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Abstract

The subject of this theses is the study of the single pulses of pulsars Pulsar PSR
0525+21, Pulsar PSR 0329+54 and Pulsar PSR 1822-09 in correlation to their
emitted radiation. The behaviour of the core (main) components and conal (first &
second) components in connection with their intensity, is investigated. The pulses are
distributed to twelve categories according to their maximum intensities. The resulting
profiles are studied and the maximum values of each component recorded. The study
reveals that the First to Main and Second to Main component’s ratio decreases as the
fractionated intensity (sigma) increases. The same phenomenon occurs for the Second
to First component’s ratio for two out of the three scans from PSR 0329+54.
Increase instead of decrease is  for the Second to First component’s ratio with the
increase of the sigma in contrast to the rest of the results. Study of more pulsars is
needed for these results to be explained and theories created.






Abstract in Greek - Iepidnyn

Avuxeiuevo avtig g Irvyioxns Epyaciog eivor n UEAETH TV UEUOVOUEVDV TOAUDY
twv pulsars PSR 0525+21, PSR 0329+54 xa: PSR 1822-09 ovvoptioer ¢
axtivofoiiog tovg. H ueletdrar n ooumepipopa te KOpiog oovioTmoos, s TPWTHS Kol
O0EVTEPNS OVVIOTMDOOS (VG COVAPTHON THS EVTATHS TV ToAumv. Ot moluoi yawpiloviar oe
0WOEKa. KOTNYOPIES TOUPWVO UE THYV UEYIOTH TN TV Toludv tovs. To mpopii
ONULOVPYODVTOL UEAETOVTOL KO Ol UEYLOTES TIUES TV TOAUDY KaTaypdpoviol. H ueAétn
Kotodekvoel o 10yos s Ipatng mpog v Kopio ovoviorwoo kai o Loyog g Asdtepns
mpogc v Kdpio ooviotwooa elottwvetar pe v odénon e KAAGUOTIKNG EVIOONS
(oiyua). To 1010 pouvouevo mopotnpeitor yia tov 10yo ¢ Aevtepng mpog v Ipaty
oVVIOTOO0, 0 000 a0 TIG TPelS Kataypopés tov maioop PSR 0329+54. Xtnv tpity
KaToypopt] TopoaTnpetor avinon avti yia UEIWon Ue TNV OOEHON TOD GIYUO, KATL TOD
épyetan oe ovtifeon ue tig ailes ovo kataypopés. Meiétn mepioootepwv waioop eival
ATOPOITNTH VIO TNV KAADTEPN KATAVONGH KoL ECHYNGH TOD POIVOUEVOD.



Table of Contents:

(A) Introduction:

1. A brief History on the discovery of pulsars............cccccevviieiieiicicceece e 7
2.Pulse Profiles

(D Integrated Profile..........ccoiiiiiiiii e 9

(i) Individual RAIO PUISES.........coiieiiiiieiierie e 14

(a) Beam components, COre and CONE.........cceevuevverieieeseeriesie e 54

(D) SUDPUISES. ... e e 55

(€) Intensity fFIUCTUALIONS.........ccveieieei e 56

(d) POIArIZAtION. .. .ccveiieiieiie e e 60

(€) NUlling and MOGING........cceiieiieieiiereee e 61

() Mode ChanGiNg........ccveieiieiieiiee e e 61

(B) Experimental Data:
1. Pulsars examined
o (L1)Pulsar PSR 0525421 .. .cuiiiiiiiiii e 0200, 23

o (1.2)Pulsar PSR 0329454 . ... . i 26
o (1.3)Pulsar PSR 0450+455. .. ... e 29
o (1.4)Pulsar PSR 1822-09........iiiiiiiii e e 30
® (1.5)PUISAr PSR 0823426........ccueiuiiiiriiiiiniiiiieiieieiesie ettt 32
@ (1.6)PUISAr PSR 1133473, ...ttt 33
II. Data Processing Program
® (2.1)MAIN PrOGIAM...ueiiiiiieiieiieiete sttt bbbt n bbb e 34
0 (2.2)SUbmenu QUANITY......ccouiiiieiiieie s 36
® (2.3)SUDMENU PlOL......eiiiiiiiie s 38

III. Data Analysis and Results
o (3.1)Pulsar PSR 0525+21.......ccciviiiiiiiiiie a0 39

©  SCAN 7699....uiiiiiii i 39
®  SCAN 7700 ...t 41
®  SCAN TT02. ..ttt 42
®  SCAN 7833 . i 48
®  SCAN 9008.......eiiiiiiiiii i 51
o (3.2)Pulsar PSR 0329454 ... .. ..o DA
©  SCAN BBD3...oueeiiiiiiieee e 54
®  SCAN 8BB4 ...ttt 59
®  SCAN 8B5B......cvviiiiiiiii i 61
®  SCAN BB57 ...t 63
®  SCAN 8BD8......eiiiiiiiiii i 68
®  SCAN 8659 .. it 70
®  SCAN 8B60........uuueiiiiiiiiiiciree e 72



o (3.3)Pulsar PSR 0450+55. ... ..ot e e
o (3.4)Pulsar PSR 1822-00......c.oiiriiiiiii e,
o (B.5)Pulsar PSR 0823426.......ccciiiriiiiiiiee e e
o (3.6)PUISar PSR 1133+73.......cciiiiieieiie ettt

VL CONCIUSTON . < e e

(C) BIDHOGIaphy.......coeiiiiiiiee e



(A) Introduction

1. A brief History on the discovery of pulsars

The word pulsar is a contraction for "pulsating star" and appeared for the first time in print, in
1968. The first pulsar was observed by Jocelyn Bell Burnell and Antony Hewish on July 1967.
Initially baffled by the seemingly unnatural regularity of its emissions, they named their discovery
LGM-1, (which stands for "Little Green Men"). The hypothesis that “pulsars were beacons from
extraterrestrial civilizations” was never seriously considered. There was some however, some
discussion on the far-reaching implications should it turned out to be true. Their pulsar was later
dubbed CP 1919 (for Cambridge pulsar) and is now known by a number of designators including
PSR 1919+21, PSR B1919+21 (B indicates 1950.0 equatorial coordinates) and PSR J1921+2153
(J indicates 2000.0 equatorial coordinates). Although CP 1919 emits in radio wavelengths, pulsars
have, subsequently been found to emit in the X-ray and/or gamma ray wavelengths.

The theory that “pulsars were rotating neutron stars” was proposed independently by Thomas
Gold and Franco Pacini in 1968, and was proven beyond doubt by the discovery of the Crab
pulsar, a pulsar with a very short pulse (33-millisecond) period in the Crab nebula.

Many of the basic observational facts about radio pulsars were established shortly after their
discovery by Jocelyn Bell and Anthony Hewish. In the following years, theoretical and
observational progress flourished and though there are many questions remaining unanswered,
particularly about the emission mechanism, the basic model was established beyond all reasonable
doubt: “Pulsars are rapidly rotating, highly magnetised neutron stars formed during the
supernova explosions of massive 5-10 the mass of the Sun stars.”

An image of the lighthouse model, used to explain the basic pulsar phenomenon can be seen in
Figure 1 below. As the neutron start spins, charged particles from the surface of the neutron star,
move along the magnetic field lines in the magnetosphere, accelerated by it. The light blue cones
in Figure 1 represent them. Electromagnetic radiation is emitted by the accelerated particles,
which is mostly detected at radio frequencies, in the form of sequences of pulses, produced as the
magnetic axis (and therefore the radiation beam) crosses the observer’s line of site, at every
rotation. The orange ball in Figure 1, shows the relationship between the observed intensity and
the rotational phase of the pulsar.

Figure 1: The rotating neutron star (or ""lighthouse") model for pulsar emission.

In 1974, Joseph Hooton Taylor, Jr. and Russell Hulse discovered, a binary pulsar system, for
the first time, PSR B1913+16. It orbits a neutron star with an orbital period of just eight hours.
Einstein's theory of general relativity predicts that, the system should emit strong gravitational
radiation, causing the orbit to continually contract as it loses orbital energy. Observations of the
pulsar confirmed this prediction and provided the first evidence of the existence of gravitational
waves, as observations of this pulsar continue to agree with general relativity. In 1993, the Nobel
prize in physics was awarded to Taylor and Hulse for the discovery of this pulsar.

In 1982 Shri Kulkarmi and Don Backer discovered a pulsar with rotation period of 1.6
milliseconds. Observations revealed that it possessed a magnetic field much weaker than that of
ordinary pulsars and confirmed that a new class of object had been found. Those objects were
named MSPs, which stands for “millisecond pulsars”. They are believed to be the end product of
X-ray binaries. Due to their extremely rapid and stable rotation, MSPs can be used as clocks, as
stable as the atomic clocks on Earth. The factors affecting the arrival time of pulses on Earth by
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more than a few hundred nanoseconds can be easily detected and used to make precise

measurements. Some of the physical parameters that are accessible through pulsar timing include:
e The 3D position of the pulsar

The pulsar’s proper motion

The electron content of the interstellar medium along the propagation path]

The orbital parameters of any binary companion

The pulsar rotation period

The pulsar’s evolution with time

They are computed from the raw timing data by Tempo, a computer program specialized for
this task.
The deviations between the observed arrival times and predictions made using the above
parameters can be found (after they have been taken into account) and attributed to:
e Intrinsic variations in the spin period of the pulsar
or
e Errors in the realization of Terrestrial tine against which where measured
or
e The presence background gravitational waves

Scientists are currently attempting to resolve these possibilities by forming a Pulsar Timing
Array (they are comparing the deviations seen amongst several different pulsars). These efforts
might lead to a time scale better than the one available at the moment (a factor of ten or better)
and the first direct detection of gravitational waves.

