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Abstract

We examine the impact of external magnetic fields on the motion of charged particles in the
neighborhood a Kerr black hole immersed in a uniform or dipolar magnetic field. In particular, we
examine non-equatorial orbits and show three-dimensional presentations of the orbits that cross the
equatorial plane. We find that there exist non-equatorial orbits that do not cross the equatorial
plane for uniform magnetic fields and dipole magnetic fields. This kind of orbits could lead to
observable effects. Finally, we investigate the motion of a group of particles which escape from the
surface of a simple model of an accretion disk.
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Chapter 1

Introduction

Magnetic fields play a crucial role in astrophysics. The importance of their study arises from the
fact that compact objects, e.g. neutron stars and black holes, can posse strong electromagnetic
fields. In the neighborhood of these objects is where astrophysically significant phenomena occur.
Near rotating bodies, the field lines are deformed by gravity in the vicinity of the objects.

The work done on this paper refers to space, time, gravity, magnetic fields and how all of the
previous quantities can be coupled to each other. The basic idea in general theory of relativity
is that gravitation originates from the curvature of spacetimes (4-D), the coupling of space (3D)
and time (1-D). It is due to the presence of mass or energy in the background geometry that
spacetime becomes deformed. In particular, the curvature depends on the total density of a given
spot. Gravity is directly related to the geometry of the region under investigation. In order to
describe gravity in terms of mathematics it is essential to employ differential geometry.

In general relativity, black holes are created whenever mass, under specific circumstances, is
condensed into a sphere with radius less than twice its mass (in gravitational units), and gravita-
tional forces are so large that none of the other known forces can counterbalance their effect. A
consequence of this fact is the gravitational collapse of the astrophysical object to a singularity
surrounded by an event horizon. The gravitational forces are so strong in the neighborhood of
the black hole that trajectories of both particles and light are strongly affected, compared to the
Newtonian limit.

Newtonian mechanics gives us a first estimate of the escape velocity Vesc for a particle located
at a distance R to escape the black hole.

1
2
mV 2

esc =
GMm

R

When particle’s velocity is greater than the velocity Vesc then the particle escapes, otherwise it’s
sucked into the hole. Escape velocity equals the speed of light when:

2GM

c2R
= 1 (1.0.1)

which defines the Schwarzschild radius R = RS .
Although the Newtonian approach is not suitable in this case, due to the appearance of relativis-

tic effects, the result (1.0.1) is the same as the one obtained using relativity. The surface r = Rs is
called the event horizon from within which nothing can escape the gravitational attraction of the
object.

Black holes of several solar masses have been detected in binary systems. Supermassive black
holes, of several million to billion solar masses have been detected in the center of galaxies. There
is evidence that almost every large galaxy contains a supermassive black hole at its center. In
particular, at the center of our galaxy, the Milky Way, there is a supermassive black hole of 3
million solar masses.

1



2 CHAPTER 1. INTRODUCTION

Bearing in mind the initial angular momentum of the protostellar cloud that formed the black
hole, it is impossible for the black hole to have zero angular momentum. It is indeed so, because of
the small radius of the black hole that its angular momentum would take an extremely high value.
Presence of remaining matter in its surroundings or matter accreted from a companion allow for
the formation of an accretion disc around the compact object. Plasma circling around the black
hole creates a hot disk. Particles colliding with each other can become a source of X-ray radiation.
Despite the fact that black holes are “dark”, the extremely distorted spacetime around them is
an “arena” of the most wonderful, yet eruptive, phenomena of astrophysics. Ionized matter in the
disk is also responsible for the generation of electromagnetic fields.

Even if the precise mechanism of radiation emission from the accretion disk is not yet fully
understood, it is generally believed that plasma, consisting the accretion disk, is accountable for X-
ray emission. A small fraction of this radiation, after traveling through space, becomes detectable.
This radiation makes the black hole “visible” in X-rays and gamma-rays1. Thus, it is necessary to
construct a theory adequate to predict and explain the formation and evolution of the accretion
disk.

It is well known that moving charges account for a magnetic field. The exact structure of the
electromagnetic fields produced by the accretion disk is difficult to be determined. Simulations
using an ideal MHD approach are useful for this task, but can only yield estimates because ideal
MHD is based on some assumptions that are likely to break near a black hole. The phenomena
occurring in the disk are far more complex and compelling than this approximation describes. So,
what happens near a black hole immersed in the magnetic field generated by an accretion disk
surrounding it? We know that magnetic field lines are nearly frozen in the accretion disk and in
a way follow the rotation of the disk. Does a magnetic field, generated by a current loop, affect
the background geometry of the strongly gravitating object? How does the background geometry
affect the structure of the magnetic fields? What is the topology of these magnetic fields? What
is the structure of the charged magnetosphere around the black hole?

The answer to the above questions is not simple. An exact theory is difficult to be achieved.
Consequently, one has to rely on some approximate models. Two main options are available. The
single particle motion and the magnetohydrodynamics. The first theory considers the motion of
charged test particles in the field of a black hole endowed in a magnetic field, while the second one
neglects the individual motion of charged particles and accounts only for the advection of magnetic
fields in a magnetized fluid. Sometimes it is suggestive that one uses both approaches, depending
on the specific problem one examines.

1.1 Description of Curved Spacetimes

In general, spacetime is described by its metric, expressed through:

ds2 = gαβdxαdxβ (1.1.1)

where gαβ is a symmetric tensor and xa are the coordinates.
The metric is determined by the Einstein equations relating spacetime curvature to energy

density of matter fields or electromagnetic fields. The Einstein equations are:

Rµν − 1
2
Rgµν = 8πGTµν (1.1.2)

The expression on the left hand side is a measure of the curvature of spacetime, while the right hand
side of (1.1.2) is, apart from a constant, the energy-momentum tensor. The effects on particle’s
trajectory can be summarized by the following sentence:

1Gamma-rays are emitted in places where the gravitational energy density is very high. Therein particle creation
is allowed. Creation of pairs and their annihilation supply a mechanism for gamma-rays emission.



1.2. UNITS EMPLOYED 3

Free particles move along such trajectories, that they travel in the shortest distance. These
trajectories are called geodesics. In the case of flat spacetime, particles move in straight lines.
Conversely, when spacetime is curved there are no straight lines. Therefore, particles tend to
follow the shortest path.

There is a more elegant definition of a geodesic line. Extremal proper time world lines are
called geodesics, and the equations of motion that determine them comprise the geodesic equation.

The geodesic equations are:

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 (1.1.3)

where λ is an affine parameter which depends on the nature of the particle2. Concerning Γµ
ρσ, this

is one of the Christoffel symbols and is given by Γµ
ρσ = 1/2 gµν(gνρ,σ + gνσ,ρ− gρσ,ν). The indices

run from 1 to 4.
On the right hand side of equation (1.1.3) we can add other forces

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

fµ

m
(1.1.4)

Henceforth, the only extra force we will consider will be the Lorentz force. In this case, the previous
equation takes the form:

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

m
Fµ

ν

dxν

dτ
(1.1.5)

Where Fµ
ν = gµκFκν and Fµν = Aν,µ−Aµ,ν , with Aµ being the electromagnetic vector potential

and q is the particle’s charge and m is its mass.
Placing a charged particle in an electromagnetic field, it will start gyrating around the magnetic

field lines. It’s motion is a helical. The radius of the helica is finite and given by the relation
rL = mv⊥c/|q|B ≈ (0.2cm)(B/104G)−1. However, the concept of Larmor radius is somewhat
different in general relativity because of the distortion of spacetime. From classical electrodynamics
we know that accelerated charged particles emit radiation. In the context of this work and for
simplicity we will neglect this phenomenon.

Geodesic equations or equations of motion can be derived by investigating the Lagrangian of
the system. The Lagrangian of the system we describe is given by:

L =
1
2
gµνuµuν +

q

m
Aµuµ (1.1.6)

and the equations of motion are then derived from:

d

dτ

(
∂L
∂uµ

)
− ∂L

∂xµ
= 0 (1.1.7)

1.2 Units Employed

For the theoretical analysis we adopt the geometrized units in which G = c = 1. For the computa-
tional analysis we will adopt the dimensionless units for which G = c = M = 1. The conversion to
the Gauss-cgs system is performed using the dimensionless quantities with following fundamental

2If the particle is classical then λ represents the proper time τ . If the particle is a tachyon, a particle with
superluminal velocity, then λ represents the proper length s. In the case that the particle is a photon, λ is neither
the proper length nor the proper time, but simply parametrizes the geodesic line



4 CHAPTER 1. INTRODUCTION

length (L), time (T ), mass (M), charge (q) and magnetic field strength (B):

L =
G Mbh

c2
(1.2.1)

T =
G Mbh

c3
(1.2.2)

M = Mbh (1.2.3)

q =
√

GMbh (1.2.4)

B =
c4

G3/2Mbh
(1.2.5)

1.3 Kerr Geometry

1.3.1 The Kerr metric

Except of the non-rotating black holes (Schwarzschild), there is a more realistic. A rotating sphere
assigned with the properties of a black hole. This is the Kerr black hole. The metric that describes
spacetime around that object reads,

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4Mra

Σ
sin2 θ dt dφ +

Σ
∆

dr2 + Σ dθ2 +
B

Σ
sin2 θ dφ2 (1.3.1)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2Mr

B = (r2 + a2)2 −∆a2 sin2 θ , a = J/M

In addition J = Komar angular momentum and measures the angular momentum of the black
hole. It is obvious that for a = 0 the above metric reduces to a Schwarzschild black hole, namely
a solution of the Einstein equations that describe a static non-rotating black hole. The coordinate
(t, ρ, θ, φ) are that of Boyer-Lindquist and the mapping to the Euclidean space is performed by the
conversion:

x = (r2 + a2)1/2 sin θ cosφ

y = (r2 + a2)1/2 sin θ sin φ

z = r cos θ

1.3.2 Properties of the Kerr geometry

The solution of Einstein equations for a rotating black hole is a solution of stationary, but not
static, black hole. Stationarity implies that its angular momentum is the same as time passes by.
Alternatively, we could say that a Kerr black hole is not static because it’s independent of time
inversion. Changing the sign of time t → −t in equations would result to a reversed sign of black
hole’s angular momentum.

Boyer-Lindquist coordinates are not suitable for the study of motion inside the horizon. Some
of the metric components expressed in these coordinates become undetermined for specific values
of r and θ when a ≤ M . The quantity ∆ is nullified when:

r± = M ±
√

M2 − a2 (1.3.2)

which infers that there are two event horizons because the term r2/∆ dr2 becomes zero. It can be
shown that the outer event horizon is nothing more that an irregularity of the coordinates chosen.
For the places where r = 0 and θ = π/2 this irregularity is real. At that point spacetime curvature
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becomes infinite and this anomaly of the coordinates cannot be eliminated. The conclusion is that
passing even through the outer event horizon there is no turning back. We can easily deduce from
(1.3.2), that for a > M the event horizons disappear, meaning that the existence of a black hole
with a > M is impossible.

Figure 1.1: The different regions of a Kerr black hole are shown. Two event horizons and the
ergosphere of the Kerr black hole are illustrated.

Additionally to the above surfaces there is one more. This surface provides the static limit
for a particle that enters the gravitational potential of a black hole. On that surface the term
gtt = 1− 2mr/Σ is zero. Consequently,

R+ = m +
√

m2 − a2 cos2 θ (1.3.3)

The equation (1.3.3) defines a surface that surrounds the outer event horizon and is the locus of
points that allow for a static observer.

Fig. 1.1 illustrates the ergosphere, which is the space between the outer event horizon and the
static limit. When a particle resides inside the ergosphere it can only corrotate with the black hole.
However, the particle can approach or escape the black hole. The concept is that no matter how
much energy we give to a particle located inside the ergosphere, it is not possible for the particle
to remain still therein. The dragging of inertial frames is so strong that the particle is dragged
along by the black holes rotation. Ergosphere is of great importance because it allows for energy
extraction from the black hole (Penrose process and Blandford-Znajek mechanism). Furthermore
no circular orbits are allowed inside the ergosphere even in the presence of the magnetic field. A
charged particle executing a circular orbit inside the ergosphere will corrotate only for half of the
motion and then counterrotate.

1.4 Magnetic Fields in Astrophysics

In classical electrodynamics magnetic fields are governed by Maxwell’s equations. These are first
order differential equations for the electric and magnetic field vectors. In general relativity, the
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mutually coupled electric and magnetic field can be combined in terms of the electromagnetic
tensor Fµν (or Faraday tensor), comprising both components of the electromagnetic field in a
single quantity.

Here, we will consider only a Kerr black hole as the gravitational source. This is done so
because the Kerr black hole is stationary and axially symmetric and corresponds to one of the
simpler, yet close to reality, cases. As for the magnetic field, we will investigate the cases of an
external asymptotically uniform magnetic field and a dipole magnetic field generated by a ring
current placed at the equatorial plane.

Generally magnetic fields are represented by their lines of force. According to our intuitive
definition, a uniform field would be characterized by field lines which are parallel to each other.
This is not always the case in general relativity. Magnetic field lines are observer dependent.
Though Maxwell’s equations don’t couple with newtonian gravity, general relativity comes to
change this fact. In particular, the magnetic energy density, as the energy density of any other
field, contributes to the Einstein’s equations, which describe the spacetime structure. As of that
fact, Einstein’s and Maxwell equations must be considered simultaneously. We will see that near
rapidly rotating and strong gravitating sources spacetime is deformed and dragged along with the
hole. This deformation and dragging also affects the structure of the magnetic field. The magnetic
field lines do reflect the presence of the body.

In order to calculate the magnetic field around these astronomical objects, we either have to
solve the coupled Einstein-Maxwell equations or at least adopt an approximation which allows us
to regard strong gravity. In the latter approximation, which will be adopted herein, the metric is
determined by solving the Einstein equations as if the magnetic field was not present, and then solve
the Maxwell equations considering the backreaction of spacetime curvature on them neglecting the
impact of the magnetic energy density on Einstein equations. We thus focus on effects of strong
gravity to electromagnetic fields. The above approach account only for the vacuum solutions of the
Einstein and Maxwell equations. In reality, under astrophysically realistic conditions, space near
a black hole is not vacuum. A realistic model would have to consider the non-vacuum solution of
the Einstein equations and it can only be treated by numerical techniques.

As mentioned before, towards a mathematically correct description of the spacetime around a
black hole surrounded by an accretion disk , one has to carry out complicated calculations for the
coupled Maxwell-Einstein equations. Fortunately, the energy density contribution that come from
the electromagnetic fields of the disk turns out to be far low to influence spacetime’s structure.
Therefore, test-fields are adequate for describing weak electromagnetic fields. We’d like to point
out that the magnetic density of 1012Gauss sounds an enormous amount, compared to the ones we
are used to find near earth. In neutron stars, the energy density of their magnetic fields corresponds
to matter density of the order of 1000 gr/cm3.

The magnetic fields we come across in astrophysics are of very weak intensity, but they get
amplified inside gravitating bodies, such as stars, nuclei of galaxies etc. during their formation and
subsequent evolution. Matter consists charged particles, e.g. electrons, protons, ions etc. When
matter enters a strong gravitational field it gets attracted by the source and compressed. This
may lead to the ionization of matter, as happens in neutron stars. Plasmas that come from the
ionization of matter are responsible for the magnetic fields encountered near or inside compact
objects. For stellar black holes with mass almost 10 M¯ the magnetic fields we observe are of the
order of 1012 Gauss and for supermassive black holes (galactic) of almost 10 M¯ are of the order
of 105 Gauss. There is a linear correlation between the mass of the black hole and the magnetic
field strengths of the accretion disks surrounding the hole. So there is no difference in examining
stellar black holes with magnetic fields of the order of 1012 Gauss and supermassive black holes
with magnetic fields of the order of 105 Gauss, the results will be the same.

Processes involving turbulent plasma motions are often too complicated to be described. Usu-
ally, assumptions have to be made in order to create a model that explains them. Often, a
qualitative explanation is sufficient. The study of charged particles orbits in the neighborhood of a
black hole yields some answers and sometimes is a very good approximation of what happens there.
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For example when plasma density around a hole is so low that any effects due to conductivity or
pressure can be eliminated.

The production of magnetic fields around a rotating body yields the creation of electric fields
due to its rotation. Electric fields play an important role in astrophysical processes. These electric
fields allow for the acceleration of charged particles to relativistic velocities near a magnetized
neutron star.

1.5 Motivation

Like said, gaseous thick or thin accretion disks can reside in the region of a black hole. The
rapid phenomena occurring in the these objects suggest the formation of extended magnetospheres
around the accretion disks.What we wish to do here is to study charged particles, possibly ejected
from the accretion disk due to the connection of magnetic field lines and turbulent phenomena,
and their motion in a space where the gas pressure of the disk can be neglected. We have wished
to find some interesting orbits that would tell us about the black hole itself. These orbits have
been found. They are the so called ”halo orbits” or ”Stormer orbits”. Off-equatorial potential
traps are responsible for the confinement of charged particles for z > 0 or z < 0. This is the same
phenomenon as that occurring in earth’s magnetosphere. The existence of two mutually detached
off-equatorial lobes can have profound consequences for plasma oscillations near compact objects
[22]. These oscillations could be observed in the detected X-ray spectrum.

In addition to the previous, jets are also astrophysically important processes. The most common
approach for studying jet formation is ideal or resistive MHD. But as argued by Ardavan (1976)
the ideal MHD condition from the standard Ohm’s law suggest that around a black hole there
should be regions in which standard Ohm’s law is a poor approximation [20]. The plasma can only
be described as a single fluid if its components are cold. By this we mean that the internal energy
density and pressure can be omitted compared to the rest-mass energy density. The applicability
or not of the MHD approach for astrophysical objects is restricted to the above case. Another
constraint in the MHD approach is that approaching the horizon we cannot describe plasma as a
fluid, because plasma particles become collisionless. A question posed by Elsässer [17] is whether
MHD is consistent with a rotating black hole. He argues that the non-diagonal component of a
Kerr metric couples the components At and Aφ in Ampere’s law, which contradicts the strong
coupling of At and Aφ obtained by MHD models. In fact, in ideal MHD models At and Aφ are
usually a function of each other.

As mentioned above, for particles near the horizon and away from the accretion disk the collision
rates are very low. Thus charged particles can be considered as test particles carrying a charge.
The energy-momentum tensor describing a perfect-fluid immersed in a magnetic field is given by

Tµν = (ρ + p)uµuν + p gµν + FµλF λ
ν − 1

4
gµνFρσF ρσ

where Fµν the electromagnetic field tensor, ρ the mass density of the perfect fluid and p the gas
pressure. For collisionless plasma we have to set p = 0. In addition we consider that the magnetic
energy density is small compared to the rest-mass energy density, so any terms including the
Faraday tensor are neglected. Finally we are left with

Tµν = ρuµuν

which describes matter. The dynamical evolution of the fluid is governed by the vanishing diver-
gence of the stress-energy tensor,

∇βTαβ = 0

and by conservation of baryons and charge. The projection of the energy-momentum tensor along
uα yields an energy conservation law,

uα∇βTαβ ' ρuµuν → ∇β(ρuβ) = 0
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while the projection orthogonal to uα yields the relativistic Euler equation

qα
γ∇βT βγ = 0

where qαβ = gαβ +uαuβ is the projection operator orthogonal to uα. The equation above describes
the equations of motion uβ∇βuα = q Fαβuβ of single charged particles in the gravitational field of
a black hole immersed in a magnetic field. Throughout our analysis we will employ this approach,
which is only valid for particles moving away from the accretion disk.



