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Abstract

Nowadays, earth–based and space observatories participate in surveys of

thousands or even millions of celestial objects. Often, the goal of such quests

is the identification/classification of multiple targets by detecting a periodic

phenomenon of intrinsic (e.g. Cepheid variable stars) or extrinsic nature

(e.g. extra–solar planet transits), in their light curve. Processing numerous

measurements for each one of the target is a time–consuming task and the

use of “clever” algorithms is crucial.

The Fast Fourier Transform algorithm (FFT) is a standard method for

analyzing time–series and is repeatedly used in surveys. Though, in cases

of non–sinusoidal wave–forms (e.g. Pulsars), FFT can be found weak. An

alternative method, Fast Folding Algorithm (FFA), was introduced by David

Staelin (Staelin, 1969) in order to solve this problem.

We created implementations of both algorithms which we checked for

accurate output and speed. Then we used them to estimate the period in

time–series of various parameters (period, noise, etc.) that simulate the light–

curves of various types of astronomical objects and compared the results.

Also, real astronomical data were processed.

We confirmed the good function of the algorithms and the proposed com-

plexity of FFT (by previous studies) and FFA (by us). We found that both

algorithms detect the period in most cases. Unfortunately, the exploitation

of the output of the algorithms was proved simplistic and failed to display

the advantage of FFA over FFT for pulses of small duty cycles.

Finally, we propose corrections to the code and a period searching method

that utilizes both algorithms.
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Nomenclature

Term Explanation

ASAS All Sky Automated Survey

ASCII The American Standard Code for Information In-

terchange encoding scheme

BJD Barycentric Julian Date

BKJD Barycentric Kepler Julian Date, which is equal to

BJD - 2454833.0 (0 at midday of 2009-01-01)

Dec Declination

DFT Discrete Fourier Transform

ETS Evenly spaced time series (set of magnitudes ac-

companied by two time measures: observation off-

set and interval)

FFA Fast Folding Algorithm

FFT Fast Fourier Transform — in this text refers to

the Radix–2 Fast Fourier Transform

GTS General time series

J2000.0 Epoch 2000 January 1, 12h TT (JD 2451545.0

TT) at the geocenter. In this text refers to the ce-

lestial reference system defined by the mean equa-

tor and equinox of J2000.0
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continued from previous page

JD The continuous count of days beginning with the

Julian day number 0 assigned to the day starting

at Greenwich mean noon on 1 January 4713 BC

KID Kepler ID: an identifier of each target of the Ke-

pler Mission

KOI Kepler Object of Interest

LSM Least Squares Method

NASA National Aeronautics and Space Administration:

the space agency of the USA

SAO/NASA ADS The Smithsonian Astrophysical Observatory/-

NASA Astrophysics Data System: a digital li-

brary

RA Right ascension

SNR Signal to noise ratio

SIMBAD Set of Identifications, Measurements and Bibliog-

raphy for Astronomical Data: a database man-

aged by the Centre de Donées astronomiques de

Strasbourg (CDS)

TT Terrestrial Time

UST Unevenly spaced time series: set of magnitudes

and observation times



“2+2 ≃ 5”

Sheuer, Peter (German Astronomer)

1
Introduction

1.1 Properties of astronomical time series

Almost all of our information about celestial objects arrives in the form of

photons1. The astronomical datasets are distributions of photon properties:

position (r⃗), time (t), direction (e.g. geocentric equatorial coordinates: α, δ),

energy (E) and polarization (Stokes parameters)(Horne, 2012). For example,

an astronomical photograph is a distribution of energy (=frequency=color)

and direction (position of each pixel in image) of the photons that were

detected by the photographing device.

In many cases, the above parameters are studied as they evolve in time.

E.g. a movie is the evolution of the distribution of the previous example

and each frame corresponds to an observation time. In general, a dataset

1 nowadays there is also neutrino astronomy and the research for direct observation of
gravitational waves is promising

1
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of observations collected at successive points in time is called time series

(Cowpertwait & Metcalfe, Cowpertwait & Metcalfe).

The great importance of astronomical time series may not need highlight-

ing: since antiquity, the measurement of time was based on the observation

of the changes in position of celestial objects (Sun, Moon or even Venus.)

Furthermore, some scholars point the study of patterns in astronomical time

series as the source of the rationalism and modern science (Zakai, 2009).

Evenly vs. unevenly spaced data

Measurements taken in equally spaced intervals (e.g. every hour or every

April 11th) present a clearer view of the observation subject than unevenly–

spaced time series. Also, many analysis methods require such uniformity

(like the implementations of FFA and FFT in this work.) Thus, time series

are often considered evenly–spaced and are the goal of the great majority of

observations and experiments in many fields of science.

Constant sampling period is a considerably difficult goal in observational

astrophysics. In the case of ground–based surveys, the observation times are

restricted by various parameters: climatic (e.g. cloudiness), orbital (e.g. day-

light) or even social (e.g. off–schedule aeronautical activity.) Consequently,

time series at equidistant intervals can be produced in only few cases (e.g.

pulsar observations in radio frequencies are unaffected by daylight, most of

climatic features and often minutes or hours of observation are more than

enough.)

In contrast, space telescopes, due to the absence of climate (although one

should take account of the solar and cosmic radiation) and the reconfigurabil-

ity of their orbital parameters, can perform regular–in–time measurements.

Mathematical notation

We will use calligraphic capital letters (A,B, . . .) to represent time series

or functions performed on them.
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• Unevenly spaced time series (USTS): a finite mathematical se-

quence of N vectors, each corresponding to a magnitude (xi) of a cer-

tain quantity and an observation time (ti):

X = (xi, ti)
N−1
i=0 (1.1)

where ti+1 > ti.

• Evenly spaced time series (ESTS): a set of three objects: (i) a finite

mathematical sequence of N magnitudes (xi) of a certain quantity, (ii)

the observation’s time offset (τ0) and (iii) the sampling period (ps).

Consequently each magnitude’s was measured at τi = τ0 + i · ps.

Y = {(xi)
N−1
i=0 , τ0, ps} (1.2)

• General time series (GTS): For simplicity, when the offset and

sampling period does not interest us, we will denote equally spaced

data as

Z = (xi)
N−1
i=0 (1.3)

1.2 Noise

An intrinsic property of every measurement is uncertainty. A time series

of observations can be considered as a digital signal with noise. We will use

an example to better illustrate this fact.

In order to estimate the magnitude of a star using an optical telescope,

one will measure the amount of energy of photons that arrived from a certain

solid angle that contains the target, over a specific period. This energy is not

yet representative of the magnitude of the star. In the solid angle there are

many other targets: terrestrial atmosphere, interplanetary and interstellar
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medium diffusing light, undetectable targets etc. Also, photons are discrete

quantities and therefore, they induce quantum noise and their detection is

of probabilistic nature. Furthermore, thermal photons are always detected

because of the presence of electronic circuits.

To overcome these difficulties, a series of data reduction techniques are

applied to transform the measurements into meaningful information. But

even then, the numerical methods we use and the accuracy of our computers

induce an amount of uncertainty.

Normality

The distribution of ‘counting statistics’ or similar, like counting the pho-

tons in astronomy, is the Poisson distribution. Though the involvement of

numerous physical processes and the collection of large datasets usually allow

as to assume Gaussian distribution — the occurrence of which stems from

the ‘central limit theorem’ (Wall & Jenkins, 2003).

Notation

Summarizing, complementary to the notation we described in Equation (1.1)

and Equation (1.2), the sequence of measurements (xi) will be considered as

a summation of a digital signal (si) and noise (ni) of Gaussian distribution:

xi = si + ni (1.4)

A measure of the quality of the time series, is ‘signal to noise ratio’ (SNR).

It is the ratio of the power of the signal over the power of the noise. The

power P of a time series is defined as the summation of the squares of it’s

contents (Sabin, 2008):

P (Z) =
N−1∑
i=0

x2
i (1.5)
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SNR (Z) =

N−1∑
i=0

s2i

N−1∑
i=0

n2
i

(1.6)

The biggest obstacle in determining the SNR is in the fact that in observed

time series (as opposed to manufactured) we cannot distinguish the signal

from the noise part. There are methods (statistical, information theoretic

etc.) that deal with this problem, but they depend on interpretations and

estimations of the data.

1.3 Periodicity in astronomy

One of the most important findings in a time series is periodicity, in the

sense that it allows predictions and promotes the discovery of the underlying

physical processes. Some examples of periodic astronomical phenomena are:

• Light from pulsating variables, rotating non–spherical stars, eclipsing

binaries1 (Figure 1.1)

• Extra–solar planet transits

• The 22–year magnetic activity cycle of the Sun (Figure 1.2)

• Radial velocity of binary stars or stars hosting massive planets

• Radio emission of pulsars

Of course, various types of variability — periodic or not — can coexist in

an observation subject. Example of this is the δ Scuti variable star WASP–33

(or HD 15082) in which extra–solar planet transits were detected (Herrero

et al., 2011).

1 as opposed to eruptive variables like novæwhose variability does not follow a repetitive
pattern
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HIP 97439 - KID 7548061
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Figure 1.1: Light–curve of HIP 97439
(or KIC 7548061). It’s a classical
case of Cepheid with obvious periodic-
ity (Thomson et al., 2013).
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Figure 1.2: The Wolf’s sunspot num-
bers indicate a periodicity in the so-
lar magnetic activity (Hipel & McLeod,
1994)

1.4 Period searching

The periodicity in a light–curve like the one in Figure 1.1 may seem

obvious through the naked eye but this is not always the case:

• High noise can hide periodicity (and other trends), especially when

observing distant targets.

• The discrete nature of time series obscures the shape of the light–curves

when sampling rate is comparable to the period.

• The presence of many periods can ‘scramble’ the light–curve in a seem-

ingly random way.

• We need statistical measures of periodicity that can be automatically

applied to the uncountable observation subjects of modern surveys

(sometimes even millions.)

There are many approaches to the problem, but here we will discuss two

autocorrelation1 techniques: (i) Folding and (i) Discrete Fourier Transform.

1 the process of comparing a signal/time series with itself shifted in time
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1.4.1 Folding

If a time series contains a periodic signal then the periods will tend to

be similar, but one should not expect them to be exactly the same for the

reasons explained above (noise etc.). Correlating the data by superimposing

the periods would result to a folded time series or phase diagram of

length equal to the period. The folded profile would subsequently (as it will

be illustrated later) contain an amplification of the signal and reduced noise

in the phase bins.

SNR improvement

Let us have a look in a simple case of folding: two equally–length–ed

sequences (Z ′ and Z ′′) that represent two whole periods of the original data,

added together to give a folded time series (Z). Ideally, the signals are the

same (s′i = s′i
′), but as the noise is considered random and independent of the

signal (zero Pearson’s correlation coefficient) it will differ and it’s addition

will not double it. In detail,

Z = Z1 + Z2

xi = x′
i + x′

i
′

si + ni = s′i + n′
i + s′i

′ + n′
i
′

si ≈ 2s′i and ni ≈ n′
i

√
2

(1.7)

Actually, the noise ni cannot be proportional to the noise part of any of the

two sequences. The
√

2 part only represents the fact that when adding n

random variables of Gaussian distribution with the same standard deviation,

the resulting variable will originate from the same distribution but it’s stan-

dard deviation will be amplified by
√
n, a consequence of the ‘law of large

numbers’ (Spiegel, 1975).

If the period fits m times in the data, the overall improvement of the SNR
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will be:
SNRfold

SNRdata

=
√
m (1.8)

Period estimation

The period of the signal is in fact unknown and we can only apply the

previously described process (§ 1.4.1) for trial periods. The method will give

the best amplification in the case of close proximity of the trial period to the

observed. Repetition of a wide range of trial periods can result to a good

estimate of the period. This can be easily understood by a simple example:

Imagine a person repeating the first 8 natural numbers. The pauses

between the numbers are 10 seconds. Thus, the period of the time series is

80 seconds.