The first extrasolar planet found was orbiting a MSP, (Aleksander Wolszczan ,made the
observation). This discovery presented important evidence regarding the widespread existence of
planets outside the solar system, although it is very unlikely that any life form could survive in an
environment with such intense radiation.

It became clear after their discovery that pulsars are excellent celestial clocks. In the original
discovery paper, the period of the first pulsar to be discovered, PSR B1919+21, was found to be
stable to one part in 10" over a time-scale of a few months. Following the discovery of the
millisecond pulsar B1937+21 in 1982, it was demonstrated that its period could be measured to
one part in 10" or better. This stability leads to a number of applications which include: time
keeping, probes of relativistic gravity and natural gravitational wave detectors. Nowadays a whole
science has developed into measuring the pulse time-of-arrival with the highest accuracy possible.

Since their discovery in 1967, radio pulsars have provided insights into physics on length
scales covering the range:

e 1 m (giant pulses from the Crab pulsar)
e 10 km (neutron star)

e kpc (Galactic) to hundreds

e Mpc (cosmological)

The exhibit extreme stellar environments, with matter at nuclear densities, magnetic fields of
10® G - 10" G, and spin periods ranging 1.5 s - 8.5 s. The regular pulses received from a pulsar
correspond to a single rotation of the neutron star each. By measuring the deviations from perfect
observed regularity we derive information about the neutron star itself, the interstellar medium it
has crossed to reach Earth, and the effects due to gravitational interaction with binary companion
stars.
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2. Pulse Profiles

Pulsars are weak radio sources with mean flux densities, (usually quoted in the literature at a
radio frequency of 400 MHz), that vary between 1 and 100 mdy (1 Jy = 102° Wm™Hz). Therefore
the addition of many thousands of pulses is required in order to produce a discernible profile.
Although the individual pulses vary quite dramatically from pulse to pulse, the integrated profile at
any particular observing frequency is very stable. The pulse profile can therefore act as a finger
print of the emission beam.

Neutron stars are extremely stable rotators and are essentially equivalent to large celestial
flywheels with moments of inertia ~ 10™. The rotating neutron star model known as “lighthouse
model”, correctly predicts that the pulse period should gradually increase as the outgoing
radiation carries away rotational kinetic energy. Gold showed that “a rotating neutron star with a
large magnetic field must be the dominant energy supply to the nebula” when a period increase of
36.5 ns per day was measured for the pulsar in the Crab nebula and the model became universally
accepted.

(i) Integrated Profile

The most striking characteristic of pulsars is the astonishing regularity of the pulsation period.
This machine-like precision may suggest that the whole range of phenomena to be observed in
pulsar radiation should follow equally simple patterns. On the other hand the individual pulses
exhibit an almost bewildering range of variability in the characteristics of the pulses, which
sometimes approach chaos. The actual time of arrival of the individual pulses varies over a
considerable range, their strengths vary on several distinct time scales, and their polarization is
variable. Also the individual pulses vary greatly in shape, intensity and longitude from one pulse to
the next. The integrated profile clearly depends on the number of pulses included in it.

In general integrated profiles remain stable in shape and polarization on long time scales. This
is the reason they are an important feature of pulsar emission.

Useful descriptions can be made by isolating typical properties of individual pulses, for
example their average width or alternatively by using the integrated pulse profile.

The integrated pulse profiles are obtained by superimposing a sequence of some hundreds of
individual pulses. This is achieved by taking sample of the radio signal at small time intervals, and
superimposing the sequence of samples at the period of the pulsar. Since the individual pulses are
often polarized, we must ensure that the total energy is recorded. For this to be achieved, the two
orthogonal modes of polarization must be received, separately detected and added.

The signal-to-noise ration in the integrated profile improves with larger receiver bandwidths
and integration times; it is necessary however to restrict the bandwidth for pulsars with large
dispersion measures, due to the smearing effect which would spoil the time resolution.



{n) Single Pulse
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Figure 2: Change of the integrated profile with the addition of pulses

It is known that the mean or integrated pulse profile for any given pulsar is very stable and has
a characteristic shape. One of the most important properties of a pulsar is the shape of its
integrated profile. The integrated profiles of most of the known pulsars have been obtained due to
the improvement in the signal-to-noise ration in several frequencies. A study of the observations
reveal that are often rather complex, with several components or, and that each pulsar has a
unique profile. Most profiles exhibit a single component, but multiple-components profiles are also
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common. The basic shape of multiple-component profiles is usually “double”,(two main peaks
with steep outer edges separated by a saddle region. Integrated profiles of 45 pulsars, showing the
wide variety of observed shapes, are given below.

Figure 3: Integrated pulses for 45 pulsars, all plotted on the same longitude scale (a 90° bar is given in the
bottom of the figure). These profiles were recorded at frequencies between 400 and 650 MHz, and are arranged in
order of increasing pulse period.

The shape of integrated profiles is generally somewhat frequency-dependent (it is a useful
generalization that the properties of the pulsars do not depend markedly on radio frequency, but
there are some systematic changes to be found in a number of pulsars).

For pulsars with double profile Craft & Comella (1968) found that the separation between the
two peaks tended to increase at lower frequencies and often the separation between identifiable
components varies this way.

The basic character of a pulsar’s profile is similar at all frequencies. Therefore pulsars may
be divided into two categories, according to whether they have “single” or “double” profiles,
called respectively Type S (simple) and Type C (complex) by Taylor & Huguenin (1971). More
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observations are available at frequencies around 400 MHz than at other frequencies, so profile
shapes obtained at this frequency are used for purposes of classification.
Type C pulsars tend to have long periods, in most cases greater than one second they seldom

have very small values of the parameter PP. This phenomenon is related to the magnetic field
strength at the surface of the neutron star. Neutron stars usually exhibit strong linear polarization
and a smooth variation in the polarization position angle across the profile.

Type S pulsars, on the other hand, tend to have short periods and have often low values of PP,
weak polarization and discontinuous changes in the position angle across the profile.

Another characteristic feature of pulsars, which overlaps the above categories, is the
phenomenon of drifting subpulses. Pulsars with drifting subpulses are called Type D or when more
detail is required, Type SD or CD, to indicate a simple or complex mean profile. The most
organized drifting patterns occur in Type SD pulsars.

The pulsed energy from most pulsars is confined to a small fraction of the period, there are a
number of exceptions. In several pulsars an additional pulse component, the interpulse, is situated
approximately half-way between the main pulses.

The pulsed emission is confined to a rather narrow longitude range, for most of the pulses but
exceptions are observed. There may also be a nonvarying component to the emission from pulsars.
In normal synchronous averaging such a component would be removed by the baseline-fitting
procedure. A search for such emission by Huguenin & co-workers (1971) using interferometric
techniques yielded upper limits comparable to the mean flux density (pulse energy divided by the
period) for several pulsars; also in some pulsars the integrated profile is much broader than usual.
These profiles are intrinsic to the pulsar and do not result from propagation effects in the
interstellar medium. At low frequencies pulse profiles are often affected by scattering of the
radiation by irregularities in interstellar electron density. Propagation delays result in a smearing
of the pulse energy into an exponential decaying pulse tail. If the scattering is severe, delays can
exceed the pulse period, thereby causing a nonvarying flux component and a decrease in pulsed
period.

There is a tendency towards symmetry in all the integrated profiles, which are generally of the
following types:

a smooth single hump, e.g PSR 1642-03

a double hump e.g PSR 1133+16

a single hump with extensions or ‘outsiders’ e.g PSR 0329+54
a double hump with structure between e.g PSR 1237+25

These profiles will be interpreted as distributions of emitting regions over a range of longitude in
the pulsar magnetosphere.

12
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Between the pulses there is a remarkably low intensity, usually below the detection level. For
some pulsars a second component, known as ‘interpulse’, appears somewhere near but not exactly
at the halfway point between the main pulses.

(i1) Individual Radio Pulses

The well organized and characteristic behaviour of the integrated pulse profiles becomes more
surprising as one examines in greater detail the complexity and variety of the individual pulses
that add to make the integrated profiles. The intensity and shape of the pulses varies from pulse to
pulse on a very short time scale. A sequence of a few pulses may present such chaotic variations
that is hard to believe that the sum of any sequence of only a few hundred pulses can yield the
characteristic integrated profile. Such a sequence of PSR 0525+21 (Scan 7827) can be seen below.

Scan TEEY 1748 £-3LE Pesalafion L0
GagErmel 1 o+ & Linzks:! ##2  -B32 1 Z2e3siie RO RRD DO 1000
INT 1 Mlatzcals 0003cc Wrdnw @ - 024) Mirning Mesn C
) 100 180 2o 260 313 350 <00 480 WSS

ESCOPE

100m HA 22T

LSBE 3G

E:::

Figure 5: Sequence of pulses for PSR 0525+21

But there is often a quite simple statistical description of the pulse behaviour, and there are
precise rules governing much of the apparent chaos. For example the energy in a single pulse, as
measured at a particular part of radio spectrum, follows a typical statistical distribution, which is
near Poissonian for some pulsars and quite different from others; furthermore this distribution is
usually is well established from a sequence of only a few hundred pulses.

