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”Everything existing in the universe is the fruit of chance and necessity.”
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In this thesis, we estimate for a sample of Abell clusters of galaxies their dynamical

masses and their galaxy luminosity functions, using data of the SDSS spectroscopic sur-

vey. We first estimate the redshift distribution of galaxies in the region of the cluster

and fit gaussians onto them. We then clip the cluster velocity dispersions to a 3σ limit,

which is essential to exclude possible outliers, and then estimate the cluster dynami-

cal masses. The masses are found in the 1013-1014 h−1
72 M� range, which is perfectly

compatible with other works in this field. We also calculate the uncertainties for all

the above mentioned parameters using error propagation. We confirm that the derived

cluster masses correlate strongly with the number of member galaxies as they should.

We then fit a Schechter function to the magnitude distribution of the galaxy members

by considering a fixed value of the slope, α = −1.25, and find the best-fit values of the

main parameters of the function, ie., M∗ and φ∗. We then estimate the value of the

total luminosity of each cluster, as the integral of the first moment of the luminosity

function. Through M∗, we also estimate the value of L∗, which is necessary to find the

total cluster luminosity, Lcluster. Having Lcluster we can now easily calculate the M/L

ratios of all the clusters in our sample and assuming that the mean cluster M/L ratio

is related to its universal value, we can get an estimate of the cosmological density pa-

rameter, Ωm. We finally obtain Ωm ' 0.27 and ' 0.38, for two different estimates for

the cluster M/L value, in good agreement with the values provided by a large number

of alternative cosmological probes.
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Chapter 1

Introduction

1.1 General Information on Clusters

It is necessary to first give a small introduction on the definition of clusters. A cluster, is

a group of galaxies (containing either hundreds or thousands of galaxies), gravitationally

bound together. Studying the distribution of galaxies on the sky, we can easily verify

that most of them tend to concentrate and create such groups.

Clusters were considered the biggest structures to be found in the entire universe, until

the discovery of superclusters. Also, they are the most virialized systems we know of

and they can provide us with great information on galaxy formation and cosmology

(Bahcall, 1996).

Clustering in the Universe can be detected on many different scales, from poor groups

of galaxies, to rich clusters and finally superclusters. In general, clusters span around

at an area of 1-3 h−1 Mpc, and contain hundreds of galaxies in their core region. Their

density is also typically a lot bigger than the universal mean density. In any case though,

ranging from 1014- 1015 h−1 M� , clusters are the largest gravitationally bound systems,

bearing also a dynamical equilibrium.

Although clusters consist of a great number of galaxies, those galaxies only make up for

a minor percentage of the cluster’s mass. Most of the mass comes in the form of dark

matter and baryons of the hot intracluster gas.

Depending on the number of galaxies they consist of, clusters are categorized as either

poor (few galaxies) or rich (many hundreds of galaxies). According to the Abell criterion

(Abell,1958), a cluster needs to have at least 30 galaxies in the interval between m3 and

m3+2 (where m3 is the magnitude of the third brightest cluster member) to be considered

1
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Figure 1.1: The Perseus Galaxy Cluster, one of the most impressive clusters observed.

as rich. The poor ones, tend to present irregularities in their shape, something that is

not the case for the rich ones.

Except for galaxies, clusters also contain intracluster gas, dark matter and radio plasmas.

Frankly, the optically visible part of a cluster is way less than its ”invisible” (to the eye)

counterparts. More precisely, all the visible galaxies added, make up for less than 5%

of the cluster’s mass. On the other hand, the intracluster medium accounts for about

9-10% of the mass, with dark matter being the primary ingredient, with a percentage

reaching about 85%.

It is obvious therefore, that if someone is to add up the masses of all the luminous

contents of a cluster, he would never get a value for its total mass even remotely close

to the real one.

The only largest than clusters structure ever observed, are the superclusters, which

span across regions of around 10-30 h−1 Mpc and have a mass of ≈ 1016 h−1 M� and

consisting of several clusters together. The difference of course is that they are not

gravitationally bound and in a dynamic equilibrium, as there is not enough time for

them to reach such a state of evolution.

Groups of galaxies hold the key to unlocking a lot of the Universe’s secrets, especially

when it comes to issues such as Dark Matter. After all, clusters have always fasci-

nated astronomers, as they are nature’s laboratories for testing models of gravitational
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structure formation, galaxy evolution, thermodynamics of the intergalactic medium and

plasma physics.

Furthermore, spectroscopic observations of clusters is another very direct way of unveil-

ing the procedures that took part after the Big Bang which led to the current distribu-

tion of matter. These are, in place, the topics that are mainly going to be extensively

described in this first introductory chapter.

1.2 Cluster Formation

The first major topic that needs to be described and explained, is galaxy cluster forma-

tion. This is a subject that has been studied for decades, until establishing the current

existing model.

Initially, galaxy clusters, were thought to be dynamically relaxed systems, evolving

slowly after an initial short-lived episode of violent relaxation. Observations, though,

showed that almost half of the rich clusters contain significant substructures (or sub-

groups), with complex gravitational potentials (eg. Forman et al. 2002).

This was a very interesting discovery, because it proved that clusters are undergoing

mergers even at the present day. Obviously, that means that they are not completely

relaxed systems, as previously thought, and that cluster formation continues happening

even at our era (Jones et al. 2008)

The current theory explaining how clusters form and evolve is called hierarchical clus-

tering. In general, hierarchical clustering is a term referring to the process by which

larger structures are formed through the continuous merging of smaller ones. We can

easily include the formation of a cluster in the spectrum of phenomena described by

hierarchical clustering. Initially, the formation is triggered by the collapse of the largest

overdensities in the density field, which are however of small size. That is to say, ev-

erything starts with small scale instabilities. Those small scale instabilities get easily

amplified (gravitationally) and take part in the creation of clusters through infall of mat-

ter and merger of small subgroups or subclusters along anisotropic large scale structures

(filaments) (eg. Jones et al. 2008).

Specifically,on large scales, filaments containing gas and galaxies form around voids,

with clusters forming at the intersection of these filaments which then grow through the

accretion of matter and groups which move along the filament and fall into the cluster

potential (Jones et al. 2008).
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The mergers of large subgroups that take part in the process of cluster formation are

the most energetic phenomena in the Universe, with energies up to 1064 ergs.

When subclusters collide (merge) to form a cluster, the energy of the gas contained

in both clusters is mainly transformed into thermal energy by shocks and turbulence,

whilst some small-scale events such as amplification of the magnetic field and inverse

Compton radiation also appear.