If a second person enters and exits the room every 50 seconds, he will

record an endless repetition of the sequence: “five, two, seven, four, one, six,

three, eight”1. These numbers will seem randomly distributed to him and

the sum of them will be 36. If he’s late a few seconds (phase), he will end

up with the same image and sum.

Now, a third person enters and exits the room every 80 seconds (equal

to the period of the first person’s signal.) Depending on whether he decides

to start his ‘invasions’, he will record “one, one, one, ...” or “seven, seven,

...” etc. He will immediately perceive a repeating pattern and will calculate

a sum of the numbers that will be either small or large (in respect to the 36

of the second person’s) depending on his ‘phase’.

The folding is the same process: we try entering the room in different

intervals (folding in trial periods) and send a group of observers to account

for all phases (phase bins). In each group, an observer records extreme

values for the sum that represent the possibility of the group’s period to be

the equal to the signal period. A final report of all groups will lead to the

best candidate for the period.

1 The equality of the lengths of the two sequences and the maximum ‘scrambling’ is
not a requirement but result of the coprimality of 5 and 8
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Summary of the method

1. We use as an input the time series

Z = (xi) , where i ∈ {0, 1, . . . , N − 1} (1.9)

2. A starting trial period P is set

3. We fold the input into a new time series

F = (fj) , where j ∈ {0, 1, . . . , P − 1} (1.10)

4. Each phase bin fj is calculated by the formula

fj =

mj−1∑
k=0

xj+kP

mj

(1.11)

where mj is the number of folds performed. The normalization by this

division is required because the trial period P cannot always perfectly

devide N . Therefore, the value of mj is not the same for all the phase

bins (j) as we can fold, e.g. 8 data points into a 3 point series: the first

and second bins would hold the average of three magnitudes (mj=3)

and the third bin, of 2 magnitudes (mj=2). Consequently,

mj =

⌊N
P
⌋ + 1 for i < N (modP )

⌊N
P
⌋ otherwise

(1.12)

5. The power of the folded time series is calculated

6. The we select a new period (until a maximum period is reached) and

goto step 2

7. After all periods have been tried, a power–period diagram can be con-

structed to give information about the signals in the data
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8. If we are interested in the most powerful periodic signal (in accurately

observed and processed curves may be a direct detection of variability),

it’s period is the one with the maximum power (peak period)

If straight–forward implemented, this algorithm has complexity (see Ap-

pendix A.1) of O (n2). The amount of operations needed for each of the trial

periods is proportional to N: (i) addition of N numbers in groups, (ii) N reads

of the data to compute the power of the fold. In blind searches, we check a

range of periods that depends on the length of the data (e.g. from 2 samples

to N/2 samples), the total of trial periods is proportional to N, hence the

complexity of O (n2).

The folding technique is also practiced to depict the shape of a periodic

signal, a ‘profile’. Performing a fold using an estimate of the period (whatever

the method for obtaining it) will enhance the signal, give an average (not

always desired: there are semi–periodic physical processes) of many periods

and shorten the length of data in case we work on a periodical phenomenon,

speeding up the process.

1.4.2 Fast Folding Algorithm

The above brute–force period–folding can be significantly accelerated.

A large number of additions performed for the calculation of phase bins

(Equation (1.11)) is repeated. Inspired by Cooley and Tukey’s Fast Fourier

Transform (Cooley & Tukey, 1965), 4 years later, David Staelin created a

similar algorithm, the Fast Folding Algorithm (Staelin, 1969), for computing

the folds of time series avoiding the redundant additions.

Flow diagram

The function of FFA can be clarified by a short example. A time series

of 12 elements is to be checked for a signal in the period range from 3 to 4

times the sampling rate (in short, “period of 3 to 4 elements”.)
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Figure 1.3: Flow diagram for FFA as applied to a time series of 12 elements.
Notes: (i). The numbers in the cells reveal the index of the element in the original
time series, whereas the plus symbol (+) indicates additions of the contents of the
respective cells, not their indices. (ii). The arrows depict the flow of the informa-
tion between each step. The integers, between each pair of arrows, represent the
positions by which the elements of the second’s arrow table, are circularly shifted
to the right. iii. This is a reproduction of the first figure in Staelin (1969).
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N/8
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First, we need to fold the time series. The Figure 1.3 illustrates the

transformation of the input data into four folds of it, each corresponding to

a different period in the desired range.

In a series of steps, the algorithm adds the elements of pairs of tables

from the original data (or the previous step’s resulting data) and shifts them.

Figure 1.4 shows the flow diagram in the case of 8 tables so that the reader

will understand the selection of pairs and shift distances1.

Application of FFA for n–length–ed data and basic period P0

1. Grouping of the original data of n elements into M tables of P0 elements

each. As the tables are combined at pairs at constantly duplicating

blocks of tables, M should be a power of 2, so we select the greater

power we can:

M = 2

⌊
log2

n
P0

⌋
(1.13)

2. The total elements that will be used, N , is

N = M · P0 ≤ n (1.14)

3. The total number of steps, S, is

S = log2 M =

⌊
log2

n

P0

⌋
(1.15)

4. M in count, tables (folds) will be formed : Fi, where i ∈ {1, 2, . . . ,M}
each corresponding to a period P (i):

P (i) = P0 +
i− 1

M − 1
(1.16)

1 The shifts are shown between the arrows, not to be confused with the amplitude in
common flow diagrams for digital signal processing
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5. Now, the folds are ready to be normalized (e.g. divided by the number

of summations/steps, S), analyzed or searched for maximum power as

described in § 1.4.1

Complexity

In each step, there are N additions taking place, M shifts, etc. These

operations are of O (N) complexity (see Appendix § A.1). The number of

steps is log2
N/P , so the total complexity is O (NlogN).

Effectiveness for blind searches

To search for periodicity in a range of periods spanning more than one

period, FFA must be applied as many times as the smallest difference between

integers that enclose the desired range. For example, if we search for periods

in the range (5.67, 9.21) the algorithm should run 5 times — for trial period

5, 6, 7, 8, 9 and 10. The cumulative reports for all the folds can result to an

estimate of the period (e.g. peak period.)

The complexity of a wide–range blind search using FFA is proven to be

proportional to the square of the size of the input data (O (n2)) — the same

with the brute–force folding (see § 1.4.1). One may wonder why FFA is more

effective.

The answer is hidden in the resolution of the methods. FFA folds the

original time series not only in integer periods but also in numerous fractional

periods. For example, for N=20, and restricting ourselves in the range of

periods [2, 6]:

• Brute–force folding: 9 folds for trial periods 2, 3, 4, 5, 6, 7, 8, 9, 10

will be created

• Fast folding algorithm: the algorithm will run for 9 basic periods

producing 30 folds (Table 1.1)

Some facts should be noted here. In Table 1.1 we can see that integer

folding periods (except for the boundaries of 2.00 and 11.00) are approached
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Table 1.1: Example of number of folds performed by FFA

Basic period Periods of folds

2 2.00, 2.14, 2.29, 2.43, 2.57, 2.71, 2.86, 3.00
3 3.00, 3.33, 3.66, 4.00
4 4.00, 4.33, 4.66, 5.00
5 5.00, 5.33, 5.66, 6.00
6 6.00, 7.00
7 7.00, 8.00
8 8.00, 9.00
9 9.00, 10.00
10 10.00, 11.00

twice. Thus, only 22 different folding periods are resulted. Our experienced

showed that the last fold of a run of FFA is an approximation (lower power)

of the classical fold (see § 1.4.1) whereas the first fold of the next run (for the

same folding period) is an accurate account of it. This dictates the inclusion

of (i) all the duplicates in the statistics for period detection and (ii) the last

run of FFA (10.00, 11.00) — although the range was reached in the previous

run (9.00 and 10.00).

This means that an estimate of period with FFA can be more accurate

and also, the improved resolution can be utilized by re–binning the data: the

input size will be decreased and the n2 will rapidly decrease in respect to the

brute–force folding, whereas the resolution can still remain high.

Count of folds and period resolution

The total number of folds, CFFA (N) depends on the input size N and

has a complex expression, because the requirement of each FFA run to apply

on the largest power–of–2 section of the input, involves number theoretic

functions.

Instead of a disciplined mathematical proof, we confirmed the following

formulæ, by computational experiments:
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Figure 1.5: The value of CFFA, (number of folds and consequently, number of
folding periods), as a function of the input size. Note that the duplicates (see
‘Effectiveness’) are included.

CFFA ≃ 1

2
N log2N − 3

4
N (1.17)

The exact value is bounded by two functions of N (Figure 1.5):

N + 1

2
log2

N + 1

4
≤ CFFA ≤ N

2
log2

N

2
(1.18)

1.4.3 Fourier Analysis

The time series is a representation of data in time domain. It is also

possible to represent the data in the frequency domain by performing the

Fourier transform. Here some basic principles of Fourier Analysis will be

highlighted in order to understand the function of FFT (Chu, 2008).
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Fourier Series

A real periodic function x (t) can be expressed as a sum of trigonometric

series:

x (t) =
1

2
a0 +

∞∑
n=1

[
an cos

(πn
L

t
)

+ bn sin
(πn
L

t
)]

(1.19)

where

an = 1
L

L∫
−L

x (t) cos
(
πn
L
t
)
dt (1.20)

bn = 1
L

L∫
−L

x (t) sin
(
πn
L
t
)
dt (1.21)

Generalization for complex functions:

x (t) =
∞∑

n=−∞

cne
iπn

L
t (1.22)

where

cn =
1

2L

L∫
−L

x (t) e−iπn
L

tdt (1.23)

Continuous Fourier Transform

Continuous Fourier Transform (CFT) is a generalization of Fourier Series

for infinite domains, enabling the representation of continuous non–periodic

signals:

x (t) =

∞∫
−∞

F (f) e−2πiftdf (1.24)

where

F (f) =

∞∫
−∞

x (t) e2πiftdt (1.25)
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Discrete Fourier Transform

For an equispaced discrete signal (or evenly spaced time series) with size

N , xn where n ∈ {0, 1, . . . , N − 1}, the Discrete Fourier Transform (DFT),

Xp where p ∈ {0, 1, . . . , N − 1}, is calculated by the following formula:

Xp =
N−1∑
n=0

xne
−i 2π

N
np (1.26)

The Inverse DFT can also be computed:

xn =
1

N

N−1∑
p=0

Xpe
i 2π
N

np (1.27)

Thus, an algorithm performing DFT would add and multiply N values, N

times, resulting to a computational complexity of O (N2).

DFT: Magnitude and phase spectra

The result of the DFT is a series of complex numbers. The first element

is the constant a0, the DC offset. The next elements point to the information

we have got on the harmonics. Their magnitude (|Xi|) is the amplitude of

the corresponding trigonometric function and their argument
(

tan−1 Im(Xi)
Re(Xi)

)
is the phase (Sabin, 2008).

It is possible then, to reconstruct the original data from this information.

As one can see in Figure 1.6, even using a small number1 of the most powerful

harmonics we approximate the square wave (which is a ‘difficult’ function to

approximate.)

1 In this way it is possible to use smaller data, when a desired precision is reached,
making Fourier transform a powerful tool for lossy data compression
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Figure 1.6: An example of the decomposition of a square wave signal (first row,
first column) into it’s spectrum. Both magnitude and phase spectra are shown
(first row). As we add the harmonics the DFT gave, the summation approximates
the original signal

Nyquist–Shannon sampling theorem

Harry Theodor Nyqvist and Claude Elwood Shannon independently dis-

covered the ‘sampling theorem’ according to which,

“The sampling rate required to exactly reconstruct a signal from

its samples, the Nyquist rate, is more than twice the highest

frequency at which the Fourier transform of the signal is non–

zero, called Nyquist frequency or folding frequency.”