Chapter 2

Theoretical Analysis

The theoretical analysis that follows concerns the investigation of charged particles trajectories
near a Kerr and Kerr-Newman black hole immersed in a test-magnetic field.

In order to determine the parameters that affect the orbit of a particle we will make use of the
effective potential of the magnetized black hole. The effective potential of a black hole corresponds
to the minimum kinetic energy required for a particle to escape the combined gravitational and
magnetic field of the magnetized hole. Following the analysis of Misner, Thorne, and Wheeler [24]
in p.909 we will evaluate the potential of a Kerr and Kerr-Newman black hole including any effects
from external magnetic fields. In addition we will demonstrate a visualization of the magnetic field
lines as measured by a ZAMO observer. This will give us a hint on how axisymmetric magnetic
fields react to strong gravitational fields. Finally we will refer to the guiding center approach and
deduce the drifts exerted upon it.

2.1 Magnetic Fields Studied

At this point we will describe how one can visualize the magnetic field in general relativity. We
will perform the calculations necessary to express mathematically the magnetic field lines near a
strong gravitating object such as a black hole. Two cases of external test-magnetic fields will be
studied, the uniform magnetic field [39] and the dipole magnetic field [25; 7]. and

The second part concerns the computation of the magnetic field and its derivatives. The cases
of study are: a) an asymptotically uniform magnetic field and b) the dipole magnetic field produced
by a ring current placed at the equatorial plane near a Kerr black hole. Finally, some estimates of
the possibility of selective charge accretion onto the black hole are considered.

2.1.1 Visualizing the Magnetic Field in GR

The visualization of the magnetic field is carried out by the use of magnetic field lines. In Newtonian
physics the calculation of the magnetic field lines is straightforward. However, in general relativity
things are slightly different. Bearing in mind that spacetime is curved around a black hole, we
sense that the equations of lines of force have to involve the components of the black hole’s metric.

Thus, the equations for the magnetic field lines read,

dr

dl
=

Br

|B| (2.1.1)

dθ

dl
=

Bθ

|B| (2.1.2)

where l is the length of the magnetic field line.

9
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What remains to be done in order to finally visualize the magnetic lines is to determine the
contravariant components (Br, Bθ) and the magnitude of the magnetic field (|B|). According to
Teukolsky [36] the magnetic field as measured by a ZAMO observer is given by,

Ba =
1
2
εaµβν Fµν uβ (2.1.3)

where a, β, µ, ν are running through all of the spatial components.
As mentioned above, the covariant magnetic field in (2.1.3) is measured by a ZAMO observer, for
whom uk = (ut, 0, 0, uφ) and Ω = uφ/ut. As a consequence the non-zero covariant components of
the magnetic field are of the form:

Br = − (
F θφut + F θtuφ

)
(2.1.4a)

Bθ = F rφut + F rtuφ (2.1.4b)

In the previous calculation we have used the antisymmetric property of the Faraday tensor Fµν .
In addition,

Fµν = gκµgλνFκλ

and
Fµν = Aν,µ −Aµ,ν

leading eq. (2.1.4a) and (2.1.4b) to:

Br =− (
gκθgλφFκλut + gκθgλtFκλuφ

)

Bθ = gκrgλφFκλut + gκrgλtFκλuφ

}
⇒

Br = −gθθut

[(
gφφFθφ + gφtFθt

)
+ gttFθt

uφ

ut

]
(2.1.5a)

Bθ = grrut

[(
gφφFrφ + gφtFrt

)
+ gttFrt

uφ

ut

]
(2.1.5b)

Knowing that for a ZAMO observer l = 0, Ω takes the form,

Ω = uφ/ut = − gtφ + l gtt

gφφ + l gtφ
= − gtφ

gφφ

Hence equations (2.1.5a) (2.1.5b) may be rewritten as follows,

Br = −gθθut

[(
gφφFθφ + gφtFθt

)− gtt gtφ

gφφ
Fθt

]

Bθ = grrut

[(
gφφFrφ + gφtFrt

)− gtt gtφ

gφφ
Frt

]

Therefore for the magnetic field we obtain,

Br = −gθθ

grr
ut

[(
gφφFθφ + gφtFθt

)− gtt gtφ

gφφ
Fθt

]
(2.1.6a)

Bθ =
grr

gθθ
ut

[(
gφφFrφ + gφtFrt

)− gtt gtφ

gφφ
Frt

]
(2.1.6b)

The only unknown in equations (2.1.6) is the velocity ut which can be defined from the normal-
ization condition for a ZAMO observer,

utut + uφuφ = −1 ⇒
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utut

(
1 +

uφ

ut

uφ

ut

)
= −1 ⇒

utut (1− Ω l) = −1 ⇒
gtt(ut)2 = −1

ut = (−gtt)−1/2

Replacing the above relation for ut in eq. (2.1.6),

Br = −gθθ

grr
(−gtt)−1/2

[
gφφAφ,θ + gφtAt,θ − gttgtφ

gφφ
At,θ

]
(2.1.7a)

Bθ =
grr

gθθ
(−gtt)−1/2

[
gφφAφ,r + gφtAt,r − gttgtφ

gφφ
At,r

]
(2.1.7b)

Following the previous analysis we will demonstrate, in the following paragraph, the form of both
the dipole and uniform magnetic fields near a Kerr black hole. To do so, we have employed a
fourth-order Runge Kutta algorithm [29] in order to integrate eq. (2.1.1), (2.1.2) and find the
expression that describes the magnetic field lines.

2.1.2 Uniform Magnetic Field

The solution of an electromagnetic field occurring when a stationary and axisymmetric black hole
is immersed in a uniform magnetic field aligned along the symmetry axis of the black hole as
expressed in [39] reads,

At = −aBo

(
1− Mr

Σ
(2− sin2 θ)

)
(2.1.8)

Aφ =
Bo sin2 θ

2Σ
(
B − 4Ma2r

)
(2.1.9)

In order to study the motion of charged particles in the field of a black hole endowed in a
magnetic field we will have to evaluate the partial derivatives of the vector potential along r and
θ.

At,r = −aMBo

(
1 + cos2 θ

) (
r2 − a2 cos2 θ

Σ2

)
(2.1.10a)

At,θ =
−2MraBo cos θ sin θ

Σ2

(
r2 − a2

)
(2.1.10b)

Aφ,r =
Bo sin2 θ

Σ

[
(1 + cos2 θ)(a2r − a2M + 2r3)− r(−4a2Mr + B)

Σ

]
(2.1.10c)

Aφ,θ =
(

Bo cos θ sin θ

Σ

)(
(−4a2Mr + B)

Σ
(r2 + a2)−∆a2 sin2 θ

)
(2.1.10d)

Replacing (2.1.10) in (2.1.7) we obtain the magnetic field lines for the uniform magnetic field.
Fig. 2.1 shows the structure of the magnetic field (2.1.8), (2.1.9) near a Kerr black hole.

It is obvious from fig. 2.1 that in the extreme Kerr black hole very few magnetic field lines are
allowed to thread the outer event horizon. The black hole seems to behave like a superconductor
in vacuum electrodynamics. The phenomenon is known as the “Meissner effect”. The expulsion
of magnetic flux from the horizon of a rapidly rotating black hole seem to undermine the role of
the Blandford-Znajek mechanism, as the black hole becomes unmagnetized [6].
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(a) (b)

Figure 2.1: Magnetic field lines of a uniform magnetic field near a Kerr black hole as measured
by a ZAMO observer. The blue surface indicates the boundaries of the ergosphere
and the green one the outer event horizon. (a) The magnetic field lines thread the
event horizon for an a = 0 Kerr black hole. (b) Magnetic field lines are expelled
from the horizon for an a = 0.9 black hole.

However Komissarov and McKinney [21] express a different opinion about the phenomenon. In
their work they have pointed out that this behavior of the magnetic field is not observed in the
MHD description of the system. The difference between the two descriptions is that the MHD
approach considers any effects due to the conductivity and inertia of plasma surrounding the black
hole while the vacuum electrodynamics approximation ignores them.

Even approaching the fact from the vacuum electrodynamics point of view we can deduce that
the “Meissner effect” cannot be dominant near extreme black holes. Taking the Wald problem for
example into consideration. In such a configuration, the rotation of the hole will induce an electric
field near the horizon. Therefore charges of different sign will move in opposite directions, bringing
about the screening of the electric component. The screening that charges provide for the electric
component is not perfect. In order to be able to observe marginal screening, a poloidal component
of the electric current must flow through the ergosphere. This, in turn, contribute to the magnetic
field by creating an azimuthal component, which we have not regarded before. Consequently the
magnetic field is pulled inwards by the black hole. Finally, the black hole can selectively accrete
charged particles of the same sign until it’s net charge reaches a maximum value. The net charge
that the black hole has obtained through this process will be responsible for the creation of a
dipolar magnetic field (Kerr-Newman black hole). In a sense, charged particles have to be present
in the vicinity of the black hole. Hence, conductivity is sufficient to negate the “Meissner effect”
even for extreme Kerr black holes. In the present study we ignore any effects of conductivity or
any interactions between charged particles. This analysis goes for any axisymmetric field.

Wald in [39] proves that a black hole in a magnetic field will selectively accrete charged particles.
Consequently the black hole will become charged. As stated previously, the accretion of charged
particles will continue until the net charge of the black hole becomes Q = 2BoJ , where Bo is the
magnetic field strength and J the angular momentum of the black hole. Therefore, the maximum
net charge that a black hole can carry in the background geometry described above is,

Q = 2aMBo (2.1.11)
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2.1.3 Dipole Magnetic Field

Vector Potential Calculation

The spherical harmonic expansion for the vector potential of a stationary ring current situated
axisymmetrically and equatorially with respect to a Kerr black hole is given analytically by Pet-
terson [25]; Znajek [40]. In our study we will keep only the l = 0, 1 multipole terms and assume
that the ring current is placed at r = ro, θ = π/2 and carries zero net charge (bi

o = 0 and ai
o = 0).

Therefore, in our case, the vector potential is given by the following equations:

For r > ro

A1
t2 = −2

{
bi
1

[
−a cos θ

∆
Σ

dQ1(u)
du

du

dr
P1(cos θ) +

ra sin θ

Σ
Q1(u)P 1

1 (cos θ)
]}

+ C> (2.1.12)

and

A1
φ2

= 2
{

bi
1

[
−a2 sin2 θ cos θ

∆
Σ

dQ1(u)
du

du

dr
P1(cos θ) + r sin θ

(r2 + a2)
Σ

Q1(u)P 1
1 (cos θ)

−∆sin θ

2
dQ1(u)

du

du

dr
P 1

1 (cos θ)
]}

(2.1.13)

For r < ro

A1
t1 = −2

{
ai
1

[
−a cos θ

∆
Σ

dP1(u)
du

du

dr
P1(cos θ) +

ra sin θ

Σ
P1(u)P 1

1 (cos θ)
]}

+ C< (2.1.14)

and

A1
φ1

= 2
{

ai
1

[
−a2 sin2 θ cos θ

∆
Σ

dP1(u)
du

du

dr
P1(cos θ) + r sin θ

(r2 + a2)
Σ

P1(u)P 1
1 (cos θ)

−∆sin θ

2
dP1(u)

du

du

dr
P 1

1 (cos θ)
]}

(2.1.15)

where γ =
√

M2 − a2, u = (r − M)/γ. Moreover C> and C< are integration constants. The
constants bi

1 and ai
1 are defined by the subsequent equations, given the ring current is placed at

r = ro and θ = θo = π/2 (ar
l = br

l = 0).

bi
1 =

3I

4roγ

[
sin θo(r2

o + a2)P 1
1 (cos θo)P1(uo)− ro∆o sin θoP

1
1 (cos θo)

2γ
P ′1(uo)

]
(2.1.16)

and

ai
1 =

3I

4roγ

[
sin θo(r2

o + a2)P 1
1 (cos θo)Q1(uo)− ro∆o sin θoP

1
1 (cos θo)

2γ
Q′1(uo)

]
(2.1.17)

However ai
l = 0 for all l when r > ro and bi

l = 0 for all l when r < ro.
At this point we will use the expressions of the associated Legendre polynomials of the first and
second kind (see Abramowitz and Stegun [2]) to obtain a simplified formula for the vector potential.

P1(u) =
r −M

γ
, P1(cos θ) = cos θ, P 1

1 (cos θ) = − sin θ, P ′1(u) = 1

Q1(u) = −1 +
r −M

2γ
ln

(
r −M + γ

r −M − γ

)

Q′
1(u) =

1
2

ln
(

r −M + γ

r −M − γ

)
− 2(r −M)

2γ(r −M + γ)(r −M − γ)
=

1
2

ln
(

r −M + γ

r −M − γ

)
− (r −M)γ

∆

Consequently,
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For r > ro

A1
t2 = −2

{
bi
1

[
−a cos2 θ

∆
Σγ

(
1
2

ln
(

r −M + γ

r −M − γ

)
− (r −M)γ

∆

)

− ra sin2 θ

Σ

(
−1 +

r −M

2γ
ln

(
r −M + γ

r −M − γ

))]}
+ C>

A1
t2 =

2abi
1

Σ

[
1
2γ

ln
(

r −M + γ

r −M − γ

)
(∆ cos2 θ + r(r −M) sin2 θ)− cos2 θ(r −M)− r sin2 θ

]
+ C>

A1
t2 =

2abi
1

Σ

[
1
2γ

ln
(

r −M + γ

r −M − γ

)
[r(r −M) + cos2 θ(a2 −Mr)]− (r −M cos2 θ)

]
+ C>

(2.1.18)
and

A1
φ2

=2bi
1

{
−a2 sin2 θ cos2 θ

∆
Σγ

[
1
2

ln
(

r −M + γ

r −M − γ

)
− (r −M)γ

∆

]
− r sin2 θ

(r2 + a2)
Σ

·

·
[
−1 +

r −M

2γ
ln

(
r −M + γ

r −M − γ

)]
+

∆ sin2 θ

2γ

[
1
2

ln
(

r −M + γ

r −M − γ

)
− (r −M)γ

∆

]}

=
2bi

1 sin2 θ

Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)[−2a2 cos2 θ∆− 2r(r2 + a2)(r −M) + Σ∆
2

]

+ a2 cos2 θ(r −M) +r(r2 + a2)− Σ
2

(r −M)
}

=
2bi

1 sin2 θ

2Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)
[(Σ− 2a2 cos2 θ)∆− 2r(r2 + a2)(r −M)]

+ 2a2 cos2 θ(r −M)+2r(r2 + a2)− Σ(r −M)
}

=
2bi

1 sin2 θ

2Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)
[∆(r2 − a2 cos2 θ)− 2r(r −M)(r2 + a2)]

−(r2 − a2 cos2 θ)(r −M) + 2r(r2 + a2)
}

=
2bi

1 sin2 θ

2Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)
[−∆a2 cos2 θ + r4 + a2r2 − 2Mr3 − 2r4 + 2r3M

−2r2a2 + 2ra2M ]− r3 + r2M + a2 cos2 θr −Ma2 cos2 θ + 2r3 + 2ra2

}

=
2bi

1 sin2 θ

2Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)
[−∆a2 cos2 θ − r4 − r2a2 + 2ra2M ] + r3 + r2M

+2ra2 + a2 cos2 θ(r −M)
}
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A1
φ2

=
bi
1 sin2 θ

Σ

{
1
2γ

ln
(

r −M + γ

r −M − γ

)
[−∆a2 cos2 θ − r(r3 + ra2 − 2a2M)]

+r(r2 + Mr + 2a2) + a2 cos2 θ(r −M)
} (2.1.19)

The only thing that is left to be defined is the constant bi
l for l = 0, 1.

bi
1 =

3I

4roγ

[
− sin2 θo(r2

o + a2)
(ro −M)

γ
+

ro∆o sin2 θo

2γ

]

For a ring current placed at r = ro and θ = θo = π/2:

bi
1 =

3I

8roγ2

[−2(r2
o + a2)(ro −M) + ro∆o

]

bi
1 =

3I

8roγ2

[
(−2ro + 2M + ro)(r2

o + a2)− 2Mr2
o

]

bi
1 =

3I

8roγ2

[−(ro − 2M)(r2
o + a2)− 2Mr2

o

]

bi
1 = − 3I

8roγ2

[
ro(r2

o + a2)− 2a2M
]

(2.1.20)

For r < ro

A1
t1 =− 2

{
ai
1

[
−a cos2 θ

∆
Σγ

− ra sin2 θ(r −M)
Σγ

]}
+ C<

=
2ai

1

Σγ

[
∆a cos2 θ + ra sin2 θ(r −M)

]
+ C<

=
2a

Σγ
ai
1

[
r2 −Mr cos2 θ −Mr + a2 cos2 θ

]
+ C<

A1
t1 = 2ai

1

a

γ

[
1− Mr(1 + cos2 θ)

Σ

]
+ C< (2.1.21)

and

A1
φ1

=2
{

ai
1

[
−a2 sin2 θ cos2 θ

∆
Σγ

− r sin2 θ
(r2 + a2)

Σγ
(r −M) +

∆ sin2 θ

2γ

]}

=2ai
1 sin2 θ

[
−a2 cos2 θ

∆
Σγ

− r
(r2 + a2)

Σγ
(r −M) +

∆
2γ

]

=
2ai

1 sin2 θ

2Σγ

[
∆(−2a2 cos2 θ + Σ)− 2r(r2 + a2)(r −M)

]

=
2ai

1 sin2 θ

2Σγ

[
∆(r2 − a2 cos2 θ)− 2r(r2 + a2)(r −M)

]

A1
φ1

=
2ai

1 sin2 θ

2Σγ

[
r4 − r2a2 cos2 θ + a2r2 − a4 cos2 θ − 2Mr3 + 2Mra2 cos2 θ − 2r4

+2r3M − 2r2a2 + 2ra2M
]

=
2ai

1 sin2 θ

2Σγ

[−r4 − r2a2 − r2a2 cos2 θ + 2ra2M + 2Mra2 cos2 θ − a4 cos2 θ
]
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A1
φ1

= −ai
1 sin2 θ

γ

[
(r2 + a2)− 2Mra2 (1 + cos2 θ)

Σ

]
(2.1.22)

We now need to define the constant ai
l for l = 1.

ai
1 =

3I

4Σoγ

[
− sin2 θoro(r2

o + a2)
[
−1 +

ro −M

2γ
ln

(
ro −M + γ

ro −M − γ

)]

+
Σo∆o sin2 θo

2γ

[
1
2

ln
(

ro −M + γ

ro −M − γ

)
− (ro −M)γ

∆o

]]

For a ring current placed at r = ro and θ = θo = π/2:

ai
1 =

3I

4roγ

[
−(r2

o + a2)
[
−1 +

ro −M

2γ
ln

(
ro −M + γ

ro −M − γ

)]

+
ro∆o

2γ

[
1
2

ln
(

ro −M + γ

ro −M − γ

)
− (ro −M)γ

∆o

]]

=
3I

4roγ

[
(r2

o + a2)− (ro −M)γ
2γ∆o

∆oro +
1
2γ

ln
(

ro −M + γ

ro −M − γ

)[
ro∆o

2
− (ro −M)(r2

o + a2)
]]

ai
1 =

3I

8roγ

[
2(r2

o + a2)− (ro −M)ro +
1
2γ

ln
(

ro −M + γ

ro −M − γ

)
[ro∆o − 2(ro −M)(r2

o + a2)]
]

=
3I

8roγ

[
2r2

o + 2a2 − r2
o + Mro +

1
2γ

ln
(

ro −M + γ

ro −M − γ

)
[−2Mr2

o + (ro − 2ro + 2M)(r2
o + a2)]

]

=
3I

8roγ

[
ro(ro + M) + 2a2 +

1
2γ

ln
(

ro −M + γ

ro −M − γ

)
[−2Mr2

o − (ro − 2M)(r2
o + a2)]

]

ai
1 =

3I

8roγ

[
ro(ro + M) + 2a2 − 1

2γ
ln

(
ro −M + γ

ro −M − γ

)
[ro(r2

o + a2)− 2Ma2]
]

(2.1.25)

Vector Potential at the Limit r = ro

In order to see the behavior of the dipole magnetic field at the limit r = ro we will calculate the
difference in the vector potential between the external (r > ro) and the internal region (r < ro).
In our calculation we will keep only the l = 0, 1 terms of the multipoles expansion.

