pure tensor modes by
imposing the following self-consistent linear constraints:

Daµ = 0 = Da�, Daω
2 = 0 = curl ωa, (65)

Habω
b = 0 = σabω

b, Eabω
b = − 1

3κ(µ + p)ωa, (66)

in addition to the barotropic fluid assumption. Clearly these constraints guarantee the
transversality of Eab and Hab, as well as that of σab, while they maintain a non-zero background
rotation. Note that constraint (65a) is the standard restriction imposed on perturbed FRW
cosmologies, while the rest are new. Of the three extra constraints, (65b) guarantees that any
perturbations in the centrifugal energy that happen to be present are switched off, and that the
vorticity vector is curl free. Constraints (66), on the other hand, imply that ωa is an eigenvector
of Hab, σab and Eab to linear order. In the first two cases the corresponding eigenvalues are
zero, whereas in the third the eigenvalue is −κ(µ + p)/3. Finally, we point out that the first of
the constraints (65a), together with the barotropic fluid assumption, guarantees that Dap = 0.
This in turn ensures that u̇a = 0 through the momentum-density conservation. As a result,
Daω

a = 0 (see equation (50)), which means that the vorticity vector is solenoidal.
We check the consistency of any set of constraints by propagating them in time. If

every constraint is still satisfied, without the need of any extra restrictions, we say that the
set is self-consistent. Here we can show that the set (65), (66) is self-consistent only when
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the matter source is pressure-free dust (i.e. for p = 0).8 In particular, the consistency of
(65a) follows directly from the linear propagation equations (30), (31) of the density and the
expansion gradients, respectively. The consistency of the two constraints in (65b) is shown
by propagating them in time and then by using the linear commutation laws between time
derivatives and projected covariant derivatives (see [58] for a comprehensive list). Finally,
taking the time derivatives of Habω

b, σabω
b and Eabω

b we can show that constraints (66) are
also consistent to linear order. In doing so, one needs to employ the zero-order relations (4),
(10) and use the covariant identities given in [58].

3.6.4. Linear evolution of gravitational waves. Once the constraints (65), (66) have been
imposed and the pure tensor modes have been isolated, equations (61) and (62) reduce to

Ėab = −�Eab + curl Hab − ωcεcd〈aEb〉d , (67)

Ḣ ab = −curl Eab − ωcεcd〈aHb〉d , (68)

respectively. In the same situation, the constraint (60) reads

Hab = curl σab + D〈aωb〉, (69)

implying that Hab �= curl σab in contrast to the perturbed FRW case. In the Gödel spacetime
the magnetic component of the Weyl tensor vanishes identically (this is a feature that permits
the existence of the close Newtonian analogue discussed above). Its electric counterpart,
however, has a nonzero value that is expressed in terms of the model’s vorticity (see
equation (4)). This implies, according to [48], that only the gauge invariance of Hab is
guaranteed when linearizing about a Gödel background. Therefore, to avoid any gauge-related
ambiguities, we will monitor the linear gravity-wave perturbations by looking exclusively into
the evolution of Hab.

To obtain the wave equation for Hab we take the time derivative of equation (68) and
then employ a lengthy, but relatively straightforward, calculation. In the process we apply the
constraints (65), (66), use the zero-order relations (4) and (10), to express Eab and κ(µ + p)

with respect to the background vorticity vector, and employ the commutation laws and the
covariant identities of [58]. At the end we arrive at

Ḧ ab − D2Hab = 0, (70)

which means that the linear-order wave equation of Hab has no vorticity-related source terms,
despite the fact that the background rotation has not been switched off. Following the above,
we claim that the Gödel universe is neutrally stable against these linearized gravity-wave
perturbations.