When the Nyquist criterion is not met, the phenomenon of aliasing (shift

on the spectrum) appears. Example of this is a common effect of wheel
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spokes looking as rotating in the opposite direction of the car’s movement

when a certain speed is reached. The sampling rate of the video camera or

of our eyes is not high enough to detect the actual period (reappearance of

any of the spokes in the position we focus to.)

Because of this fact,

• the search for periodicities in a sequence of N elements is restricted to

periods from 2 to N/2 time the sampling rate

• half of the Fourier coefficients of a time series can be discarded (N/2

to N − 1)

Spectral leakage

Each element of the DFT, or ‘frequency bin’, of a signal corresponds

to a multiple of a basic frequency. If the processed signal consists of only a

sinusoidal waveform of equal frequency to one of the frequency bins, the DFT

will give only one non–zero value: no other frequency will be detected. What

happens in the case the frequency is not a multiple of the basic one? All of

the DFT’s elements get a non–zero value and a bell–shaped distribution is

formed around the real frequency. Consequently, the maximum is located

near the real frequency and the power is distributed to many frequency bins,

lowering the total profile of the output (Figure 1.7). The phenomenon is

called spectral leakage.

Matrix representation of DFT

The Equation (1.26) can be written in the matrix form
X0

X1

...

XN−1

 =


w0 w0 w0 · · · w0

w0 w1 w2 · · · wN−1

...
...

...
. . .

...

w0 wN−1 w2(N−1) · · · w(N−1)2

 ·


x0

x1

...

xN−1

 (1.28)
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Figure 1.7: Example of the spectral leakage in a discrete Fourier transform.
The four figures represent the DFT of a signal with a sinusoidal waveform of the
frequency noted above their frames. The integer frequencies present no spectral
leakage and coincide with the maximum–power frequency bin

where

w = e−i 2π
N (1.29)

The symmetries of the middle array can taken advantage of, leading to

optimized algorithms computing DFT, like the ‘Radix–2 Fast Fourier Trans-

form’ that will be described here.
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1.4.4 Radix–2 Fast Fourier Transform

Divide and conquer

The division of a problem into smaller sub–problems is often highly ef-

fective. Consider a simple search for a name in a phone book. Reading the

indices one–by–one, the answer may come hours later. Instead, we all in-

stinctively make a clever selection of the pages we look into. We open the

book in a page, we check if the name is in the previous pages or the next and

we continue the search in the appropriate ‘half’. The search will be over in

seconds.

The same technique can be applied to the computation of the DFT. When

N is even, the Equation (1.26) can be split into two parts (even and odd n’s):

Xp =

N
2
−1∑

n=0

x2ne
−i 2π

N
(2n)p +

N
2
−1∑

n=0

x2n+1e
−i 2π

N
(2n+1)p = (1.30)

=

N
2
−1∑

n=0

x2ne
−i 2π

N/2
np + e−i 2π

N
p

N
2
−1∑

n=0

x2n+1e
−i 2π

N/2
np = (1.31)

= Ap + wpBp (1.32)

where the expression

Ap =

N
2
−1∑

n=0

x2ne
−i 2π

N/2
np (1.33)

Bp =

N
2
−1∑

n=0

x2n+1e
−i 2π

N/2
np (1.34)

are obviously the DFTs of the N
2

–sized sequences

• (x0, x2, . . . , xN−2)

• (x1, x3, . . . , xN−1)
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Figure 1.8: The ‘FFT butterfly diagram’. The equally sized data tables Ap and
Bp are combined to give the even and odd–indexed elements of the DFT, Xp

The division of the problem into two smaller parts optimizes the algorithm

because of the previously noted computational complexity (O (N2)) for DFT.

By computing two half–sized DFTs we reduced the operations by a factor of

two:
(
N
2

)2
+
(
N
2

)2
= N2

2
.

Symmetry

Exploiting the fact that the DFT is periodic with period N
2

, we are led

to further simplification

Xp = Ap + wpBp (1.35)

Xp+N
2

= Ap− wpBp (1.36)

The flow diagram of this process (Figure 1.8) is called ‘FFT butterfly

diagram’ and reflects the combination of the results of two DFTs on divisions

of the data, into one DFT of the whole data.

Radix–2: strategy and flow diagram

If N = 2M , the divide and conquer strategy can be repeated M times,

reducing the computation of the DFT into 2–point DFTs. As the data is

separated to even/odd indexed elements and not sequentially, the input data

must be shuffled appropriately. This is done by bit–reversal1 the indices

1 In FFT implementations, bit–reversal is directly or indirectly applied
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(Table 1.2).

Table 1.2: Example of bit reversing of indices in data of size 8

Index (decimal) Index (binary) Bit–reversal New index

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Figure 1.9: Flow diagram for FFT. The input data (blue) is scrambled (bit–
reversing) and a series of ‘FFT butterflies’ lead to the DFT (green). Note that
this diagram differs from the one in Figure 1.4: i. elements and not groups of
elements are processed, ii. there are no shifts but multiplications by powers of w
(red) or −1 (black minus signs)

The overall flow diagram of the Radix–2 FFT in the case of 8 elements is

shown in Figure 1.9.
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Historical Note

About two decades after the publication of the first Fast Fourier Trans-

form (Cooley & Tukey, 1965) it was revealed that the famous German mathe-

matician, Carl F. Gauss, discovered the FFT in 1805, even before the French

mathematician, Joseph B. J. Fourier investigated Fourier Series (Heideman

et al., 1985).

1.5 Properties of specific types of light–curves

In this section we will overview some basic properties of three types of pe-

riodically variable stars and their light–curves. The selection of these groups

was not random as they seem to fit in two extreme cases and an intermediate

one. One category is the Cepheid variable stars which are characterized

by an approximately sinusoidal light–curve. Another, is the hosts of extra–

solar planets, where short rectangular pulses are the observation target. As

a ‘bridge’ connecting the characteristics of these groups, we consider appro-

priate the eclipsing binary stars who present sinusoidal or rectangular,

short or long pulses — depending on their kind and properties.

1.5.1 Cepheid variables

General information

The group is named after its prototype - δ Cephei - and is of great his-

torical importance in astronomy. The pulsation cycle of a Cepheid betrays

its absolute magnitude (Cepheid period–luminosity relation) and combined

with a measurement of the apparent magnitude we can estimate the distance

of the star or the galaxy including it (Shu, 1982).
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Cepheids are ‘intrinsic variables’ as their variability is caused by internal

physical processes. Sir Arthur Eddington indicated a mechanism (‘Edding-

ton’s valve’) of pulsation in stars due to mechanical instability which was later

used to explain the behavior of Cepheid stars. In layman’s terms, these vari-

ables are like balloons, contracting and expanding (radial pulsation mode),

changing their luminosity as their radiation interacts with their gas (Percy,

2007).

Light–curve properties

Figure 1.10: The magnitude (top left), temperature (top right), radius (bottom
left) and radial velocity (bottom right) of δ Cephei (Percy, 2007).

The profile of a Cepheid resembles slanted sinusoidal peaks (Figure 1.10).

The maxima and minima do not happen when the radius is at extreme val-

ues as temperature is also changed (due to energy production variations).

Remember the standard formula

L = 4πR2σT 4 (1.37)
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where L is the luminosity, R is the radius and T is the effective temperature

of the star.

1.5.2 Eclipsing binary stars

Figure 1.11: A representation of how eclipsing binary star light–curves are cre-
ated. Credit: German Aerospace Center (Deutsches Zentrum für Luft- und Raum-
fahrt e.V.)

General information

Two stars orbiting around a common center of mass form a binary star

— or binary system. An eclipsing binary star has the orbit plane of
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its components approximately in the observer’s line of sight. Thus, mutual

eclipses (as seen by the observer) occur, resulting to periodic drops of the

magnitude of the star (§ 1.5.2) (Warner, 2006).

They are also called ‘extrinsic variables’ as the variability of the magni-

tude of the system is not caused by internal changes in the stars. Of course,

one or both the stars may be ‘intrinsic variable’.

Types of eclipsing binary stars

The main types are Algol, Beta Lyræand W UrsæMajoris (W UMa) and

correspond to a different configuration. In Algol-type binaries the stars are

well-separated, whereas Beta Lyrae and W Uma signify systems where the

stars are close to each other. The light–curves of close binaries present a

high distortion (“egg-like”) due to the tidal effects between the members

(Figure 1.12(c)). In the case of W UMa group, one or both stars expanded

beyond their ‘Roche limits’ and the turbulent nature of these objects may

change the profile of the light–curve dramatically in even few cycles.

Light–curve properties

(a) Reflection effect on
Algol-type eclipsing binary

(b) Eccentricity effect on
eclipsing binaries

(c) Close binary light–
curve

Figure 1.12: Various effects on the light–curves of eclipsing binaries. Figures
taken from Warner (2006).

The form of the light–curve depends on many factors, leading to different

results:
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• Relative magnitude: If the stars are of approximately equal magni-

tude, then the drop of magnitude for each eclipse will always be the

same. In most cases, there is a difference in the intensity of the light

produced by each star — leading to a sequence of big and small drops

of intensity when the brightest or the faintest star is obscured, respec-

tively. We call them primary and secondary minima.

• Intrinsic variability: One or both of the components may present

another kind of variability which will be shown completely or partially

(during an eclipse).

• Eccentricity: In a circular orbit, the eclipses will be equally spaced

in time. On the other hand, eccentricity may result to a shift of the

one minima in respect to the other. Of course, the effect also depends

on the orientation of the orbit. For example, if the line of sight lies

on the semi-major axis of the orbit, then no shift will be presented

(Figure 1.12(b)).

• Limb darkening: the disk of a star is not equally luminous in all

its parts. When looking at the center of the disk we look deeper and

hotter portions of the solar atmosphere in comparison to looking at the

limb. Thus, the optical depth varies depending on the distance from

the center of the disk leading to a softer drop of intensity during eclipses

and to non–flat minimums. There are many models of representation of

the phenomenon and usually two limb darkening coefficients are taken

under consideration.

• Inclination: for exactly 90◦orbit inclination in respect to the ob-

server’s line of sight, the smaller member of the system will be totally

eclipsed resulting to a flat component of the minima. When this is

not the case, no star can be totally obscured, leading to no flat re-

gions and smaller drops of intensity (sometimes the smaller minima is

undetected).

• Reflection effect: in the intervals between minima, the magnitude

slightly increases and decreases, peaking around the second minimum.



CHAPTER 1. INTRODUCTION 29

The cause is the extra heating of the one side of the secondary by the ra-

diation of the primary star, making it a little brighter (Figure 1.12(a)).

• Gravity darkening: for contact binaries, the tidal effects deform the

stars to ellipsoidal shapes that their ends are cooler, thus fainter. The

change of orientation of those ends present as a variability.

1.5.3 Extra–solar planet transits

General information

Since late 80s and the first observational indications for the existence

of planets around other stars1, and the first unambiguous detection of an

extra–solar planet revolving the star 51 Peg (Mayor & Queloz, 1995), 885 of

confirmed and thousands of unconfirmed planets have been detected2.

There are numerous successful and proposed techniques for detecting ex-

oplanets. The transit method is the most successful after the radial ve-

locity method and utilizes the shape of the host star’s light–curve. The

main idea is that we can detect a slight reduction of the magnitude of a star

in case a planet of it’s supposed planetary system passes in front of it as we

observe it from Earth (Perryman, 2011).