The integration constant in equations (2.1.13) and (2.1.15) is zero, because of sin θ → 0 when
θ → 0.

By subtraction of eq. (2.1.14) from eq. (2.1.12) and eq. (2.1.15) from eq. (2.1.13) we get:

At2 −At1 =
2a cos2 θ∆

Σγ
[bi

1Q
′
1(u)−ai

1P
′
1(u)]+

2ra sin2 θ

Σ
[bi

1Q1(u)−ai
1P1(u)]+C>−C< (2.1.26)

Aφ2 −Aφ1 =
[−2a2 sin2 θ cos2 θ∆

Σγ
+

2∆sin2 θ

2γ

]
[bi

1Q
′
1(u)− ai

1P
′
1(u)]

− 2r sin2 θ
(r2 + a2)

Σ
[bi

1Q1(u)− ai
1P1(u)] (2.1.27)
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We will now derive a simpler formula for the terms [bi
1Q1(u) − ai

1P1(u)] and [bi
1Q

′
1(u) − ai

1P
′
1(u)]

and replace r with ro wherever it appears:

Q1(uo)P ′1(uo)− P1(uo)Q′1(uo) = −1 + ln
(

ro −M + γ

ro −M − γ

) (
ro −M

2γ

)

−
(

ro −M

γ

) [
1
2

ln
(

ro −M + γ

ro −M − γ

)
− (ro −M)γ

∆o

]

=
−∆o + r2

o + M2 − 2Mro

∆o

=
M2 − a2

∆o

bi
1Q

′
1(uo)− ai

1P
′
1(uo) = − 3I

4roγ

{
(r2

o + a2)[Q′1(uo)P1(uo)− P ′1(uo)Q1(uo)]

−ro∆o

2γ
[P ′1(uo)Q′

1(uo)−Q′1(uo)P ′1(uo)]
}

=
3I

4roγ

{
(r2

o + a2)
(

M2 − a2

∆o

)}

=
3Iγ(r2

o + a2)
4ro∆o

(2.1.28)

bi
1Q1(uo)− ai

1P1(uo) = − 3I

4roγ

{
(r2

o + a2)[Q1(uo)P1(uo)− P1(uo)Q1(uo)]

−ro∆o

2γ
[P ′1(uo)Q1(uo)−Q′1(uo)P1(uo)]

}

=
3I

4roγ

ro∆o

2γ

M2 − a2

∆o

=
3I

8
(2.1.29)

Replacing equations (2.1.28) and (2.1.29) in (2.1.26) and (2.1.27) we arrive at:

At2 −At1 =
2a cos2 θ∆o

Σγ

3Iγ(r2
o + a2)

4ro∆o
+

6roaI sin2 θ

8Σ
+ C> − C<

=
6Ia

8Σro

[
2r2

o cos2 θ + 2a2 cos2 θ + r2
o sin2 θ

]
+ C> − C<

=
6Ia

8Σro

(
r2
o + r2

o cos2 θ + 2a2 cos2 θ
)

+ C> − C<

=
6Ia

8ro

(
1 +

r2
o + a2

Σ
cos2 θ

)
+ C> − C< (2.1.30)

Aφ2 −Aφ1 =
[−2a2 sin2 θ cos2 θ∆o

Σγ
+

∆o sin2 θ

γ

]
3Iγ(r2

o + a2)
4ro∆o

− ro sin2 θ
6I(r2

o + a2)
8Σ

=
3I sin2 θ(r2

o + a2)
4Σro

(−2a2 cos2 θ + r2
o + a2 cos2 θ − r2

o)

= −3Ia2 cos2 θ sin2 θ(r2
o + a2)

4Σro
(2.1.31)
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Equation (2.1.30) can be further simplified if we choose C> = 0, so that At → 0 as r approaches
infinity, and C< = aI

ro
(Znajek [40]).

At2 −At1 =
6Ia

8ro

(
1 +

r2
o + a2

Σ
cos2 θ

)
− aI

ro
(2.1.32)

Equations (2.1.31), (2.1.32) indicate that the form of the vector potential for the dipole magnetic
field case is not continuous at the limit r → ro. This discontinuity is due to the fact that we have
only regarded the l = 0, 1 terms of the multipole expansion of the vector potential. We can easily
see from eq. (2.1.31) that the differences between the two solutions is of much lower order than
that of Ic. This is why when we plot the magnetic field lines, the magnetic field seems continuous.
An extra discontinuity is expected to arise for r = ro and θ = π/2, where the source is located.
The l > 1 terms of the multipole expansion we have neglected are not accountable for this type of
discontinuity.

Calculating the partial derivatives of the vector potential using Mathematica and replacing
them in eq. (2.1.7) we obtain the magnetic field lines for the dipole magnetic field. Fig. 2.2 shows
the form of the dipole magnetic field near the black hole.

It is obvious from fig. 2.1 that in the extreme Kerr black hole few magnetic field lines are allowed
to thread the outer event horizon. Again the black hole seems to behave like a superconductor,
it exhibits the so-called “Meissner effect”. The discontinuity of the vector potential at the limit
r = ro is apparent.

As argued by Znajek, if we allow selective accretion to operation between the hole and infinity
then the maximum net charge that a black hole can carry is,

Q =
2aMI

ro − 2M
(2.1.33)
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(a)

(b)

Figure 2.2: Magnetic field lines of a dipole magnetic field near a Kerr black hole as measured
by ZAMO observer. The blue surface indicates the boundaries of the ergosphere
and the green one the outer event horizon. (a) The magnetic field lines thread the
event horizon for an a = 0 Kerr black hole. (b) Magnetic field lines are expelled
from the horizon for an a = 0.9 black hole.
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2.2 Equations of Motion in a Kerr Background Geometry

After painstaking calculations we derived the equations of motion for a charged particle in the
gravitational potential of a Kerr black hole endowed in a magnetic field.

d2t

dτ2
= − 2M

Σ2∆
(r2 − a2 cos2 θ)(r2 + a2) ṫṙ

− 2Ma sin2 θ

Σ∆

[
(a2 − r2)− 2r2(r2 + a2)

Σ

]
φ̇ṙ

+
(

4Mra2 sin θ cos θ

Σ2

)
θ̇ṫ−

(
4Ma3r sin θ3 cos θ

Σ2

)
θ̇φ̇

+
q

m

[
2Mra

Σ∆
(Aφ,r ṙ + Aφ,θ θ̇) +

B

Σ∆
(At,r ṙ + At,θ θ̇)

]
(2.2.1)

d2r

dτ2
=

1
∆Σ

(M(r2 − a2 cos2 θ)− ra2 sin2 θ) ṙ2

+
2a2 sin θ cos θ

Σ
ṙθ̇ +

r∆
Σ

θ̇2 − M∆
Σ3

(r2 − a2 cos2 θ) ṫ2

+
∆sin2 θ

Σ3
[r5 + 2r3a2 cos2 θ −Mr2a2 sin2 θ + (M − r)a4 sin2 θ cos2 θ

+ ra4 cos2 θ] φ̇2

+
2∆aM sin2 θ

Σ3
(r2 − a2 cos2 θ) φ̇ṫ +

q

m

∆
Σ

(Aφ,r φ̇ + At,r ṫ) (2.2.2)

d2θ

dτ2
= − 1

Σ∆
(a2 sin θ cos θ) ṙ2 − 2r

Σ
ṙθ̇ +

a2 sin θ cos θ

Σ
θ̇2

− 4Mra

Σ3
(r2 + a2) sin θ cos θ φ̇ṫ +

2Mr

Σ3
a2 sin θ cos θ ṫ2

+
sin θ cos θ

Σ3
[(r2 + a2)3 − (r2 + a2 + Σ)∆a2 sin2 θ] φ̇2

+
q

m

1
Σ

(Aφ,θφ̇ + At,θ ṫ) (2.2.3)

d2φ

dτ2
= − 2aM

∆Σ2
(r2 − a2 cos2 θ) ṫṙ +

4aMr cos θ

Σ2 sin θ
ṫθ̇

− 2
Σ2∆

[
rΣ∆− a2 sin2 θ

(
rΣ + M(r2 − a2 cos2 θ)

)]
φ̇ṙ

− 2 cos θ

sin θ

[
1 +

2a2Mr sin2 θ

Σ2

]
θ̇φ̇

+
q

m

[
2Mra

Σ∆
(At,r ṙ + At,θ θ̇)−

(
1− 2Mr

Σ

)
1

∆ sin2 θ
(Aφ,r ṙ + Aφ,θ θ̇)

]
(2.2.4)

where mpart is particle’s mass. We have adopted geometrized units.

Replacing equations (2.1.10a)-(2.1.10d) in eq. (2.2.1)-(2.2.4) we obtain the equations of motion
for a charged particle.
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2.3 The Effective potential

We consider the more general Kerr-Newman metric so we can describe mathematically a black
hole of mass M , net charge Q and angular momentum a = J/M [24],

ds2 = −
(

1− 2Mr −Q2

Σ

)
dt2 − 2a sin2 θ

2Mr −Q2

Σ
dt dφ +

Σ
∆ + Q2

dr2 + Σ dθ2

+
B −Q2a2 sin2 θ

Σ
sin2 θ dφ2 (2.3.1)

where m, q the mass and charge of the charged particle respectively and

Σ =r2 + a2 cos2 θ

∆ =r2 − 2Mr + a2

B =(r2 + a2)2 −∆a2 sin2 θ

The associated one-form potential of the black hole has nonvanishing components

At =
Qr

Σ
, Aφ =

−Qar sin2 θ

Σ
(2.3.2)

The mapping between the Boyer-Lindquist coordinates1 and the Cartesian coordinates is performed
by the following relations:

x =
√

r2 + a2 cos φ sin θ (2.3.3a)

y =
√

r2 + a2 sin φ sin θ (2.3.3b)
z = r cos θ (2.3.3c)

An external magnetic field is superimposed to the geometry (2.3.1). The magnitude of the magnetic
field is such that it doesn’t affect the metric. As stated before, the best way to find a relation for
the magnetic field, in curved spacetime, is by perturbing the Maxwell equations [36]. Our intention
is to deduce an analytical expression for the effective potential of the composite system described
above. For generality’s sake we will not replace the vector potential for a specific field, but keep a
general formula for the effective potential.

The generalized momenta (per particle’s mass) for a charged particle traveling near the black
hole (2.3.1) and through a magnetic field are obtained from the Lagrangian, (L = 1

2gµνuµuν +
q
mAµuµ).

L =
1
2

[
−

(
1− 2Mr −Q2

Σ

)
ṫ2 − 2a sin2 θ

(
2Mr −Q2

Σ

)
ṫ φ̇ +

(
Σ

∆ + Q2

)
ṙ2 + Σ θ̇2

+
B

Σ
sin2 θ φ̇2

]
+

q

m
At ṫ +

q

m
Aφ φ̇

It is obvious that the Lagrangian is independent of the generalized coordinates t and φ, so their
conjugate quantities have to be conserved.

p̃t = pt +
q

m
At = −

(
1− 2Mr −Q2

Σ

)
ṫ− a sin2 θ

(
2Mr −Q2

Σ

)
φ̇ +

q

m
At = −E (2.3.4)

p̃φ = pφ +
q

m
Aφ = −a sin2 θ

(
2Mr −Q2

Σ

)
ṫ +

B −Q2a2 sin2 θ

Σ
φ̇ +

q

m
Aφ = Lz (2.3.5)

1The coordinates we have used to describe the spacetime.
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Solving the previous system of equations in terms of ṫ and φ̇ we arrive at:

ṫ = −a
2Mr −Q2

Σ(∆ + Q2)

(
Lz − q

m
Aφ

)
+

B −Q2a2 sin2 θ

Σ(∆ + Q2)

(
E +

q

m
At

)
(2.3.6)

φ̇ = a
2Mr −Q2

Σ(∆ + Q2)

(
E +

q

m
At

)
+

1
(∆ + Q2) sin2 θ

(
Lz − q

m
Aφ

)
(2.3.7)

To simplify further our problem, we will make use of the normalization condition2

pαpα = −1 (2.3.8)

This way we find a relation that involves only the conserved quantities, the generalized coordinates
and the components of the vector potential. Expressing uαuα in terms of the generalized angular
momentum and energy yields the desired equation.

Thereby, replacing pt and pφ from eq. (2.3.4), (2.3.5) and using (2.3.6), (2.3.7) in (2.3.8)

pαpα = −
(
E +

q

m
At

)2 B −Q2a2 sin2 θ

Σ(∆ + Q2)
+

2a(2Mr −Q2)
Σ(∆ + Q2)

(
E +

q

m
At

)(
Lz − q

m
Aφ

)

+
(
Lz − q

m
Aφ

)2
(

1− 2Mr −Q2

Σ

)
1

sin2 θ
+ Σθ̇2 +

Σ
∆ + Q2

ṙ2 = −1
(2.3.9)

Expanding some of the terms of equation (2.3.9), changing signs and placing ṙ = 0 and θ̇ = 0 we
get,

E2(B −Q2a2 sin2 θ) + 2E
q

m
At(B −Q2a2 sin2 θ) +

q2

m2
A2

t (B −Q2a2 sin2 θ)

−2a(2Mr −Q2)E
(
Lz − q

m
Aφ

)
− 2a

q

m
At(2Mr −Q2)

(
Lz − q

m
Aφ

)

− Σ
sin2 θ

(
Lz − q

m
Aφ

)2
(

1− 2Mr −Q2

Σ

)
− Σ2(∆ + Q2) θ̇2 − Σ2ṙ2 − (∆ + Q2)Σ = 0

(2.3.10)

The previous equation can be reduced to a quadratic equation of the type

αE2 − 2βE + γ = 0 (2.3.11)

The root E of equation (2.3.11), which satisfies eq. (2.3.10) and additionally ṙ = 0 and θ̇ = 0,
corresponds to the effective potential of the hole. By placing ṙ = 0 and θ̇ = 0 in equation (2.3.11)
we determine α′, β′ and γ′ for the effective potential through equations

α′ = B −Q2a2 sin2 θ (2.3.12a)

β′ = − q

m
At(B −Q2a2 sin2 θ) + a(2Mr −Q2)

(
Lz − q

m
Aφ

)
(2.3.12b)

γ′ =
q2

m2
A2

t (B −Q2a2 sin2 θ)− 2q

m
At a (2Mr −Q2)

(
Lz − q

m
Aφ

)

− Σ
sin2 θ

(
Lz − q

m
Aφ

)2
(

1− 2Mr −Q2

Σ

)
− (∆ + Q2)Σ (2.3.12c)

In conclusion, the effective potential reads

Veff =
β′ ±

√
β′2 − α′γ′

α′

2The four-momenta pa, angular momentum L and energy E are expressed per unit mass.
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and because of the fact that the four-momentum must point toward the future (and not toward
the past) we will keep only the positive sign

Veff =
β′ +

√
β′2 − α′γ′

α′
(2.3.13)

Eq. (2.3.13) displays the dependence of charged particle’s motion on the formula of the magnetic
field. Hereupon we study two different cases for the vector potential. The first one corresponds to a
uniform magnetic field. You might think that this is not a very realistic magnetic field. Though, the
uniform magnetic field is a good approximation, close to the black hole, to the internal solution of a
ring current (magnetic dipole). Moreover, we remind you that galaxies are percolated by a uniform
magnetic field. Hence, this case is not astrophysically irrelevant. Lastly we replace the magnetic
field by that of a magnetic dipole, generated by an ideal toroidal current at the equatorial plane.
The key point is to understand the physics of an accretion disc and the surrounding environment
through the employment of simpler models.

2.4 Guiding Center and Combined Gravitational and Mag-
netic Fields

In addition to the already derived analysis for the effective potential, we will present some relations
concerning the motion of the guiding center. For a more detailed and strict approach see [4; 5; 14].
This approach will help us to understand better the motion of charged particles around a black
hole immersed in magnetic fields.

The electric and magnetic fields E, B and the gravitational acceleration g are defined by the
forces they exert on particles. Expressing velocity v of a moving particle as measured by a FIDO
observer in terms of the star-fixed spatial coordinates (dxj/dtpart)

vj =
dt

dτ

[(
dxj

dt

)

part

−
(

dxj

dt

)

FIDO

]
=

1
α

[(
dxj

dt

)

part

+ βj

]

where α = Σ∆/B, βr = βθ = 0 and βφ = −2aMr/B, E,B, v are all 3-dimensional vectors,
v = vj(∂/∂xj) and dτ refers to the FIDO proper time. Now, we can define the momentum of a
particle of mass m and velocity v

p = m
v√

1− v2

The FIDO defines the electric and magnetic fields by the Lorentz force exerted on the charged
particle q (

dp

dτ

)

Lorentz

= q(E ×B) (2.4.1)

and they define the gravitational acceleration g as
(

dp

dt

)

grav

=
m√

1− v2
g (2.4.2)

For a rotating black hole the gravitational acceleration due to the gradient of the lapse function is
given in [31]

g = −∇ ln α = −MΣ(r4 − a4) + 2Mr2a2∆ sin2 θ

BΣ
√

Σ∆
er̂ +

2Mra2(r2 + a2)
BΣ

√
Σ

cos θ sin θer̂ (2.4.3)
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In addition to the gravitational field g there is one extra field called the gravitomagnetic field,
which arises due to the gradient of the shift function β. The components of the gravitomagnetic
field are

H =
∇β

α
= − 2aM

Σ2
√

Σ

[
(r2 − a2 cos2 θ) sin θ eθ̂ +

2r(r2 + a2)√
∆

cos θ er̂

]
(2.4.4)

Because βj drops as ∼ J/r3 we can neglect the contribution of the gravitomagnetic field to the
guiding center motion as we move away from the event horizon.

Now, considering a non-relativistic particle eq. (2.4.1), (2.4.2) reduce to,

mg + q(E ×B) = 0

We have omitted the m dv/dt term because it contributes only to the circular Larmor motion.
Assuming a general magnetic field the observed drifts of the guiding center are the following,

vgc⊥ =
m

q

g ×B + E ×B

B2
(2.4.5)

The drift described above is the sum of the contributions of the electric and gravitational force. It
is perpendicular to the force acting upon the particle (the electric or gravitational) but these differ
from each other in one thing. The gravitational drift changes sign with respect to the particle’s
charge. Due to the gravitational force protons and electrons drift in opposite directions. The
reason for this drift is the change in Larmor radius as it gains or looses energy in the gravitational
field.

Another drift is related to the gradient and curvature of the magnetic field. These can be
combined in one relation [13].

vgc =
m

q

Rc ×B

R2
cB

2

(
v2
|| +

1
2
v2
⊥

)
(2.4.6)

where Rc is the curvature of the magnetic field lines. These drifts do not add. This means that if
one bends the field lines into a torus, the particles will drift out of the torus.