Finally, because clusters are formed through hierarchical clustering and are the largest

bound systems in the Universe, they always trace back to the initial conditions of their

formation. This characteristic is very important, as it proves that there is a strong

dependence between the cosmological parameters of the Universe and the way these

structures evolved. For this reason exactly, in this thesis, we will estimate the value of

the cosmological density Ωm parameter, through calculations of the mass and luminosity

of our sample of clusters (eg. Bahcall,1996).

All the above processes taking place during a cluster’s formation, prove that clusters are

nature’s best laboratories for testing models of gravitational structure formation, galaxy

evolution, thermodynamics of the intergalactic medium and plasma physics as well as a

plethora of other fascinating oricesses. (Kravtsov et al. 2012).

1.3 Types of Clusters

1.3.1 Clusters by appearance

Figure 1.2: Left Panel : Coma Cluster (regular cluster) , Right Panel : Fornax Cluster
(irregular cluster)
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There are several classifications of clusters depending on many of their individual char-

acteristics, like shape, richness, galaxy content, etc. In this section, we will focus on the

classification having to do with their shape. There are 2 categories of clusters, based on

their appearance :

1. Regular Galaxy Clusters

2. Irregular Galaxy Clusters.

Regular clusters are spherically symmetric, with the galaxies concentrated towards their

center. Usually, they contain more than 1000 galaxies which are brighter on average

than M≈ -16 (Bahcall 1996). The fraction of elliptical to spiral galaxies is significantly

larger in such clusters with respect to the field. A typical example of a regular cluster

is the Coma Cluster.

Irregular Galaxy Clusters do not have a well-defined center, but are often made up of

loose smaller groups of galaxies, called subclusters. They contain all types of galaxies,

spirals, irregulars and ellipticals and they can contain from just a few to over 1000

galaxies (Bahcall 1996). Our Local group of galaxies can be characterised as a very poor

irregular cluster.

In fig. (1.2) and (1.3) we present the image of a regular and an irregular cluster, in

which we can easily observe the regularity (and irregularity respectively) of the cluster’s

shape.

1.3.2 Clusters by richness

Clusters can also be classified by richness. They, can be divided them into 2 categories:

1. rich clusters

2. poor clusters.

A rich cluster contains hundreds to thousands galaxy members. The largest galaxies are

typically found near the cluster center. They contain a higher fraction of elliptical and S0

type of galaxies, with respect to poorer clusters and also contain large quantities of hot

intracluster gas.A poor cluster on the other hand, contains only tens to a few hundred of

galaxies and usually they have a ragged and irregular appearance and they contain a lot

more spiral and irregular galaxies with respect to richer clusters. In the images of figure

(1.3), we can see A2744, also called Pandora Cluster, which is a rich cluster containing

thousands of galaxies, and also the Hercules cluster, which is particularly poor, with

only a few tens of galaxies.
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Figure 1.3: Left Panel : Pandora Cluster (rich cluster) , Right Panel : Hercules
Cluster (poor cluster)

1.4 Cluster Masses

1.4.1 Methods of estimation and comparison

To start with, we must underline that a rich cluster has a mass of around 1014M�
to 1015M� (Bahcall 1996) . Therefore, they are massive structures and cannot be

compared to anything other observed in the Universe, except probably for superclusters,

which however are not gravitationally bound objects.

The first astronomer to estimate the masses of Clusters, was Zwicky, whose work revealed

the existence of Dark Matter. It was his work that highlighted the fact that estimating

a cluster’s mass using the emitted light (that is to say galaxies and intracluster gas)

does not produce a large enough value, essential to ensure that a cluster would stay

gravitationally bound.

The above result,and other similar results from subsequent studies, led to the introduc-

tion of the notion of Dark Matter in Cosmology. Since the observed light corresponds to

a cluster mass that is significantly less than that needed for the cluster to be gravitation-

ally bound, the required mass is invisible in any part of the electromagnetic spectrum.

This mass is what is called Dark Matter, which in fact not only exists in clusters, but

in all gravitationally bound cosmic structures.

In this section of the thesis, we will describe the 3 main methods used to measure the

mass of a cluster. These are :
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a) Virial Theorem: we can calculate the mass using the cluster velocity dispersion,

assuming that the clusters obey the hydrostatic equilibrium (which is the method we

will use in this Thesis).

b) Euler’s equation: using the X-ray emitting gas as a trace of the total cluster potential.

c) Gravitational Lensing: by observing the distortions of the background galaxy images

due to gravity, we can estimate the mass of a cluster. This is the most widespread and

used method in the recent times (Mahdavi et al. 2007).

It is worth noting, that the results obtained from each of these 3 methods are consistent

with each other, which guarantees that they can all be used quite effectively for our

calculations. Of course, not all methods are equally accurate, nor equally easy to apply

to any given cluster. Still, we will highlight some key aspects of each method (Bahcall

1996, Xiang-Ping Wu et al. 1997 )

1.4.2 Virial Theorem mass estimates

This is the simplest and most straightforward method to estimate a cluster’s mass,

but at the the same time it is the one requiring most assumptions and simplifications.

At first we certainly have to assume that a cluster is in dynamical equilibrium. Then

through the Virial theorem we deduce the relation between the total mass, the size and

the velocity dispersion, according to Borgani:

M =
3

2

πv2
dRv
G

. (1.1)

Estimating observationally the Virial Radius, Rv and the velocity dispersion along the

line-of-sight, vd, we can easily obtain an arithmetic value for the mass of a cluster.

There are of course some disadvantages when using this method. For example, it is diffi-

cult to ”decontaminate” the cluster of any non-member galaxies. There is always a risk

that we might include galaxies that belong either in the background or the foreground

of the cluster.

Another setback, which is probably even more important, is the fact that when we

use the Virial Theorem, we assume that the Dark Matter distribution, follows that of

the light distribution. To this day, there is still no proof or knowledge on the relation

between the two distributions. If the dark matter is more concentrated than the light we

are bound to overestimate its mass, whilst if it is less concentrated we will underestimate

it (Sadat 1995).
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Even with these disadvantages though, this method can provide satisfactory results.

1.4.3 X-ray observation mass estimates

Galaxy clusters contain a lot of hot ionized gas. Intracluster gas is the main component

of baryonic matter in the clusters. It represents a large fraction of the total cluster

mass, up to 30% of it. This hot gas emits high energy photons in the form of thermal

bremsstrahlung. Using this radiation, we can estimate the temperature of the gas and

through Euler’s equation we can obtain an arithmetic value for the mass of the whole

cluster as well. To deduce the mass from the temperature of the gas, we assume once

more hydrostatic equilibrium.

There are plenty of advantages in using this particular method. We do not need to

determine which of the galaxies really belong to the cluster, because it doesn’t affect

this calculation. Also, there is no need to make any assumptions about the Dark Matter

distribution, as in the dynamical estimation. The setback in using this method, is that

it is cumbersome to obtain the data required from the clusters, through X-ray imaging,

while assuming hydrostatic equilibrium is again not an accurate assumption to make

when examining a cluster that is still in the process of merging or forming.