Light–curve properties

The light–curve of the host of a transiting exoplanet can be considered

a variation of that of an eclipsing binary. Although, the companion is not a

star but a planet, the differences are quantitative and not qualitative (Fig-

ure 1.13). In comparison to Figure 1.11,

1 Philosophers and scholars in antiquity and Renaissance suggested that other stars are
distant Suns and may be coupled with Earths

2 As of May 7, 2013. Source: The Extrasolar Planets Encyclopaedia
(www.exoplanet.eu)
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Figure 1.13: 3D representation of an exoplanet transit and the effect of the
various phases to the light–curve of the host star (Perryman, 2011).

• The small size of planets creates a smaller drop of magnitude during the

primary eclipse, and also tends to create more flat minima in contrast

to eclipsing binaries

• Planetary radiation is millions or billions less powerful than stellar

in optical wave–lengths making the secondary minimum undetectable.

Thus, eccentricity can be detected only by careful observation of the

shape of transit.

• The limb darkening effect is also present here (Figure 1.14), making the

baselines of minima curved. The orbital inclination plays a significant

role as a small object — a planet — may only pass through darkened

regions of the stellar disk.

• The reflection effect is very small but it can be seen1

1 performed in few cases of targets of the CoRoT and Kepler missions, with the latter
even discovering two candidates through this effect
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Figure 1.14: Examples of exoplanet transit profiles. Planet–star sizes are shown
in scale. We can see the effect of the planet size, the orbit inclination and limb
darkening to the form of the light–curve (Perryman, 2011).

1.6 Goals of the thesis

In order to check and compare the use of the FFT and FFA algorithms in

astronomical data we have to perform a number of tasks and answer certain

questions:

1. Implementation of the algorithms and check of their good function

2. Are they as time consuming as we expect them to be?

3. What are their success rate when analyzing time–series of various pa-

rameters: shape, period, noise level?
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4. Can they be used to detect the period of three representative classes of

periodic astronomical phenomena with small errors (Cepheid variables,

eclipsing binaries, extra–solar planet transits)?



‘‘—Watson, you are coming along wonderfully. You have really done very

well indeed. It is true that you have missed everything of importance,

but you have hit upon the method...’’

Sherlock Holmes in Sir Arthur Conan Doyle’s ‘A Case of Identity’

2
Methodology

2.1 Programming

2.1.1 Programming conventions

Among the various programming languages that are commonly used in

astrophysics (Fortran, C/C++, IDL, Perl, etc.), we selected ANSI C (or

C89/C90) for reasons of compatibility, readability and familiarity. As op-

posed to the object–oriented C++, the algorithms developed here, can easily

be translated to other structured–programming languages.

The current version of the software manipulates time series as arrays

of floating–point variables (length of one computer word, which in modern

computers usually means 32–bit information.) On the other hand, times are

stored into double precision floating point variables (two computer words, 64–

bit) as we decided to use BJD days as unit: many time–series are sampled

33
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at milliseconds (e.g. pulsar radiation).

An advantage of of floating–point data types is that in most cases, we

do not need to check if the value of a summation approaches the minimum

or maximum value, risking a change of sign1. All input and output streams

were of ASCII format.

2.1.2 Implementations of FFT, FFA and Folding

Here there is a description of the main functions the software uses. The

input of FFT and FFA algorithms is an array of measurements (bins). The

folding algorithms are also fed with the observation times of each measure-

ment.

FFT

The Fast Fourier Transform is performed by two cooperating functions.

The FFT function:

• Allocates memory for the buffer arrays and initializes them

• Calls the RECURSIVE_FFT which

– calls itself two times — each for one half of the input, until size–2

halving occurs

– combines the resulting tables in a ‘FFT–butterfly’ manner, and

returns them

This process ultimately results to the DFT of the input

• The output is saved in a report file,

• and searched for the maximum which is rendered as the most probable

periodicity of the signal.

1 For example a char variable in C programming language will jump from 127 to -128
if we add 1
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• as the spectral leakage is not analyzed, an uncertainty is returned. It’s

calculation steps are:

– imax is the index of maximum in the DFT output

– the minimum and maximum periods that would result to this

maximum are
input’s duration

imax ± 0.5

• their mean is rendered as the detected period

• the half of their absolute difference is stored as the quantization error

of the process

FFA

The Fast Folding Algorithm was implemented by the function FFA which

utilizes the FFA_RESULT structure to store the results. The latter include

the detected period, the resolution or distance between two periods in the

output data — dp, the significance measure and a flag, the outcome.

The algorithm,

• computes the number of trial periods that can fit in the whole extend

of the input and reduces it to the maximum power of 2. That is the

number of tables which will result to the output folds for different

periods

• allocates the memory for computation buffers and initializes them

• performs the FFA using the buffers to work in–place

• calculates the standard deviation1 for each of the resulting fold tables

• stores the the maximum standard deviation and the period of the

table in which it was found — using the Equation (1.16) — as the

significance and period elements of the structure the function re-

turns
1 Which — in digital signal processing language — is the square of the AC power
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• the significance is divided by the square root of the number of

folds to simulate the reduction of the signal–to–noise ratio (see Equa-

tion (1.8))

• the resolution of the period is returned as it is a measure of uncertainty

due to the discrete nature of the procedure. As it can been seen in

Equation (1.16), it is equal to 1

number of folds - 1

• memory is freed and the report file is closed

Also, for blind searches the above function must be called for many trial

periods. We restricted the range to 8 to N/8 elements. Overall the function

FFAsearch performs this task, taking the following steps:

• memory allocation for buffers

• preparation for writing in a report file

• the FFA is called for all the trial periods and the results (pairs of period

and significance values) are stored to the report file

• the maximum significance indicates the most probable period.

• a new significance measure for the blind–search is defined. All the

significance values that were resulted by the FFA calls, are stored.

The new significance measure is the distance of the detected period’s

significance from the mean, divided by the standard deviation of the

distribution.

• the detected period and the quantization error that corresponds to it

(period resolution) are expressed in physical units

• memory is freed and the report file is closed

The code of FFA is listed in Appendix C.4
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Folding

The function FOLD, folds the input into a phase diagram for a desired

period (call argument). The algorithm is as follows:

• preparation of a report file

• the first observation time is abstracted by the rest so that we result to

a (0, duration) range

• the fractional part of the division of the times by the period is taken

t
p
−
⌊

t
p

⌋
(range=0 to 1)

• abstracting a 0.5 from the previous value, we end up with the phase of

that measurement in the folding period (range=-0.5 to 0.5)

• the phase and the normalized to 1 observation measure of each element,

are saved in the report file

The result is a same–sized data table with no additions performed between

the measurements. In this way, we can easily distinguish the case where the

folding period corresponds to a resonance of two or more periods, a harmonic,

or just approximates the real period of the signal.

On the other hand, if the fold is done by adding the elements of the time–

series, in the case of a successful detection of the actual period, high noise

we be reduced. The function FOLD_REBINNED produces the above fold, only

this time the phase is stored in phase bins, the number of which is given as

a call argument. Each phase bin relates to a certain range of phases and the

output will contain the mean value of the measurements that fell into that

bin. The steps taken are:

• two tables are allocated, one for the bins and one for the count of

observations stored in each bin

• preparation of a report file



CHAPTER 2. METHODOLOGY 38

• the first observation time is abstracted by the rest so that we result to

a (0, duration) range

• the fractional part of the division of the times by the period is taken

t
p
−
⌊

t
p

⌋
(range=0 to 1)

• the previous value is multiplied by the number of bins and the integer

part is taken (0 to BIN-1) giving the index of the bin to store the

measurement

• the measurement is added to the appropriate bin and the count of

observations for this bin increases by one

• after all elements are processed, all bins are divided by the number

of observations they contain to give the mean, and are stored to the

report file

• for bins that the count was 0 the output was suppressed as they contain

only the initialization value 0 which has nothing to do with the actual

data

2.2 Complexity test

By performing this test, we tried to confirm the computational complexity

of FFT and FFA. Here, the conducted experiment steps are enumerated:

1. The report files reportffa.txt and reportfft.txt were created.

2. A function creating random light–curves was included. The parameters

are of no importance as the algorithms’ speed does not depend on the

contents of the input.

3. The size of inputs was 32, 64, 128, . . . , 16777216. In the case of FFA

the O (n2) complexity led us to use a limit of 262144.
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4. Each of the FFT and FFAsearch were called and timed using CPU

clocks.

5. Small inputs were processed in a matter of micro– or milliseconds, a

duration that cannot be measured by the built-in functions of C (some

milliseconds accuracy). To overcome this problem, every step (different

size of input) was repeated until at least 10 seconds had passed. By

division with the number of repetitions we resulted to a good estimate

of the computation duration.

6. For better statistics, each measure was repeated at least 5 times —

independently of the previous step

7. The times were translated to nanoseconds and were saved to the report

files. Then, divided by N log2N (FFT) and N2 (FFA), we resulted

to the coefficient of the first term of the computational complexity for

each input size, which was also stored to the report file. Fairly constant

coefficients would confirm the expected behavior of the algorithms.

2.3 Test on constructed lightcurves

The performance of FFA and FFT under the presence of high noise

and various signals, was tested by manufacturing our own light–curves with

known parameters.

As the absolute value of signal or noise power is not important, we se-

lected to hold still one of them — the signal power — and vary the noise in

respect of that. Also, the size of the time-series or the periods is irrelevant

as for sufficiently large values, they present a continuous behavior. Utilizing

this fact, we held the size of the time-series low to avoid unnecessary time

consumption and varied the period.

The signal’s form is a very important factor in order to be detected. As

there are many forms met in the field, we chose to include two basic ones

that approximate a wide range of astronomical phenomena: (i) sinusoidal
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and (ii) rectangular, or ‘box-like’. The first approximates the light–curve of

many types of variable stars. The second can highlight the behavior of the

algorithms in the cases of pulsars, extra-solar planet transits etc — where

narrow ‘spikes’ or ‘bumps’ are of interest.

Though, a rectangular waveform requires one more parameter than the

sinusoidal: the duty cycle (D). The latter — in the context of periodical

signals — is the duration of the ‘event’ over the total period of the signal. For

example, in the case of extra–solar planets detected by the transit method,

the duration of the planet’s passing in front of the star might last some hours,

whereas the period might last days, months or even years1.

The phase of the periodic signals isn’t considered to alter the results for

both the algorithms. Therefore, it was selected randomly for each constructed

light–curve.

Description of the process

1. A light–curve manufacturing algorithm was created. The parameters

were

• DC offset

• Noise level

• Sinusoidal component’s (i) amplitude, (ii) period and (iii) phase

• Rectangular component’s (i) amplitude, (ii) period, (iii) phase and

(iv) duty cycle

2. The DC offset was set 0 as the period searching algorithms don’t depend

on it — they compute the standard deviation instead of the signal power

3. The noise level lied in the range 0.0 to 3.0 in respect to the signal’s

amplitude that was constant (1.0) and took 20 equidistant values

1 The current confirmed extra–solar planets have small orbital periods due to detection
bias: we’re searching for only two decades with surveys lasting a few years in the best
case, and the confirmation usually requires a second event
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4. The period took 50 different values in the range of 32 to 128 elements

in time-series of 1024 elements.

5. The phase was randomly picked for each light–curve

6. The test run for 4 shapes:

• Sinusoidal

• Rectangular of duty cycle 20%

• Rectangular of duty cycle 10%

• Rectangular of duty cycle 5%

7. Having a known period, we recorded the error of the estimates that

resulted from the FFT and FFA algorithms. We selected a tolerance

of 0.1 to render a detection failed and the error was reset to 1 (100%

failure). As it will be seen, this will better illustrate the performance

of the algorithm.

8. A series of three-dimensional plots will be created to show the depen-

dence of detection from the period or the level of noise for all the 5000

thousand light–curves that were created.

2.4 Test on Kepler mission data

As the FFA and FFT algorithm implementations in hand, have as input

evenly–spaced time series, one should be careful when using actual astro-

nomical data. For the reasons explained in §1.1 we selected data from the

space telescope Kepler.