Chapter 3

Charged-Particle Motions

This chapter focuses on a single charged particle’s motion around a black hole endowed in a
magnetic field. We will separate our results in mainly two categories, a) orbits for which θ = 0 and
b) orbits including lateral motion. A comparison between the effective potential of a black hole
with no external magnetic fields and one with magnetic fields is made.

3.1 Numerical Analysis

The equations of motion for charged particles near a magnetized rotating black hole are:

dxµ

dτ
= pµ (3.1.1a)

dpµ

dτ
= −Γµ

ρσ pρpσ (3.1.1b)

or alternatively equations (2.2.1)-(2.2.4) can be directly integrated. We have assembled the data
in an 8-dimensional vector R = [pµ, xµ] and integrated the system of equations (1.1.5), (3.1.1a)
implementing the fourth order Runge-Kutta adaptive stepsize scheme found in [29]. The code we
have created in order to perform the above calculations is given in Ap. 5. The quantities in the
code are all dimensionless. The dimensionless version of eq. (2.2.1)-(2.2.4) integrated numerically
is obtained by placing M = 1 everywhere. All quantities in the code are expressed in L-T-M units.

3.1.1 Assumptions

The assumptions we have made so far in our theoretical analysis are the following:

• space around the black hole is considered void, in other words there is no matter or charges
surrounding the black hole. Which of course is not true. What is true is that plasma forms
a magnetosphere around the black hole. The proper approach would be to solve the full
GRMHD equations (especially near the horizon) in order to take into account any effects
of conductivity, magnetic pressure etc, that the surrounding plasma exerts on the particle
under examination. As mentioned in Chap.1 plasma density and pressure around the black
hole, apart from the accretion disk, is so low that can be neglected in MHD equations.
Consequently, we are “allowed” to study the single particle approach and study its equations
of motion considering that it doesn’t interact with matter in the neighborhood of the black
hole.

• the magnetic fields we employ, do not bend spacetime. We are aware that magnetic fields
contribute to the energy density of the energy-momentum tensor Tµν in Einstein field equa-
tions. As discussed before the magnetic fields we encounter in the region of a black hole is
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small compared to the gravitational one, so in a sense we can ignore the magnetic contribu-
tions. If one wishes to include this coupling between the gravitational and magnetic field, he
will have to solve Einstein field equations. The calculation is too painstaking and can only
be achieved by the use of computational arithmetic procedures. Again, knowing that the
“magnetic contribution” to the structure of spacetime is so little, we can ignore it.

• we assume that no radiation of electromagnetic or gravitational nature is emitted from the
charged particle. Any of these mechanisms would “absorb” energy from the particle.

• the mechanism that provides us with the magnetic field is not studied here. Generally
speaking this mechanism arise from currents inside the accretion disk. The magnetic fields
we have studied have a relatively simple structure compared to the realistic ones that are
generated in the disk. In order to deduce a realistic-like magnetic field one has to solve the
GRMHD equations describing the plasma fluid in the accretion disk. A uniform-like test-
magnetic field could correspond to a galactic magnetic field, or be used to approximate the
magnetic dipole field near the black hole and for a distance r < ro, where ro the situation of
the accretion disk.

• particle do not affect the spacetime metric. The motion of the black hole or the magnetic
fields. Its mass compared to the black hole is too small to be considered. Its charge can
only produce electromagnetic fields of very low magnitude. Therefore we regard the charged
particle as a classical test particle with charge which in no way alters the topology of the
system.

3.1.2 Integral of Motions

We have discussed in §2.3 that the motion of a charged particle has at least three integrals of
motion. In particular, energy E, angular momentum L and the rest mass are constants of motion
in any stationary and axisymmetric spacetime.

−E = pt +
q

m
At = −

(
1− 2Mr

Σ

)
ṫ− a sin2 θ

(
2Mr

Σ

)
φ̇ +

q

m
At (3.1.2)

Lz = pφ +
q

m
Aφ = −a sin2 θ

(
2Mr

Σ

)
ṫ +
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Σ
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q

m
Aφ (3.1.3)
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+
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)2
(
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Σ

)
1

sin2 θ
+ Σθ̇2 +

Σ
∆ + Q2

ṙ2 = −1 (3.1.5)

The three quantities above will help us check of the correctness of our code. The conservation of
these quantities is a sign that our code is up and running and yields the desired results.

3.2 Trajectories in the Equatorial Plane

This sections refers to equatorial motions, namely motions with initial conditions θ = π/2 and
uθ = 0. The motion of a particle in the field of a dipole or uniform magnetic in a Kerr background
geometry will remain on the equatorial plane forever, unless the trajectory crosses the outer event
horizon. The reason why this happens is that axisymmetric magnetic fields acting upon a particle
are pointing towards the z direction. This means that locally the magnetic force they exert on
a charged particle is parallel to the z direction. As we know from classical electrodynamics, a
particle moving on r − φ plane will feel a force that forces it to remain in that r − φ plane. Eq.
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mdv/dt = q/m v×B/c forbids any motion on θ-direction. Consequently a particle initially placed
on the equatorial plane, with uθ = 0 will remain on the equatorial plane.

The reaction of particle’s motion to the gravitational and magnetic field is essential because
it provides us with information about the interplay of electromagnetism and the curvature of
spacetime due to strong gravitational fields. Equatorial plane motions give us only a taste of this
interaction. Prasanna and Varma [27]; Sengupta [33]; Prasanna and Vishveshwara [28]; Prasanna
and Sengupta [26] have found that the presence of a magnetic field, in different geometries, increases
the range of stable orbits. What we expect to see is a Larmor-like motion, modified by any effects
of gravity for specific values of energy, momentum and location of the particle. We will exhibit
the differences between motions in a Kerr background geometry with and without a magnetic field
acting upon the particle.

3.2.1 Uniform Magnetic Field

This section refers to the uniform magnetic field case. In this case no particle escapes from the
black hole. Of course the realistic magnetic fields observed near a black hole are far from uniform,
this is a good approximation in the vicinity of the black hole. Fig. 3.1-3.5 illustrate the motion of
a charged particle with different initial conditions. By placing θ = π/2, Q = 0 and At, Aφ from
eq. (2.1.8), (2.1.9) in (2.3.12) and (2.3.13) we deduce a relation for the effective potential of the
black hole with and without a superimposed magnetic (At, Aφ=0) field. We observe that most
of the trajectories depicted could not have been observed in the absence of the uniform magnetic
field.

It is evident that increasing the magnetic field strength Bo the Larmor radius of the particle’s
motion is decreased (fig.3.1). Concerning the angular momentum of the particle, increasing its
value we observe the widening of the potential well. Finally, the greater the particle’s energy is the
bigger the radius of particle’s Larmor motion. The potential well for the motion of an electron is
different than that of a proton. This means that there will be places where charge concentration
would be allowed. For negative angular momentum the potential well appears in longer distances
from the black hole something presumable, because in the vicinity of the black hole the dragging
of inertial frames is significant (fig.3.4).

3.2.2 Dipole Magnetic Field

This section refers to the dipole magnetic field case. Concerning particles for which r < ro the
internal solution for the magnetic field has to be used when replacing At, Aφ in (2.3.12) and (2.3.13)
to deduce a relation for the effective potential of the black hole with and without a superimposed
magnetic (At, Aφ=0) field. Conversely, for particles that move only for r > ro the external
solution of the magnetic dipole field has to be used. The internal solution can be approximated
by the uniform magnetic field in the vicinity of the black hole, so we expect a similar behavior
to that of motions in uniform magnetic fields. The only difference is that the value of a dipole
magnetic field varies from place to place. In other words, the value of the dipole magnetic field is
greater near the horizon than away from it. This implies that the radius of Larmor motion has to
vary too. In the cases examined here this is not obvious because the difference is small. Later on,
when we examine lateral motion this will become more clear. The existence of bound orbits in the
presence of a dipole magnetic field (external solution) depending on the structure of the potential
well is similar to the cases of the internal solution of the magnetic field and the uniform magnetic
field ([28]). The curvature of the magnetic field lines of the external solution is not important here.
The motion will be affected by this curvature when we include lateral motion.

A particle residing in the region r < ro can only escape if it has energy greater than the value
of the effective potential at the limit r = ro (3.6). The discontinuity at r = ro of the effective
potential is due to the discontinuity of the magnetic field where the ring current is placed.
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(a) (b)

(c) (d)

Figure 3.1: (a,c) The motion of a proton in the field of Kerr black hole endowed in a uniform
magnetic field is depicted for different initial conditions. (b,d) The effective poten-
tial is illustrated for this case (black solid line). The effective potential for the case
without a magnetic field is shown is represented with the dotted line. Finally the
red line corresponds to the particle’s energy E.
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(a) (b)

(c) (d)

Figure 3.2: (a,c) The motion of a proton in the field of Kerr black hole endowed in a uniform
magnetic field is depicted for different initial conditions. In fig.(a) the particle
performs a nearly-circular energetically bound orbit almost touching the horizon.
In fig.(c) the particle “hits” the event horizon. (b,d) The effective potential is
illustrated for this case (black solid line). The effective potential for the case
without a magnetic field is shown is represented with the dotted line. Finally the
red line corresponds to the particle’s energy E.
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(a) (b)

(c) (d)

Figure 3.3: (a,c) The motion of a proton in the field of Kerr black hole endowed in a uniform
magnetic field is depicted for different initial conditions. We observe that outside
ergosphere the particle is allowed to gyrate, will inside circular motions are for-
bidden. (b,d) The effective potential is illustrated for this case (black solid line).
The effective potential for the case without a magnetic field is shown is represented
with the dotted line. Finally the red line corresponds to the particle’s energy E.
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(a) (b)

(c) (d)

Figure 3.4: (a,c) The motion of a proton in the field of Kerr black hole endowed in a uniform
magnetic field is depicted for different initial conditions. (b,d) The effective poten-
tial is illustrated for this case (black solid line). The effective potential for the case
without a magnetic field is shown is represented with the dotted line. Finally the
red line corresponds to the particle’s energy E. For negative angular momentum
the potential well appears in longer distances from the black hole something which
is presumable.
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(a) (b)

(c) (d)

Figure 3.5: (a,c) The motion of a proton in the field of Kerr black hole endowed in a uniform
magnetic field is depicted for different initial conditions. (b,d) The effective poten-
tial is illustrated for this case (black solid line). The effective potential for the case
without a magnetic field is shown is represented with the dotted line. Finally the
red line corresponds to the particle’s energy E.
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Internal Solution

(a) (b)

(c) (d)

Figure 3.6: (a,c) The motion of a proton in the field of Kerr black hole endowed in a dipole
magnetic field (internal solution) is depicted for different initial conditions. (b,d)
The effective potential is illustrated for this case (black solid line). The effective
potential for the case without a magnetic field is shown is represented with the
dotted line. We observe that a particle residing in the region r < ro can only
escape if it has energy greater than the value of the effective potential at the limit
r = ro.
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External Solution

(a) (b)

Figure 3.7: (a,c) The motion of an electron is depicted in the field of Kerr black hole endowed
in a dipole magnetic field (external solution) is depicted. The Larmor motion
of the particle has the opposite direction because of the negative charge of the
electron. (b,d) The effective potential is illustrated for this case (black solid line).
The effective potential for the case without a magnetic field is shown is represented
with the dotted line. Finally the red line corresponds to the particle’s energy E.
For negative angular momentum the potential well appears in longer distances from
the black hole something which is presumable.
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3.3 Trajectories including Lateral Motion

Now that we have an idea of charged particle interaction with the combined gravitational and mag-
netic field of the magnetized black hole we are ready to examine off-equatorial plane trajectories.
Only the cases of energetically bound orbits are of significant importance. We consider that the
particle has a non-zero velocity component vθ.

Bearing in mind the analysis in §2.4 we would expect that charged particles would gyrate around
the magnetic lines but also drift. We clearly see that positive particles have a toroidal drift velocity
which originates from eq. (2.4.5). Because of the straight magnetic field lines corresponding to
a uniform magnetic field outside the ergoregion, the radius of Larmor motion is constant. On
the other hand, it is evident from 3.9 that the divergence of the magnetic dipole field (internal
solution) is responsible for the variable radius of the Larmor motion performed by the guiding
center. Moreover, due to the fact that the magnetic lines of the internal solution for the dipole
magnetic field are almost straight lines we don’t observe any bending of the magnetic field lines
in this region. We observe another drift for both the uniform and dipole magnetic fields. The
drift is in θ direction and appears because of the gravitational force. The structure of the effective
potential confirms the results following. We see that for a uniform magnetic field the closed line
is narrow and stretched vertically. In the dipole magnetic field however there is a wider range of
values for quantity

√
r2 + a2 sin θ implying a variable Larmor radius.

The existence of trapped orbits with reflection points at different “altitudes” for different initial
conditions highlight the possibility of thick accretion disk formation in the region.

3.3.1 Uniform Magnetic Field

(a) (b)

Figure 3.8: (a) The motion of a proton is depicted for the uniform magnetic field case. (b)
The effective potential is illustrated for this case. The closed line corresponds to
the bound orbit.

3.3.2 Dipole Magnetic Field

Internal Solution



36 CHAPTER 3. CHARGED-PARTICLE MOTIONS

(a) (b)

Figure 3.9: (a) The motion of a proton is depicted for the magnetic dipole field case (internal
solution). (b) The effective potential is illustrated for this case. The closed line
corresponds to the bound orbit.

Figure 3.10: The motion of a proton is depicted for the magnetic dipole field case (internal
solution)
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External Solution

Figure 3.11: The motion of an electron is depicted.

3.4 Motion of a Group of Particles

Our intention for this section is to demonstrate some of the capabilities of the code we have created.
Following the steps described in [1] we deduce a function describing the distribution of an accretion
disk around a Kerr black hole with no external magnetic fields,

ρ =
{

Γ− 1
kΓ

[
ut

ut
out

(
1− loΩ

1− loΩout

)
− 1

]} 1
Γ−1

(3.4.1)

where ut
out is the time velocity component of the outer boundary of the disk and Ωout the angular

velocity of the outer boundary of the disk. In addition, throughout our analysis we take k = 1,
Γ = 4/3 and lo = 3.9.

We know that eq. (2.2.1)-(2.2.4) are valid only outside the disk, where gas pressure is considered
small enough that can be ignored. Finally for particles traveling in the region outside the disk,
their motion reduces to that described in equations (2.2.1)-(2.2.4). Finding the locus of points
for which ρ = 0 we have determined the shape of the accretion disk. We have achieved that by
implementing the bisection root finding method given in [29]. The reason we do this is because
we want to obtain a more ”realistic” shape for the accretion disk and a more ”realistic” velocity
distribution for the particles comprising the accretion disk. Particle’s velocity distribution refers
only to the case where no external magnetic fields are imposed to the Kerr background geometry.
Supposing that at τ = 0 we switch on an external magnetic field source and rearranging particles’
velocities a little bit so they are consistent with the external magnetic field we acquire a new
velocity distribution for the particles. This of course, is not the right approach for finding the
velocity distribution of particles at the edge of the accretion disk when external magnetic fields are
present nearby (usually generated by the accretion disk itself). By perturbing a little bit the new
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velocity distribution for particles exactly at the edge of the accretion disk, that is by increasing
the θ-component, we derive the final velocity distribution of particles residing at the edge of the
”hypothetical” accretion disk with velocities slightly larger than those permitted by the effective
potential. At this point a better manipulation for the velocity distribution would be to add a
thermal velocity component (hot disk) to the already acquired values, but due to lack of time we
limit ourselves to the previous approach. We present our code in App. 5. One of the questions
which remains to be answered is whether the accretion disk with the given velocities distribution
would maintain its bound orbit in the absence of magnetic fields. We expect the accretion disk to
be dissipated, because we have neglected the gas pressure terms in the calculation of the charged
particles motion. The accretion disk described by Abramowicz et al. [1] is maintained because of
hydrodynamic stability. Will the presence of external magnetic fields allow bound orbits to exist
for the given velocities? The answer is yes. Moreover, for different values of energy we observe
that electrons react differently than protons to the presence of magnetic fields. This implies that
for the study of an accretion disk using an MHD approach it is suggestive that we regard a two
component plasma in operation.

3.4.1 No magnetic field

Figure 3.12: The trajectories of protons (red dots) and electrons (green dots) are depicted.
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3.4.2 Uniform magnetic field

Figure 3.13: The trajectories of protons (red dots) and electrons (green dots) are depicted for
the uniform magnetic field case.
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3.4.3 Dipole magnetic field

Figure 3.14: The trajectories of protons (red dots) and electrons (green dots) are depicted for
the dipole magnetic field case.

For the dipole magnetic field we have placed the ring current at rc = 9.44 (approximately where
the maximum density occurs) and θc = π/2.



Chapter 4

Halo Orbits

In our experience astrophysical phenomena occurring near compact objects, such as black holes,
are governed by the laws of gravity and electrodynamics. Some of these phenomena, jets, formation
and maintenance of accretion disks and gamma ray bursts for example, include motions of charged
and neutral particles around a magnetized massive “star”.

Stars and astronomical objects in general are observed through the radiation they emit in
different wavelengths. A good percentage of this radiation is related to the magnetic fields produced
by the internal currents of stars, or by plasma surrounding these objects. The magnetic fields are
responsible for the synchrotron radiation that is observed in pulsars, black holes, etc.

Synchrotron radiation is emitted whenever a charged particle moves inside a strong magnetic
field. Its motion is hugely affected by the magnitude and type of the magnetic field (toroidal,
poloidal, uniform etc.). As a consequence magnetic fields have a definite impact on the dynamics
of charged particles.

It is well known that an electrically neutral black hole cannot have intrinsic magnetic field. How-
ever, plenty of observations confirm that magnetic fields reside near black holes. Generally speak-
ing, magnetic fields show up when nearby magnetized objects, such as magnetars, neutron stars
and accretion discs are present. The latter object is of significant importance in the context of as-
trophysics. Accretion matter indicates the formation of a plasma disc with a super strong magnetic
field. The magnitude of the magnetic field can rise up to BM = 1/M ' 1× 1010(M/109M¯)−1G
around a supermassive black hole. The upper boundary of the magnetic field strength is derived
when one equates the magnetic pressure with the gravitational pressure. Keeping in mind that
spacetime becomes distorted in the presence of gravitational sources such as mass or energy, we
realize that the spacetime around a supermassive black holes immersed in a superstong magnetic
field is significantly distorted. However, when B << BM there is a region near the black hole
where the distortion of spacetime due to the magnetic energy density is neglected. In this case we
consider the magnetic field as a perturbation. The energy contribution from the magnetic field to
the energy-momentum tensor is therefore treated as zero. Though we accept that the magnetic
field does not alter the spacetime metric, we take into account that the backreaction of the curved
spacetime to the magnetic field change its pattern. The field is now found by magnetizing the
metric [36].

We know that neutral particles follow the worldline geodesics, so there is “nothing” interesting
there. However, charged particles deviate from the geodesics and follow a different path. Their
trajectory is affected not only by the strong gravitational field of the star but also by electromag-
netic forces. The electromagnetic forces near a star are either generated by currents inside the
object, or by currents further away.

In the current chapter we will analyze the motion of charged particles, residing near the accre-
tion disk, in the gravitomagnetic potential of the hole. Our study is focused on the existence of
some peculiar off-equatorial orbits of charged particles, similar to the Störmer halo orbits [35].
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4.1 Introduction

The current chapter is dedicated to charged particle motion near magnetized Kerr black holes in
3D-space. Moreover we examine the possibility of the occurrence of halo orbits in Kerr spacetimes.
The interplay between the gravitational and magnetic fields is not yet fully understood.