Individual pulses commonly have a width of only one-tenth or less of the width of the integrated
profile; they may appear almost at random at any part (or ‘phase’) of the profile. Their occurrence
is not completely random. Often successive pulses will appear as narrow pulses at nearly the same
phase, and in some pulsars a sequence of several pulses will be related in this way. A slow ‘drift’
of phase is often seen, usually towards the earlier part of the profile. Some pulsars radiate pulses
with two or more such narrow components. The consistency of these narrow components together
with a characteristic polarization observed within the narrow component, has led to their isolation
as a basic component of pulsar radiation. They are known as ‘sub-pulses’.



More rapid fluctuations of intensity occur, usually in the pulsars with shorter periods. These
fluctuations are known as the ‘microstructure’. They include some remarkably short and intense
pulse components in the Crab Pulsar: a single one of these ‘giant’ pulses may last only 10 us, but
during that time the intensity can exceed the radio intensity from the whole Crab Nebula. The
microstructure does not have a continuity from pulse to pulse.

Individual pulses from a given pulsar vary greatly in intensity, shape and polarization from one
period to the next. In general, they do not have the same form as the integrated profile. Variations
are often random in character but periodic changes are also observed, particularly in the pulse
intensity.

(a) Beam components, core and cone

The symmetry displayed in the profiles of many pulsars leads naturally to a classification in
which a central component is called the core while the outer components are regarded as part of a
hollow cone. There is a gradiation in properties with radial distance from the beam center: the
core components have larger widths and steeper spectra.

The angular radiated width of the individual components within the beam may be found using
the same statistical method as for the whole beamwidth.

Observer ~————

Figure 6: The relation of the overall profile width to the beam geometry. The radiation beam is shown as a
symmetrical cone, angular width 2p, at inclination angle a, cut by a line of sight with impact parameter g.

The distribution of widths again shows a well-defined lower bound, both for the core and conal
components, which may be taken as the width for pulsars where the viewing angle a is near 90°;
the scatter of points above this lower limit corresponds to pulsars with smaller values of o. From

this lower bound, the half-power widths wsq (in degrees) of conal and core components are found
to be

— -1/2 .
WSO,conal - 175P /Slna

_ -1/2 /.
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The marked difference in width between the core and the conal components is confirmed in
practically all individual pulsars.

As already mentioned, the apparent symmetry of many integrated profiles with two or more
components led to the suggestion that they might be arranged as a central core surrounded by a
hollow cone of emission (Komesaroff et al, 1970). This model was developed by Rankin (1993),
who made the further suggestion that the occurrence of five-component profiles indicated an
arrangement in a double hollow cone. The cones are regarded as a preferred arrangement for
component beams, rather than an unbroken ring, since there are no wide component observed that
would correspond to tangential cuts across a hollow cone as in Figure 6.

Figure 7: A model of the core and conal beams, with various types of symmetrical profiles generated at different
impact parameters

Locating the component beams within an overall beam requires some knowledge of the impact
parameter f, and preferably also the inclination angle o, for each pulsar. Lyne & Mancester
(1988) used estimated of these angles for some hundreds of pulsars, and found no preference for
components to be located within discrete cones. The distinction between conal and core emission
is evidently not clear cut. However, Han & Manchester (2001) followed the same geometric
procedure to construct a two dimensional image of the mean radio beam shape for 87 pulsars.
They again found a smooth distribution over the polar cap, but with some enhanced emission at
the core and at around 0.7 of the polar cap radius.

(b) Subpulses

Individual pulses normally consist of one or more subpulses. These subpulses, which appear to
be basic units of emission, typically have a rather simple, almost Gaussian shape and width
between 3 and 10 degrees of longitude. Subpulses occur at various longitudes within the integrated
profile, and often overlap when two or more subpulses are present in an individual pulse.
Components or peaks are formed in the integrated profile when subpulses are stronger and/or
occur more frequently at a given longitude. Longitude-time diagrams of the intensity variations in
sequences of individual pulses from three pulsars are shown in Figure 6. These diagrams show
that subpulses are generally narrow compared to the integrated profile and that they occur
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preferentially at certain longitudes. This is especially true for multiple-component pulsars, such as
PSR 1133+16 and PSR 1237+25.

PSR PSR 1132—16 PSR 1237 =25

Mean

Pulse Number

l

|
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0 20 40 60 80 0 = 10 15 20 (o)
k Longitude (deg)

Figure 8: Longitude-time diagrams for three pulsars showing the variations in shape and intensity of a series of
individual pulses. Each horizontal series of dots represents one pulse; the size of the dots indicates intensity.
Successive pulses are plotted upwards on the diagram; integrated profiles are shown at the top. Subpulses, or bursts
of enhanced emission covering 3-10 degrees of longitude, can be seen in most pulses.

Subpulse widths are comparable to the integrated-profile widths, only for pulsars with
integrated profiles, dominated by a single component, e.g PSR 0329+54 and PSR 1642-03. The
width is smaller for pulsars with periods greater than 0.75 seconds. The mean subpulse widths

plotted againsg the widths of the intergrated profiles of a number of pulsars can be seen in Figure
1.
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Figure 9: Mean half-power width of subpulses plotted against the half-power width of the integrated profile for 14

pulsars. Near the diagonal line, all subpulses have widths similar to that of the integrated profile. [After Taylor et al.,
1975.]

The widths are approximately proportional to P*?, although there is a large scatter. On the
other hand the equivalent widths of integrated profiles, are proportional to period. This suggests
that the subpulse profile may represent a time variation in intensity rather than a beam profile.
Figure 9 could be interpreted as showing that the subpulse widths represent a time scale for
emission that is independent of period. The observed subpulse widths are of course restricted by
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the beaming process that produces the integrated profile. This cutoff (represented by the diagonal
line in Figure 9 is especially significant for the shorter-period pulsars.

Subpulse widths are not strongly dependent on either frequency or pulse longitude within the
integrated profile, however subpulses that occur between the various components of multiple-
component profiles tend to the wider than average. There is some correlation between the subpulse
intensity and width, as the stronger subpulses tend to be narrower than the weaker ones.
Observations at widely spaced frequencies show that subpulse intensities are very well correlated
over wide frequency intervals. It can be concluded that the subpulse emission process is
broadband, with bandwidths typically exceeding 200 MHz. Robinson & co-workers (1968) showed
that the spectra of most individual pulses from PSR 1919+21 were similar with one another and
therefore similar to that of the integrated profile. This is true probably true from most pulsars. For
those with multiple-component profiles the the observed frequency dependence of component
separation, together with, high correlation of intensities at different frequencies implies that the
longitude interval between a given subpulse and the profile centre is greater at low frequencies

than at high frequencies, with a dependence of approximately v°2°.

(c) Intensity fluctuations

A study of Figure 8 shows that subpulse intensities vary very much from one pulse to the next.
There are two characteristic types of fluctuation, Pulse Nulling and Periodic Intensity variations.

Pulse nulling is a relatively common phenomenon in which the pulse intensity suddenly drops
to a low value for a few pulses and then abruptly returns to normal. In multiple-component profiles
all components drop in intensity. Ritchings (1976) found that the intensity of null pulses is less
than 1% that of the normal pulse intensity. Short nulls of one or two missing pulses occur in many
pulsars but are prominent in PSR 0834+06 and PSR 1929+10. In a sequence of 5000 pulses from
PSR 1929+10, Backer (1970b) found about 50 nulls, in each of which one or two pulses were
missing. Longer nulls of 3-10 pulse periods are common. PSR 0031-07 (a pulsar with highly
organised drifting subpulse), is in a null state for about 50% of the time, with pulse bursts of 10 —
100 pulses separated by nulls of similar duration. PSR 1944+17, (a pulsar that shows drifting
subpulses) is in a null state for more than 75% of the time. The fraction of time that a pulsar is in
null state is related to the pulsar period and period derivative, as shown by Ritchings (1976).

The occurrence of these longer nulls appears to be random — no significant periodicities have
been observed. Power-spectral analysis of sequences of pulse energies show, that periodic
fluctuations in pulse intensity do exist in a number of pulsars. In some pulsars these fluctuations
appear to be related to the nulling phenomenon, whereas in others they are related to drifting
subpulses. Fluctuation spectra show that narrow line features, (which represent strongly periodic
fluctuations) are rather common, especially for the longer-period Type C and type D pulsars.
Below the separately computed fluctuation spectra for different longitudes in the profile and the
corresponding integrated profile of PSR 1237+25 can be seen.
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Figure 10: Separately computed fluctuation spectra for different longitudes in the profile of PSR 1237+25 and the
corresponding integrated profile showing the five distinct components

A series of spectra was computed separately for different longitudes throughout the profile.
The feature at 0.35 cycles/period is clearly confined to components 1 & 5, whereas the spectra for
components 2 & 4 are essentially featureless. For the region about the profile center including
component 3, the spectra are dominated by low-frequency features; this component tends to occur
in clumps of 5-10 subpulses every 20-50 periods. The high degree of symmetry of the fluctuation
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characteristics about the profile center in this pulsar is striking. Similar symmetries are also seen
in other multiple-component pulsars, such as PSR 1133+16 and PSR 2045-16.

A relationship between these periodic modulations and mode changing was found for PSR
1237+25 by Taylor, Manchester and Huguenin (1975). The strong period modulation in
component 1 is present only when the pulsar is in its normal mode; in the other mode there may be
a weak feature at about 0.24 cycles/period, but the 0.35 cycle/period modulation is completely
absent.