Another reason for using this mission’s data is the availability of the raw

data, but also of many publications with results, with which we can compare

our own.
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2.4.1 Selection of targets

The All Sky Automated Survey (ASAS) has published a list of 947 vari-

able stars in the Kepler field (Pigulski et al., 2009). The type of the variable

and the detected period are also provided. Using this as a guide, we selected

4 objects of each category:

• Cepheid variables

• Eclipsing binaries

• Hosts of transiting extra–solar planets

2.4.2 Light–curve data manipulation

The Kepler ID of each ASAS target was identified by their coordinates

in the equatorial system (right ascension and declination). Then, the light–

curves of the stars were taken from the NASA Exoplanet Archive1. The data

files contain the exact time of every measurement in BJD.

2.4.3 Regularization of near–evenly–spaced time series

Although the sampling frequency of the Kepler space telescope is fairly

constant (approximately to 30 minutes for long cadence and 1 minute for

short cadence), we performed a test on this fact.

In most of the Kepler Mission’s observation quarters, there are gaps last-

ing a few days, which correspond to the Safe Modes in which the space

telescope enters for technical reasons or as a precautionary measure. For

example, in quarter 8 there were three Safe Modes. The first one occurred

between the transition from Q7 to Q8 causing a delay in the resumption of

1 http://exoplanetarchive.ipac.caltech.edu/applications/ETSS/Kepler index.html



CHAPTER 2. METHODOLOGY 43

Sampling times in Quarter 8
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Figure 2.1: Sampling times in observational quarter 8 of Kepler Mission. Note
the three–day gap in the second month.

the observations. The second one occurred in the second month of the quar-

ter. The third one, having happened in the end of the quarter, halted the

observations early (Figure 2.1) (Christiansen et al., 2011).

Now, we excluded the data before the gap in order to focus on the larger

part of the quarter with continuous observations. By subtracting the obser-

vation times in pairs (next minus previous) we derive an estimation of the

sampling period1 for each data point. For evenly–spaced time–series, the plot

of sampling period would be a straight line. Instead, there is a small number

of cases were the sampling period is two or four times larger (Figure 2.2).

These deviations correspond to measurements affected by Momentum De-

saturations: approximately every 3 days the telescope’s thrusters correct un-

wanted angular momentum caused by solar radiation torque (Christiansen

et al., 2011).

Excluding the ‘bad’ data points, the sampling period has (i) mean value

of 0.0204341 BJD (29 minutes and 25.5 seconds) and (ii) standard deviation

1.489·10−7 BJD (13 milliseconds). That half–hour sampling rate corresponds

1 the time interval between two measurements
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Irregularity of sampling times in Quarter 8
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Figure 2.2: Irregularities in sampling period in Kepler’s Quarter 8. Note that
we do not refer to Telescope Safe Modes which result in larger gaps in time.

to the ‘long cadence’ configuration of the Kepler mission. Though, the inter-

vals between momentum desaturation events last a few days and by cropping

the data (as we did in the case of Safe Modes) is not desirable.

The mean and standard deviation of the intervals without excluding the

deviated points is 0.0207194 BJD (29 minutes and 50.2 seconds) and 0.00266

BJD (3 minutes and 50.2 seconds) respectively. As we can see, those few

data points can result to small uncertainties to period estimation in respect

to sampling period. Besides that, the code should also be able to handle

measurements of other surveys with less uniform timing and even ‘random–

like’ declinations in observation times.

Proposed solution

One way to overcome these difficulties1 is to fit the times in a linear

model using the least squares method (LSM) (although it assumes Gaussian

1 there are methods discovered after FFT and FFA for analyzing unevenly spaced
data but they exceed the current study. For more information, see Lomb–Scargle
Periodogram: Lomb (1976); Scargle (1982).
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distribution for the residuals, Wall & Jenkins (2003)):

• We enlist the N observation times ti, where i ∈ {0, 1, ..., N − 1}.

• We consider a linear model that depends on τ0 indicating the begin-

ning offset and a constant sampling period ps which corresponds to N

evenly–spaced observations times τi where τi = τ0 + i · ps.

• As a ‘goodness–of–fit’ measure we choose the summation of squares of

residuals g =
N−1∑
i=0

(ti − τi)
2 which obviously is minimum for the best fit.

• We derive the values of τ0 and ps for optimum fit by solving the system

of equations


∂g
∂τ0

= 0

∂g
∂ps

= 0
.

• It is proven (see § A.3) that:

τ0 =
2

N2 + N

[
(2N − 1)

N−1∑
i=0

ti − 3
N−1∑
i=0

(i · ti)

]
(2.1)

ps =
6

N (N2 − 1)

[
2
N−1∑
i=0

(i · ti) − (N − 1)
N−1∑
i=0

ti

]
(2.2)

• From the resulting minimum goodness–of–fit value, gmin we calculate

the standard error of regression in time that we will call ‘regularization

time error’ and denote as terr
1. By the definition of g and the standard

deviation, and our selection to use of 2.58 standard deviations (99% of

values in the range, assuming normal distribution of the residuals), we

define:

terr = 2.58

√
gmin

N − 2
(2.3)

Note that the two–parameter model dictates division by N − 2.

After the above process, any proceeding analysis will make use of the new

sampling period and take account of the regularization time error. For the

code listing see Appendix C.2.

1 it is a form of scalar quantization error
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2.4.4 Data analysis

The analysis of each light–curve of the selected targets was conducted by

the following steps:

• Reading the file and recording the observation times and measures

(photon counts in this case)

• Regularization of the time–series

• Application of FFT and FFA algorithms

• Production of the fold and re–binned fold of the data, for the two

detected periods



‘‘Results? Why, man, I have gotten lots of results! If I find

10,000 ways something won’t work, I haven’t failed. I am not

discouraged, because every wrong attempt discarded is often a

step forward...’’

Thomas Alva Edison (American Inventor)

3
Results

3.1 Complexity test

In this section there are the results of the complexity tests, where the

FFA and FFT algorithms were times in relation to the input size. In the

following pages we can see the Duration - Input size diagrams but also the

coefficients of the highest order terms of the expected complexity (nlogn for

FFT and n2 for FFA blind–search).

47
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Table 3.1: Complexity test results

FFT FFA
Input Timing Coefficient of Timing Coefficient
size (s) N log2N (ns) (s) of N2 (ns)
32 0.000013 79.431076 0.000001 0.046539
64 0.000027 70.500275 0.000007 1.802245
128 0.000059 65.380890 0.000100 6.087590
256 0.000132 64.414253 0.000513 7.825421
512 0.000294 63.883896 0.002188 8.346994
1024 0.000699 68.224289 0.009205 8.778537
2048 0.001462 64.917915 0.038372 9.148514
4096 0.003310 67.334999 0.159222 9.490384
8192 0.006983 65.572792 0.596471 8.888104
16384 0.014793 64.493263 2.418000 9.007751
32768 0.034235 69.652298 10.043400 9.353645
65536 0.119595 114.054901 41.555199 9.675323
131072 0.271108 121.670052 160.449402 9.339384
262144 0.565944 119.939262 706.730835 10.284287
524288 1.229000 123.375336
1048576 2.427400 115.747459
2097152 5.070000 115.122116
4194304 10.667400 115.604836
8388608 23.297001 120.748650
16777216 59.145802 146.890182
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Figure 3.1: Dependence of FFA algorithm’s time consumption to the input size

The fit’s equation is 0.96−0.17 ·10−4N+1.09 ·10−8N2 with R2 = 0.99985.
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Figure 3.2: Result of complexity test for the FFA
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Figure 3.3: Dependence of FFT algorithm’s time consumption to the input size

The fit’s equation is −0.33 + 1.42 · 10−7N log2 N with R2 = 0.99287.
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3.2 Test on constructed light–curves

(a) Hits and misses in period estimation by FFT

(b) Hits and misses in period estimation by FFA

Figure 3.5: Sinusoidal signal detection for various periods and noise levels
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(a) Hits in period estimation by FFT in the case of sinusoidal signal

(b) Hits in period estimation by FFA in the case of sinusoidal signal

Figure 3.6: Sinusoidal signal detection errors: focus on hits by FFT and FFA



CHAPTER 3. RESULTS 53

(a) Hits and misses in period estimation by FFT

(b) Hits and misses in period estimation by FFA

Figure 3.7: Rectangular signal of duty cycle 20% detection for various periods
and noise levels
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(a) Hits and misses in period estimation by FFT

(b) Hits and misses in period estimation by FFA

Figure 3.8: Rectangular signal of duty cycle 10% detection for various periods
and noise levels
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(a) Hits and misses in period estimation by FFT

(b) Hits and misses in period estimation by FFA

Figure 3.9: Rectangular signal of duty cycle 5% detection for various periods
and noise levels
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3.3 Test on Kepler mission data

3.3.1 Output example

1 INPUT REPORT
2 −−−−−−−−−−−−−−−−−−−−
3 Kepler ID 7548061
4 Time o f f s e t 2454833.000000 BJD
5 ASAS per iod 4.926000 days
6 Notes Q14s
7 Bins 49957
8
9 REGULARIZE REPORT
10 −−−−−−−−−−−−−−−−−−−−
11 New time o f f s e t 2456170.169175 BJD
12 Sampling ra t e 0 .984465 min
13 Regu l a r i z a t i on e r r o r 9 .043122 min
14
15 FFT REPORT
16 −−−−−−−−−−−−−−−−−−−−
17 > Spectrum f i l e c r ea ted .
18
19 Frequency : 5 b ins
20 Period : 4 .525666 days +/− 0.452567
21
22 > Folding at p=4.525666 saved to : f o l d f f t . txt
23
24 > Re−binned (256) f o l d i n g at p=4.525666 saved to : f o l d f f t r . txt
25
26 FFA REPORT
27 −−−−−−−−−−−−−−−−−−−−
28 > Periodogram f i l e c r ea ted .
29
30 Period : 4 .931896 days +/− 0.000114
31
32 > Folding at p=4.931896 saved to : f o l d f f a . txt
33
34 > Re−binned (256) f o l d i n g at p=4.931896 saved to : f o l d f f a r . txt
35
36 Press any key to cont inue . . .

Listing 3.1: The output of the program after analyzing the light–curve of a short
cadence target of Kepler telescope
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3.3.2 Results

Here is presented a list of all analyzed Kepler targets accompanied by the

periods detected by the FFA and FFT algorithms. The deviation from the

published result (Pigulski et al., 2009; O’Donovan et al., 2006; Welsh et al.,

2010; Shporer et al., 2011; Boruckiet al. , 2011) (under the column Period in

the Target Description section) is also given, as percentage error. Note that

the detected periods are sometimes multiplied by a factor of 2 or 3 in case

of false harmonic detection (see Discussion).