As previously mentioned, magnetic fields influence the dynamics of a charged particle. One
way to examine the magnetic fields near strongly gravitating sources is by perturbing the Maxwell
equations (Teukolsky [36]). It is suggestive that any effects of the magnetic fields, upon the metric
describing the spacetime in the neighborhood of the black hole, are neglected. Adopting this
approach regarding the magnetic field, we have to limit our cases to phenomena that involve weak
magnetic field compared to the gravitational one. In principle, gravitational effects, due to the
presence of a compact object in nearby spacetime, are becoming weaker and weaker as we move
away from the gravitating object. For this reason this approach requires particular attention when
one employs it. For example, in a Kerr spacetime endowed in an asymptotically uniform magnetic
field, the effects of gravity are neglected as we move to r → ∞, while the magnetic effects are
still appreciable. However, the magnetic fields we encounter, near black holes, are not strictly
asymptotically uniform neither of such great magnitude that this approach is of no use.

An the equatorial current can replace in a way the more complicated pattern of an accretion
disk. But before we investigate the astrophysically relevant models with a viscous disc, we need to
understand the motion of an individual charged particle that doesn’t affect the spacetime around
the hole neither alters the electromagnetic fields of the accretion disc or the toroidal current.

The motion of charged particles in the gravitomagnetic field of the black hole may give us
critical information about the properties of the black hole. Hence, we will study the existence of
potential traps for highly relativistic particles in the neighborhood a hole immersed in an external
magnetic field. The motion of relativistic particles in a magnetic field could give us valuable clues
for the black hole’s charge, mass and rotation through their spectra. We already know that these
kind of traps cannot exist close to a black hole environment ([15],[22]) without an external magnetic
field acting upon it.

There are lots of papers in the literature in search of the existence or not of potential traps at
the equatorial plane and off the equatorial plane for charged particles and for various cases. The
cases investigated are the following:

1. the pure Kerr black hole [15]

2. a Schwarzschild black hole immersed in a dipole magnetic field (equatorial potential traps
[30], off equatorial potential traps [22]). These works employ the solution acquired by the
perturbation of the Maxwell equations.

3. a Schwarzschild black hole immersed in a magnetic field (equatorial potential traps [38]), off
equatorial potential traps [22]). These works employ the full solution for the magnetic field
by considering its influence to the spacetime metric.

4. a Kerr black hole in an asymptotically uniform magnetic field (only equatorial potential traps
considered [16])

5. a pure Kerr-Newman black hole (equatorial potential traps [3], non-existence of off equatorial
potential traps [22])

We would like to point out that the question of whether off-equatorial potential traps occur in a
background geometry of Kerr and Kerr-Newman black holes still remains open. We will contribute
some results that point to a positive answer.

But anyone could just think “What happens if we add a little rotation to the hole and an
external magnetic field?”. Is it possible to observe off-equatorial orbits if we employ a different
formula for the magnetic field? The following section answers to all of the questions above.
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We examine the stable energetically bound off-equatorial orbits of charged particles near mag-
netized black holes. Two cases of black holes are of special interest. The cases of Kerr and
Kerr-Newman black holes immersed in either a uniform (galactic) magnetic field or a dipole mag-
netic field- produced by a current ring at distance ro from the black holes. For the vector potential
we will use two different solutions. The first one is obtained by Wald [39] and the second one is
derived by Petterson [25] and corrected by Znajek [40]. These solutions refer only to the case of
pure Kerr black holes. The first part of this chapter will be dedicated to the study of the dynamics
of a Kerr magnetized black hole, while the second part will deal with a Kerr-Newman magnetized
black hole.

Throughout our discussion we will deal with uniform and dipole magnetic fields. Keeping in
mind the limitations that arise due to the perturbation theory, especially for the uniform magnetic
field, we will only consider motion of charged particles rather close to the black hole. The dipole
magnetic field is generated by an ideal equatorial current loop, located at ro = 6 M . In our
calculations we will keep only the first order multipoles of the solution.

On the score of the vector potentials [25] and [40] being calculated only for Kerr black holes,
it would be wrong to employ this magnetic field to study halo orbits in Kerr-Newman spacetimes.
Hence, the second part is just a toy model. The aim of this second part is just to show that under
certain conditions the existence of such off-equatorial orbits is possible.

In addition, extra care has been taken in order to choose a physically coherent magnetic field
for the case of the magnetic dipole. The solution for the vector potential of a magnetic dipole as
given by Znajek [40] implies that there are two solutions. One for the inner region where r < ro

and one for the outer region (r > ro)1. Some of the previous work on this subject, carried out by
different authors, was based only on the external solution, except for Preti [30] and Li [23]. Their
assumption was that the ring current was placed exactly at the event horizon. However, this is not
completely true from a physical point of view. The ring current consists of charged and neutral
particles. Geodesics near a black hole dictate that the inner most stable corrotating circular orbit
for a Schwarzschild black hole occurs at r = 6 M , while for an extreme Kerr black hole (a = M)
at r = M . As a consequence, there are some limitations introduced for the position of the circular
current. In order to be physically consistent, the minimum distance for the ring current will have
to be between the values M < ro < 6 M depending on the rotation of the hole.

An interesting result of our analysis is the existence of such energetically bound off-equatorial
orbits in Kerr and Kerr-Newman black holes. Each off-equatorial orbit correspond to a potential
trap. Their existence is of significant importance because inside the traps might be sources of
synchrotron radiation, namely relativistic charged particles.

The structure of the chapter will be as follows. In section 2 a general calculation for the effective
potential will be given. In section 3 we will investigate the off-equatorial potential traps for the
uniform and magnetic dipole field in a Kerr background geometry. The dependence of the location
of the off-equatorial circular orbits to free parameters will be studied. Orbits in a Kerr-Newman
background geometry endowed in a magnetic field will be the subject of section 4. The analysis in
this section will not be mathematically strict. We will use the magnetic dipole solution of Znajek
[40], even though they are meant to be used only in a Kerr background geometry.

Throughout the current chapter the sign conventions of Misner, Thorne, and Wheeler [24] will
be adopted.

4.2 Halo Orbits

Halo orbits are the off-equatorial energetically bound orbits that are stable to small perturbations
with respect to each of the coordinates. Charged particles who follow these orbits limit their motion
to the z > 0-space or z < 0-space. They never cross the surface z = 0 and they are confined. The

1where ro is the distance of the ring current from the black hole
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condition for a halo orbit to occur is

∂rVeff = 0, ∂θVeff = 0

This condition corresponds to the local minima of the effective potential. Each local minimum
answers to a circular orbit for which z > 0 or z < 0. To define the local minima we implemented
the Powell method developed in [29].

4.2.1 Kerr Black hole

For a Kerr black hole the constants in eq. (2.3.13) reduce to

α = B (4.2.1a)

β = −qB
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Uniform Magnetic Field

The asymptotically uniform covariant components of the vector potential in a Kerr background
geometry are given by eq. (2.1.8), (2.1.9). Replacing eq. (2.1.8), (2.1.9) and (4.2.1) into eq.
(2.3.13), we acquire the form of the effective potential for an uncharged rotating black hole in a
uniform magnetic field.

Throughout the numerical calculation we have used the dimensionless coordinates t/M → t,
r/M → r.

Figure 4.1 shows the behavior of the effective potential for the uniform magnetic field. The two
closed lines suggest the existence of halo orbits for a specific value of energy.

(a) (b)

Figure 4.1: Effective potential Veff and its contours for motion of a charged particle in an
extreme a = 0.9 Kerr black hole and an external uniform magnetic field. The axis
of the magnetic field is parallel to the angular momentum of the black hole. The
constants of motion are L = 100 , E = 9.0999971 and the magnetic field strength
Bo = 10−17. The particle is a proton.

In figure 4.2 the trajectory of a proton is depicted. The halo orbit is clearly visible. The particle
is confined between two turning points for z > 0. The location of the local minima of the effective
potential depends on five factors. The first one is the magnitude of the magnetic field, the second
is the angular momentum a of the black hole, the third the specific angular momentum of the
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Figure 4.2: The motion of a proton is depicted. The magnetic field forces the particle to execute
Larmor motion of constant radius. The particle doesn’t cross the equatorial plane.

Figure 4.3: The motion of an electron is depicted. This motion is an intermediate step between
the trajectories depicted in 3.8(a) and 4.2
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(a) (b)

(c)

Figure 4.4: The dependence of Veff is shown in the pictures above. Roughly, increasing the
angular momentum of the black hole, the lowest energy for a particle to partici-
pate in an off-equatorial circular motion is increased. Coinstantaneously the local
minimum moves to a greater distance. As the angular momentum L of the particle
grows bigger, both the lowest energy and the distance of the local minimum from
the black hole take greater values. Lastly, increasing the factor k = qBo/mpart, the
lowest energy increases too, while the position of the local minimum moves towards
z = 0.

particle and lastly the particle’s mass and charge. The strength of the magnetic field multiplied
by the particle’s charge to mass ratio can be combined in one factor k = qBo/mpart. The relation
between all of these factors and the effective potential is illustrated in 4.4.
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Dipole Magnetic Field

For the dipole magnetic field there are two solutions [40] in a Kerr background geometry. The
internal solution, regarding the magnetic field that the particle feels when its distance from the
hole is smaller than ro

2 and the external solution, regarding the magnetic field for distances greater
than ro.

Internal Solution

The internal solution, though not investigated in other papers ([22; 28; 11; 26]), is very substantial.
Halo orbits can exist very close to the black hole, in the area between the accretion disc and the
outer event horizon. In the previously described region, electromagnetic energy can be extracted
from the black hole [7; 30].
The magnetic fields threading the accretion disc are responsible for the voltage drop between the
accretion disc and the black hole. But what supplies the magnetic field and how can energy be
transferred to the inner area of the black hole even though there are no wires connecting the two
regions? The answer is that the currents in an accretion disc power the magnetic fields, and the
black hole manages to make its own wires to connect the accretion disc region with the inner region
of the magnetosphere of the hole. Were there no conducting wires between the accretion disc and
the hole, there would still be a voltage drop of the order

V ∼ ΩHBπr2
H ∼ (1020Volts(ΩHM)

(
M

109 M¯

)(
B

104 Gauss

)

where ΩH and rH are the angular velocity and the distance of the outer horizon.
This huge amount of energy difference and the accompanying field would quickly accelerate any

stray electrons to relativistic velocities. The electron would radiate photons, which in turn would
split into a pair. Then the two constituents are accelerated again and produce more photons.
This phenomenon continues and quickly the cascade fills up the nearby space with plasma and
electric fields. This is the electrically conducting link between the inner region of the black hole
and the accretion disc. Now, the charged particles that reside in this region would be of relativistic
velocities. The question is how this power is turned into radio jets.

In our opinion, the presence of toroidal magnetic fields near a black hole induce an electric
field due to the rotation of the black hole. The induced electric field in conjunction with the
toroidal component of the magnetic field are efficient to provide a kick for the charged particles
and expel them away from the black hole. The toroidal component of the magnetic field, according
to Prasanna and Sengupta [26], acts like an electric field and it becomes stronger in the vicinity
of the black hole. The problem is how can a charged particle approach the axis of the black hole.
The off-equatorial orbits limit the motion of the particles in the z≷0-space. It is evident from fig.
4.2 that the particles in the off-equatorial orbits tend to approach the axis of black hole. They
become vulnerable by the toroidal magnetic forces and the electric field, they gain a kick of energy
and are radiated away from the hole producing a jet like formation. The rotation axis provides a
natural axis for the jets. One of our future plans it to test if this scenario is possible and if the
off-equatorial orbits play a critical role for the formation of jets.

However, the internal solution can be approximated with a uniform magnetic field close to the
black hole. In other words, for small r the two solutions coincide. Therefore we expect a similar
behavior to that of fig. 4.1, 4.4, 4.2.

The example in fig. 4.5 depicts the similarities between the two formulas. The off-equatorial
motion is very important because it extends in the region between the accretion disc and the black
hole, where the Blandford-Znajek mechanism is dominant.

2Where ro is the distance of the ring current from the hole.
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(a) (b)

Figure 4.5: Effective potential Veff and its contours for motion of charged particle in a a = 0.9
Kerr black hole and an external dipole magnetic field. The internal solution of
the magnetic dipole is considered. The axis of the magnetic field is parallel to
the angular momentum of the black hole. The constants of motion are L = 70 ,
E = 5.3059152 and the ring current that generates the magnetic field is Ic = 10−17.
The particle is a proton.

External Solution

Figure 4.7 shows the behavior of the effective potential in the case of the dipole magnetic field
(external solution). The two closed lines suggest the existence of halo orbits for that specific
energy. This behavior of the effective potential, namely the existence of halo orbits, is due to the
presence of the external magnetic field. A magnetic field with only poloidal components confines
the charged particles. On the other hand, a toroidal component is responsible for jet-like orbits.

In figure 4.8 the trajectory of an electron is depicted. It is evident that halo orbits exist for
the case we are currently studying. Again the particle is confined between two turning points with
z > 0. The location of the local minima depends once more on the value of the ring current, the
angular momentum a of the black hole, the specific angular momentum of the particle and lastly
the particle’s mass and charge. The relation of some of the factors to the effective potential is
illustrated in fig. 4.9.
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(a) (b)

(c) (d)

Figure 4.6: The dependence of Veff is shown in the pictures above. (a) Roughly, increasing the
angular momentum of the black hole, the lowest energy for a particle to partici-
pate in an off-equatorial circular motion is increased. Coinstantaneously the local
minimum moves to a greater distance until it reaches a maximum and then moves
towards the black hole. (b) As the angular momentum L of the particle grows big-
ger, both the lowest energy and the distance of the local minimum from the black
hole take greater values. (c),(d) Lastly, increasing the current Ic and the factor
q/mpart, the minimum energy increases too. The position of the local minimum
moves away from the black hole in both graphs (c,d).
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(a) (b)

Figure 4.7: Effective potential Veff and its contours for motion of charged particle in a a = 0.55
Kerr black hole and an external dipole magnetic field. The external solution of the
dipole magnetic field is considered. The axis of the magnetic field is parallel to the
angular momentum of the black hole. The constants of motion are L = 1 , E =
0.95608159 and the ring current that generates the magnetic field is Ic = 10−21.
The particle is a an electron.

Figure 4.8: The motion of an electron is depicted. The magnetic field forces the particle to
execute Larmor motion of variable radius. The particle doesn’t cross the equatorial
plane.
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(a) (b)

(c) (d)

Figure 4.9: The dependence of Veff is shown in the pictures above. Roughly, increasing the
angular momentum of the black hole, the minimum energy for a particle to par-
ticipate in an off-equatorial circular motion is decreased. Coinstantaneously the
local minimum moves to a greater distance from the black hole. As the angular
momentum L of the particle grows bigger, the minimum energy increases while the
local minimum approaches z = 0. For L = 3.5− 6.0 there are no halo orbits. The
local minimum, for these values of L, corresponds to circular orbits exactly at the
equatorial plane. Increasing Ic and q/m the local minima occur for greater values
of energy. In addition, they move away from the black hole.
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4.2.2 Kerr-Newman black hole

We will follow the same steps as before, this time for the Kerr-Newman black hole. As pointed out
by Kovář et al. [22], there happen to be no off-equatorial orbits for the Kerr-Newman black hole
outside the outer horizon. In their paper they conclude that either these orbits are hidden under
the inner horizon, or they require the presence of a hidden singularity.

We will show that the appearance of such off-equatorial orbits is plausible in a Kerr-Newman
spacetime requires an external magnetized source. We have regarded the external magnetic field
not to be influenced by the charge Q of the black hole as in [40]. Therefore we can use eq. (2.3.1)
to describe the spacetime near the compact object. Our analysis is limited only for small values
of the net charge Q.

Uniform Magnetic Field

Figure 4.10 shows the behavior of the effective potential for the uniform magnetic field.

Figure 4.10: The contours of the effective potential for motion of charged particle in a a =
0.9, Q = 5 × 10−17 Kerr-Newman black hole and an external uniform magnetic
field. The axis of the magnetic field is parallel to the angular momentum of
the black hole. The constants of motion are L = 500 , E = 48.866846 and the
magnetic field Bo = 1.0× 10−16. The particle is a proton.

The location of the local minima depending on the magnitude of the magnetic field and the
particle’s charge to mass ratio q/m is depicted in 4.11.
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(a) (b)

(c)

Figure 4.11: The dependence of Veff is shown in the pictures above. Roughly, increasing the
net charge of the black hole, the minimum energy for a particle to participate in
an off-equatorial circular motion is decreased. Coinstantaneously the position of
the local minimum moves to larger z. As the magnetic field strength Bo grows
bigger, the minimum energy takes greater values. The particle now moves towards
the black hole. Lastly, increasing the factor q/m, the lowest energy increases too,
while the particle moves towards z = 0.



54 CHAPTER 4. HALO ORBITS

Dipole Magnetic Field

Figure 4.12 shows the behavior of the effective potential for the external (a) and the internal (b)
dipole magnetic field cases. The two closed lines suggest the existence of halo orbits in Kerr-
Newman spacetimes.

(a) (b)

Figure 4.12: (a) Contour plots of the effective potential Veff for motion of charged particle in a
a = 0.25, Q = 3×10−22 Kerr-Newman black hole and an external dipole magnetic
field (external solution). The constants of motion are L = 1 , E = 0.98837041
and the value of the ring current is Ic = 1.0× 10−21. The particle is an electron.
(b) Contour plots of the effective potential Veff for motion of a proton in a a =
0.9, Q = 3 × 10−18 Kerr-Newman black hole and an external dipole magnetic
field (internal solution). The constants of motion are L = 70 , E = 4.513327310
and the value of the ring current is Ic = 1.0× 10−17.

(a) (b)

Figure 4.13: The dependence of Veff is shown in the pictures above. (a) Increasing the net
charge of the black hole, the minimum energy for a particle to participate in an
off-equatorial circular motion is increased. Coinstantaneously the position of local
minimum moves to a greater distance (external solution). (b) The local minima
occur for lower values of energy while the net charge of the hole increases. In
addition it moves towards z = 0 (internal solution).

The dependence of the effective potential with respect to the net charge of the black hole is
illustrated in 4.13.



Chapter 5

Conclusions

The presence of external magnetic fields in the neighborhood of rotating black holes forces charged
particles to follow non-geodesics orbits. External magnetic fields are responsible for the stability
of particle’s orbits near the black hole. Charged particles can reside very close to the event horizon
without falling into the hole. After theoretical and numerical calculations we have concluded
that charged particles can get trapped by the potential of the magnetized gravitating object and
follow periodic orbits around the black hole. There two kind of orbits, the equatorial ones and
the off-equatorial. Of greatest importance are the off-equatorial orbits which can be divided into
two categories, those that cross the equatorial plane and those that do not. The latter orbits are
off-equatorial energetically bound orbits that are confined above or below the equatorial plane.
These orbits may be accountable for the violent variations in the optical spectra of black holes,
though this subject has to be investigate further. Generally speaking, off-equatorial orbits could
probably give us valuable information about the properties of the magnetized black hole and its
surroundings. Lastly, the study of a group of particles that escape the surface of a simple model
of an accretion disk shows that the magnetohydrodynamic approach is not a suitable description
for plasma surrounding the black hole. In conclusion, the best approach would be to employ a
two-fluid plasma description.
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The Numerical Code

The purpose of this chapter is to explain and contribute our code to the public, so that anyone
can access it. We have chosen to give only the most basic routines.