The degree of modulation of pulse intensities is best represented by the modulation index, m,
defined by

™2
2 2
_ ("on Oy

(1)

where oo is the r.m.s variation of pulse intensities about the mean value <I> and oo 1S the
r.m.s value of the random noise off the pulse. Observed values of the modulation index (after
removing the effects of interstellar scintillation) range between about 0.5 and 2.5 for different
pulsars. The modulation is almost is almost invariably deeper at lower radio frequencies. For
example, at 147 MHz the modulation index for PSR 0329+54 is 2.3, whereas at 400 MHz it is only
1.0. Like the fluctuation spectra, the modulation indexes are different for different longitudes in a
given pulsar. Modulation indexes are different for different longitudes in a given pulsar. For PSR
1237+25 the modulation indexes for the different components are different, and the mirror
symmetry is seen in the fluctuation spectra. For other pulsars changes in modulation index occur
within apparently single components. For example, for PSR 1642-03 the index is high for the
leading half of the profile and low for the trailing half. The modulation index is often higher in the
wings of a profile than in the center; examples of this are PSR 1133+16, PSR 1929+10 and PSR
2016+28.

For the highly modulated pulsars, histograms of the pulse intensity have an approximately
exponential form, with a maximum at zero and a few pulses with intensity as much as ten times the
mean value. For the less modulated sources, histograms usually peak just below the mean value
and high-intensity tails do not extend significantly beyond four times the mean energy. Pulsars
with extended nulls often have a bimodal distribution with one of the peaks at zero intensity (Hesse
and Wielebinski, 1974; Ritchings, 1976).

Although the sub-pulses may well be a basic entity, around which interpretations have
naturally centered, they only provide a complete description of the whole radiation from a very
few pulsars. A study of PSR 1919+21 by Cordes (1975) shows that the intensity ration between the
subpulse and other components varies through the pulse profile. In Figure 11 sequence of pulses
from PSR 1919+21 recorded simultaneously at 111 MHz and 318 MHz shows that the subpulse
structure us most prominent in the early part of the integrated profile and also that it is more
prominent at the lower radio frequency. These subpulses seem to be cut up by the rapid
fluctuations of microstructure, but they nevertheless show the characteristic drifting.

m
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Figure 11: Sequence of pulses from PSR 1919+21 recorded simultaneously at 111MHz and 318 MHz. A time
resolution is achieved by the use of ‘de-dispersion’. (After Cordes, 1975)

(d) Polarization

A very important characteristic of the subpulses is their very high degree of polarization. It was
discovered by Clark & Smith (1969) in PSR 0329+54, which has easily distinguishable subpulses.
It is common to find polarization is excess of 95% in individual subpulses. The polarization is in
general elliptical, changing in form throughout a subpulse as, for example, by the smooth change
from elliptical through linear to elliptical in the opposite hand. Completely circular, or completely
linear, polarization may occur during a subpulse. As far as is known, all clearly defined subpulses
follow a similar pattern of polarization, in which there is a smooth, simple sweep of polarization
characteristics though a single subpulse.

The identification of the subpulses as a basic entity depends on their appearance (as discrete,
symmetrical components), on their coherence and drifting between successive pulses and on their
very high polarization with its typical swing of characteristics. The separate components of an
integrated profile, on the other hand do not generally show symmetry or very high polarization,
and the microstructure appears as a modulation of intensity in which the polarization remains
unchanged.
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(e) Nulling and Moding

There is a tendency for pulses to appear in groups, which accounts for the enhancements of the
low-frequency end of some fluctuation spectra. These groups are often marked off by nulls,
sometimes lasting several periods, which tend to occur at intervals. Those time intervals are
characteristic of individual pulsars.

In PSR 0031-07, whose behaviour is in many ways similar to that of PSR 0809+74, the nulls
occur at typical intervals of 100 rotation periods, i.e about 2 minutes. The nulls last as long as the
active periods. The switching on or off, occurs within the time of a single rotation of the pulsar.

There distinction between the random variations of energy from pulse to pulse during the ‘on’
state and the switch from ‘on’ to ‘off” states can easily be distinguished. So pulse nulling can be
compared with the phenomenon of moding, (which was described in the previous paragraph) as a
variation in the integrated profile. The difference is that moding represents a switch between two
configurations of coherent particle motions, while nulling represents a complete stop to the
radiation. The causes of the two phenomena may be related, but we have no understanding of the
changes occurring in the magnetosphere that act as the trigger between the two stable states in
either phenomenon. Furthermore, the time scales involved are very hard to understand. The
reason is that oscillations and relaxation processes in a neutron start or in its magnetosphere have
a time scale of less than a millisecond rather than some hundreds of seconds. It has been observed
that the nulling phenomenon is commoner in the long-period pulsar and therefore migh be a sign
of old age.

(f) Mode changing

During the phenomenon of mode changing or switching, the integrated profile switches
between two different forms. Both forms are stable for a long time sequence of individual pulses.
Individual components of the two profiles may occur in both modes, but with different intensities.
Mode changing and nulling appear to be closely related; they occur in the same population of
older pulsars and on similar time scales. A null may be regarded as a mode change in which all
components have disappeared to switched to a very low intensity. Pulsar PSR 0525+21 is known
to exhibit two modes.
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(B) Experimental Data:

1. Pulsars used in the study

The observational data of the five pulsars that were used in this study, were recorded by Professor

John-Hugh Seiradakis, with the 100 m Effelsberg Radiotelescope of the Max-Planck Institute
located near the city of Bonn, in Germany.

(1.1) Pulsar PSR 0525+21:

e Constellation: Taurus
e Period P =37455ms

e Age 1,48*10°yrs

A radio map of the area can be seen below, the circled source is 0525+21:

Figure 12: Radio map of the area around PSR 0525+21

In this study we used different scans. Their integrated profiles differ and can be seen bellow.
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Figure 15: Integrated Profile of PSR 0525+21
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Figure 18: Integrated Profile of PSR 0525+21
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(1.2) Pulsar PSR 0329+54:

e Constellation: Camelopardalis
e Period P=714,5ms

e Age 553*10°yrs

A series of radio maps of the area can be seen below, the first image shows PSR 0329+54:

i

Figure 19: Series of radio maps of the area around PSR 0329+54

In this study we used different scans. Their integrated profiles differ and can be seen bellow.
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Figure 20: Integrated Profile of PSR 0329+54
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Figure 23: Integrated Profile of PSR 0329+54
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Figure 24: Integrated Profile of PSR 0329+54
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(1.3) Pulsar PSR 0450+55:

e Constellation: Camelopardalis
e Period P =340.7ms
e Age 228%10°yrs

A series of radio maps of the area can be seen below, the first image shows PSR 0329+54:

Figure 25: A radio map of the area around PSR 0450+55

We studied one scan, which can be seen below:
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Figure 26: Integrated Profile of PSR 0450+55
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(1.4) Pulsar PSR 1822-09:

e Constellation: Scutum
e Period P=7689ms
e Age 233*10°yrs

A series of radio maps of the area can be seen below, the first image shows PSR 1822-09:

i

T\ \

Figure 27: Series of radio maps of the are around PSR 182—9

In this study we used different scans. Their integrated profiles differ and can be seen bellow.
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Figure 28: Integrated Profile of PSR 1822-09
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Figure 29: Integrated Profile of PSR 1822-09
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(1.5) Pulsar PSR 0823+26:

e Constellation: Cancer
e Period P =530,6ms

e Age 430*10°yrs

A radio map of the area can be seen below:

Figure 30: A radio map of the area around PSR 1822-09

We studied one scan, which can be seen below:
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Figure 31: Integrated Profile of PSR 1822-09
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(1.6)Pulsar PSR 1133473

e Constellation: Taurus
e Period P=ms

o Age

A radio map of the area can be seen below, the circled source is 1133+73:
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Figure 33: Integrated Profile of PSR 1133+73
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1I. Data Processing Program

(2.1) Main Menu:
The name of the Data Processing Program is jhsnull. When the program is run a list of the main
command options appears on the screen, as show bellow:

(help) list of options
(exit) program end
(addata) add data
(ad12) add channel 1 and 2. (ad34) add channel 3 and 4
(base) subtract baseline (data overwritten) [ 150- 250- 900-1000]
(fast) fastplot of successive blocks
(filt) smooth data with FFT (data overwritten) [1.0000]
(head) print header
(look) quick look (lineprinter mode) of successive pulses
(mean) compute mean rms over baseline range and ratio max/sigma
(flux) compute pulse energy and flux
(tsvs) evaluate calibration and tsys
(plot) plot the profile
(print) print current data
(read) read and integrate blocks
(radd) read data from ADD or ASC file
(scan) read and integrate a whole scan
(shift) read & shift blocks in time & write to new file
(sequ) plot sequence of successive blocks
(show) show contents of file
(smooth) smooth data with running mean (data overwritten) [ O]
(succ) succession of fluxes
(peak) computeratios ofthe peaks
(wadd) write data to ADD and/'or ASC file
(freq) sef observation frequency
(file) choose input file, default=. pul9999 dat
(quality) classify data according to their quality
(path) choose input path, default=.
(call) read commands from file
(retu) return from macro execution
(exec) execute an OS command
(quit) exit program
Figure 34: The main command options list of the program

The use of the most important of them are explained bellow:

(1.2) (file): chooses and opens the file we wish to study

(1.2) (show): prints on the screen the contents of the file we
wish to study

(1.3)(read): reads the data in the file we have chosen.
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(1.4) (ad12)

(1.5) (plot)

(1.6) (quality)

(1.7) (exit)

We need to type in the number of the initial
and the final block we wish to read.

adds channels 1 and 2 essentially resulting in
the elimination of the calibration block at the
beginning of integrated profile plot of the
channel 2. The length of the calibration block
must be provided.

opens the submenu plot that allows the
plotting of the pulses.

opens the quality submenu that allows the
classification of the purses in 12 categories
according to their intensity

exits the program
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(2.2) Submenu Quality:

The Quality subprogram is responsible for classifying the pulses to twelve categories
according to their intensity. The (o) “sigma” is assigned as the unit of the intensity of the pulse
and it is equal to the maximum intensity of the pulse divided by the mean deviation of the noise of
the signal.