Table 3.2: Summary of Kepler data results

Target Description FFT FFA
Kepler RA (◦) Dec (◦) Period Period Error Period Error
ID (J2000.0) (d) (d) (%) (d) (%)

Cepheid Variables
7548061 297.064 43.127 4.9260 4.5267 8.11 4.9319 0.12
7899428 294.650 43.692 11.573 11.029 4.70 11.471 0.88
11347875 290.467 49.199 3.4521 3.3454 3.09 3.4322 0.58
12406908 290.937 51.270 13.367 14.883 11.3 3.4322 0.37

Eclipsing Binaries
4660997 293.514 39.711 0.56256 0.56669 0.73 0.56177 0.14
4544587 285.886 39.683 2.1893 2.1745 0.68 2.1913 0.09
8868650 284.398 45.129 4.4472 4.3453 2.29 4.4460 0.03
10618251 298.125 47.812 0.43742 0.43815 0.17 0.43693 0.11

Hosts of Transiting Planets
11446443 286.808 49.316 2.4706 2.5104 1.61 0.0034 99.9
10666592 292.247 47.970 2.2047 2.2444 1.80 0.0035 99.8
9941662 286.971 46.868 1.7637 1.7689 0.29 0.0027 99.8
11414511 297.015 49.225 2.8165 2.8110 0.20 0.0030 99.9

In the following pages we can see one table and seven figures for each

target. The former accumulates properties of the star and some of the output

of our software. The figures are plots of the original time series, the spectrum

and periodogram created by FFT and FFA respectively and for foldings of
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the data: a normal and a re–binned fold for the period that each algorithm

detected. This extensive plotting aims to a better illustration of the process

and to an inspection of the quality of the results.
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4
Discussion

4.1 Complexity test

FFT

The system that was used for the tests was relatively old and slow com-

pared to a contemporary laboratory mainframe (Pentium R⃝ Dual–Core CPU

at 2.2GHz, under Microsoft Windows R⃝ 7 64-bit). In spite of this fact, FFT

showed its powerful advantage of speed.

Even with an input of approximately 16.8 million bins (224), the calcu-

lation of the discrete Fourier transform took less than one minute. In other

words, it takes a minute to analyze a collection of measurements taken every

second — for about six and a half months.

The fitting of the time measurements to a curve of the type a1+a2N log2N

returned a coefficient of determination R2 equal to 0.99287, confirming the

83
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complexity of the FFT algorithm and a good behavior of our implementation.

Though, a careful examination of the coefficient of the most important

term (N log2N) reveals an unexpected result: its value scales up for N =

216 and N = 224. The numbers indicate a total memory use that exceeds

CPU cache levels1 (L2, L3, RAM), resulting to the use of successively slower

memory.

FFA

With an O(n2) computation complexity, FFA is extremely slow. For

input sizes of thousands – which is common in observational astrophysics –

FFT was completed faster by some hundred times.

Again, the fitting of the time measurements to a polynomial curve a0 +

a1N +a2N
2 returned a coefficient of determination R2 equal to 0.99985 prov-

ing our theoretical estimates (see Appendix A.2).

The effect of the cache memory was not apparent in contrast to the FFT

case. This probably is a result of the non-recursive implementation of the

FFA algorithm which made use of only one buffer, minimizing the total

memory allocation (only half of the L2 cache memory was used in the worst

case).

4.2 Test on constructed light–curves

Sinusoidal signals

In the case of sinusoidal light–curves (Figure 3.5(a)), FFT successfully

detected all signals with an accuracy of less than 10%. Only one exception

existed out of the thousands combinations of different periods and noise lev-

els, and corresponded to the maximum noise (standard deviation 3 times the

1 The Cache L2 was 1MB. For four tables (input, output, two recursive buffers) of 216

values, each needing a 4–byte computer word, we needed exactly 1MB of free cache
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amplitude of the signal). This result does not contradict what we expected:

FFT performs well on sinus-like signals.

On the other hand, FFA failed in many cases. In Figure 3.5(b) we can see

a curve in the period–noise plane separating regions dominated by ‘hits’ or

‘misses’. The good performance of FFA for low noise is trivial. The tendency

to perform well on smaller periods confirms the fact that the signal–to–noise

ratio is increased as the time–series are folded many times.

Examining the errors of period estimate for the ‘hits’ by both algorithms

(Figure 3.6) we can expose a fundamental difference between the two algo-

rithms. The FFT presents larger errors for low frequencies because of the

spectral leakage and the noise hardly has any effect in detecting the signal.

A possible explanation for the latter is that the spectrum of the Gaussian

noise is flat, distributing the power in all frequencies and making a maximum

in spectrum (due to a sinusoidal signal) clearer.

In contrast, FFA has a different behavior (Figure 3.6(b)). The folding

procedure does not eliminate large part of the noise, making FFA sensitive

to high noise. On the other axis, the period does not affect the success of

the algorithm.

Rectangular signals

We expected to see an advantage of the FFA algorithm over the FFT in

case of signals that have little resemblance to sine–wave. In Figures 3.7 to 3.9

we notice the expected fact that smaller pulses are harder to detect for both

algorithms. What took us by surprise was that FFA never performed better

than the FFT. Even for 5% duty cycle pulses, the latter was two times more

successful.

Trying to explain the situation, we performed various tests on the algo-

rithms using mathematical software and by–hand calculations to detect any

defects of the implementations. The tests showed that the algorithms were

functioning as expected.

The failure of FFA can be explained by the poor choice of significance

measure. As referred in § 2.1.2, this measure is used to detect the most
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prominent periodicity and depends on the power of the fold of the time–series.

No calculations on the actual level of noise are performed and the measure

is “by–hand” multiplied by the expected signal to noise ratio improvement

(due to the central limit theorem and the nature of the Gaussian distribution

of the noise).

Thus, for small duty cycles and/or high noise levels, the total power

approximates the power of the noise, leading to a failure of detection. A

more appropriate method for determining the signal to noise ratio should be

used (like windowing functions or comparison with a filtered version of the

fold).

4.3 Test on Kepler mission data

General picture

In Table 3.2 we can see that both FFT and FFA algorithms managed

to detect the period of all Cepheid variables and eclipsing binaries with less

than 10% error from the published values from the All Sky Automated Survey

team (Pigulski et al., 2009). In the case of extra–solar planet transits, the

previously discussed issue of FFA’s significance measure rendered the transits

undetected, whereas FFT performed quite satisfying — giving small errors

in comparison to the published period in several papers (O’Donovan et al.,

2006; Welsh et al., 2010; Shporer et al., 2011; Boruckiet al. , 2011).

Here we should note that the Kepler space telescope’s high precision, gave

high signal to noise ratio light–curves rendering FFT able to detect exoplanet

transits.

Folding at estimates of period

The errors of period estimations, trusting the ASAS results(Pigulski et al.,

2009), show deviations comparable to the sampling rate. Folding without
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re–binning reveals that fact by showing multiple profiles close to each other.

This is true for all but five case: (i) folding at FFT period for KID 4660997

(Figure 3.19(a)), were the deviation is about 5 times less than the sampling

period and over 60 folds were produced because of the small period, and (ii)

folding at FFA period for all host of exoplanets as detection failed.

Because of this fact, re–binned folding on a period near the real, can

result to smooth and widened peaks. An good illustration of the smoothing

lies on the comparison between Figure 3.11(c) and Figure 3.11(d). Example

of the widening effect are all the FFT–period re-binned foldings of hosts of

transiting extra–solar planets.

Though, as the errors of FFA were significantly smaller than those of

FFT, the re–binned folds for the Cepheid variables and eclipsing binaries

can be considered very accurate.

A good case of transit

The period of the exoplanet around KID 11414511 was detected with

small error by FFT and the slightly big period (compared to the sampling

rate) resulted to a very accurate profile: published (Boruckiet al. , 2011) val-

ues for period (2.8165077 days) and transit duration (156.4 minutes) suggest

a duty cycle of 3.8%, whereas an examination of the Figure 3.33(d) reveals

a 5.1% duty cycle (duration: 13 phase bins out of 256).

Wrong harmonic detection

In the case of the eclipsing binaries, two similar-in-form eclipses appear

in one period. In most cases, the space between the two minima is about

half the period, leading to a maximum in power for this value. In eccentric

orbits with semi-major axes almost perpendicular to the line of sight of the

observer, a different partition of time may be observed, e.g. 2:1 partition

results to detection of a harmonic corresponding to one third of the actual

period.
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In order to face this problem, we created the non–re–binned folds where

all observations where related to the observation time modulo the period.

Accordingly, in case of a false harmonic, we are able to see all the profiles —

especially in the eclipsing binary group.

The period estimations in Table 3.2 are the corrected ones. Though, in

the output tables and figures, the original values are used. We performed

re–binned folds, Figures 4.1 to 4.4 for all the four targets in the corrected

period for FFA, to uncover the actual light–curve profiles of the eclipsing

binaries.
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KID 4660997
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Figure 4.1: Corrected light–curve for the Algol–type eclipsing binary KID
4660997. The period of the folding was doubled to depict both the eclipses. The
small period (13h36m) is comparable to the sampling rate (30m) resulting to a
certain amount of uncertainty which manifests as diffusion of the points in the
plot.

KID 4544587
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Figure 4.2: Corrected light–curve for the Algol–type eclipsing binary KID
4544587. The period of the folding was tripled to depict both the eclipses of
this binary system with highly eccentric orbits. This is an example of how careful
one should be interpreting the harmonics of a time–series.



CHAPTER 4. DISCUSSION 90

KID 8868650
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Figure 4.3: Corrected light–curve for the Algol–type eclipsing binary KID
8868650. The period of the folding was doubled to depict both the eclipses. No-
tice the square baseline of the minima, probably because of a very small in size
companion, entering completely in the disc of the primary star during the primary
eclipse and being totally obscured during the secondary eclipse.

KID 10618251
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Figure 4.4: Corrected light–curve for the W UMa–type eclipsing binary KID
10618251. The period of the folding was doubled to depict both the eclipses. The
high resemblance to a sinusoidal signal and the closeness of the minima points to
a W Uma binary.



5
Conclusions

Reviewing the goals in § 1.6, we will investigate if they were met:

1. Implementation of the algorithms and check of their good

function

The algorithms were implemented and passed a series of tests that

aimed to validate their output. Mathematical software and by–hand

calculations were used for small inputs and we observed total conver-

gence with our software output.

2. Are they as time consuming as we expect them to be?

The algorithms run for various input sizes. The computational com-

plexity was confirmed and the timing measurements showed the impor-

tance of ‘clever’ algorithms in astronomical surveys.

3. What are their success rate when analyzing time–series of

various parameters: shape, period, noise level?
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The FFT and FFA algorithms run for inputs of 10000 light–curves

that were constructed by us. For sinusoidal shapes the FFT performed

better, as expected. For small pulses (rectangular shape), although

we expected FFA to surpass FFT, the test did not confirm this fact.

We hypothesize that this is an outcome of wrong interpretation of the

output rather than a problematic one.

4. Can they be used to detect the period of three representative

classes of periodic astronomical phenomena with small errors

(Cepheid variables, eclipsing binaries, extra–solar planet tran-

sits)?

In spite of the rather simplistic methods for period searching, the com-

bination of the two algorithms managed to detect the periods of our

12 targets. Only in the case of FFA and extra–solar planet transits

we observed failure, a fact thoroughly discussed in § 4.3. Also, the

effect of errors in the folded profile (elongation, smoothing etc.) and

the detection of wrong harmonics were studied.

A more careful approach for exploiting the output of both algorithms

may have presented the proposed advantage of FFA in case of short

pulses (Staelin, 1969; Burns & Clark, 1969; Kondratiev et al., 2009),

which in turn would be useful for detecting transiting exoplanets.



6
Recommendations

Our experience raised serious issues and provoked the interest of the author

in a more careful approach and even the construction of a better software

package.

6.1 Changes

6.1.1 Programming conventions

The choice of floating-point variables for the bins of time–series is time-

consuming. The speed of the algorithms could be improved by using a com-

puter word to store two integer bins. Careful normalization is needed to

avoid circular sign changes.
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6.1.2 Proper statistical significance measures

An otherwise perfect output of a discrete Fourier transform or a peri-

odogram, can be rendered useless if improper statistical methods are used.

A method for computing the an estimate of the signal–to–noise ratio should

be employed (perhaps window functions in the case of FFA and harmonic

manipulation for FFT).

6.1.3 Regularization

Our method for transforming unevenly–spaced time–series to uniform in-

duces errors in phase bins and only works for nearly–uniform times: big gaps

prevent the use of FFT and FFA. Possible solutions:

• Interpolation instead of regularization.

• Interpolation for the regions of small gaps.