4. The case of homogeneous perturbations

We can also consider the stability of the Gödel universe against homogeneous perturbations,
by ignoring spatial gradients such as Daµ, Da�, Daω

2, etc. We will do this by focusing on
the Raychaudhuri equation, which takes the linearized form

�̇ = − 1
2 (µ + 3p) + ω2 + �. (71)

8 In principle, there might be an alternative set of linear constraints, which is less restrictive than (65), (66) and still
isolates the pure tensor modes of a perturbed Gödel universe. It is also possible that a modified set of constraints
could isolate the linear gravity-wave perturbations, even for matter with nonzero pressure. As yet, however, we have
not been able to identify any such sets.
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We can determine the effects of small homogeneous perturbations of the metric that alter the
matter density and rotation by comparing the relative growth of the vorticity and matter energy
density terms in (71). The conservation of angular momentum for rotational perturbations of
a perfect fluid with equation of state

p = (γ − 1)µ ≡ c2
s µ

requires that the angular momentum of an eddy of mass M and comoving scale a be constant;
thus

Ma2ω = const.

Since µ ∝ a−3γ and M ∝ µa3 we have ω ∝ a3γ−5 (in agreement with equation (52) when σ

is negligible) and so

ω2

µ
∝ a9γ−10.

Thus, for changes that cause expansion (a → ∞) the rotation dominates the effects of self-
gravity whenever the fluid state satisfies γ > 10/9. This includes the case of radiation
(γ = 4/3) but excludes that of dust (γ = 1). For perturbations that produce gravitational
collapse (a → 0) the opposite conclusion holds: rotation becomes negligible with respect
to the self-gravity of the fluid whenever γ > 10/9 but is dominant whenever γ < 10/9.

Superficially, this implies that rotation would halt gravitational collapse whenever γ < 10/9,

but the self-gravitating effect of the rotation actually contributes to the collapse and a singularity
will result so long as the matter stresses obey the strong energy condition, in accord with the
singularity theorems [4]. The detailed behaviour of the rotational collapse depends on the
nonlinear behaviour of the perturbations as a → 0.

5. Scalar fields in the Gödel universe

Scalar field dominated models are key to contemporary cosmology, given their prominent role
in inflationary scenarios for the very early universe and as candidates for the dark energy content
of the universe today. It is interesting to examine whether the high symmetry of homogeneous
spacetimes might make them more likely as initial states. If so, they may constraint the
existence of scalar fields in some way. The symmetries of the Einstein static universe, for
example, mean that any scalar field that happened to be present will have constant kinetic
energy and potential [35]. Here we will look into the implications of the Gödel symmetries
for such a scalar field

Consider a general spacetime filled with a minimally coupled scalar filed φ and assume
that ∇aφ∇aφ < 0 [59]. Then, φ has a perfect-fluid description with respect to a 4-velocity
field ua that is normal to the surfaces {φ = constant}. More specifically, the scalar field
behaves as a perfect fluid with

µφ = 1
2 φ̇2 + V (φ) and pφ = 1

2 φ̇2 − V (φ), (72)

relative to ua = −∇aφ/φ̇ [59]. Note that φ̇ = −(∇aφ∇aφ)1/2 determines the kinetic energy
of the scalar field and V (φ) is the associated potential.

The perfect-fluid description of φ is necessary if one wants to allow scalar fields in the
Gödel universe. However, since the covariant derivatives of scalars commute, it becomes clear
that the 4-velocity field ua defined above is irrotational. In other words, the vorticity vector
associated with ua vanishes [59], which is in direct contradiction with the generic rotation of
the Gödel spacetime. Putting it in a different way, one can say that the presence of the above
ua implies the existence of global spacelike hypersurfaces, something strictly forbidden in the
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Gödel spacetime. On these grounds, one could argue that, at least globally, minimally coupled
scalar fields are not compatible with the symmetries of the Gödel universe. More generally,
these considerations may offer some insight into the absence of observational evidence for
rotation in the universe today, to very high precision [60]. If the initial state of the universe
is dominated by scalar fields, which appear to exist in profusion in string theories [61], then
a zero-vorticity initial state will be enforced and provides a simple explanation for Mach’s
‘principle’ even without inflation. Of course, any subsequent bout of inflation driven by
scalar fields will reduce the effects of pre-existing vorticity to levels far below the threshold of
detectability today and would be unable to generate new vorticity from the scalar fluctuations.
As a result, the observation of any large-scale vorticity in the universe would be a decisive
piece of evidence against an early inflationary state [62] and reveal specific information about
the nature of matter at very high energies.