A value of o =1 means that the maximum intensity of the pulse is equal to the mean deviation
of the noise of the signal, therefore no pulse can be observed. We must have a value of o >1 and
preferably over 1,5 for the results to of any use.

After the limits are set, the pulses are plotted in a graph called the “Quality Graph” with the
Plot subprogram. When the submenu Quality is accessed the following command list appears:

(exit) exit program

(wind) start - end sanple [ 1-1024]

(base) choose baselinerange [ 150-250-900-1000]
(blocks) chooserecordstowork with [ 1- 1]

(ad12) add channel 1 and 2. (ad34) add channel 3 and 4
(filt) smooth data with FFT (data overwritten) [1.0000]
(channel) channel number [1]

(limits) set quality limits

(plot) plotthe profile

(help) show optfions

(back) goback tomain program

(start) start the distribution of pulses

Figure 35: The command options of the Quality submenu

The use of the most important of them are explained bellow:
(2.1) (blocks) determines the initial and final block
of the record used.

(2.2) (ad12) adds channels 1 and 2. It acts exactly
like command ad12 on the main menu,
with the difference that one needs to
know the values before hand (they are
provided by the command ad12 on
the main menu.

(2.3) (wind) determines the window the span of the
pulse(the pulse by default spans 1-1024)
If we type 1, 1042 we will get the whole
period the pulse spans in.

(2.4) baseline sets the baseline for the plotting

(2.5) limits sets the limits for the classification of the
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(2.6) start

(2.7) plot

pulse. The limits are based on the
intensity of the pulses.

begins the process of classification of the pulses
according to their intensity by separating them in
windows.

it opens the Plot submenu and allows the
printing of the quality graph.

To print the quality graph we need to use the Plot submenu with the use of the command plot.
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(2.3) Submenu Plot:

When the submenu Plot is accessed the following list of commands appears:

(wind) start - end sanmle [ 1-1024]
(base) choose baselinerange [ 150-250-900-1000]

(factor) plotfactor

(mult) period multiplication factor [ 1.00]

(channel) channel number [1]
(nplo) number of channels to be plotted [12]
(nerg) energy compufation [ 0]

(errorbox) plot a Resolution [ 0.00msec] x 1 RMS box

(hpfl) creates a hpg-file
(help) show options

(back) go back tomain program

(start) start plotting

(pl12) plot each of the 12 windows
(pr12) print each ofthe 12 windows

[ 0.00000]

output

Figure 36: The command options of the Plot submenu

The use of the most important of them are explained bellow:

(3.1) (wind)

(3.2) (fact4)

(3.3) (start)

(3.4)(channel)
(3.5)(nplo)

(3.6)(pl12)

(3.7)(pr12)
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determines the window the pulse spans
in (it spans 1 — 1024). If we type 1 - 1024
we will get the whole period the pulse
spans in.

provides the scale of the plot

begins the plotting of the integrated profile and the
quality profile

provides the number of the channel plotted
provides the number of windows plotted

allows the plotting of each of the 12 windows
separately

allows the printing of the values of the pulses for each of
the 12 windows



III. Data Analysis and Results

The diagram consists of twelve windows. Starting with the lower intensity to the highest
intensity the pulses are distributed into twelve windows. On the upper left corner of each window
the number of the window is displayed, on the upper right corner is the number of the pulses in the
window. Above the twelve windows the values of the limits set is displayed.

First we use the commands (1.1) - (1.5) and then (3.3) to create the integrated profile. Then by
restarting the program and using commands (1.1) - (1.4), (1.6), (2.1) - (2.7) and (3.3) in this order
we produce the quality plots for each of the scans.

Then using the pr12 command in the plot menu we calculate the values of the pulses. The
maximum values of the components are then plotted in a diagram, and conclusions are drawn from
its shape.

(3.1) Pulsar PSR 0525+21

Scan 7699

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are rather well defined.

A closer study of the sequence as well as the quality graph reveals that the intensity-noise ratio
has a rather low value and therefore no accurate results can be drawn from its study. The very low
limit values in the quality graph confirm those observations. The limits value (the sigma) must be
over one for the results to be of any use.
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Figure 37: Sequence of pulses of Scan 7699
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Scan: 7699 Channel 1 +2 Pulses 48 Resolution 500
INT: 1 Window:{ 1 -1024)
Baseling: 150 250 900 1000 FFT Filter 1.000 Running Mean 0
Plotscale 188383 Ch1 Factor: 340838 Ch2 Factor: 441688
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Figure 38: Integrated Profile of Scan 7699

As we see in the graph below, there are not enough pulses with sigma greater than 1. More
than six or more pulses in each window are needed for the results to be accurate and of any
scientific value.

Scan: 7699 Channel: 1 +2 Pulsea: 0 Fesolution: 500
INT: 1 Window: 350 -800 )
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46 Blocks: (212 - 257 ) Box: 0.000

Qlims:( 005 ,010 ,020 ,030 ,040 ,050 ,0%0 ,1.00 ,1.20 150 160 170 )

182953

E§SBEHG 100m H?OTELESCOPF
Reduction 21/08/2008

PSR 0525+21
18/8 /1982
1410.000GHz

Figure 39: Quality Profile of Scan 7699
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Scan 7700

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are rather well defined. A closer
study of the sequence as well as the quality graph reveals that the intensity-noise ratio has a rather
low value for the majority of the pulses and therefore no accurate results can be drawn from its
study. The very low limit values in the quality graph confirm those observations. The limits value
(the sigma) must be over one for the results to be of any use.
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Figure 40: Sequence of pulses of Scan 7700

Secan: 7700 Channel 1 +2 Pulses 37 Resolution 500
INT: 1 Window:{ 1 -1024)
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Figure 41: Integrated Profile of Scan 7700
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As we see in the graph below, there are not enough pulses with sigma greater than 1.
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Figure 42: Quality Graph of Scan 7700

Scan 7702

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are rather well defined. A closer
study of the sequence as well as the quality graph reveals that the intensity-noise ratio has a rather
high value. That allows for accurate results to be drawn from its study. The main component is the
pulse component with the highest values. So we assume that the main component (core component)
is the second pulse in the integrated profile.
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Figure 43: Sequence of pulses of Scan 7702
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Scan: 7702 Channel: 1 +2 Pulses: 200 Resolution: 500
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Figure 44: Integrated Profile of Scan 7702

The first window depicts noise mostly since sigma equals 1. We see that, while for small values of
sigma the maximum pulse intensity of the main component is either higher or equal to that of the
maximum value of the first component, for the highest sigma it is the opposite.
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Figure 45: Quality Graph for Scan 7702
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We can see the maximum values of each component for each window in the following table.
Table 3: Scan 7702

Channel 1 2 3 4 5 6

Main Component | 6,42423E+01| 5,11077E+01| 3,31740E+01| 1,89508E+01| 5,48953E+01| 2,75729E+01
Component 1 8,79558E+01| 5,50596E+01| 3,04267E+01| 3,42236E+01| 3,94471E+01| 4,39975E+01
Main/Comp.1 1,36912595 | 1,077324943| 0,917185145| 1,805918484 | 0,71858793 | 1,595679091
Channel 7 8 9 10 11 12

Main Component | 6,43737E+01| 3,17826E+01| 5,78139E+01| 8,46954E+07| 7,58969E+01| 2,28837E+02
Component 1 4,86955E+01| 8,96570E+01| 5,18995E+01| 4,33142E+01| 6,92767E+01| 1,12412E+02
Main/Comp.1 0,756450227 | 2,820946052 | 0,897699342 | 5,11411E-07 | 0,912773776| 0,49123175

From the tables above we get the following diagram:

Component's Ratio

Pulsar PSR 0525+21

—e— Scan7702

Fractionated Intensity (sigma)

Figure 46: First to Main component ratio of Scan 7702

The linear fit gives us a descending line with the following equation:

y =1,44488—0,0837x

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Scan 7827

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are rather well defined. A closer
study of the sequence as well as the quality graph reveals that the intensity-noise ratio has a rather
high value. That allows for accurate results to be drawn from its study. The main component is the
pulse component with the highest values. So we assume that the main component (core component)
is the first in the integrated profile.
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Figure 47: Sequence of pulses of Scan 7827
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Figure 48: Integrated Profile of Scan 7827
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The first window depicts mostly noise, with a weak pulse since sigma equals 1,5. We see that, while
for small values of sigma the maximum pulse intensity of the main component is either lower or
equal to that of the maximum value of the first component, for the highest sigma it is the opposite.
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Figure 49: Quality Graph for Scan 7827

We can see the maximum values of each component for each window in the following table.