As expected, our code has been through many stages. At first, we were only concerned of
a single-particle’s motion around a magnetized Kerr-black hole with a uniform magnetic field.
Therefore, there was no need to create a separate routine which would calculate the magnetic field
outside the main routine at that time. The numerical scheme we used to integrate the equations
of motion was an adaptive stepsize 4th-order Runge-Kutta algorithm. After several tests, our code
yielded the expected results and we had to move on to more realistic magnetic fields.

The second stage was to create two separate subroutines which would calculate a uniform and
a dipole magnetic field respectively. Inputting a certain logical variable would correspond to either
the uniform or the dipolar magnetic field. This was achieved by the insertion of the dummy
subroutine magnetic. Whenever magnetic was set to magnetize, through the dipole=.true.
option, the results would correspond to a magnetized black hole with a dipolar magnetic field,
otherwise, the magnetic subroutine would point to subroutine uniformB. The dummy subroutine
(magnetic) enabled us to easily compare and draw conclusions for different forms of magnetic
fields, simply by altering an input logical parameter (dipole).

After testing/running our code for different initial conditions and magnetic fields we observed
the existence of some peculiar off-equatorial halo orbits for both the uniform and dipolar magnetic
field cases. As mentioned in the main body of this project, similar orbits were found by Kovář
et al. [22] for a magnetized non-rotating black hole. This led us to believe that particles ejected
from an accretion-disk like distribution, with low energies, might interpret this kind of orbits and
form a low-density-torus-like structure above and below the equatorial plane. In addition, we had
observed that electrons and protons of the same energy, angular momentum and position sometimes
followed very different trajectories and tended to be separated (charge separation). Thus we had to
create a new program (findroot.x) that would calculate an accretion-disk distribution. We would
only need to specify the outer boundaries of this structure in order to find out where low-density
plasma would be located.

Theory states that away from an accretion disk plasma particles behave like single-non-interacting-
particles. This is the region where the results of our code would be generally valid. We finally
employed the mass-density distribution of [1]. Solving for ρ = 0 we would find the limits of the
accretion-disk. Abramowicz et al. [1] have not taken into account the magnetic field of the accre-
tion disk, so the density distribution derived would only correspond to an unmagnetized rotating
black hole. In order to apply this solution to our problem, we assumed the presence of a magnetic
field, either uniform or dipolar. We assumed that the charged-particle distribution would generate
the dipolar magnetic field 1. Because the solution of Abramowicz et al. [1] is not self-consistent
with the presence of a dipolar magnetic field, we have rearranged the energies of the outer particles
of the accretion disk so that they correspond to the minimum required energy for particles to be
located in the specific region, with the specific angular momentum (defined by the plasma distri-
bution) in the presence of magnetic fields. This was not the most suitable manner of treating this

1We approximate the charged-particles’ distribution by a ring current.
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problem, but could be considered a rough approximation. To achieve all of the above, we had to
modify our code to calculate the orbits of more than one particles. The initial conditions for these
particles were defined by solving the equation ρ = 0, bearing in mind any effects of the present
magnetic fields.

Basically we have organized our code in the following manner. Any files with an extension
.txt, .dat, .f90 are located under the folder code. The same goes for any bash-script files with
an extension of .sh. All IDL files and scripts with the extension .pro and .sh are placed under
the code/idl folder. Images are stored inside the code/idl folder in separate subfolders. In the
subfolder named code/idl/dipole, there are only images and plots regarding the dipole magnetic
field case. Plots and images concerning the uniform and no magnetic field cases are stored under
subfolder code/idl/uniform and code/idl/no_magnetic_field, respectively. 3-D plots that are
utilized in the production of movie files are saved under subfolder code/idl/jpg, unless stated
otherwise.

A.1 Equations of Motion

A.1.1 Fortran

Finding accretion-disk-particle distribution

In order to solve the equations of motion for a charged particle around a magnetized black hole
we have to specify the initial conditions for its motion, namely its initial position and velocity, or
its initial position, angular momentum and energy. Providing the values of the initial conditions,
and the parameters of the problem (such as black hole’s mass, rotation etc.) in file inirel.txt
we are ready to solve the system of equations described in Sec. 2.2.

¨ ¥
****** Initial Conditions

*** h1 hmin eps numdt
1.0d-11 1.d-90 1.d-14 300

*** tau (1) tau(end)
0.d0 1.d3

*** a mb (in gr) Bo (in Gauss)/void Ic ro
0.9d0 2.0d34 1.30466d-26 6.0d0

*** lo rext
3.9d0 20.d0

*** Trajectory Inwards? Dipole? complete?
.true. .false. .false.

*** STEPSIZE DEFINITIONS

*** h1: Initial Guess
*** hmin: Minimum Stepsize
*** eps: Allowable error for the adaptive size method
*** numdt: Defines every how many steps it prints the results

*** tau(1): Initial tau
*** tau(end): Final tau

*** a: The rotation of the black hole in dimensionless units
*** mb: The mass of the black hole in cgs units
*** Bo/Ic: Define the magnetic field of a uniform or dipole magnetic

field in dimensionless units
*** ro: the location of the ring current at the equatorial plane

*** lo: the angular momentum of an accretion -like distribution of
particles

*** rext: the outer boundary of the disk -like distribution

*** Trajectory Inwards ?: A logical unit which corresponds to .true. if
the particle is moving towards the black hole
and .false. when it moves away from the hole.
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*** Dipole ?: Set this to .true. if you need to study the dipole
magnetic field and .false in order to study the uniform
magnetic field.

*** complete ?: Set this to .true. if you need to study the full
solution of the dipole magnetic field , or only the
external solution.§ ¦

Program findroot.x finds the root of equation 3.4.1 written in funcd.f90. Then it finds the
particles’ velocity distribution and position and outputs the result in iniparticles.dat. The
total number of particles is written in file numofparticles.dat.

¨ ¥
program findroot
implicit none
double precision ::r1 ,r2,rho ,gamma ,k,k1,S1,Del1 ,B1,ro ,thetao ,gtt1 ,gff1 ,&

&gthetatheta1 ,gtf1 ,grr1 ,omega1 ,utin ,uphi1
double precision ::thetaacc ,theta ,r,dr,funcd ,rtbis ,kappa ,ik,q,qe ,&

&mparte ,mparti ,mb
double precision :: gtt ,gff ,gthetatheta ,grr ,gtf ,omega ,ut ,lo ,B,S,&

&Del ,M,a,ur,utheta ,L,en,delta ,uphi
double precision :: Gcgs ,t,phi ,mpart ,charge ,t2,qi,pi ,&

&gammaconst ,alphaeff ,betaeff ,gammaeff
double precision ::theta1 ,theta2 ,At,Af,mu ,rext ,tini ,&

&tend ,h1,hmin ,eps ,numdt ,Ic ,alpha ,beta ,BoIc ,Bo
parameter(thetaacc =1.d-100,M=1.0d0,k=1.0d0,pi =3.14159265359 d0)
parameter(Gcgs =6.6726d-8)
integer ::it, numofparts ,i3,i4,i2,i1
CHARACTER (256)::file="iniparticles.dat",file2="numofparticles.dat"
logical ::inwards ,dipole ,complete
external rtbis ,funcd ,cstrip ,open

READ(i1 ,*)h1,hmin ,eps ,numdt
READ(i1 ,*)tini ,tend
READ(i1 ,*)a,mb ,BoIc ,ro
read(i1 ,*)lo,rext
read(i1 ,*) inwards ,dipole ,complete

if (dipole) then
Ic=BoIc

else
Bo=BoIc

endif
theta1 =0.d0
theta2 =3.141592653589793 d0

qe =4.803204d-10
mparte =9.10938188d-28
mparti =1.67262158d-24
r1=6.0d0
r2=23.0 d0
numofparts =25
dr=abs(r2 -r1)/numofparts
ur=0.d0
utheta =0.d0
gammaconst =4.0d0/3.0d0
it=-1
ik=0
t2=0.d0
mparte=mparte/mb
mparti=mparti/mb
charge=sqrt(Gcgs)*mb

qe=qe/charge
qi=qi/charge
ur=0.d0
utheta =0.d0
t=0.d0

gamma=sqrt(M**2-a**2)

call open(i3 ,file ,1,’unknown ’)
do



62 THE NUMERICAL CODE

r=r1+ik*dr

if (r.eq.r2) goto 2

theta=rtbis(a,lo ,rext ,r,funcd ,theta1 ,theta2 ,thetaacc)
S = r**2 + a**2* cos(theta)**2
Del = r**2 + a**2 - 2.d0*M*r
B = (r**2 + a**2) **2 - Del*a**2* sin(theta)**2

gtt= -(1.d0 - 2.d0*M*r/S)
gtf= -2.d0* a *M* r *sin(theta)**2/S
gff= B*sin(theta)**2/S
grr= S/Del
gthetatheta= S

omega=-(gtf+ lo*gtt)/(gff+lo*gtf)

phi =0.d0

ut=1.d0/sqrt(-gtt - 2.d0*omega*gtf -omega **2* gff)
uphi = omega*ut

rho =(( gammaconst -1.d0)/k/gammaconst*funcd(a,lo,rext ,r,theta))**3

if (abs(rho).lt.1.d-40) then
it=it+1
q=(-1.d0)**(it)*qe
if(q.gt.0.d0) then

mpart=mparti
else

mpart=mparte
endif
if (dipole) then
if(complete) then
if (r.gt.ro) then
beta=-3.d0*Ic/8.d0/( gamma **2)/ro*(ro*(ro**2+a**2) -2.d0*a**2*M)

At=2.d0*a*beta/S*((r*(r-M)&
&+(a**2-M*r)*cos(theta)**2) /2.d0/gamma*dlog((r-M+&
&gamma)/(r-M-gamma))-(r-M*cos(theta)**2))

Af=(beta*sin(theta)**2/S)*((r - M)*a**2* cos(theta)**2 +&
&r*(r**2 + M*r +2.d0*a**2) - (r*(r**3 - 2.d0*M*a**2 + a**2*r)&
&+Del*a**2* cos(theta)**2) /2.d0/gamma*dlog((r - M + gamma)/&
&(r - M - gamma)))

else
alpha= 3.d0*Ic/8.d0/ro/gamma *((ro*(ro+M)+2.d0*a**2) -&

&1.d0/2.d0/gamma*log((ro -m+gamma)/(ro-M-gamma))*(ro*&
&(ro**2+a**2) -2.d0*M*a**2))

At=2.d0*a*alpha/S/gamma*(r**2-M*r-M*r*cos(theta)**2+&
&a**2* cos(theta)**2)+a*Ic/ro

Af=alpha*sin(theta)**2/S/gamma *(Del*(-2.d0*a**2* cos(theta)**2&
&+S) -2.d0*r*(r**2+a**2)*(r-M))

endif
else
beta=-3.d0*Ic/8.d0/( gamma **2)/ro*(ro*(ro**2+a**2) -2.d0*a**2*M)

At=2.d0*a*beta/S*((r*(r-M)&
&+(a**2-M*r)*cos(theta)**2) /2.d0/gamma*dlog((r-M+&
&gamma)/(r-M-gamma))-(r-M*cos(theta)**2))

Af=(beta*sin(theta)**2/S)*((r - M)*a**2* cos(theta)**2 +&
&r*(r**2 + M*r +2.d0*a**2) - (r*(r**3 - 2.d0*M*a**2 + a**2*r)&
&+Del*a**2* cos(theta)**2) /2.d0/gamma*dlog((r - M + gamma)/&
&(r - M - gamma)))

endif
else

At=-a*Bo*(1.d0-M*r/S*(2.d0-sin(theta)**2))
Af=Bo*sin(theta)**2/2. d0/S*(B-4.d0*M*a**2*r)

endif

L = B/S*sin(theta)**2* uphi - 2.d0*M*a*r/S*sin(theta)**2*ut+&
& q/mpart*Af
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alphaeff=B
betaeff=-q/mpart*At*B+2.d0*M*r*a*(L-q/mpart*Af)
gammaeff=q**2/ mpart **2*At**2*B-4.d0*M*r*a*q/mpart*At*&

&(L-q/mpart*Af)-Del*S-S/sin(theta)**2*(L-&
&q/mpart*Af)**2*(1.d0 -2.d0*M*r/S)

en = (betaeff+sqrt(betaeff **2- alphaeff*gammaeff))/alphaeff

ut=1.d0/Del/S*(-2.d0*M*r*a*(L-q/mpart*Af)+(B*(en+q/mpart*At)))
uphi =((1.d0 -2.d0*M*r/S)*(L-q/mpart*Af))/Del/sin(theta)**2&

&+2.d0*M*r*a*(en+q/mpart*At)/Del/S

delta=-(en+q/mpart*At)*ut + (L-q/mpart*Af)*uphi + &
&S*ur**2/ Del + S*utheta **2

print ’(I,3d18 .10)’,it+1,ur,ut,delta
write(i3 ,’(I,2d45 .29)’)it+1,q,mpart
write(i3 ,’(2d45 .29)’) t,r
write(i3 ,’(2d45 .29)’) theta ,phi
write(i3 ,’(4d45 .29)’) ut,ur,utheta ,uphi

endif
ik=ik+1

enddo
2 theta1 =3.141592653589793 d0
theta2 =3.141592653589793 d0*2.d0
ik=0
ur=0.d0
do

r=r1+ik*dr
if (r.eq.r2) goto 3

theta=rtbis(a,lo ,rext ,r,funcd ,theta1 ,theta2 ,thetaacc)
theta=-theta
S = r**2 + a**2* cos(theta)**2
Del = r**2 + a**2 - 2.d0*M*r
B = (r**2 + a**2) **2 - Del*a**2* sin(theta)**2

gtt= -(1.d0 - 2.d0*M*r/S)
gtf= -2.d0* a *M* r *sin(theta)**2/S
gff= B*sin(theta)**2/S
grr= S/Del
gthetatheta= S

omega=-(gtf+ lo*gtt)/(gff+lo*gtf)

phi=0.d0

rho=(( gammaconst -1.d0)/k/gammaconst*funcd(a,lo,rext ,r,theta))**3
if (abs(rho).lt.1.d-40) then
it=it+1
q=-(-1.d0)**(it)*qe
if(q.gt.0.d0) then

mpart=mparti
else

mpart=mparte
endif

if (dipole) then
if(complete) then
if (r.gt.ro) then
beta=-3.d0*Ic*2.d0*pi/8.d0/( gamma **2)/ro*(ro*(ro**2+a**2) -&

&2.d0*a**2*M)

At=2.d0*a*beta/S*((r*(r-M)&
&+(a**2-M*r)*cos(theta)**2) /2.d0/gamma*dlog((r-M+&
&gamma)/(r-M-gamma))-(r-M*cos(theta)**2))

Af=(beta*sin(theta)**2/S)*((r - M)*a**2* cos(theta)**2 +&
&r*(r**2 + M*r +2.d0*a**2) - (r*(r**3 - 2.d0*M*a**2 + a**2*r)&
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&+Del*a**2* cos(theta)**2) /2.d0/gamma*dlog((r - M + gamma)/&
&(r - M - gamma)))

else
alpha= 3.d0*Ic/8.d0/ro/gamma *((2.d0*(ro**2+a**2) -(ro-M)*ro)+&

&1.d0/2.d0/gamma*log((ro -M+gamma)/(ro-M-gamma))*(ro**2*&
&(ro -2.d0*M) -2.d0*(ro -M)*(ro**2+a**2)))

At=2.d0*a*alpha/S/gamma*(r**2-M*r-M*r*cos(theta)**2&
&+a**2* cos(theta)**2)+a*Ic/ro

Af=alpha*sin(theta)**2/S/gamma *(Del*(-2.d0*a**2* cos(theta)**2&
&+S) -2.d0*r*(r**2+a**2)*(r-M))

endif
else
beta=-3.d0*Ic*2.d0*pi/8.d0/( gamma **2)/ro*(ro*(ro**2+a**2) -&

&2.d0*a**2*M)

At=2.d0*a*beta/S*((r*(r-M)&
&+(a**2-M*r)*cos(theta)**2) /2.d0/gamma*dlog((r-M+&
&gamma)/(r-M-gamma))-(r-M*cos(theta)**2))

Af=(beta*sin(theta)**2/S)*((r - M)*a**2* cos(theta)**2 +&
&r*(r**2 + M*r +2.d0*a**2) - (r*(r**3 - 2.d0*M*a**2 + a**2*r)&
&+Del*a**2* cos(theta)**2) /2.d0/gamma*dlog((r - M + gamma)/&
&(r - M - gamma)))

endif
else

At=-a*Bo*(1.d0-M*r/S*(2.d0-sin(theta)**2))
Af=Bo*sin(theta)**2/2. d0/S*(B-4.d0*M*a**2*r)

endif

ut=1.d0/sqrt(-gtt - 2.d0*omega*gtf -omega **2* gff)
uphi = omega*ut
L = B/S*sin(theta)**2* uphi - 2.d0*M*a*r/S*sin(theta)**2&

&*ut+q/mpart*Af

alphaeff=B
betaeff=-q/mpart*At*B+2.d0*M*r*a*(L-q/mpart*Af)
gammaeff=q**2/ mpart **2*At**2*B-4.d0*M*r*a*q/mpart*At*&

&(L-q/mpart*Af)-&
&Del*S-S/sin(theta)**2*(L-q/mpart*Af)**2*(1.d0 -2.d0*M*r/S)

en = (betaeff+sqrt(betaeff **2- alphaeff*gammaeff))/alphaeff

ut=1.d0/Del/S*(-2.d0*M*r*a*(L-q/mpart*Af)+(B*(en+q/mpart*At)))
uphi =((1.d0 -2.d0*M*r/S)*(L-q/mpart*Af))/Del/sin(theta)**2&

&+2.d0*M*r*a*(en+q/mpart*At)/Del/S

delta=-(en+q/mpart*At)*ut + (L-q/mpart*Af)*uphi + S*ur**2/ Del+&
&S*utheta **2

print ’(I,3d18 .10)’,it+1,ur,ut ,delta
write(i3 ,’(I,2d45 .29)’)it+1,q,mpart
write(i3 ,’(2d45 .29)’) t,r
write(i3 ,’(2d45 .29)’) theta ,phi
write(i3 ,’(4d45 .29)’) ut,ur ,utheta ,uphi

endif

ik=ik+1
enddo
3 close(i3)

call open(i4,file2 ,1,’unknown ’)
write(i4,’(I)’) it+1
close(i4)

print*,"info:programÃcompleted"
!enddo
end program§ ¦
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¨ ¥
function funcd(a,lo,r1,r,theta)
implicit none
double precision ::r,a,theta ,theta1 ,r1,S,B,Del ,Del1 ,S1,B1 ,gtt
double precision :: gtt1 ,gtf ,gtf1 ,grr ,gthetatheta ,grr1 ,gthetatheta1
double precision :: omega ,omega1 ,M,lo,ut ,utin ,gff ,gff1 ,funcd
Parameter (M=1.d0 ,theta1 =1.5707963267948966 d0)

S = r**2 + a**2* cos(theta)**2
Del = r**2 + a**2 - 2.d0*M*r
B = (r**2 + a**2) **2 - Del*a**2* sin(theta)**2

S1 = r1**2 + a**2* cos(theta1)**2
Del1 = r1**2 + a**2 - 2.d0*M*r1
B1 = (r1**2 + a**2) **2 - Del1*a**2* sin(theta1)**2

gtt= -(1.d0 - 2.d0*M*r/S)
gtf= -2.d0*a*M*r*sin(theta)**2/S
gff= B*sin(theta)**2/S
grr= S/Del
gthetatheta= S

gtt1= -(1.d0 - 2.d0*M*r1/S1)
gtf1= -2.d0* a *M* r1 *sin(theta1)**2/S1
gff1= B1*sin(theta1)**2/S1
grr1= S1/Del1
gthetatheta1= S1

omega=-(gtf+ lo*gtt)/(gff+lo*gtf)
omega1=-(gtf1+ lo*gtt1)/(gff1+lo*gtf1)

ut=1.d0/sqrt(-gtt - 2.d0*omega*gtf -omega **2* gff)
utin =1.d0/sqrt(-gtt1 - 2.d0*omega1*gtf1 -omega1 **2* gff1)
funcd =(ut*(1.d0 - lo*omega)/utin /(1.d0 - lo*omega1)) -1.d0
end function§ ¦

Solving equations of Motion

After the definition of the parameters and initial conditions of the problem (in inirel.txt) we are
ready to run program bh.x, which solves the equations of motion. The differential equations of mo-
tion are written in file ode.f90. To integrate the differential equations we have implemented a 4th

order adaptive stepsize Runge-Kutta scheme. The particles’ initial conditions (iniparticles.dat)
are read in by subroutine particleini.f90. The output is written in rtheta.dat.