1.4.4 Gravitational Lensing

Gravitational Lensing is a very powerful tool to directly measure the projected cluster

mass distribution. When light passes near a cluster, the cluster’s gravity causes the

light to bend slightly from its initial path. As a result, the shape of galaxies behind the

cluster and along our line of sight appear slightly distorted on the sky. By measuring

the average shape change of background galaxies in different areas around the cluster,

we can estimate its surface mass profile.

At this point, we have to note that there are two kinds of gravitational lensing, the

weak and the strong lensing. The strong lensing, is mostly used for observations around

the central area of the cluster. More specifically it refers to a method used to calculate

the mass of the cluster that is contained within the ”Einstein Radius”. The distortion

appears in the form of strong arcs observed around the core of the cluster. The weak

lensing on the other hand is used mostly to estimate the mass observed in the outer

regions of the cluster. Technically, it is also based on the same assumptions as the

strong lensing. What makes both of them very useful techniques is the fact that they

can be based on data in the visible (or near infrared) band and do not require data from
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Figure 1.4: The gravitational lensing effect as observed at A2218 cluster.

many areas of the spectrum. The cluster of fig (1.6) (A2218) shows clearly the distortion

of galaxies and structures due to weak and strong lensing.

1.4.5 Comparing X-ray observation and Gravitational Lensing

An interesting conclusion arises if we compare the X-ray estimate with those of Grav-

itational Lensing. It has been noted that there is a difference in the mass calculated

by the two methods, around the central areas of the cluster. The results systematically

showed a difference of a factor of around 2-2.5 between the X-ray observation and the

strong Lensing (Sadat 1995, Mahdavi et al. 2008).

At larger radii, the difference seems to increase, while near the center both the weak

lensing and X-ray observations provide the same results. Therefore, the difference of

the two techniques is restricted mostly to the central areas (Sadat 1995, Mahdavi et al.

2008).

There are several factors as to why these methods might disagree. In general, the fact

that X-ray estimates differ from lensing at large radii, may occur due to the hydrostatic

equilibrium assumption being invalid, due to merging effects, instability of the equilib-

rium equation or non-thermal pressure. Unfortunately it is not clear yet to tell which

one of these effects mostly creates the differences in the mass measurements.
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1.4.6 Sunyaev-Zel’dovich Effect

Although not mentioned above, among the primary methods of estimating a cluster’s

mass, this is a recent and interesting method.

To start with, the Sunyaev-Zel’dovich Effect is the distortion of the Cosmic Microwave

Background (CMB) by high energy electrons through inverse Compton scattering. As a

CMB photon passes through a cluster it interacts with high energy electrons contained

in the intracluster hot gas (Bahcall 1996). The result of this interaction is that it slightly

heats the CMB in the direction of the cluster. So, the presence of a cluster creates a

”signature” in the cosmic microwave background, which would not be seen otherwise.

It can be shown that this change in the cosmic microwave background only depends on

the cluster’s mass. Measuring then the change a cluster induces to the CMB, we can

analytically calculate the mass needed to justify such a measurement.

What is really interesting about this effect is that it is totally independent of a cluster’s

redshift and for as long as there are regions with large electron pressures, the Sunyaev-

Zel’dovich Effect should be detectable and able to give us results, no matter how far

away in the Universe we observe.

1.5 Luminosity Function of Clusters

A very important tool (largely discussed also in this paper) to study the characteristics

of a cluster is the luminosity function (L.F) of its galaxy members. Luminosity functions

are used mostly to study the luminosity distribution of large groups of galaxies or other

sources of electromagnetic radiation. By definition, a luminosity function is the number

density of sources in luminosity intervals. An important mathematical parametrisation

of the luminosity function which is analytic, continuous and has interesting mathematical

procedures, was found by Schechter in 1976 and thus it its since called the Schechter

luminosity function.

There are 2 major reasons as to why we need to study the Luminosity function of a

cluster. First, to compare the luminosity functions of galaxies inside a cluster to those

of field galaxies, thus understanding the influence of environment on the global statistical

properties of galaxies. Secondly, to compare luminosity functions of different clusters, in

an effort to understand if there have been differences in the galaxy formation processes,

due to different environments (Popesso et al.,2005)

The luminosity function of a cluster provides important information on the :
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• primordial density fluctuations

• processes that destroy or create new galaxies

• processes that change one galaxy type into another

• processes that transform mass into light.

As already mentioned, a luminosity function is best fitted by a function called Schechter

function. The advantages of this function are that it is analytic, continuous and that it

has interesting mathematical procedures. The formula describing the Schechter function

in terms of luminosities is (Schechter 1976):

Φ(L) = φ∗

(
L

L∗

)α
exp− L

L∗
(1.2)

which in terms of magnitudes can be written as:

Φ(M) = 0.4 log(10)φ∗10−0.4(M−M∗)(α+1) exp
[
−10−0.4(M−M∗)

]
(1.3)

where L∗ (or M∗) is the luminosity (or absolute magnitude) that separates the low and

the high luminosity (or magnitude) parts, and φ∗ is a normalisation constant for the

function with units of density.

As it is easy to see from the above formula, at luminosities L < L∗ the power law part

of Φ(L) dominates , whilst at magnitudes L > L∗ the exponential cutoff dominates.

Therefore, most of the galaxies occupy the first part of the luminosity distribution,

while very few the most luminous, the second part of Φ(L).

From the definition of the luminosity function, it is easy to see that the mean density

of galaxies down to a particular luminosity limit is given by integrating the luminosity

function:

〈n〉 =

∫ ∞
Lmin

Φ(L)dL = L∗

∫ ∞
Lmin/L∗

Φ

(
L

L∗

)
d

(
L

L∗

)
(1.4)

while the mean luminosity density is similarly given by:

〈L〉 =

∫ ∞
Lmin

LΦ(L)dL = L2
∗

∫ ∞
Lmin/L∗

L

L∗
Φ

(
L

L∗

)
d

(
L

L∗

)
(1.5)

Due to the analytical form of the Schether function, it is easy to show that:

〈n〉 = φ∗Γ
′
(
α+ 1,

Lmin

L∗

)
(1.6)

and

〈L〉 = φ∗L∗Γ
′
(
α+ 2,

Lmin

L∗

)
(1.7)
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where Γ
′

is the incomplete gamma function.

Finally, we present a typical galaxy luminosity function, based on the SDSS data, as

estimated by Montero-Dorta et al.(2008).

Figure 1.5: The r-band SDSS DR6 Luminosity Function. Best-fit values of the
Schechter parameters α, M∗ and φ∗ are also shown.