Table 4: Scan 7827

Channel 1 2 3 4 5 6

Main Component | 3,14263E+03| 2,83329E+02 | 5,60928E+02| 8,20638E+02| 5,64945E+02| 5,24957E+02
Component 1 3,26651E+03| 3,53359E+02 | 3,78862E+02| 2,39296E+02| 5,27821E+02| 6,54857E+02
Main/Comp.1 1,03942E+00| 1,24717E+00 | 6,75420E-01 | 2,91598E-01 | 9,34287E-01 | 1,24745E+00
Channel 7 8 9 10 11 12

Main Component | 6,57147E+02| 7,22625E+02 | 9,35910E+02| 1,11774E+03| 1,84866E+03| 1,84178E+03
Component 1 5,05865E+02| 4,19593E+02 | 7,03410E+02| 6,00092E+02| 5,59656E+02| 2,15844E+03
Main/Comp.1 7,69790E-01 | 5,80651E-01 | 7,51579E-01 | 5,36880E-01 | 3,02736E-01 | 1,17193E+00
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From the tables above we get the following diagram:

Pulsar PSR 0525+21
1,4 4 —e— Scan7827

Component's Ratio

odr— ¥+

Fractionated Intensity (sigma)

Figure 50: First to Main component ratio of Scan 7827

The linear fit gives us a descending line with the following equation:

|y =0,81943-0,0066x|

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases. We observe that the slope in this scan is lower than in the
scan 7702.
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Scan 7833

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are rather well defined. A closer
study of the sequence as well as the quality graph reveals that the intensity-noise ratio has a rather
high value. That allows for accurate results to be drawn from its study. The main component is the
pulse component with the highest values. So we assume that the main component (core component)
is the second in the integrated profile.
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Figure 51: Sequence of pulses of Scan 7833
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Figure 52: Integrated Profile of Scan 7833
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The first window depicts mostly noise, with a weak pulse since sigma equals 1,5. We see that, while
for small values of sigma the maximum pulse intensity of the main component is either lower or
equal to that of the maximum value of the first component, for the two highest sigma it’s the

opposite.
Scan: 7833 Channel: 1 +2 Pulses: 0 Resolution: 500
INT: 1 Window:{ 350 -760 )
Baseling: 1650 250 900 1000 FFT Filter: 1.000 Running Mean: 0
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RMS1:0 £62 RMS2:0 579 RMS3:0.492 RAMS4:0.393
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Figure 53: Quality Graph of Scan 7833

We can see the maximum values of each component for each window in the following table.

Table 5: Scan 7833

Channel 1 2 3 4 5 6
Main Component | 3,86701E+02| 6,35501E+01| 3,44812E+01| 4,27509E+01| 5,62271E+01| 5,83766E+01
Component 1 3,53781E+02| 6,00491E+01| 2,79682E+01| 4,10224E+01| 3,54950E+01| 5,03094E+01
Main/Comp.1 9,14870E-01| 9,44910E-01| 8,11114E-01| 9,59568E-01 | 6,31279E-01 | 8,61808E-01
Channel 7 8 9 10 11 12
Main Component | 4,59277E+01| 5,35281E+01| 4,04546E+01| 7,55540E+01| 1,81534E+02| 2,36303E+02
Component 1 6,48841E+01| 4,16590E+01| 5,87473E+01| 6,85591E+01| 6,56274E+01| 1,76648E+02
Main/Comp.1 1,41274E+00| 7,78264E-01 | 1,45218E+00| 9,07419E-01 | 3,61516E-01 | 7,47549E-01
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From the tables above we get the following diagram:

1,6 4

Component's Ratio

0,2

Pulsar PSR 0525+21
—e—Scan7833

Fractionated Intensity (sigma)

Figure 54: First to Main component ratio of Scan 7833

The linear fit gives us a descending line with the following equation:

|y =102412-0,03605]

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases. We observe that the slope in this scan is higher than in the

scan 7833.
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Scan 9008

The sequence of pulses and the integrated profile of the scan can be seen below. A study on the
sequence of pulses and the integrated profile reveal that they are rather well defined. A spike can
be seen during one pulse, in the sequence of pulses. It was caused by the accidental rebooting of
the amplifier. A closer study of the sequence as well as the quality graph reveals that the intensity-
noise ratio has a rather high value. That allows for accurate results to be drawn from its study.
The main component is the pulse component with the highest values. So we assume that the main
component (core component) is the second in the integrated profile.

Scan. 2008 2776 F1982 Resolution: 750
Channel: 1 +2 Blocks:{ 18 -389 ) Baseline: 160 260 800 1000
INT: 1 Plotscale: 0.00500 Window: {1 - 1024 Running Mean: 0
75 180 235 300 375 480ff 525 600 6756  MSEC

Redustion:

Figure 55: Sequence of pulses of Scan 9008

Scan: 9008 Channel: 1 +2 Pulses: 353 Resolution: 750
INT: 1 Window:i{ 1 - 1024
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Figure 56: Integrated Profile of Scan 9008
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The first window depicts mostly noise, with a weak pulse since sigma equals 1,5. We see that, while
for small values of sigma the maximum pulse intensity of the main component is either lower or
equal to that of the maximum value of the first component, for the two highest sigma it is the
opposite. There are more pulses with considerable intensity in this scan than in the previous scans.

Scan: 9008 Channel: 1 +2 Pulses: 0 Resolution: 750
INT: 1 Window:( 400 -680 )
Bassline: 160 250 900 1000 FFT Filter: 1.000 Running Mean: 0
Plotscale: 0.00100 Ch1 Factor: 4185600  Ch2 Factor:  3602.100
RMS1:12 096 RMS2:165617 RMS3:29 696 RMS4:26 403
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Qlims: { 150 ,160 ,180 ,200 ,230 ,250 ,280 ,300 ,3&0 ,400 ,450 ,600 )
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Figure 57: Quality Graph of Scan 9008
We can see the maximum values of each component for each window in the following table.

Table 6: (Scan 9008)

Channel 1 2 3 4 5 6

Main Component | 4,09432E+03| 5,66879E+02| 7,24650E+02| 1,14222E+03| 2,82512E+03| 5,27774E+02
Component 1 3,77499E+03| 5,66135E+02| 7,02633E+02| 7,98146E+02| 3,10997E+03| 6,62089E+02
Main/Comp.1 0,922006585 | 0,998687551 | 0,969617057 | 0,698767313 | 1,100827575 | 1,254493401
Channel 7 8 9 10 11 12

Main Component | 1,28773E+03| 6,40781E+02| 2,71765E+03| 1,60748E+03| 2,55585E+03| 6,54702E+03
Component 1 9,37580E+02| 8,21818E+02| 2,17775E+03| 9,81575E+02| 1,25515E+03| 3,47113E+03
Main Comp. 1 0,72808741 | 1,282525543| 0,801335713 | 0,610629681 | 0,49108907 | 0,530184725
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From the tables above we get the following diagram:

Pulsar PSR 0329+54
— e — Scan8653

Component's Ratio

Fractionated Intensity (sigma)

Figure 58: First to Main component ratio of Scan 9008

The linear fit gives us a descending line with the following equation:

|y =1,22462-0,12133]

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases. We observe that the slope in this scan is higher than in the
scan 7833.
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(3.2)Pulsar PSR 0329+54

Scan 8653

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are not well defined. It is obvious
from the sequence of pulses that there is quite a lot of noise present. A closer study of the sequence
as well as the quality graph reveals that the intensity-noise ratio has a rather high value. That
allows for accurate results to be drawn from its study. The main component is the pulse component
with the highest values. So the main component (core component) is the central pulse in the
integrated profile. The first component is the second pulse and the third the first.
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Figure 59: Sequence of pulses of Scan 8653
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Figure 60: Sequence of pulses of Scan 8653
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The first window depicts mostly noise, with a weak pulse since sigma equals 1,3. We see that, while
for small values of sigma the maximum pulse intensity of the main component is either lower or
equal to that of the maximum value of the first component, for the two highest sigma it is the
opposite. There are more pulses with considerable intensity in this scan than in the previous scans.
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Figure 61: Quality Graph of Scan 8653

We can see the maximum values of each component for each window in the following table.

Table 7: Scan 8653

Channel 1 2 3 4 5 6

Main Component | 4,23175E+03| 7,98990E+03| 6,79306E+03| 3,01236E+03| 7,35451E+03| 1,38183E+03
Component 1 2,47T7T74E+03| 3,65244E+03| 3,35836E+03| 9,78191E+03| 3,23932E+03| 5,33750E+03
Component 2 1,78297E+03| 2,20450E+03| 1,71994E+03| 1,61362E+03| 1,56176E+03| 1,83100E+03
Main/Comp. 1 5,85512E-01 | 4,57132E-01 | 4,94381E-01 | 3,24726E+00| 4,40454E-01 | 3,86263E+00
Main/Comp. 2 4,21332E-01| 2,75911E-01| 2,53191E-01 | 5,35666E-01 | 2,12354E-01 | 1,32505E+00
Comp.2/Comp.1 | 7,19595E-01 | 6,03569E-01 | 5,12137E-01 | 1,64960E-01 | 4,82126E-01 | 3,43044E-01
Channel 7 8 9 10 11 12

Main Component | 1,01158E+04| 6,20241E+03| 3,85373E+03| 4,15354E+03| 2,41188E+03| 2,61364E+03
Component 1 2,75045E+03| 1,58479E+03| 1,32381E+03| 8,54605E+02| 4,57116E+02| 8,40341E+02
Component 2 1,30040E+03| 6,57105E+02| 8,33542E+02| 3,31461E+02| 1,81588E+02| 3,43992E+02
Main/Comp. 1 2,71896E-01 | 2,55512E-01 | 3,43514E-01 | 2,05753E-01 | 1,89527E-01 | 3,21521E-01
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Main/Comp. 2

1,28551E-01

1,05943E-01

2,16295E-01

7,98020E-02

7,52890E-02

1,31614E-01

Comp.2/Comp.1

4,72795E-01

4,14632E-01

6,29654E-01

3,87853E-01

3,97247E-01

4,09348E-01

From the tables above we get the following diagrams:

The linear fit gives us a descending line with the following equation:

A descending line means that the ratio of the main and first component decreases as the

Component's Ratio

Pulsar PSR 0329+54

— e — Scan8653

3 4

Fractionated Intensity (sigma)

Figure 62: First to Main component ratio of Scan 8653

y=1,67533-0,22077x

fractionated intensity (sigma) increases.
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Pulsar PSR 0329+54
—e— Scan8653

Component's Ratio

Fractionated Intensity (sigma)

Figure 63: Second to Main component ratio of Scan 8653

The linear fit gives us a descending line with the following equation:

y=0,57996—0,07479%

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Figure 64: Second to First component Ratio for scans 8653

The linear fit gives us a descending line with the following equation:

v =0,54646—0,02388

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Scan 8654

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are not at all well defined. It is
obvious from the sequence of pulses that there is a lot of noise present. A closer study of the
sequence as well as the quality graph reveals that the intensity-noise ratio has a rather low value.
That does not allow for accurate results to be drawn from its study. A study of the integrated
profile reveals that only the main pulse is clearly defined.