• Re–binning the time–series for larger intervals risking loss of informa-

tion, but speeding the process.

6.2 Future extensions

6.2.1 Study of trends and colored noise

The effect of trends and other types of noise should be studied. Although

careful data reduction of the observations can dispose unwanted trends and

noise, sometimes these features are physical. Also, the Gaussian distribution

of the noise is an approximation. In most physical procedures, the noise is

Poisson distributed.
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6.2.2 FFT/FFA/LS cooperation

We propose a fast method for automatic period search in light–curves:

1. Trend removal and noise reduction using smoothing/moving averages.

2. Re–binning and interpolation of the data to produce uniform–in–time

time series.

3. Production of Fourier transform to detect a number of regions of pos-

sible periodicities, exploiting the speed (O (nlogn)).

4. Execution of FFA algorithm for the above narrow (the O (n2)) won’t

induce significant delays) regions and new collection of possible periods

with greater accuracy.

5. Use of Lomb–Scargle Periodogram method that analyzes unevenly–

spaced time–series, on the original non–re–binned data in the even

more narrow ranges that FFA returned.
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A
Mathematical definitions and proofs

A.1 Big O notation

The exact running time of an algorithm, f (n), depends on the length of

the input, n, and in most cases is a very complex expression. As we usually

are interested in the effectiveness of the performance of an algorithm when n

is large (and it is likely to be time–consuming), we use asymptotic analysis.

This is done by considering only the highest order term of the expression

and disregarding the coefficient of that term. For example, 2
log2

n2logn +

3.75n2 + 28 becomes n2logn.

In the text there are some instances of the notation O (f ′ (n)) which refers

to that process. The mathematical definition of the so–called ‘big O notation’

is:

f (n) = O (f ′ (n)) as x → ∞
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if and only if a positive constant M and a large n0 exist so that

|f (n) | ≤ M |f ′ (n) | for all n ≥ n0

A.2 Computational complexity of FFA for blind

searches

• The complexity of FFA on a N–length–ed data for a basic period P is

proportional to N log2

⌊
N
P

⌋
• In the worst case scenario, we apply the algorithm to the range of

periods [2, N/2]

• This results to a total complexity O (N2)

Proof

N/2∑
P=2

(
N log2

⌊
N

P

⌋)
≃

≃
N/2∑
P=2

[
N log2

(
N

P

)]
≃

≃
N/2∫
2

N log2

N

P
dP =

=
1

ln 2

N/2∫
2

N ln
N

P
dP =

=
1

ln 2

N/2∫
2

(NlnN −NlnP ) =
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=
1

ln 2
[(NlnN)P −N (PlnP − P )]

P=N/2
P=2 =

=
1

ln2

[
N2

2
− 2ln2 ·N − 2 (1 − ln2)N

]
=

= O
(
N2
)

A.3 Regularization formulæ

Synopsis

• Observed values: ti

• Expected values: τi = τ0 + i · ps

• Goodness–of–fit measure: g =
N−1∑
i=0

(ti − τi)
2

• Determination of τ0 and p by solving ∂g
∂τ0

= 0 and ∂g
∂ps

= 0

Derivation

∂g

∂τ0
= 0

∂

∂τ0

N−1∑
i=0

(ti − τi)
2 = 0

N−1∑
i=0

[
∂

∂τ0
(ti − τ0 − i · ps)2

]
= 0

N−1∑
i=0

[(ti − τ0 − i · ps) (−2)] = 0

N−1∑
i=0

ti −
N−1∑
i=0

τ0 − ps

N−1∑
i=0

i = 0

∂g

∂ps
= 0

∂

∂ps

N−1∑
i=0

(ti − τi)
2 = 0

N−1∑
i=0

[
∂

∂ps
(ti − τ0 − i · ps)2

]
= 0

N−1∑
i=0

[(ti − τ0 − i · ps) (−2i)] = 0

N−1∑
i=0

(i · ti) − τ0

N−1∑
i=0

i− ps

N−1∑
i=0

i2 = 0

Using that
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N−1∑
i=0

i =
N (N − 1)

2

N−1∑
i=0

i2 =
N (N − 1) (2N − 1)

6

we conclude to the system of equations

Nτ0 +
N (N − 1)

2
ps =

N−1∑
i=0

ti

N (N − 1)

2
τ0 +

N (N − 1) (2N − 1)

6
ps =

N−1∑
i=0

(i · ti)

Finally, there is a unique solution:

τ0 =
2

N2 + N

[
(2N − 1)

N−1∑
i=0

ti − 3
N−1∑
i=0

(i · ti)

]

ps =
6

N (N2 − 1)

[
2
N−1∑
i=0

(i · ti) − (N − 1)
N−1∑
i=0

ti

]



B
Random number generators

The artificial light–curves that were used to check the performance of FFA

and FFT algorithms should be contaminated with Gaussian noise (as ex-

plained in § 1.2). The generation of such random numbers required the

following functions. Note that one should avoid the use of flawed built–in

functions (like rand()) but for the purpose of our investigations more so-

phisticated methods are rendered unnecessary (Press et al., 2007).

B.1 Standard uniform distribution

rnd uniform()

The generation of a random number of the standard uniform distribution1

is trivial as the standard C header file stdlib.h provides the rand() function

1 Constant probability density function in the range [0,1] and zero everywhere else
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which returns an integer in the range [0, RAND_MAX]. The latter is a constant

defined in the same header file and usually equals 32767.

Thus, we divide the return value by RAND_MAX and multiply with 1.0

to prevent the compiler from performing an integer division (which would

subsequently result to 0.0).

The resolution (32768 different levels) is more than enough for the ‘test-

ing’ purposes we facilitate this function.

1 f loat rnd uni form ( )
2 {
3 return rand ( ) ∗1 .0/RANDMAX;
4 }

Listing B.1: A uniform random number generator

B.2 Standard normal distribution

rnd gaussian()

Here lies an implementation of Marsaglia’s polar method (Marsaglia &

Bray, 1964) for generating random values of standard normal distribution1.

The function utilizes the rnd_uniform() function described above.

1 f loat rnd gauss i an ( )
2 {
3 f loat R=0,a , b ;
4 do
5 {
6 a=rnd uni form ( ) ∗2−1;
7 b=rnd uni form ( ) ∗2−1;
8 R=a∗a+b∗b ;
9 } while (R>=1 | | R==0) ;
10
11 return a∗ s q r t (−2∗ l og (R) /R) ;
12 }

Listing B.2: A normal random number generator

1 zero mean and unit variance normal distribution



“Always code as if the guy who ends up

maintaining your code will be a violent psy-

chopath who knows where you live.”

John F. Woods

C
Main code

C.1 Data types

1 typedef double TIME; // type f o r time in BJD

2 typedef f loat BIN ; // type f o r measurement in a r b i t r a r y un i t s

3

4 typedef struct

5 {
6 int KID; // Kepler ID

7 TIME ASASperiod ; // A l l Sky Automated Survey Period

8 char ∗ notes ; // NOTES

9 } STAR INFO;

10

11 typedef struct

12 {
13 BIN ∗ bins ; // l i s t o f measurements

14 int s i z e ; // s i z e o f t a b l e s

15 TIME ∗ t imes ; // l i s t o f o b s e r va t i on t imes in days
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16 TIME t ime r e f ; // time re f e r ence in BJD

17 } TIME BIN TABLE;

18

19 typedef struct

20 {
21 BIN ∗ bins ; // t a b l e o f measurements

22 int s i z e ; // s i z e o f t a b l e

23 TIME t ime r e f ; // time re f e r ence in BJD

24 TIME t imeer r ; // r e g u l a r i z a t i o n time error

25 TIME i n t e r v a l ; // sampling ra t e

26 } BIN TABLE;

27

28 typedef struct

29 {
30 f loat per iod ; // de t e c t e d per iod

31 f loat dp ; // error in per iod

32 f loat s i g n i f i c a n c e ; // s i g n i f i c a n c e

33 int outcome ; // SUCCESS or FAILURE

34 } FFA RESULT;

Listing C.1: Various newly defined data types

C.2 Regularize routine

1 int REGULARIZE( const TIME BIN TABLE ∗ src ,BIN TABLE ∗dst )
2 {
3 p r i n t f ( ”\nREGULARISE REPORT\n−−−−−−−−−−−−−−−−−−−−\n” ) ;
4 int n=(∗ s r c ) . s i z e ;

5 (∗ dst ) . s i z e=n ;
6 (∗ dst ) . b ins=mal loc (n∗ s izeof (BIN) ) ;

7

8 int i ;

9 TIME t i =0, sumti=0, sumit i =0;

10 for ( i =0; i<n ; i++)

11 {
12 (∗ dst ) . b ins [ i ]=(∗ s r c ) . b ins [ i ] ; // copy va l u e s
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13

14 t i =(∗ s r c ) . t imes [ i ] ; // but a l s o do the

15 sumti+=t i ; // . . . s t a t i s t i c s f o r . . .

16 sumit i+=i ∗ t i ; // . . . the r e g u l a r i z a t i o n .

17 }
18

19 TIME de l t a t au =(2 .0/(1 .0∗n−1)∗ sumit i − sumti ) ∗6/(n∗(n+1.0) ) ;

20 TIME tau =(((2 .0∗n−1)/3) ∗ sumti−sumit i ) ∗6/(n∗(n+1.0) ) ;

21 TIME e r r o r =0;

22 for ( i =0; i<n ; i++)

23 {
24 t i =(∗ s r c ) . t imes [ i ]−tau−i ∗ de l t a t au ;

25 t i=t i ∗ t i ;
26 e r r o r+=t i ;

27 }
28 e r r o r=sq r t ( e r r o r /n) ;

29

30 (∗ dst ) . t ime r e f=(∗ s r c ) . t ime r e f+tau ;

31 (∗ dst ) . i n t e r v a l=de l t a t au ;

32 (∗ dst ) . t imeer r=e r r o r ;

33

34 p r i n t f ( ”New time o f f s e t \ t%l f BJD\n” , (∗ dst ) . t ime r e f ) ;

35 p r i n t f ( ”Sampling ra t e \ t \ t%l f min\n” , (∗ dst ) . i n t e r v a l ∗24∗60) ;
36 p r i n t f ( ” Regu l a r i s a t i on e r r o r \ t%l f min\n” , (∗ dst ) . t imeer r

∗24∗60) ;
37

38 return SUCCESS ;

39 }

Listing C.2: The regularization routine

C.3 FFT implementation

1 void RECURSIVE FFT( complex ∗ input , complex ∗output , int N, int s tep

)

2 {
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3 int i ;

4 i f ( step<N)

5 {
6 RECURSIVE FFT( output , input ,N, s tep ∗2) ;
7 RECURSIVE FFT( output+step , input+step ,N, s tep ∗2) ;
8

9 for ( i =0; i<N; i+=2∗s tep )

10 {
11 complex tmp = cexp(− I ∗M PI∗ i /N) ∗output [ i+step ] ;

12 input [ i /2 ] = output [ i ] + tmp ;

13 input [ ( i+N) /2]=output [ i ] − tmp ;

14 }
15 }
16 }
17

18 f loat FFT( const BIN TABLE ∗data )
19 {
20 p r i n t f ( ”\nFFT REPORT\n−−−−−−−−−−−−−−−−−−−−\n” ) ;
21 int n=( int ) pow(2 , ( int ) log2 ( (∗ data ) . s i z e ) ) ;
22

23 complex ∗ input=mal loc (n∗ s izeof ( complex ) ) ;

24 complex ∗output=mal loc (n∗ s izeof ( complex ) ) ;

25

26 int i ;

27 for ( i =0; i<n ; i++)

28 {
29 input [ i ]=( complex ) (∗ data ) . b ins [ i ] ;
30 output [ i ]=( complex ) (∗ data ) . b ins [ i ] ;
31 }
32