Chapter 2

Observational Data

2.1 The cluster sample and its basic properties

We select a subsample of the Abell (1958, ACO 1989) cluster catalogue such that it

samples a wide range of Bautz-Morgan (hereafter BM) types, which correspond to dif-

ferent cluster dynamical states. In total we have 34 such clusters which can be found

in the table (2.1), where we list the Abell cluster number, the cluster redshift, its celes-

tial coordinates (α, δ), the cluster angular diameter distance, dA, and its Abell richness

class, R, which categorises clusters depending on how many galaxies they contain with

a magnitude between that of its third brightest member (m3) and m3+2. The different

richness categories are provided in table (2.2). Note that the angular diameter distance

is given by:

dA = (1 + z)

∫ z

0

c

H(z)
dz (2.1)

where c is the velocity of light and H(z) is the Hubble function, derived from the first

Friedmann’s equation, and given by:

H(z) = H0

[
Ωm(1 + z)3 + ΩΛ

]1/2
(2.2)

where H0 is the Hubble constant, which through out this thesis we use H0 = 72 km

s−1 Mpc−1, Ωm is the cosmological matter density parameter and ΩΛ is the density

parameter corresponding to the Cosmological Constant. We also assume through out

this thesis a flat Universe, ie., one with Ωm + ΩΛ = 1, consistent with the most recent

cosmological results (eg., Planck Collaboration results of Ade et al. 2014)

We then identify the galaxy members of these clusters by using the SDSS spectroscopy

galaxy catalogue (DR7 revision). The SDSS provides an interface through which one can

13
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Table 2.1: Initial Cluster Data

Name z α (deg) δ (deg) dA (h−1
72 Mpc) R

A85 0.055 10.407 -9.342 243.020 1

A168 0.045 18.790 0.247 193.823 1

A279 0.079 29.092 1.060 353.117 1

A671 0.050 127.122 30.416 218.316 1

A690 0.078 129.809 28.840 348.494 1

A957 0.043 153.488 -0.915 189.31 1

A971 0.092 154.944 40.965 414.24 1

A1177 0.031 167.365 21.695 136.47 0

A1213 0.046 169.121 29.260 202.71 1

A1291 0.052 173.041 56.030 229.54 1

A1468 0.084 181.408 51.421 374.21 1

A1516 0.076 184.738 5.239 339.23 1

A1569 0.073 189.077 16.591 323.06 0

1650 0.083 194.692 -1.753 371.84 2

A1656 0.023 194.952 27.980 99.59 2

A1691 0.072 197.846 39.201 318.32 1

A1738 0.115 201.296 57.600 522.23 2

A1795 0.062 207.252 26.585 272.59 2

A1800 0.075 207.422 28.068 332.31 0

A1913 0.052 216.715 16.676 229.56 1

A1983 0.043 223.183 16.746 189.31 1

A1991 0.058 223.625 18.630 256.62 1

A2029 0.077 227.733 5.744 341.52 2

A2079 0.068 232.019 28.877 302.32 1

A2089 0.073 233.172 28.015 322.95 1

A2107 0.041 234.912 21.783 178.23 1

A2124 0.065 236.247 36.061 288.47 1

A2147 0.035 240.571 15.895 149.65 1

A2199 0.030 247.160 39.551 129.94 2

A2244 0.096 255.683 34.046 433.19 2

A2255 0.080 258.129 64.092 357.74 2

A2356 0.116 323.942 0.115 526.96 2

A2399 0.057 329.385 -7.794 252.14 1

A2428 0.085 334.061 -9.350 378.79 1

A2593 0.041 351.129 14.641 178.26 0

A2670 0.076 358.557 -10.418 336.85 3

Table 2.2: Definition of Abell’s Richness Class.

Richness class Number of galaxy counts

Group 0 30-49

Group 1 50-79

Group 2 80-129

Group 3 130-199

Group 4 200-299

Group 5 more than 299
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select the area of the sky in which he/she is interested in and download the spectroscopic

data available.

We select as members of each cluster those galaxies that fulfill a range of criteria. These

criteria are:

• Candidate galaxy members are selected within a 1.5 h−1 Mpc distance from the

cluster center. To this end we transform this radius in the corresponding angular

separation by:

θ = arctan

(
1.5

dA

)
=

1.5

dA
radians (2.3)

• Candidate galaxy members are selected within a specific range of radial velocity

difference from the cluster center. This is because in a cluster all the members

should move at relatively close velocities to each other. Assuming that some

galaxies in our area of 1.5 h−1 Mpc, specified above, are moving at a significantly

different speed than they should, we could then easily conclude that they are

either background or foreground galaxies. So comes the second condition of our

algorithm, which is that we only accept galaxies, within a ± 2000 km/s range

of the cluster center velocity. That is a rather large range which will be further

reduced, but for the sake of other possible future studies, we will initially allow it.

The above mentioned procedure, is necessary to make sure that we only use galaxies

that are specifically cluster members. This is obviously very important, if we want our

results to be accurate and ”noise-free”. A correct initial set of data is the first step

towards bias-free results.

2.2 Visualisation of the Clusters

In order to get an idea of the spatial distribution of galaxies within clusters we plot

the distribution of galaxy members in an equal area projection. To this end, we use as

the x-coordinate of the plot the right ascension of each galaxy member multiplied by

the cosine of the declination of the cluster center (x = α× cos(δ0)) and as y-coordinate

the galaxy member’s declination. These plots provide therefore an idea of the projected

shape of the cluster on the plane of the sky. In order to inspect whether galaxies of

different luminosities follow the same density profile, since, for example, a very bright

galaxy far away from the center would be suspect of being a projection effect. we plot

with different colours the galaxies in 3 different magnitude ranges (black, blue and red

correspond to the 10%brightest, the 10%-30% less bright and the ¡30% least bright

galaxies, respectively).
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Using these diagrams, we can also identify whether a cluster contains subgroups of galax-

ies, which we then can attempt to study separately. Below we present some examples

of equal area projection plots, for some of the most prominent clusters in our sample.
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Figure 2.1: Equal area projections, from top-left to bottom-right, of the clusters:
A85, A1213, A1656, A1795, A1983 and A2199 clusters.
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2.3 Cluster Velocity Dispersions

One of the most significant goals of this thesis is to attempt to accurately estimate

clusters masses using the virial theorem. To this end it is essential to estimate and use

the cluster velocity dispersion for which we use the redshifts of the galaxy members

and the corresponding recessional velocities: v = zc. Having estimated the velocities

of all the galaxy members, we estimate the mean velocity of the entire cluster. We

then subtract each galaxy velocity from the mean cluster velocity in order to rest the

velocities with respect to the mean cluster one. The cluster velocity dispersion can be

estimated according to the formula:

vd =

∑
i(vi − vmean)2

Ng − 1
(2.4)

where vd is the velocity dispersion, vi is the velocity of the ith galaxy, vmean the mean

velocity of the cluster and Ng is the number of galaxy members of the specific cluster.