Scan: 28654 2476 /1992 Resolution: 690
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Figure 65: Sequence of pulses of Scan 8654
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Figure 66: Integrated Profile of Scan 8654
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Scan: 8654 Channel; 1 Pulzez: 0O Reszolutian: 690

INT: 1 Window: 520 -&00 |
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Figure 67: Quality Graph of Scan 8654
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Scan 8656

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are not well defined. It is obvious
from the sequence of pulses that there is quite a lot of noise present. A closer study of the sequence
as well as the quality graph reveals that the intensity-noise ratio has a rather low value. That does

not allow for accurate results to be drawn from its study.

Scan 8656 2478 18982 Resolution 680
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Figure 68: Sequence of pulses of Scan 8656
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Figure 69: Integrated Profile of Scan 8656
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As we can see below the sigma has very low values and the pulses with intensity greater than 2
sigma are few and not enough for a successful analysis.

Sean:  BEbG Channel: 1 +2 Pulses: 0 Rezolution: G690
INT: 1 Window:( 520 -600 )
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Figure 70: Quality Graph of Scan 8656
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Scan 8657

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. A closer study of
the sequence as well as the quality graph reveals that the intensity-noise ratio has a rather high
value. That allows for accurate results to be drawn from its study. The main component is the
pulse component with the highest values. So we assume that the main component (core component)
is the central pulse, the first component the second “pulse” and the third component the first
“pulse ” in the integrated profile.
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Figure 71: Sequence of pulses of Scan 8657

Scan: 8657 Channel: 1 +2 Pulses: o989 Resolution: 690
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Figure 72: Integrated Profile of Scan 8657
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The first window depicts mostly noise, with a weak pulse since sigma equals 1,3. We see that, the
intensity of all the components drops with the increase of the sigma. Only in the 12" window (the
one with the largest sigma) do we see a significant increase in the maximum value of the main

component.
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Figure 73: Quality Graph of Scan 8657
We can see the maximum values of each component for each window in the following table.

Table 10: Scan 8657

Channel 1 2 3 4 5 6

Main Component | 1,41081E+04| 1,23051E+04| 1,09211E+04| 7,17012E+03| 9,54365E+03| 4,32741E+03
Component 1 3,99775E+03| 3,08415E+03| 2,26895E+03| 1,19761E+03| 2,15992E+03| 8,53691E+02
Component 2 6,37136E+03| 4,46727E+03| 3,16114E+03| 2,32681E+03| 3,85348E+03| 1,22877E+03
Main/Comp. 1 2,83366E-01 | 2,50640E-01 | 2,07758E-01 | 1,67028E-01 | 2,26320E-01 | 1,97275E-01
Main/Comp. 2 4,51610E-01 | 3,63042E-01 | 2,89453E-01 | 3,24515E-01 | 4,03774E-01 | 2,83950E-01
Comp.2/Comp.1 | 1,59374E+00| 1,44846E+00| 1,39322E+00| 1,94288E+00| 1,78408E+00| 1,43936E+00
Channel 7 8 9 10 11 12

Main Component | 8,18941E+03| 5,17353E+03| 5,13310E+03| 4,05827E+03| 5,77428E+03| 1,11835E+04
Component 1 2,01782E+03| 8,19115E+02| 9,44893E+02| 6,38348E+02| 4,54254E+02| 7,21531E+02
Component 2 2,68893E+03| 1,48678E+03| 1,82800E+03| 1,12596E+03| 1,77013E+03| 1,52112E+03
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Main/Comp. 1 2,46394E-01| 1,58328E-01 | 1,84078E-01 | 1,57296E-01 | 7,86685E-02 | 6,45175E-02
Main/Comp. 2 3,28342E-01 | 2,87382E-01 | 3,56120E-01 | 2,77448E-01| 3,06554E-01 | 1,36015E-01
Comp.2/Comp.1 | 1,33259E+00| 1,81511E+00| 1,93461E+00| 1,76387E+00| 3,89678E+00| 2,10818E+00

From the tables above we get the following diagram:
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Figure 74: First to Main component ratio of scans 8657

The linear fit gives us a descending line with the following equation:

| =0,30269-0,03307]

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Figure 75: Second to Main component Ratio of scans 8657

The linear fit gives us a descending line with the following equation:

v =0,43437-0,03289%

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases. We observe that the slope is similar with in the main/first
component diagram.

66



Pulsar PSR 0329+54
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Figure 76: Second to First component Ratio of Scan 8657

The linear fit gives us an ascending line with the following equation:

|y =1,06949+0,22497x |

A decreasing line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases. So far in all the above diagrams we show descending
lines, but this one is ascending.
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Scan 8658

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. Although the
quality of the scan is good, there are too few pulses for an analysis to be made possible.

Scan. 86568 24786 /1982 Resolution: 690
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Figure 78: Sequence of pulses of Scan 8658

Scan: 3658 Channel: 1 +2 Pulses: 13 Resolution: 690
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Figure 79: Integrated Profile of Scan 8658
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A study of the quality graph shows that indeed there are too few pulses, since no more than 2 pulse
per window can be seen in the graph below.

Sean: 9658 Channel: 1 +2 Pulzes: 0 Resolution: G590
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Figure 80: Quality Graph of Scan 8658
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Scan 8659

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. Although the
quality of the scan is good, there are too few pulses for an analysis to be made possible.

Scan: 8859 24/ 8 /1992 Resolution 350
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Figure 80: Sequence of pulses of Scan 8659
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Figure 81: Integrated Profile of Scan 8659
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A study of the quality graph shows that indeed there are too few pulses, since no more than 3
pulses per window can be seen in the graph below.

Scan: 8659 Channel: 1 +2 Fulzes: 0 Resolution: 350
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Figure 82: Quality Graph of Scan 8659
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Scan 8660

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. It is obvious from
the sequence of pulses that there is little noise present. A closer study of the sequence as well as
the quality graph reveals that the intensity-noise ratio has a rather high value. That allows for
accurate results to be drawn from its study. The main component is the pulse component with the
highest values. So we assume that the main component (core component) is the central pulse, the
first component the second “pulse” and the third component the first “pulse” in the integrated
profile.
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Figure 83: Sequence of pulses of Scan 8660
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Figure 84: Integrated Profile of Scan 8660
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Scan. 3660
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Figure 85: Quality Graph of Scan 8660

We can see the maximum values of each component for each window in the following table.

Table 11: Scan 8660

Channel 1 2 3 4 5 6

Main Component | 1,03973E+03| 3,01144E+03| 4,25396E+03| 6,36269E+03| 5,32857E+03| 6,91810E+03
Component 1 6,14979E+02| 1,62098E+03| 1,88704E+03| 2,27436E+03| 1,94950E+03| 2,06001E+03
Component 2 6,55037E+02| 1,14165E+03| 1,53870E+03| 1,36243E+03| 1,35223E+03| 1,60938E+03
Main/Comp. 1 5,91480E-01 | 5,38274E-01 | 4,43596E-01 | 3,57453E-01 | 3,65858E-01 | 2,97771E-01
Main/Comp. 2 6,30007E-01 | 3,79104E-01 | 3,61710E-01 | 2,14128E-01 | 2,53770E-01 | 2,32633E-01
Comp.2/Comp.1 | 1,06514E+00| 7,04296E-01 | 8,15404E-01 | 5,99039E-01 | 6,93629E-01 | 7,81249E-01
Channel 7 8 9 10 11 12

Main Component | 3,99572E+03| 1,00268E+04| 3,49303E+03| 3,40538E+03| 5,85361E+03| 7,14527E+03
Component 1 1,39190E+03| 2,85347E+03| 1,30524E+03| 8,13183E+02| 1,39988E+03| 1,33220E+03
Component 2 8,28276E+02| 2,06222E+03| 5,90691E+02| 8,96497E+02| 7,93443E+02| 5,26870E+02
Main/Comp. 1 3,48348E-01 | 2,84584E-01| 3,73670E-01 | 2,38794E-01 | 2,39148E-01 | 1,86445E-01
Main/Comp. 2 2,07291E-01| 2,05671E-01| 1,69106E-01 | 2,63259E-01 | 1,35548E-01 | 7,37369E-02
Comp.2/Comp.1 | 5,95069E-01 | 7,22706E-01 | 4,52554E-01 | 1,10245E+00| 5,66794E-01 | 3,95489E-01
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From the tables above we get the following diagram:

Pulsar PSR 0329+54
— e — Scan8660

Component's Ratio

AN

Fractionated Intensity (sigma)

Figure 86: Main component, First component Ratio of Scans 8660

The linear fit gives us a descending line with the following equation:

v =0,58234-0,04392x

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Figure 87: Second to Main component of Scan 8660

The linear fit gives us a descending line with the following equation:

1 =0,505—0,0473 Lx

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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Pulsar PSR 0329+54
— e — Scan8660

1,2 4

Component's Ratio

03 : . : . : . : . :
2 4 6 8 10

Fractionated Intensity (sigma)

Figure 88: Second component, First component of Scan 8660

The linear fit gives us a descending line with the following equation:

y=0,92877-0,04273x

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.
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(3.3)Pulsar PSR 0450+55

Scan 9038

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. A spike can be seen
in the sequence of pulses. It was probably caused by an accidental rebooting of the amplifier. A
closer study of the sequence as well as the quality graph reveals that the intensity-noise ratio has a

rather low value.