¨ ¥
! Last change: DD 13 Aug 2007 2:53 pm
program bh
implicit none

integer :: nvar ,nok ,nbad ,kmax ,nmax
parameter (nvar=8,kmax =200, nmax =8)
double precision :: t,Ic ,ro
double precision :: B1,S1 ,At1 ,Af1 ,D1
double precision :: B,S,At,Af,D,mu
double precision :: Afr1 ,Aftheta1 ,Atr1 ,Attheta1 ,Afr ,Aftheta ,Atr ,Attheta
double precision :: eps ,h1,hmin ,tp(kmax)
double precision :: tini ,tend ,t1 ,t2,dt12
double precision ,dimension(nvar)::rr,uu,uustart ,rrstart ,dydt
integer :: i,k,w,nstp ,numdt ,numpart
double precision ,allocatable ,dimension (:,:,:)::yp ,yy
double precision ,allocatable ,dimension (:,:)::rstart ,ustart ,ystart
double precision ,allocatable ,dimension (:,:)::r,u,y
double precision ,allocatable ,dimension (:)::L,e,q,mpart ,delta
double precision ,allocatable ,dimension (:)::L1,e1,delta1
double precision ::L2 ,e2,delta2 ,B2,S2 ,D2
double precision ::Veffect ,alphaeff ,betaeff ,gammaeff

INTEGER :: i3 ,i4 ,ierr1 ,ierr2 ,ierr3 ,i1

double precision ::mb ,a,Bo

double precision ,PARAMETER ::Gcgs =6.6726d-8,pi =3.14159265359d0 ,&
&ccgs =2.99792458 d10 , c=1.0d0,G=1.0d0 ,m=1.0d0
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LOGICAL ::cgsi ,cgso ,le=.true.,inwards ,dipole ,complete
CHARACTER (132) ::FILE=’rtheta.dat’,scratch=’scratch2.txt’

external rkqs ,ode ,magnetize ,uniformB

call open(i3,file ,1, ’unknown ’)

! Integration boundaries and initial values:
call open(i1,’numofparticles.dat’,1,’unknown ’)
read(i1 ,*),numpart
close(i1)
print*,"info:ÃfileÃ(numofparticles.dat)ÃwasÃreadÃsuccessfully"

! Deallocate (rrstart ,uustart ,LL ,ee ,Lend ,eend ,stat=ierr)
Allocate(q(numpart),mpart(numpart),L(numpart),e(numpart),delta&
&( numpart),delta1(numpart),L1(numpart),e1(numpart),Carter1&
&( numpart),Carter(numpart),stat=ierr1)
Allocate(rstart(numpart ,nvar /2),ustart(numpart ,nvar /2),ystart&
&(numpart ,nvar),yp(numpart ,nmax ,kmax),stat=ierr2)
Allocate(r(numpart ,nvar /2),u(numpart ,nvar /2) ,&

&y(numpart ,nvar),stat=ierr3)

if ((ierr1 .eq. 0).and.(ierr2 .eq. 0).and.( ierr3 .eq. 0)) &
&print*,"info:ÃarraysÃhaveÃbeenÃallocatedÃsuccessfully"

if ((ierr1 .ne. 0).or.(ierr2 .ne. 0).or.(ierr3 .ne. 0)) &
&stop "err:ÃcannotÃallocateÃmemory"

call rdstrt(nvar ,h1,hmin ,eps ,numdt ,tini ,tend ,mb ,a,&
&inwards ,Bo,dipole ,Ic ,ro ,complete)

print*,"info:rdstrtÃfileÃwasÃreadÃsuccessfully"

call particleini(numpart ,q,mpart ,rstart ,ustart ,L,e,Ic,ro,Bo ,a,&
&dipole ,complete)

print*,"info:particleiniÃfileÃwasÃreadÃsuccessfully"

dt12=abs(tend -tini)/numdt

t1=tini
t2=tini

do k=1,numpart
do i=1,nvar/2

ystart(k,i)=ustart(k,i)
enddo

!Inwards L-E
if (inwards) then

ystart(k,2)=-ystart(k,2)
endif

do i=1+ nvar/2,nvar
ystart(k,i)=rstart(k,i-nvar /2)

enddo

do i=1,nvar
y(k,i) = ystart(k,i)

enddo
enddo
print*,"info:Ãinit.f90ÃreadÃsuccessfully"

do w=0,numdt
t1=t2
t2=w*dt12

do k=1,numpart

if (dipole) then
call odeint(nstp ,y,tp ,yp,nvar ,&

&numpart ,k,t1 ,t2,eps ,h1,hmin ,nok ,nbad ,ode ,rkqs ,&
&a,q,mpart ,At ,Af,Bo,magnetize ,Ic,ro,complete)

else
call odeint(nstp ,y,tp ,yp,nvar ,numpart ,k,t1,t2 ,&

&eps ,h1,hmin ,nok ,nbad ,ode ,rkqs ,&
&a,q,mpart ,At,Af,Bo,uniformB ,Ic,ro ,complete)
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endif

do i=1,nvar/2
rr(i)=y(k,i+nvar /2)
uu(i)=y(k,i)

enddo
D=rr(2) **2+a**2 -2.d0*m*rr(2)
S=rr(2) **2+a**2* cos(rr(3))**2
B=(rr(2) **2+a**2)**2-D*a**2* sin(rr(3))**2
if (dipole) then

call magnetize(Ic ,ro ,rr,uu,Bo,a,D,S,B,At ,Af ,Afr ,Aftheta ,Atr ,&
&Attheta ,complete)

else
call uniformB(Ic,ro,rr ,uu ,Bo,a,D,S,B,At,Af,Afr ,Aftheta ,Atr ,&

&Attheta ,complete)
endif

do i=1,nvar/2
u(k,i)=y(k,i)

enddo

do i=1+ nvar/2, nvar
r(k,i-nvar /2)=y(k,i)

enddo

print ’(10d15.7)’,t2,y(k,6),y(k,7),y(k,8),L2+q(k)/mpart(k)*Af ,&
&e2-q(k)/mpart(k)*At,delta2

write(i3 ,’(13d23 .15)’)q(k),mpart(k),t2,y(k,5),y(k,6),y(k,7) ,&
&y(k,8),y(k,1),y(k,2),y(k,3),y(k,4),L(k),e(k)

do i=1,nvar/2
u(k,i)=y(k,i)

enddo

do i=1+ nvar/2, nvar
r(k,i-nvar /2)=y(k,i)

enddo

enddo
enddo

close(i3)
call open(i4 ,scratch ,1, ’unknown ’)
write(i4 ,*) numdt
close(i4)

print*,"info:ÃprogramÃfinished"
print*,’***ÃInfo’
print*,’ÃÃÃÃÃÃÃÃÃÃÃk’,’ÃÃÃÃÃÃeÃÃ ÃÃÃÃÃÃÃÃ ÃÃÃÃÃÃÃÃ ’,&

&’ÃÃLÃÃÃÃÃ ÃÃÃÃÃÃÃÃ ’,’ÃÃÃÃÃ Delta ’
do k=1,numpart

D1=rstart(k,2) **2+a**2-2.d0*m*rstart(k,2)
S1=rstart(k,2) **2+a**2* cos(rstart(k,3))**2
B1=( rstart(k,2) **2+a**2)**2-D1*a**2* sin(rstart(k,3))**2

do i=1,nvar/2
rrstart(i)=rstart(k,i)
uustart(i)=ustart(k,i)

enddo

if (dipole) then
call magnetize(Ic ,ro,rrstart ,uustart ,Bo,a,D1,S1,B1,At1 ,Af1 ,&

&Afr1 ,Aftheta1 ,Atr1 ,Attheta1 ,complete)
else
call uniformB(Ic ,ro,rrstart ,uustart ,Bo,a,D1 ,S1,B1 ,&

&At1 ,Af1 ,Afr1 ,Aftheta1 ,Atr1 ,Attheta1 ,complete)
endif

L1(k)=B1/S1*sin(rstart(k,3))**2* ustart(k,4) - 2.d0*m*a*rstart(k,2)&
&/S1* sin(rstart(k,3))**2* ustart(k,1)

e1(k)=(1.d0- 2.d0*m*rstart(k,2)/S1)*ustart(k,1) + 2.d0*a*m*&
&rstart(k,2)/S1*sin(rstart(k,3))**2* ustart(k,4)

delta1(k)=-(e1(k))*ustart(k,1)+(L1(k))*ustart(k,4)+&
&S1*ustart(k,2) **2/D1+S1*ustart(k,3) **2
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L1(k)=L1(k)+q(k)/mpart(k)*Af1
e1(k)=e1(k)-q(k)/mpart(k)*At1

D=r(k,2) **2+a**2 -2.d0*m*r(k,2)
S=r(k,2) **2+a**2* cos(r(k,3))**2
B=(r(k,2) **2+a**2)**2-D*a**2* sin(r(k,3))**2

do i=1,nvar/2
rr(i)=r(k,i)
uu(i)=u(k,i)

enddo

if (dipole) then
call magnetize(Ic ,ro,rr,uu,Bo ,a,D,S,B,At,Af,Afr ,Aftheta ,&

&Atr ,Attheta ,complete)
else
call uniformB(Ic ,ro,rr,uu ,Bo ,a,D,S,B,At,Af,Afr ,&

&Aftheta ,Atr ,Attheta ,complete)
endif

L(k)=B/S*sin(r(k,3))**2*u(k,4) - 2.d0*m*a*r(k,2)/&
&S*sin(r(k,3))**2*u(k,1)!+q(k)/mpart(k)*Af

e(k)=(1.d0 -2.d0*m*r(k,2)/S)*u(k,1)+2.d0*a*m*r(k,2)/&
&S*sin(r(k,3))**2*u(k,4)!-q(k)/mpart(k)*At

delta(k)=-(e(k))*u(k,1)+(L(k))*u(k,4)+S*u(k,2) **2/D+S*u(k,3) **2

L(k)=L(k) + q(k)/mpart(k)*Af
e(k)=e(k) - q(k)/mpart(k)*At

print ’(I,2e22.14,f22.14,e22 .14)’,k,e1(k),L1(k),delta1(k)

print ’(A,2e22.14,f22.14,e22 .14)’,’ÃÃÃÃÃÃÃÃÃ’,e(k),L(k),delta(k)

enddo

Deallocate(L,e,L1 ,e1,delta ,delta1 ,stat=ierr1)
Deallocate(yp ,ystart ,rstart ,ustart ,stat=ierr2)
Deallocate(y,r,u,q,mpart ,stat=ierr3)
if ((ierr1 .eq. 0).and.(ierr2 .eq. 0).and.( ierr3 .eq. 0)) &

&print*,"info:ÃmemoryÃdeallocated"
if ((ierr1 .ne. 0).or.(ierr2 .ne. 0).or.(ierr3 .ne. 0)) &

&stop "err:ÃcannotÃdeallocateÃmemory"
stop
end§ ¦
The following subroutine is responsible for the inputting of the initial conditions and parameters.
It also defines the initial velocity components when initial angular momentum and energy is given.

¨ ¥
subroutine particleini(numpart ,q,mpart ,rrstart ,uustart ,LL ,ee ,Ic,ro ,&
&Bo,a,dipole ,complete)
implicit none
INTEGER ::i1,i2,i
integer ::numdt ,numpart

double precision ,intent(out),DIMENSION(numpart ,4)::rrstart ,uustart
double precision ,intent(out),dimension(numpart)::LL,ee,q,mpart
double precision , intent(in)::Ic,ro,Bo,a
double precision ::L,E,At,Af,Afr ,Aftheta ,Atr ,Attheta ,D,S,B,m,delta
double precision , dimension (4)::r,u
integer ::j
parameter (m=1.d0)
logical ::dipole ,complete
external magnetize , uniformB

call open(i2,’iniparticles.dat’,1,’unknown ’)

do i=1,numpart
READ(i2 ,*) numpart ,q(i),mpart(i)
READ(i2 ,*) rrstart(i,1),rrstart(i,2)
Read(i2 ,*) rrstart(i,3),rrstart(i,4)
!Read(i2 ,*) e(i),uustart(i ,3) ,L(i)
Read(i2 ,*) uustart(i,1),uustart(i,2),uustart(i,3),uustart(i,4)
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! Read(i2 ,*) E,uustart(i ,3) ,L
! L(i)=0. d0
! e(i)=0. d0

!Read(i2 ,*) uustart(i ,3) ,uustart(i ,4)

do j=1,4
r(j)=rrstart(i,j)
u(j)=uustart(i,j)

enddo

D=r(2) **2+a**2 -2.d0*m*r(2)
S=r(2) **2+a**2* cos(r(3))**2
B=(r(2) **2+a**2)**2-D*a**2* sin(r(3))**2

if (dipole) then
call magnetize(Ic ,ro ,r,u,Bo,a,D,S,B,At,Af,Afr ,Aftheta ,Atr ,&

&Attheta ,complete)
else
call uniformB(Ic,ro ,r,u,Bo ,a,D,S,B,At,Af,Afr ,Aftheta ,Atr ,&

&Attheta ,complete)
endif

LL(i)=0.d0
ee(i)=0.d0
enddo
print ’(4d22 .14)’,uustart (1,1),uustart (1,2),uustart (1,3),uustart (1,4)
close(i2)
end subroutine§ ¦
Subroutine ode.f90 contains all the differential equations of motion. The numerical integration of
these equations yields the equations of motion for charged particles.

¨ ¥
subroutine ode(x,y,dydx ,a,q,mpart ,At ,Af ,Bo,magnetic ,Ic,ro,complete)
!use iface
!use magneticfield
implicit NONE

double precision ,INTENT(IN)::x
double precision ,DIMENSION (8),INTENT(IN)::y
double precision ,DIMENSION (8),intent(OUT)::dydx
double precision ,DIMENSION (4)::r,u
double precision :: G,m,r2,rtheta ,f2 ,ft,t2,theta2 ,e,L,D,S,B
double precision ,intent(inout):: At ,Af,Ic,ro
double precision ::Afr ,Aftheta ,Atr ,Attheta ,part
double precision ,intent(in):: a,q,mpart ,Bo
double precision ::tr ,ttheta ,fr,thetaf
parameter (G=1.0d0,m=1.0d0)
integer ::i
logical :: complete
external magnetic

do i=1,4
u(i)=y(i)

end do

do i=5,8
r(i-4)=y(i)

end do

D=r(2) **2+a**2 -2.d0*m*r(2)
S=r(2) **2+a**2* cos(r(3))**2
B=(r(2) **2+a**2)**2-D*a**2* sin(r(3))**2

call magnetic(Ic,ro,r,u,Bo ,a,D,S,B,At ,Af,Afr ,Aftheta ,Atr ,Attheta ,complete)

tr=-2.d0*m*(r(2)**2-a**2* cos(r(3))**2)*(r(2) **2+a**2)/S**2/D
fr=-2.d0*a*m*sin(r(3))**2*((a**2-r(2) **2)/S/D-2.d0*r(2) **2*(r(2) **2+&

&a**2)/S**2/D)
ttheta =4.d0*m*r(2)*a**2* sin(r(3))*cos(r(3))/S**2
thetaf =-4.d0*m*a**3*r(2)*sin(r(3))**3* cos(r(3))/S**2

dydx (1)=tr*u(1)*u(2)+fr*u(4)*u(2)+ttheta*u(1)*u(3)+thetaf*u(3)*u(4)&
&+q/mpart *(2.d0*m*r(2)*a/S/D*(Afr*u(2)+Aftheta*u(3))&
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&+B/S/D*(Atr*u(2)+Attheta*u(3)))

r2=(m*(r(2)**2 -a**2 *cos(r(3))**2)-r(2)*a**2 *sin(r(3))**2)/D/S
rtheta =2.d0*a**2 *sin(r(3))*cos(r(3))/S
theta2=r(2)*D/S
t2=-m*D/S**3 *(r(2) **2 -a**2 *cos(r(3))**2)
f2=D*sin(r(3))**2 /S**3*(r(2)**5 +2.d0*r(2)**3 *a**2 *cos(r(3))**2&

&-m*r(2)**2 *a**2 *sin(r(3))**2+&
&(m-r(2))*a**4 *sin(r(3))**2 *cos(r(3))**2 +r(2)*a**4 *cos(r(3))**2)

ft=2.d0*D*a*m*sin(r(3))**2 *(r(2)**2 -a**2 *cos(r(3))**2)/S**3

!r derivatives
dydx (2)=r2*u(2) **2+ rtheta*u(2)*u(3)+theta2*u(3) **2+t2*u(1) **2+&

&f2*u(4) **2+ft*u(4)*u(1)+&
&q/mpart*D/S*(Afr*u(4)+Atr*u(1))

r2=-a**2 *sin(r(3))*cos(r(3))/S/D
rtheta =-2.d0*r(2)/S
theta2=a**2 *sin(r(3))*cos(r(3))/S
ft=-4.d0*m*r(2)*a*(r(2)**2 +a**2)*sin(r(3))*cos(r(3))/S**3
t2=2.d0*m*r(2)*a**2 /S**3 *sin(r(3))*cos(r(3))
f2=sin(r(3))*cos(r(3))/S**3 *((r(2) **2+a**2) **3 -&

&(r(2)**2 +a**2 +S)*D*a**2 *sin(r(3))**2)

!theta derivatives
dydx (3)=r2*u(2) **2+ rtheta*u(2)*u(3)+theta2*u(3) **2+&

&ft*u(4)*u(1)+t2*u(1) **2+f2*u(4) **2&
&+q/mpart/S*( Aftheta*u(4)+Attheta*u(1))

tr=(2.d0*a*m*(-r(2)**2 + a**2 *cos(r(3))**2))/(D*S**2)
ttheta =(4.d0*a*m*r(2)*cos(r(3))/sin(r(3)))/S**2
fr=-2.d0*(r(2)/S-a**2* sin(r(3))**2*(r(2)/D/S+m*(r(2) **2&

&-a**2* cos(r(3))**2)/D/S**2))
thetaf =-2.d0*cos(r(3))*(1.d0/sin(r(3))+2.d0*a**2*m*r(2)*sin(r(3))/S**2)
dydx (4)=tr*u(1)*u(2)+ttheta*u(1)*u(3)+fr*u(2)*u(4)+thetaf*u(3)*u(4)+&

&q/mpart *(2.d0*m*r(2)*a/S/D*(Atr*u(2)+Attheta*u(3))-&
&(1.d0 -2.d0*m*r(2)/S)/sin(r(3))**2/D*(Afr*u(2)+Aftheta*u(3)))

! t
dydx (5)=u(1)
! r
dydx (6)=u(2)
! theta
dydx (7)=u(3)
! phi
dydx (8)=u(4)
return
end subroutine§ ¦
The uniform and dipolar magnetic fields are defined in files uniformB.f90 and magnetize.f90
respectively. The input variables are the ring current Ic (only for the dipole magnetic field), the
distance of the ring current from the black hole ro (only for the dipole magnetic field), the particle’s
position r and velocity u, the magnetic field strength Bo (only for the uniform magnetic field), the
black hole’s rotation a and the quantities ∆, Σ, B. These subroutines return the components of
the vector potential and its derivatives At, Aφ, At,r, At,θ, Aφ,r, Aφ,θ.