The Ng − 1 term in the denominator renders our calculations unbiased.

In order to determine an accurate value of the cluster velocity dispersion, we need to

exclude possible outliers and to this effect we follow a procedure by which we first plot

the distribution of galaxy member velocities, normalised to that of the cluster center, and

then fit a Gaussian to the distribution. To this end we use a χ2 minimisation procedure

by which we estimate the parameters of the Gaussian, which is overlayed on the galaxy

velocity distributions. Having calculated the standard deviation (σ), we now exclude

from the sample of galaxies those with velocities further than 3σ from the mean value

of the cluster. We calculate the new σ and the procedure is iterated until no galaxy is

excluded further.

This procedure allowed us to identify that the clusters A168, A671, A1291 and A2147

consist of three separate groups of galaxies, while A1516 consists of two groups. All the

cluster velocity histograms and fitted Gaussians are listed in the Appendix. However,

we present here some examples of the most interesting clusters (Fig.2.2).

The final results for each cluster of our sample are listed in Table (3.4). We list the mean

velocity of the cluster, the cluster velocity dispersion, vd, and its uncertainty (both

arithmetically and as a percentage), σvd . Uncertainties in our measured parameters

are estimated through out this thesis using error propagation theory. Note that in

some cases, when a cluster appears to have distinct subgroups, we divide and analyse

separately these subgroups. It appears that such subgroups, on occasions, seem to

be moving at different velocities and can therefore be easily separated and treated as

independent systems.
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Figure 2.2: From top left to bottom right : Cluster velocity dispersion diagrams and
gaussian fits for clusters : A85,A1213, A1656, A1795,A1983,A2199.
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Table 2.3: Cluster velocity dispersions and errors

Name Mean Velocity (km/s) vd(km/s) σvd (km/s) σvd (%)

A85 16693.8 743.9 ± 51.8 6.97

A168(1) 12863.9 267.3 ± 28.8 10.80

A168(2) 13638.0 243.3 ± 20.3 8.35

A168(3) 14406.7 220.8 ± 31.1 14.10

A279 23934.7 658.2 ± 54.9 8.34

A671(1) 14103.2 253.7 ± 30.7 12.10

A671(2) 15088.9 296.3 ± 36.1 12.20

A671(3) 16027.7 258.0 ± 45.6 17.70

A690 24018.8 480.4 ± 60.0 12.50

A957 13328.8 770.8 ± 70.1 10.20

A971 27824.3 770.8 ± 92.3 11.98

A1177 9630.4 335.7 ± 39.9 11.89

A1213 14029.0 616.2 ± 35.0 6.70

A1291(1) 14956.5 236.9 ± 27.7 11.70

A1291(2) 15719.6 240.6 ± 37.7 15.70

A1291(3) 16839.6 259.7 ± 44.0 16.97

A1468 25500.2 477.7 ± 71.1 14.89

A1516 23183.5 658.7 ± 66.6 10.12

A1569 21059.2 444.4 ± 72.0 16.21

1650 25100.7 657.1 ± 65.6 9.99

A1656 6980.8 775.2 ± 25.7 3.32

A1691 21697.9 716.5 ± 61.3 8.56

A1738 34898.4 626.1 ± 87.0 13.90

A1795 18792.5 777.9 ± 70.4 9.05

A1800 22668.7 668.0 ± 68.7 10.29

A1913 15896.7 594.4 ± 41.1 6.92

A1983 13402.6 526.0 ± 33.9 6.45

A1991 17536.5 577.6 ± 46.1 7.99

A2029 22082.8 220.6 ± 30.0 13.68

A2079 19745.2 365.0 ± 35.9 9.84

A2089 22052.6 536.3 ± 49.1 9.16

A2107 12389.5 614.7 ± 41.3 6.72

A2124 19841.3 741.9 ± 61.0 8.23

A2147(1) 9495.9 206.0 ± 30.9 15.01

A2147(2) 10783.9 490.9 ± 24.6 5.02

A2199 9072.0 663.1 ± 33.2 5.01

A2244 29198.6 724.5 ± 66.6 9.20

A2255 24081.6 766.4 ± 74.1 9.68

A2356 35358.3 509.7 ± 74.0 14.52

A2399 17375.6 595.0 ± 39.9 6.72

A2428 25217.2 524.7 ± 67.6 12.90

A2593 12477.0 624.2 ± 49.8 7.98

A2670 22862.9 768.5 ± 61.8 8.05
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Cluster Dynamical Analysis and

the value of Ωm

3.1 Cluster Masses and Radii

Assuming dynamical equilibrium and using the Virial Theorem we calculate the virial-

ization Radius and the Cluster Masses in order to complete the dynamic analysis of the

clusters. The virial cluster radius is given by (Borgani 2006) :

rv =
Ng(Ng − 1)∑

r−1
ij

(3.1)

where rij the projected separation of the i, j galaxy pair and i > j. Similarly, the virial

cluster mass is given by (Borgani 2006; Girardi et al. 1998):

M =
3π

2

rvv
2
d

G
(1−∆) (3.2)

where vd is the velocity dispersion, G is the gravitational constant and ∆ a fractional

correction factor that takes into account the fact that the cluster is not fully enclosed

within the sampling radius. This factor depends on the velocity anisotropy of the galaxy

orbits (eg., Girardi et al. 1998). We take ∆ = 0.19 which is the median value estimated

by Girardi et al. (1998).

In Table 3.1 we present the results for all the clusters of our sample and of their subgroups

of galaxies. Radii are measured in h−1
72 Mpc, whilst the masses are calculated in terms

of 1014 h−1
72 M�. Uncertainties are estimated using error propagation theory.

We should note here though that the method used to estimate cluster mass is based in

a variety of assumptions which render the estimation quite approximate.