Scan: 9003 2776 /1982 Hesolution: 750
Channel: 1 +2 Blocks( 18 -389 ) Baseline: 160 260 900 1000
INT: 1 Plotscale: 000500 Window: 1 -1024) Running Mean 8]
78 180 235 3do 375 asofl  sis 600 6756  MSEC

=
=
B
=
=)
@
[as
Figure 89: Sequence of pulses of Scan 9038
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Figure 90: Integrated Profile of Scan 9038
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As we can see below, the sigma is very low. That means, that what we really observe is noise.
Therefore the results cannot be used.

Secan: 9033 Channel: 1 +2 Pulzes: 0 Resglution: 0
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Figure 91: Quality Graph of Scan 9038
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(3.4)Pulsar PSR 1822-09

Scan 9118

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses reveals that they are not well defined. It is obvious from the sequence of pulses
that there is a lot of noise present. Enough so that no results can be drawn from the study of this
scan.

Scan. 2118 28/6 /1992 Resolution: 750
Channel: 1 +2 Blocks:{ 140 -2133) Baseline 160 250 900 1000
INT: 1 Plotscale: 0.00600 Window:{ 1 - 1024 Running Mean: 0

76 180 236 ado 376 480 525 600 675  MSEC

EFFELSBERG 100m RADIOTELESCOPE

=
=]
i)
i
p=)
D
o«

Figure 92: Sequence of pulses of Scan 9118
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Figure 93: Integrated Profile of Scan 9118
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As we can see the sigma takes low values and there are too few pulses in the last windows.

Scan: 9118 Channel: 1 +2 Fulses: 0 Resolution: 750
IMT: 1 Window: 170 -245 )
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Figure 94: Quality Graph of Scan 9118
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Scan 9119

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses reveals that they are not well defined. It is obvious from the sequence of pulses
that there is a lot of noise present. Enough so that no results can be drawn from the study of this
scan.
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Figure 95: Sequence of pulses of Scan 9119
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Scan: 2118 Channel: 1 +2 Pulses: 1999 Resolution: 780
INT: 1 Window:({ 1 -1024 )
Baseline: 260 400 900 1000 FFT Filter: 1.000 Running Mean: 0
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Figure 96: Integrated Profile of Scan 9119
As we can see below the sigma has very low values,
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Figure 97: Quality Graph of Scan 9119
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(3.5)Pulsar PSR 0823+26

Scan 9175

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses reveals that the two pulses are not easily distinguishable. Therefore no results
can be drawn from the study of this scan. The baseline of the left side of the intergrated profile is
underneath the zero point average.
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Figure 98: Sequence of pulses of Scan 9175
Scan: 9175 Channel: 1 +2 Pulses: 23599 Resolution: 50
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Figure 99: Integrated Profile of Scan 9175
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The same conclusion can be drawn from the study of the Quality Profile, since it is obvious here as
well that that only one component (the main component) is visible.
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Figure 100: Quality Graph of Scan 9175

21:41:27

EFFELSBERG 100m RADIOTELESCOPE
21/08/2008

Reduction:

83



(3.6)Pulsar PSR 1133473

Scan 6160

The sequence of pulses and the integrated profile of the scan can be seen below. A study of the
sequence of pulses and the integrated profile reveal that they are well defined. The pulses start
strong and weaken as the recording progresses. It is obvious from the sequence of pulses that there
is very little noise present. A closer study of the sequence, as well as the quality graph, reveals that
the intensity-noise ratio has a high value. That allows for accurate results to be drawn from its
study. The main component is the pulse component with the highest values. So we assume that the
main component (core component) is the first in the integrated profile.
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Figure 101: Sequence of pulses of Scan 6160

Scan: 6160 Channel: 1 +2 Pulses: 1010 Resolution: 100
INT: 1 Window:( 1 -1024)
Baseline: 200 400 900 1000 FFT Filter: 1.000 Running Mean: o]
Plotscale: 0.30000 Ch1 Factor: 161.669 Ch2 Factor: 176.998
RMS1:0.043 RMS2:0.048 RMS3:0.056 RMS4:0.075
1010 Blocks: (1317 -2326) Box: 0.000
Qlims: ( 3.00 ,6.00 ,8.00 ,10.00 ,12.00 ,14.00 ,16.00 ,19.00 , 25.00 , 40.00 , 60.00 , 100.00)
o] ‘ 16 2(3 30I 46 56 6(’3 7(3 80I 96 msec

pl=)
W =
Q ]
2 =
k] o~
o ,
=
o s o
2 / 8
cC \, , S
£ N =
g —————— 3
S [ s
i _ . - |
a | \ ‘\ [ ] \ \ \ | T 5
] E]
tloo 3.0 6.1 9.1 121 152 182 212 24 2 273 (Deg) |2
o] | I 1 1 1 1 1 i 1 o

PSR 1133473
1 /9 /1991

Figure 102: Integrated Profile of Scan 6160
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The first window depicts the pulses with the lowest intensity, with a sigma equal to 2. We see that,
the maximum pulse intensity of the main component is always greater to the maximum value of the
first component.

Scan: 6160 Channel: 1 +2 Pulses: 0 Resolution: 100
INT: 1 Window:( 400 -850 )
Baseline: 200 400 900 1000 FFT Filter: 1.000 Running Mean: 0
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Figure 103: Quality Graph for Scan 6160
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We can see the maximum values of each component for each window in the following table.

Table : Scan 6160

Channel 1 2 3 4 5 6

Main Component | 1,33713E+03| 1,71308E+03| 1,77601E+03| 1,51417E+03| 3,38741E+03| 2,48254E+03
Component 1 5,98323E+02| 8,54395E+02| 1,10737E+03| 6,26553E+02| 1,75230E+03| 1,59936E+03
Main/Comp. 1 0,447468085 | 0,498747869 | 0,623515633 | 0,413793035| 0,517297877 | 0,644243396
Channel 7 8 9 10 11 12

Main Component | 3,61134E+03| 3,84298E+03| 3,15635E+03| 2,34340E+03| 4,35998E+03| 4,89948E+03
Component 1 1,38095E+03| 1,54634E+03| 1,47555E+03| 6,26881E+02| 2,02957E+03| 1,40058E+03
Main/Comp. 1 3,82393E-01 | 4,02380E-01 | 4,67486E-01 | 2,67509E-01 | 4,65500E-01 | 2,85863E-01

From the tables above we get the following diagram:
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Figure 104: Main component, First component Ratio for Scan 6061

The linear fit gives us a descending line with the following equation:

v =0.54427-0,00566x

A descending line means that the ratio of the main and first component decreases as the
fractionated intensity (sigma) increases.

86



VI. Conclusions:

¢+ For pulsar PSR 0525+21:
» The linear fit of the First to the Main component ratio has a negative slope. Therefore
the ratio of the components decreases as the individual pulses get stronger..

» The slope of the linear fit line has a much higher value in Scan 9008 compared to
Scans 7702, 7827, 7833. This could be attributed to the fact that the observations
were made in different frequencies (1,420 GHz for Scans 7702, 7827, 7833 and 1,6
GHz for Scan 9008)

¢+ For pulsar PSR 0329+54:
» The linear fits of the First to the Main component ratio and the Second to the Main
component ratio have a negative slope.

» The linear fit of the Second component to the Main component ratio has a negative
slope for Scan 8653 and Scan 8660 but has a positive slope for Scan 8657.

¢ For pulsar PSR 1133+73:
» The linear fit of the First to the Main component ratio has a negative slope. Therefore
the ratio of the components decreases as the pulses get stronger.

The linear fit of the First to the Main component ratio and for the Second to the Main
component ratio are similar (with a negative slope) to the results of Metallinou Fiori Anastasia’s
thesis.

Whereas the results of the linear fit for the Second to the First component ratio cannot be
compared since she made no such study.

The negative slope of the linear fit of the First to the Main and of the Second to the Main
components indicates that the observed components originate from different radiation sources
within the radiation beam.

If the observed components originated from the same radiation source the component’s ratio
would either increase or remain stable with the increase of the fractionated pulse intensity (o).

A careful study of the integrated profiles of PSR 0329+54 of scans 8653 and 8657 reveals the

mode changing that has occurred in the scan 8657. So the slope of the linear fit of the Second to
the First component could be explained by the mode changing.
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