33 RECURSIVE FFT( input , output , n , 1 ) ;

34

35 // Save power spectrum

36 FILE ∗ f f t f i l e=fopen ( ” f f t spec t rum . txt ” , ”w” ) ;

37 i f ( f f t f i l e==NULL)

38 {
39 p r i n t f ( ”\n\nError opening f i l e \n\n” ) ;
40 return FAILURE ;

41 }
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42 p r i n t f ( ”> Spectrum f i l e c r ea ted .\n\n” ) ;
43 f p r i n t f ( f f t f i l e , ”Frequency , Magnitude\n” ) ;
44

45 f loat max=0;

46 f loat x ;

47 int imax=0;

48

49 for ( i =1; i<n/2 ; i++)

50 {
51 x=cabs ( input [ i ] ) ;

52 i f ( i<FFToutput ) f p r i n t f ( f f t f i l e , ”%f ,% f \n” , i / ( (∗ data ) .
i n t e r v a l ∗ (1 . 0∗n) ) , ( x ) ) ;

53 i f (x>max)

54 {
55 max=x ;

56 imax=i ;

57 }
58 }
59

60 f c l o s e ( f f t f i l e ) ;

61

62 f loat f=imax ;

63 f loat pmin=(∗data ) . i n t e r v a l ∗n/( f +0.5) ;

64 f loat pmax=(∗data ) . i n t e r v a l ∗n/( f −0.5) ;

65 f loat per iod=(pmax+pmin ) /2 ;

66 f loat dp=(pmax−pmin ) /2 ;

67

68 p r i n t f ( ”Frequancy : \ t \ t%d bins \n” , imax ) ;

69 p r i n t f ( ”Period : \ t \ t%f days \ t+/− %f \n” , per iod , dp) ;

70

71 return per iod ;

72 }

Listing C.3: The implementation of FFT algorithm
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C.4 FFA implementation

1 FFA RESULT FFA(BIN ∗ input , int bins , int P)

2 {
3 FFA RESULT r e s u l t ;

4

5 // dimensions , b l ock s , e t c .

6 int M=( int ) b ins /P;

7 int s t ep s=( int ) log2 (M) ;

8 M=( int ) pow(2 , s t ep s ) ;

9 int N=M∗P;

10

11

12 // a l l o c a t i n g memory f o r temporary arrays

13 BIN ∗A=malloc (N∗ s izeof (BIN) ) ;

14 BIN ∗B=malloc (N∗ s izeof (BIN) ) ;

15

16 // i n i t i a l i z i n g

17 int i ;

18 for ( i =0; i<N; i++)

19 {
20 A[ i ]= input [ i ] ;

21 B[ i ]=0;

22 }
23

24 // FFA

25 int step , k , s h i f t ;

26 for ( s tep=1; step<=step s ; s tep++)

27 {
28 int b lock l en=( int ) pow(2 , s tep ) ;

29 int b locks=( int ) M/ b lock l en ;

30 int block ;

31 for ( b lock=0; block<b locks ; b lock++)

32 {
33 int row ;

34 for ( row=0;row<b lock l en ; row++)

35 {
36 for ( k=0;k<P; k++)
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37 {
38 s h i f t =( int ) ( row+1) /2 ;

39 B[ ( b lock ∗ b lo ck l en+row ) ∗P+k]=
40 A[ ( b lock ∗ b lo ck l en +(( int ) row/2) ) ∗P+k]+
41 A[ ( b lock ∗ b lo ck l en +(( int ) ( row+b lock l en ) /2) ) ∗P+(k+

s h i f t )%P ] ;

42 }
43 }
44 }
45 for ( i =0; i<N; i++) A[ i ]=B[ i ] ;

46 }
47

48 // per iod and s i g n i f i c a n c e es t imate

49

50 f loat max=0;

51 f loat per iod at max=0;

52

53 int f o l d ;

54 for ( f o l d =0; fo ld<M; f o l d++)

55 {
56 f loat meanx=0;

57 f loat meanx2=0;

58 for ( i =0; i<P; i++)

59 {
60 BIN x=A[ f o l d ∗P+i ] ;

61 meanx+=x ;

62 meanx2+=x∗x ;
63 }
64 meanx=meanx/P;

65 meanx2=meanx2/P;

66 f loat SD=sqr t (P/(P−1.0) ) ∗ s q r t (meanx2−meanx∗meanx) ;

67 i f (SD>max)

68 {
69 max=SD;

70 per iod at max=P+( f o l d / (1 . 0∗M−1.0) ) ;

71 }
72 }
73 f r e e (A) ;

74 f r e e (B) ;
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75

76 r e s u l t . outcome= SUCCESS ;

77 r e s u l t . s i g n i f i c a n c e=max/ sq r t (M) ;

78 r e s u l t . dp=1/(2.0∗(M−1) ) ;

79 r e s u l t . per iod=per iod at max ;

80

81 return r e s u l t ;

82 }
83

84 FFA RESULT FFAsearch (BIN TABLE ∗data , int periodmin , int periodmax

)

85 {
86 int bins=(∗data ) . s i z e ;

87 p r i n t f ( ”\nFFA REPORT\n−−−−−−−−−−−−−−−−−−−−\n” ) ;
88 BIN ∗ input=mal loc ( b ins ∗ s izeof (BIN) ) ;

89 int i ;

90 for ( i =0; i<bins ; i++)

91 {
92 input [ i ]=(∗ data ) . b ins [ i ] ;
93 }
94

95 int per iod , count=0;

96 FFA RESULT r e s u l t ;

97 r e s u l t . per iod=0;

98 r e s u l t . s i g n i f i c a n c e =0;

99 r e s u l t . outcome= FAILURE ;

100

101 FILE ∗ f f a f i l e=fopen ( ” f faper iodogram . txt ” , ”w” ) ;

102 i f ( f f a f i l e==NULL)

103 {
104 p r i n t f ( ”\n\nError opening f i l e \n\n” ) ;
105 return r e s u l t ;

106 }
107 f p r i n t f ( f f a f i l e , ”Period , S i g n i f i c a n c e \n” ) ;
108 p r i n t f ( ”> Periodogram f i l e c r ea ted .\n\n” ) ;
109

110 BIN max=0;

111 f loat per iod at max=0,dp at max , x , meanx=0,meanx2=0;

112
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113 for ( per iod=periodmin ; per iod<=periodmax ; per iod++)

114 {
115 count++;

116

117 r e s u l t=FFA( input , bins , per iod ) ;

118 x=r e s u l t . s i g n i f i c a n c e ;

119 f p r i n t f ( f f a f i l e , ”%f ,% f \n” , (∗ data ) . i n t e r v a l ∗ r e s u l t . per iod ,

r e s u l t . s i g n i f i c a n c e ) ;

120

121 meanx+=x ;

122 meanx2+=x∗x ;
123

124 i f (x>max)

125 {
126 per iod at max=r e s u l t . per iod ;

127 dp at max=r e s u l t . dp ;

128 max=x ;

129 }
130 }
131

132 meanx=meanx/count ;

133 meanx2=meanx2/count ;

134 f loat stdev = sq r t ( count / (1 . 0∗ count −1.0) ) ∗ s q r t (meanx2−meanx∗
meanx) ;

135 r e s u l t . s i g n i f i c a n c e=(max−meanx) / stdev ;

136 r e s u l t . per iod=per iod at max ∗(∗ data ) . i n t e r v a l ;
137 r e s u l t . dp=dp at max ∗(∗ data ) . i n t e r v a l ;
138 r e s u l t . outcome= SUCCESS ;

139

140 p r i n t f ( ”Period : \ t \ t%f days \ t+/− %f \n” , r e s u l t . per iod , r e s u l t .

dp ) ;

141

142 f c l o s e ( f f a f i l e ) ;

143 return r e s u l t ;

144 }

Listing C.4: The implementation of FFA algorithm



APPENDIX C. MAIN CODE 112

C.5 Folding routine

1 int FOLD(TIME BIN TABLE ∗data ,TIME p , char ∗path )
2 {
3 FILE ∗ f i l e=fopen ( path , ”w” ) ;

4 f p r i n t f ( f i l e , ”phase , magnitude\n” ) ;
5

6 int n=(∗data ) . s i z e ;

7 TIME s t a r t =(∗data ) . t imes [ 0 ] ;

8 TIME end=(∗data ) . t imes [ n ] ;

9

10 BIN b ,max=0;

11 TIME t , timeatmax=0;

12 int i ;

13 for ( i =0; i<n ; i++)

14 {
15 b=fabs ( (∗ data ) . b ins [ i ] ) ;
16 t=(∗data ) . t imes [ i ] ;

17

18 i f ( t<s t a r t ) s t a r t=t ;

19 i f ( t>end ) end=t ;

20

21 i f (b>max)

22 {
23 max=b ;

24 timeatmax=t ;

25 }
26 }
27

28 for ( i =0; i<n ; i++)

29 {
30 t=(∗data ) . t imes [ i ]−0.5∗ timeatmax ; // s t a r t ;

31 t=(t−trunc ( t /p) ∗p) /p−0.5 ;

32 f p r i n t f ( f i l e , ”%l f ,% f \n” , t , ( ∗ data ) . b ins [ i ] /max) ;

33 }
34

35 p r i n t f ( ”\n> Folding at p=%l f saved to : %s \n” ,p , path ) ;

36 f c l o s e ( f i l e ) ;
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37 }

Listing C.5: The folding routine

C.6 Re–binned folding routine

1 int FOLD REBINNED(TIME BIN TABLE ∗data , int REBINNING, TIME p ,

char ∗path )
2 {
3 int i ;

4 FILE ∗ f i l e=fopen ( path , ”w” ) ;

5 f p r i n t f ( f i l e , ”phase bin , magnitude\n” ) ;
6

7 int n=(∗data ) . s i z e ;

8 BIN ∗ bins=mal loc (REBINNING∗ s izeof (BIN) ) ;

9 int ∗bincount=mal loc (REBINNING∗ s izeof ( int ) ) ;
10 for ( i =0; i<REBINNING; i++)

11 {
12 b ins [ i ]=0;

13 bincount [ i ]=0;

14 }
15

16 TIME s t a r t =(∗data ) . t imes [ 0 ] ;

17 TIME end=(∗data ) . t imes [ n−1] ;

18

19 BIN b ;

20 TIME t , timeatmax=0;

21

22 for ( i =0; i<n ; i++)

23 {
24 TIME t=(∗data ) . t imes [ i ]− s t a r t ;

25 t=t /p−trunc ( t /p) ;

26 int pos=( int ) ( t ∗REBINNING) ;

27 i f ( pos>=REBINNING) pos=REBINNING−1;

28 b ins [ pos ]+=(∗data ) . b ins [ i ] ;
29 bincount [ pos ]++;
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30 }
31

32 BIN max=0;

33 for ( i =0; i<REBINNING; i++)

34 {
35 int norm=bincount [ i ] ;

36 i f (norm!=0) b ins [ i ]/=norm ;

37 i f ( f abs ( b ins [ i ] )>=max) max=fabs ( b ins [ i ] ) ;

38 }
39

40 for ( i =0; i<REBINNING; i++)

41 {
42 int norm=bincount [ i ] ;

43 i f (norm!=0) f p r i n t f ( f i l e , ”%d,% f \n” , i +1, b ins [ i ] /max) ;

44 }
45

46 p r i n t f ( ”\n> Rebinned (%d) f o l d i n g at p=%l f saved to : %s \n” ,

REBINNING, p , path ) ;

47 f p r i n t f ( ou tpu t f i l e , ”\n> Rebinned (%d) f o l d i n g at p=%l f saved

to : %s \n” ,REBINNING, p , path ) ;

48 f c l o s e ( f i l e ) ;

49 }
50 }

Listing C.6: The rebinned folding routine
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