20
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Table 3.1: Cluster Radii, Masses and their uncertainties

Name rv (h−1
72 Mpc) Mass (1014h−1

72 M�) σM (1014h−1
72 M�)

A85 1.54 9.35 ± 1.20

A168(1) 0.37 0.29 ± 0.062

A168(2) 0.80 0.52 ± 0.086

A168(3) 0.11 0.062 ± 0.016

A279 1.23 5.86 ± 0.90

A671(1) 0.37 0.30 ± 0.060

A671(2) 0.75 0.72 ± 0.063

A671(3) 0.18 0.13 ± 0.02

A690 1.42 3.61 ± 0.84

A957 0.77 4.01 ± 0.80

A971 1.12 7.33 ± 1.50

A1177 1.09 1.35 ± 0.32

A1213 1.64 4.93 ± 0.64

A1291(1) 0.20 0.12 ± 0.028

A1291(2) 0.33 0.21 ± 0.06

A1291(3) 0.79 0.58 ± 0.019

A1468 1.43 3.58 ± 0.62

A1516 1.65 7.84 ± 1.50

A1569 1.40 3.03 ± 0.40

A1650 1.87 8.86 ± 1.60

A1656 1.33 8.74 ± 0.58

A1691 1.50 8.40 ± 1.34

A1795 1.58 10.46 ± 1.80

A1800 1.52 7.46 ± 1.40

A1913 1.50 5.80 ± 0.77

A1983 1.28 3.89 ± 0.49

A1991 1.41 5.16 ± 0.79

A2029 1.61 13.90 ± 2.10

A2079 1.56 5.89 ± 1.2

A2089 1.61 5.09 ± 0.87

A2107 1.28 5.31 ± 0.70

A2124 1.38 8.30 ± 1.30

A2147 1.36 7.19 ± 0.73

A2199 1.50 7.25 ± 0.72

A2244 1.50 8.65 ± 1.40

A2356 1.37 3.90 ± 0.86

A2399 1.54 5.95 ± 0.77

A2428 1.62 4.89 ± 1.10

A2593 1.34 5.73 ± 0.90

A2670 1.75 11.35 ± 1.70
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3.2 Luminosity Function analysis

As we already established, the luminosity function, Φ(L), of a cluster is the number

density of galaxies per luminosity interval. Here we will directly estimate Φ(L) for

each cluster of our sample and to this end we use the SDSS galaxy data which provide

the apparent magnitudes, in 5 bands, of each galaxy, although in the current work we

focuses only in the r-band magnitudes. We transform apparent magnitudes to absolute

magnitudes using the well-known distance modulus, according to:

mr −M = 5 log10(dL) + 25 +Kr(z) +Ar (3.3)

where mr is the r-band apparent magnitude, M is the absolute magnitude, dL is the

distance modulus, Kr(z) is the K-correction for the r-band, which is a function of redshift,

and Ar is the Galactic absorption in the r-band. The Kr correction term is needed to

convert the apparent magnitude of a galaxy to that in the rest-frame of the object, since

the light that we detect from a source at a particular filter (r-band here) is emitted from

different parts of the spectrum at the different redshifts. The only simplification we

make in its use is that we assume that all cluster galaxies are ellipticals. For this process

we use the Poginatti’s (1997) tabulation of K-corrections, listed by redshift in bins of

variable width. Therefore, we often use a linear interpolation between given values.

Galactic dust, that intervenes between the observer and the cluster, absorbs and scatters

light, increasing the apparent magnitude of the galaxies. The term Ar corrects for this

effect and depends mostly on the galactic latitude of the cluster.

Having transformed apparent magnitudes into absolute magnitudes, we plot for each

cluster the appropriate distribution of M and we use a χ2 minimization procedure to fit

a Schechter luminosity function to each such cluster distribution. To this end we assume

α=-1.25 (Popesso et al. 2005) and we leave as a free parameters M∗. Once we estimate

M∗, we transform it into luminosity by:

M� −M∗ = 2.5 log10(L∗/L�) (3.4)

using

M∗ = −2.5 log10 L∗ + c M� = −2.5 log10 L� + c (3.5)

The absolute magnitude of the Sun in the r-band is 4.67 and thus we finally obtain:

L∗ = 100.4(4.67−M∗) (3.6)
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We now describe how we estimate the normalization parameter φ∗. We use (a) the fact

that the integral of the cluster Φ(L) can be considered as being equal to the total number

density of observable galaxies contained in the cluster, and (b) that the observable

galaxies are those contained within the specific limits of luminosity, Lmin , allowed by

the magnitude limit of the SDSS catalogue. For each cluster the value of Lmin is the

luminosity corresponding to the limiting apparent magnitude of the SDSS spectroscopic

catalogue (mr ' 17.7) at its redshift. To sum up, the formula used to estimate the

number of observable galaxies in each one of our clusters is :

Nobs = Vclus

∫ ∞
Lmin/L∗

Φ(L)dL = Vclusφ∗Γ
′
(α+ 1, Lmin/L∗) (3.7)

where Vclus is the volume covered by the cluster (which will be factored out in any case)

and Γ
′
(α + 1, Lmin/L∗) is an incomplete Γ function. Therefore counting the cluster

member galaxies, Nobs, with L ≥ Lmin we can estimate the normalization parameter by:

φ∗ =
Nobs

Γ(α+ 1, Lmin/L∗)Vclus
(3.8)

Finally, the cluster total luminosity density is estimated by:

Lcluster = Vclus

∫ ∞
0

LΦ(L)dL = Vclusφ∗L∗Γ(α+ 2) = NobsL∗
Γ(α+ 2)

Γ′(α+ 1, Lmin/L∗)
(3.9)

In Table 3.2 we present the best-fit galaxy luminosity function parameters, the reduced

χ2 of the fit and the cluster total luminosity, provided by eq.(3.9).

The Luminosity function analysis is the most laborious part of this thesis. The diagrams,

consist of a histogram of the absolute magnitude distribution of the cluster member

galaxies and an analytical fit to the data of a Schechter-type function Here we present

some of these diagrams, while the rest can be found in the Appendix C.

3.3 Correlations between Mass and Richness

In general one expects to have more galaxies in more massive clusters. Therefore one

expects to have a strong corelation between the dynamical mass of clusters and their

richness, measured either by the number of bright galaxies, or by Abell richness class.

To this end we plot in Fig.(3.2) the scatter diagrams between the cluster dynamical

mass (x-axis) and Ng or RA (y-axis) and we apply the usual Spearman nad Pearson

correlation analysis to quantify if such correlations do exist among the above cluster

parameters.
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Indeed, there seems to be an increase in a cluster’s mass when either the number of

galaxies it contains or the Abell richness class is larger. That is to say, rich clusters are

more massive than the poorer ones.

To estimate the Pearson coefficient we use the following formula:

Rp =

∑
(xi − x)(yi − y)√∑

(xi − x)2
√∑

(yi − y)2
(3.10)

where xi are the values plotted on the x-axis, and yi the values of the masses (or richness

classes) plotted on the y-axis. Obviously, x and y are the mean values of those variables.

Table 3.2: Best-fit Schechter luminosity function parameters and χ2/dof values.