It should be emphasized that in this section we have considered an exact Gödel spacetime
containing a single scalar field with a timelike gradient (i.e. ∇aφ∇aφ < 0) and a corresponding
Segrè type [1, (111)]. However, scalar fields of different nature are not a priori excluded.
For example, a scalar field with zero gradient (i.e. ∇aφ = 0), which corresponds to an
effective cosmological constant and has a Segrè type [(1, 111)] is clearly compatible with the
symmetries of the Gödel metric. For more details on the classification of scalar fields with
respect to the nature of their gradients the reader is referred to [63]. We should also point out
that scalar fields are allowed in rotating Gödel-type spacetimes as it has been shown in [44].

6. Discussion

Gödel’s universe is one of the most intriguing solutions of the Einstein field equations. The
common factor behind its unique and exotic features is the rigid rotation of the model, which
is why the Gödel solution has been widely used to illustrate the possible general-relativistic
effects of global vorticity and time travel. In this paper we have looked into the implications
of the model’s generic rotation for the stability of the Gödel universe under a variety of
perturbations.

We first considered scalar-matter aggregations and looked into two different types of
inhomogeneities, namely isocurvature and perturbations under rigid rotation. We found
different patterns of stability determined by the presence or absence of gradients in the
centrifugal energy. These act as effective pressure gradients balancing the gravitational pull
of the matter fields. Interestingly, the latter is found to have a contribution from the rotational
energy as well. This is a purely relativistic effect, as opposed to the supporting effect of the
vortical energy gradients which is Newtonian in nature. When the gradients in the rotational
energy are included, as occurs for the isocurvature perturbations, the model is found to
be stable against density inhomogeneities even for pressure-free fluids. In their absence,
however, stability is possible only if there are pressure gradients and then only on scales below
an effective Jeans length. The latter is of the order of the largest causal region and smaller
than its counterpart in almost-FRW cosmologies. This is what happens when dealing with
perturbations under rigid rotation.

The equation of state of the cosmic medium is decisive for the evolution of homogenous
perturbations. These were studied by comparing the relative growth between the vorticity
and the matter terms in the Raychaudhuri equation. For perturbations causing expansion, we
found that rotation dominates over self-gravity when the equation of state obeys p > µ/9,
which includes the cases of radiation and stiff matter. In the case of contraction the situation
is reversed.
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The linear rotational behaviour of the perturbed Gödel universe was found to follow the
general pattern familiar from the almost-FRW studies, with some additional effects due to
shape distortions. We examined these effects by aligning the vorticity vector along the shear
eigenvectors. We found that, when the shape distortions lead to an extra contraction orthogonal
to the rotation axis, the vorticity of the model increased, but it decreased otherwise.

The covariant analysis of linear gravitational waves on rotating backgrounds is
complicated by the need to select and impose a set of constraints that isolates the pure
tensor modes without switching off the vorticity. Here, we have introduced for the first time,
a set of seven linear constraints that does this. We then proceeded to study the gravity-wave
evolution by looking at the behaviour of the magnetic Weyl tensor. Our choice was based on
the fact that this tensor has no Newtonian analogue and vanishes in the exact Gödel spacetime.
The latter property guarantees that our analysis is free of any gauge-related ambiguities. The
result was a simple plane-wave equation for Hab without any vorticity-related source terms,
which argues for the neutral stability of linear gravity-wave perturbations.

Finally, we have considered the implications of the Gödel symmetries for the presence
of scalar field. We argue that the absence of any global spacelike hypersurfaces in the Gödel
spacetime, namely the absence of any global irrotational vector field, forbids the introduction
of scalar fields with timelike gradient vectors.
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[8] Ozsváth I and Schücking E 2003 Am. J. Phys. 71 801
[9] Novello M, Soares I D and Tiomno J 1983 Phys. Rev. D 27 779

[10] Teixeira A F F, Rebouças M J and Aman J E 1985 Phys. Rev. D 32 3309
[11] Rebouças M J, Aman J E and Teixeira A F F 1986 J. Math. Phys. 27 1370
[12] Fonseca-Neto J B and Rebouças M J 1998 Gen. Rel. Grav. 30 1301
[13] Carneiro S 2000 Phys. Rev. D 61 083506
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