Name M∗ φ∗ L∗(1010h−2
72 L�) χ2/df

A85 -21.62 49.30 3.28 0.80

A279 -21.45 41.77 2.80 1.23

A690 -21.18 50.91 2.18 0.93

A957 -21.20 25.60 2.22 0.72

A971 -21.44 40.05 2.77 0.51

A1177 -21.60 13.25 3.22 1.30

A1213 -21.63 44.16 2.85 0.91

A1468 -21.10 37.33 2.03 0.89

A1516 -21.39 41.94 2.65 0.55

A1650 -21.44 43.57 2.77 0.75

A1656 -22.15 57.82 6.48 0.80

A1691 -21.63 38.32 3.31 0.89

A1795 -21.60 44.93 3.22 0.50

A1800 -21.79 34.09 3.83 1.26

A1913 -21.62 39.38 3.28 0.50

A1983 -21.60 43.61 3.22 0.70

A1991 -21.64 40.95 3.34 1.20

A2029 -21.67 50.27 3.43 0.80

A2079 -21.42 35.20 2.72 0.66

A2089 -21.48 34.70 2.88 0.72

A2107 -21.44 35.85 2.77 0.65

A2124 -21.34 37.95 2.53 0.60

A2147 -22.02 44.38 4.74 1.25

A2199 -21.67 41.93 3.43 1.75

A2244 -21.78 45.81 3.80 0.81

A2356 -21.54 39.31 3.04 0.95

A2399 -21.60 40.35 3.22 0.70

A2428 -21.15 65.59 2.12 0.50

A2593 -21.44 33.17 2.78 1.65

A2670 -21.75 54.58 3.69 0.90
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Figure 3.1: From top left to bottom right: Galaxy luminosity functions of the clusters
A85, A1213, A1656, A1795, A1983 and A2199.

Similarly, in order to estimate the Spearman correlation coefficient, we use:

rs = 1− 6
∑
D2

N3 −N
(3.11)

where D is the difference between ranks (xi− yi). Note that the Pearson (or Spearman)

coefficient, take values between -1 and 1. A value equal to 1 means that we have a

totally positive correlation between the two parameters, -1 means that we have a totally

negative correlation, whilst 0 means that we have no correlation at all.
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Figure 3.2: Left Panel: Dynamical mass versus number of bright cluster member
galaxies. Right Panel: Dynamical mass versus Abell richness classes, for the clusters of

our sample.
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The specific values of the Pearson and Spearman coefficients for the two diagrams and

their probability (P ) of being such due to chance are shown in Table 3.3).

Table 3.3: Correlation coefficients for N-M and N-R.

Diagram Rp Pp Rs Ps
Ng-Mass 0.622 0.00011 0.577 0.00043

RA-Mass 0.605 0.00019 0.564 0.00063

It is easy to notice that there is a quite strong correlation between the cluster parameters

tested, as well as a very high probability that these correlations are real and not due to

chance. We therefore claim that not only is there a relation between Ng or RA and the

dynamical cluster Mass but there is also quite a certainty that these relation reflect real

physical processes.

3.4 Cluster M/L Ratios & Ωm

We calculate the cluster M/L ratios by simply dividing the virial masses (Table 3.1)

with the Lcluster derived in section 3.3. The cluster M/L are listed in Table ??).

3.5 Cluster M/L Ratio Analysis

First, we demonstrate in this section the table of M/L ratios that we have. We calculate

the cluster M/L ratios simply by dividing the virial cluster masses (see chapter 2) with

the Lcluster (Table ??) we found before. The M/L Table has as follows :

We also plot the derived M/L ratios as a function of cluster mass in Fig. (3.3). We

also show the uncertainty of each M?L value, derived by propagation of errors. What

is expect is to have a roughly linear dependance up to some characteristic cluster mass,

above which a ”plateau” should appear (see Bachall 1999). This is due to a well know

effect, where the M/L ratios is an increasing function of cosmic structure mass (starting

from galaxies, groups of galaxies and clusters of galaxies; see also Fang & Xu 1999),

up to a mass over which the cosmic structure has the global (universal) value of M/L,

which then can be used to place cosmological constraints, as we will see further below.

Indeed we see such an increasing trend of M/L with M .

In order now to estimate the value of the Ωm parameter, which is the final goal of this

thesis, we must assume, as already discussed, that the M/L ratio of the clusters we
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Table 3.4: Cluster M/L Ratios and uncertainties.

Name M/L(hM�/L�) M/L uncertainties(hM�/L�)

A85 471.15 ± 34.2

A279 408.08 ± 32.9

A690 264.45 ± 25.6

A957 573.52 ± 52.3

A971 537.29 ± 51.5

A1177 258.08 ± 27.4

A1213 318.80 ± 29.5

A1468 385.09 ± 31.0

A1516 574.53 ± 49.9

1650 596.89 ± 58.8

A1656 230.46 ± 21.2

A1691 540.22 ± 56.3

A1738 554.96 ± 55.5

A1795 589.75 ± 56.9

A1800 465.27 ± 42.4

A1913 366.25 ± 33.7

A1983 225.97 ± 21.1

A1991 307.62 ± 28.9

A2029 656.68 ± 70.8

A2079 500.29 ± 49.1

A2089 414.94 ± 36.7

A2107 434.74 ± 45.6

A2124 704.01 ± 72.3

A2147 278.72 ± 22.1

A2199 410.63 ± 35.6

A2244 405.27 ± 37.7

A2255 558.38 ± 51.1

A2356 265.62 ± 34.3

A2399 373.58 ± 36.1

A2428 285.87 ± 22.2

A2593 507.11 ± 51.5

A2670 458.82 ± 43.2

calculated correspond on average to the global M/Luniv ratio of the Universe, which is

given by: (
M

L

)
clus

=

(
M

L

)
univ

=⇒
(
M

L

)
clus

=
ρ0

〈L〉
=

Ωmρtot

〈L〉
(3.12)

where ρ0 is the mean mass density of the Universe, ρtot is the mean total mass-energy

density of the Universe (to which all sources of gravity contribute), and 〈L〉 is the mean

luminosity density of the Universe. The value of ρtot is given by the first Friedmann’s

equation and it is:

ρtot =
3H2

0

8πG
= 2.775× 1011M�h

2Mpc−3 (3.13)

where H0 = 100h km s−1 Mpc−3.
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Figure 3.3: Mass to M/L diagram.

In order to derive the mean luminosity density of the Universe, 〈L〉, we use the field

luminosity function of Montero-Dorta et al. (2008) and its best-fit Schechter parameters:

φ∗ = 0.009h3 = 0.00336 and M∗ = −20.73 + 5 log10 h. We first calculate, via eq.(3.6),

the value of L∗: L∗ = 1.4454 × 1010 h−2 L�, and then we integrate the 1st moment of

the field luminosity function to obtain the mean luminosity density

〈L〉 = φ∗L∗Γ(a+ 2) = φ∗L∗Γ(0.77) = 1.5607× 108 h L�Mpc−3 (3.14)

reminding that the normalization is given by H0 = 100h km s−1 Mpc−1. As already

mentioned, the M/L ratio that enters in eq.(3.12) corresponds to the average ratio of

the Universe, which we take it to be that of clusters of galaxies. Thus, we will use two

different values for the cluster M/L: the mean M/L ratio over all clusters in our sample

and the value corresponding to the rough “plateau” seen in Fig.(3.3), ie.,(
M

L

)
clus,mean

≈ 423± 37.8(1−∆) h72
M�
L�
± 37.8 (3.15)

and (
M

L

)
clus,plateau

≈ 600± 54.1(1−∆) h72
M�
L�

(3.16)

where ∆ is the correction factor introduced in eq.(3.2) which we take ∆ ' 0.19 (Girardi
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et al. 1998), while here we have also used the nominal value of the Hubble constant:

H0 = 72h72 km s−1 Mpc−1.

Finally, using eq.(3.12) and solving for Ωm we have:

Ωm =
〈L〉
ρtot

(
M

L

)
clus

= 0.00078

(
M

L

)
clus

(3.17)

from which, after taking into account the different H0 normalizations, we obtain:

Ωm = 0.27± 0.02 and Ωm = 0.38± 0.04

respectively.

The first result is excellent consistency with the values derived for a large variety of

cosmological probes. However, the second is somehow higher. We attribute this differ-

ence in the crude estimation of the cluster virial mass and total luminosity, since we

have used a constant slope α of the Schechter luminosity function, but also on the lack

of sufficient data for some of the clusters. There is certainly room for improvement on

which we will indulge in the future.
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Conclusions

In this final chapter, we will review what we accomplished and focused in this thesis

and we will offer some comments and remarks on the topics analysed throughout. By

discussing our results, we will attempt to assess whether they are accurate enough and

what are the limitations of the methods used. Finally, we will make some proposals

concerning future research on the field and we will mention possible improvements and

additions that we wish to indulge into in the future.

4.1 Overview of the thesis work

Starting with the first chapter, we presented a small introduction on clusters of galaxies.

At first, we provided information on what a cluster is, what are its basic physical prop-

erties and why it is important as a structure in the Universe. We noted that clusters

are the most massive virialized structures known and that they are even up to this day

a major source of study when it comes to dark matter and the cosmological parame-

ters in general. Secondly, we gave some insight on the way clusters form and evolve.

The most important elements of a cluster’s life and evolution were discussed, at least

according to the most popular theories. Then, we also presented two different classifi-

cations of clusters, depending on their shape/appearance and their richness. Moreover,

the first chapter contains a description of the main methods used to calculate a cluster’s

total mass. As noted, these methods are based on the virial theorem (based on optical

spectroscopic observations), on the Euler equation (ie., using the X-ray emitting ICM

gas as a tracer of the potential) and the gravitational lensing. We focused on the first

method which is the method used in this thesis to calculate the total cluster masses.

We also presented briefly the notion of the galaxy luminosity function, explaining that

it represents the number density of galaxies in luminosity intervals.

31
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The second chapter was dedicated to presenting the main sets of observational data used

in this thesis and their processing. We consider a galaxy to be a candidate member of

a cluster if it appears within an area (on the sky) of about 1.5 h−1
72 Mpc around the

cluster’s core and has a velocity within a ±2000 km/s of the central cluster velocity.

We derived the galaxy velocity dispersion of each cluster in our sample and presented

for each the normalised velocity histograms, fitted with the best-fit Gaussian, which

help us trim the galaxy distribution by excluding outliers that have velocities beyond

the 3σ Gaussian limit. In general terms, the velocity dispersion values estimated, are

comparable to dispersions measured in other scientific papers.

In the third chapter we used the Virial theorem to calculate the dynamical cluster masses

and their virial radii. The masses obtained are in the region of 1014h−1
72 M� which is

consistent with other studies. We proved that the dynamical cluster mass correlates

strongly with the number of galaxies in the cluster (and also with another measure of its

richness), as it should. We also presented the galaxy luminosity function analysis and

estimated for each cluster the best-fit parameters of the Schechter luminosity function,

ie., the characteristic absolute magnitude M∗ with the corresponding characteristic lu-

minosity L∗ as well as the normalization factor φ∗. To obtain the total luminosity of a

cluster in solar luminosities, we go through a relatively complex procedure that provides

values in the region of 1012h−2
72 L�, consistent with that of other studies.

Finally, we estimated the mass to light ratio for each cluster, M/L, and compared it

with the universal value to estimate the value of the cosmological density parameter,

Ωm, which was the aim of this thesis. The values found are in good agreement with

those of other cosmological probes, although somewhat higher. In general though, we

can conclude that the results obtained throughout this thesis, are satisfactory and the

level of convergence to the those of other similar studies is quite impressive if one takes

into account the necessary over-simplifications that we have used.

4.2 Future research

Although this thesis has achieved its initial goals, there is still room for improvement.

In the near future, we intend to study the subject at hand even more intensively and to

a higher detail by improving both the virial mass estimates and the luminosity function

analysis. To this end,

• we will attempt to estimate the correction factor ∆ for each cluster individually,

in order to provide a better mass estimate, and
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• we will iterate the whole luminosity function analysis, by allowing also the slope α

as a free parameter to be fitted by the χ2 minimization procedure and thus obtain

more accurate values of the Schechter parameters and consequently of the Lcluster.

The above improvements will all affect the final value of Ωm and its uncertainty.



Appendix A

Equal Area Projection Diagrams

In this appendix, we present equal area projection diagrams of the galaxy distribution

in each of our Abell clusters. The x-axis depicts the product of the right ascension with

the cosine of the declination of the clusters center, while the y-axis corresponds to the

declination coordinate.
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Velocity Dispersion Diagrams

In this Appendix, we present the velocity dispersion diagrams for each of our Abell

clusters. Note here that the central velocity (around which our histograms are plotted)

is the mean velocity of each cluster. The x-axis depicts the galaxy velocity with respect to

the cluster center and the y-axis depicts the frequency (number of galaxies corresponding

to each velocity interval). It is important here to underline that some of our clusters

are further divided into smaller groups of galaxies, each with its separate central (mean)

velocity. Wherever this is the case, it is described in the caption that follows the diagram.
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Appendix C

Luminosity Function Diagrams

In this Appendix, we present the Luminosity Function Diagrams for each of our Abell

clusters. The diagrams presents histograms of galaxy absolute magnitudes for each

cluster, along with the best-fit Schechter function in each case. It is worth noting that

the procedure described was not followed for the small number of clusters that consisted

of multiple subgroups of galaxies.
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