¨ ¥
subroutine uniformB(Ic ,ro,r,u,Bo,a,D,S,B,At,Af ,Afr ,Aftheta ,Atr ,Attheta)
implicit none
double precision ,DIMENSION (4),intent(in)::r,u
double precision ,intent(in):: D,S,B,Ic ,ro
double precision ,intent(out)::At,Af
double precision ,intent(out)::Afr ,Aftheta ,Atr ,Attheta
double precision ,intent(in):: a,Bo
double precision ::m,part
parameter (m=1.0d0)

At=-a*Bo*(1.d0 -m*r(2)/S*(2.d0-sin(r(3))**2))
Atr=-a*Bo*(-m*(2.d0-sin(r(3))**2)/S+2.d0*m*r(2) **2*(2.d0 -&
&sin(r(3))**2)/S**2)
Attheta=-a*Bo*(-4.d0*m*r(2)*a**2* cos(r(3))*sin(r(3))/S**2&

&+2.d0*sin(r(3))*cos(r(3))*m*r(2)/S+&
&2.d0*m*r(2)*sin(r(3))**3*a**2* cos(r(3))/S**2)
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Af=Bo*sin(r(3))**2/2. d0/S*(B-4.d0*m*a**2*r(2))
Afr=-Bo*sin(r(3))**2*r(2)/S**2*(B-4.d0*m*a**2*r(2))+&

&Bo*sin(r(3))**2/S*(2.d0*r(2)*(r(2) **2+a**2) -(-m+&
&r(2))*a**2* sin(r(3))**2-2.d0*m*a**2)

part=(B-4.d0*m*a**2*r(2))
Aftheta=Bo*sin(r(3))*cos(r(3))/S*part+Bo*sin(r(3))**3*&

&a**2* cos(r(3))/S**2* part&
&-Bo*sin(r(3))**3*D*a**2* cos(r(3))/S

return
end subroutine§ ¦

¨ ¥
subroutine magnetize(Ic ,ro ,r,u,Bo,a,D,S,B,At,Af,Afr ,Aftheta ,Atr ,&

&Attheta ,complete)
implicit none
double precision ,DIMENSION (4),intent(in)::r,u
double precision ,intent(in):: D,S,B
double precision ,intent(out)::At,Af
double precision ,intent(out)::Afr ,Aftheta ,Atr ,Attheta
double precision ,intent(in):: a,Bo,Ic ,ro
double precision ::gamma ,beta ,alpha ,pi
double precision ::m
parameter (m=1.0d0,pi =3.14159265359 d0)
logical :: complete

gamma=dsqrt(m**2-a**2)

if (complete) then
if (r(2).gt.ro) then
beta=-3.d0*Ic/8.d0/(gamma **2)/ro*(ro*(ro**2+a**2) -2.d0*a**2*m)

At=2.d0*a*beta/S*((r(2)*(r(2)-m)&
&+(a**2-m*r(2))*cos(r(3))**2) /2.d0/gamma*dlog((r(2)-m+&
&gamma)/(r(2)-m-gamma))-(r(2)-m*cos(r(3))**2))

Af=(beta*sin(r(3))**2/S)*((r(2) - m)*a**2* cos(r(3))**2 +&
&r(2)*(r(2)**2 + m*r(2) +2.d0*a**2) - (r(2)*(r(2)**3 -&
&2.d0*m*a**2 + a**2*r(2))&
&+D*a**2* cos(r(3))**2) /2.d0/gamma*dlog((r(2) - m + gamma)/&
&(r(2) - m - gamma)))

Atr=1.d0/(r(2) **2+a**2* cos(r(3))**2) *2.d0*a*beta *(-1.d0+&
&((-gamma -m+r(2))*(1.d0/(-gamma -m+r(2))-(gamma -m+&
&r(2))/(-gamma -m+r(2))**2)*(r(2)*(-m+r(2))+(a**2-m*r(2))*&
&cos(r(3))**2))/(2.d0*gamma*(gamma -m+r(2)))+((-m+2.d0*r(2) -&
&m*cos(r(3))**2)*log((gamma -&
&m+r(2))/(-gamma -m+r(2))))/(2.d0*gamma)) -(4.d0*a*beta*r(2)*(-r(2)+&
&m*cos(r(3))**2+((r(2)*(-m+r(2))+(a**2-m*r(2))*cos(r(3))**2)*&
&log((gamma -m+r(2))/(-gamma -m+r(2))))/(2.d0*gamma)))/(r(2) **2+&
&a**2* cos(r(3))**2) **2

Attheta =(4.d0*a**3* beta*cos(r(3))*(-r(2)+m*cos(r(3))**2+((r(2)*&
&(-m+r(2))+(a**2-m*r(2))*cos(r(3))**2)*log((gamma -m+&
&r(2))/(-gamma -m+r(2))))/&
&(2.d0*gamma))*sin(r(3)))/(r(2) **2+a**2* cos(r(3))**2) **2+&
&1.d0/(r(2) **2+a**2* cos(r(3))**2) *2.d0*a*beta *(-2.d0*m*&
&cos(r(3))*sin(r(3)) -((a**2-m*r(2))*cos(r(3))*log((gamma -m+&
&r(2))/(-gamma -m+r(2)))*sin(r(3)))/gamma)

Afr=1.d0/(r(2) **2+a**2* cos(r(3))**2)*beta *(2.d0*a**2+m*r(2)+r(2) **2&
&+r(2)*(m+2.d0*r(2))+a**2* cos(r(3))**2+(( -gamma -m+r(2))*(1.d0/&
&(-gamma -m+r(2)) -(gamma -m+r(2))/(-gamma -m+r(2))**2)*(-r(2)*(-2.d0*&
&a**2*m+a**2*r(2)+r(2) **3)+&
&a**2*( -a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2))/(2.d0*gamma *(gamma -m+&
&r(2)))+((2.d0*a**2*m-a**2*r(2)-r(2)**3-r(2)*(a**2+3. d0*r(2) **2)+&
&a**2*(2. d0*m-2.d0*r(2))*cos(r(3))**2)*log((gamma -m+r(2))/&
&(-gamma -m+r(2))))/(2.d0*gamma))*sin(r(3))**2 -(2.d0*beta*r(2)*&
&(r(2) *(2.d0*a**2+m*r(2)+r(2) **2)+&
&a**2*( -m+r(2))*cos(r(3))**2+1. d0/(2.d0*gamma)*(-r(2)*(-2.d0*a**2*m+&
&a**2*r(2)+r(2) **3)+&
&a**2*( -a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2)*log((gamma -m+r(2))/&
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&(-gamma -&
&m+r(2))))*sin(r(3))**2)/(r(2) **2+a**2* cos(r(3))**2) **2

Aftheta =1.d0/S*2.d0*beta*cos(r(3))*(r(2) *(2.d0*a**2+m*r(2)+r(2) **2)+&
&a**2*(-m+r(2))*cos(r(3))**2+(( -r(2)*(-2.d0*a**2*m+a**2*r(2)+r(2) **3)+&
&a**2*(-a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2)*log((gamma -m+r(2))/&
&(-gamma -m+r(2))))/(2.d0*gamma))*sin(r(3))+(2.d0*a**2* beta*cos(r(3))&
&*(r(2) *(2.d0*a**2+&
&m*r(2)+r(2) **2)+a**2*( -m+r(2))*cos(r(3))**2+1. d0/&
&(2.d0*gamma)*(-r(2)*(-2.d0*a**2*m+a**2*r(2)+r(2) **3)+a**2*( -a**2+&
&2.d0*m*r(2)-r(2) **2)*cos(r(3))**2)*log((gamma -m+r(2))/(-gamma -m+&
&r(2))))*sin(r(3))**3)/&
&(r(2) **2+a**2* cos(r(3))**2) **2+1. d0/(r(2) **2+a**2* cos(r(3))**2)*beta*&
&sin(r(3))**2*( -2.d0*a**2*( -m+r(2))*cos(r(3))*sin(r(3))-(a**2*( -a**2+&
&2.d0*m*r(2)-r(2) **2)*cos(r(3))*log((gamma -m+r(2))/(-gamma -m+r(2)))*&
&sin(r(3)))/gamma)

else if (r(2) .lt. ro) then
alpha =3.d0*Ic/8.d0/ro/gamma *((ro*(ro+m)+2.d0*a**2) -&

&1.d0/2.d0/gamma*log((ro-m+gamma)/(ro -m-gamma))*&
&(ro*(ro**2+a**2) -2.d0*m*a**2))

At=2.d0*a*alpha/S/gamma *(r(2)**2-m*r(2)-m*r(2)*cos(r(3))**2+&
&a**2* cos(r(3))**2)+a*Ic/ro

Af=alpha*sin(r(3))**2/S/gamma*(D*(-2.d0*a**2* cos(r(3))**2+S)-&
&2.d0*r(2)*(r(2) **2+a**2)*(r(2)-m))

Atr =(2.d0*a*alpha *(2.d0*r(2)-m*(1.d0+cos(r(3))**2)))/&
&(gamma *(r(2) **2+a**2* cos(r(3))**2)) -(4.d0*a*alpha*r(2)*&
&(r(2) **2+a**2* cos(r(3))**2-m*r(2) *(1.d0+cos(r(3))**2)))/&
&(gamma *(r(2) **2+a**2* cos(r(3))**2) **2)

Attheta =(4.d0*a**3* alpha*cos(r(3))*&
&(r(2) **2+a**2* cos(r(3))**2-m*r(2) *(1.d0+cos(r(3))**2))*&
&sin(r(3)))/(gamma *(r(2) **2+a**2* cos(r(3))**2) **2)+&
&(2.d0*a*alpha *(-2.d0*a**2* cos(r(3))*sin(r(3))+&
&2.d0*m*r(2)*cos(r(3))*sin(r(3))))/(gamma *(r(2) **2+&
&a**2* cos(r(3))**2))

Afr=(alpha *(-4.d0*r(2) **2*( -m+r(2)) -2.d0*r(2)*(a**2+r(2) **2) -&
&2.d0*(-m+r(2))*(a**2+r(2) **2) +2.d0*r(2)*(a**2 -2.d0*m*r(2)+&
&r(2) **2) +(-2.d0*m+2.d0*r(2))*(r(2)**2-a**2* cos(r(3))**2))*&
&sin(r(3))**2)/( gamma*(r(2) **2+a**2* cos(r(3))**2)) -(2.d0*alpha *&
&r(2)*(-2.d0*r(2)*(-m+r(2))*(a**2+r(2) **2)+(a**2-2.d0*m*r(2)+&
&r(2) **2)*(r(2)**2-a**2* cos(r(3))**2))*sin(r(3))**2)/(gamma*&
&(r(2) **2+a**2* cos(r(3))**2) **2)

Aftheta =(2.d0*alpha*cos(r(3))*(-2.d0*r(2)*(-m+r(2))*&
&(a**2+r(2) **2)+(a**2-2.d0*m*r(2)+r(2) **2)*(r(2)**2-&
&a**2* cos(r(3))**2))*sin(r(3)))/(gamma *(r(2) **2+&
&a**2* cos(r(3))**2))+(2.d0*a**2* alpha*(a**2 -2.d0*m*r(2)+&
&r(2) **2)*cos(r(3))*sin(r(3))**3)/( gamma*(r(2) **2+&
&a**2* cos(r(3))**2))+(2.d0*a**2* alpha*cos(r(3))*(-2.d0*r(2)*(-m+&
&r(2))*(a**2+r(2) **2)+(a**2 -2.d0*m*r(2)+r(2) **2)*(r(2)**2-&
&a**2* cos(r(3))**2))*sin(r(3))**3)/( gamma*(r(2) **2+&
&a**2* cos(r(3))**2) **2)

endif
else

beta=-3.d0*Ic/8.d0/(gamma **2)/ro*(ro*(ro**2+a**2) -2.d0*a**2*m)

At=2.d0*a*beta/S*((r(2)*(r(2)-m)&
&+(a**2-m*r(2))*cos(r(3))**2) /2.d0/gamma*dlog((r(2)-m+&
&gamma)/(r(2)-m-gamma)) -(r(2)-m*cos(r(3))**2))

Af=(beta*sin(r(3))**2/S)*((r(2) - m)*a**2* cos(r(3))**2 +&
&r(2)*(r(2)**2 + m*r(2) +2.d0*a**2) - (r(2)*(r(2)**3 -&
&2.d0*m*a**2 + a**2*r(2))+D*a**2* cos(r(3))**2) /2.d0/gamma*&
&dlog((r(2) - m + gamma)/(r(2) - m - gamma)))

Atr=1.d0/(r(2) **2+a**2* cos(r(3))**2) *2.d0*a*beta *(-1.d0+&
&((-gamma -m+r(2))*(1.d0/(-gamma -m+r(2))-(gamma -m+&
&r(2))/(-gamma -m+r(2))**2)*(r(2)*(-m+r(2))+(a**2-m*r(2))*&
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&cos(r(3))**2))/(2.d0*gamma*(gamma -m+r(2)))+((-m+2.d0*r(2) -&
&m*cos(r(3))**2)*log((gamma -m+r(2))/(-gamma -m+r(2))))/(2.d0*&
&gamma)) -(4.d0*a*beta*r(2)*(-r(2)+m*cos(r(3))**2+((r(2)*(-m+&
&r(2))+(a**2-m*r(2))*cos(r(3))**2)*&
&log((gamma -m+r(2))/(-gamma -m+r(2))))/(2.d0*gamma)))/(r(2) **2+&
&a**2* cos(r(3))**2) **2

Attheta =(4.d0*a**3* beta*cos(r(3))*(-r(2)+m*cos(r(3))**2+((r(2)*&
&(-m+r(2))+(a**2-m*r(2))*cos(r(3))**2)*log((gamma -m+&
&r(2))/(-gamma -m+r(2))))/(2.d0*gamma))*sin(r(3)))/(r(2) **2+&
&a**2* cos(r(3))**2) **2+1. d0/(r(2) **2+a**2* cos(r(3))**2) *2.d0&
&*a*beta *(-2.d0*m*cos(r(3))*sin(r(3)) -&
&((a**2-m*r(2))*cos(r(3))*log((gamma -m+r(2))/(-gamma -m+&
&r(2)))*sin(r(3)))/gamma)

Afr=1.d0/(r(2) **2+a**2* cos(r(3))**2)*beta *(2.d0*a**2+m*r(2)+r(2) **2&
&+r(2)*(m+2.d0*r(2))+&
&a**2* cos(r(3))**2+(( -gamma -m+r(2))*(1.d0/(-gamma -m+r(2))-&
&(gamma -m+r(2))/(-gamma -m+r(2))**2)*(-r(2)*(-2.d0*a**2*m+a**2*r(2)&
&+r(2) **3)+&
&a**2*( -a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2))/(2.d0*gamma *&
&(gamma -m+&
&r(2)))+((2.d0*a**2*m-a**2*r(2)-r(2)**3-r(2)*(a**2+3. d0*r(2) **2)+&
&a**2*(2. d0*m-2.d0*r(2))*cos(r(3))**2)*log((gamma -m+r(2))/&
&(-gamma -m+r(2))))/(2.d0*gamma))*sin(r(3))**2 -(2.d0*beta*r(2)*&
&(r(2) *(2.d0*a**2+m*r(2)+r(2) **2)+&
&a**2*( -m+r(2))*cos(r(3))**2+1. d0/(2.d0*gamma)*(-r(2)*(-2.d0*a**2*m&
&+a**2*r(2)+r(2) **3)+&
&a**2*( -a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2)*log((gamma -m+r(2))/&
&(-gamma -&
&m+r(2))))*sin(r(3))**2)/(r(2) **2+a**2* cos(r(3))**2) **2

Aftheta =1.d0/S*2.d0*beta*cos(r(3))*(r(2) *(2.d0*a**2+m*r(2)+r(2) **2)+&
&a**2*( -m+r(2))*cos(r(3))**2+(( -r(2)*(-2.d0*a**2*m+a**2*r(2)+r(2) **3)+&
&a**2*( -a**2+2. d0*m*r(2)-r(2) **2)*cos(r(3))**2)*&
&log((gamma -m+r(2))/(-gamma -&
&m+r(2))))/(2.d0*gamma))*sin(r(3))+(2.d0*a**2* beta*cos(r(3))*&
&(r(2) *(2.d0*a**2+m*r(2)+r(2) **2)+a**2*(-m+r(2))*cos(r(3))**2+1. d0/&
&(2.d0*gamma)*(-r(2)*(-2.d0*a**2*m+a**2*r(2)+r(2) **3)+a**2*( -a**2+&
&2.d0*m*r(2)-r(2) **2)*cos(r(3))**2)*log((gamma -m+r(2))/(-gamma -m+&
&r(2))))*sin(r(3))**3)/(r(2) **2+a**2* cos(r(3))**2) **2+1. d0/(r(2) **2+&
&a**2* cos(r(3))**2)*beta*sin(r(3))**2*( -2.d0*a**2*(-m+r(2))*cos(r(3))&
&*sin(r(3))-(a**2*( -a**2+&
&2.d0*m*r(2)-r(2) **2)*cos(r(3))*log((gamma -m+r(2))/(-gamma -m+r(2)))*&
&sin(r(3)))/gamma)

endif
return
end subroutine§ ¦
We also provide some useful routines which are used to perform simple actions, such as:

• Remove comments containing triple stars in the file inirel.txt.
¨ ¥
!Removes lines beginning with a * in ’files ’= iunit and save
!values in file ldums.
subroutine cstrip(iunit ,files ,ldums)
CHARACTER *180:: text
CHARACTER *(*)::files
LOGICAL ::yn
INTEGER ::i,iunit ,ldums

REWIND ldums
call open (iunit ,files ,1,’old’)
do

read (iunit ,’(a)’,END =900) text
if (text (1:1).ne.’*’) then

write (ldums ,’(a)’) text
END if

END do

900 rewind(ldums)
CLOSE(iunit)

end subroutine§ ¦
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• Open files and assign them a logical unit number.

¨ ¥
!This subroutine opens a file.
subroutine open(iunit ,FILE ,irecw ,stat)
!irecw =0 unformatted sequential file
!irecw =1 formatted sequential file
!irecw >1 direct access file. irecw is record length in words
!status (’old ’,’new ’,unknown ’)

INTEGER ::i,iunit ,irecw ,maxlu =30 !maxlu=the maximum number of
!logical units to be examined

LOGICAL ::yn
CHARACTER *(*)::FILE ,stat

do i=1,maxlu
inquire (i,OPENED=yn)
if (.not.yn) exit !If this logical unit is not assigned

!to a file then exit the loop
end do
iunit=i !Give iunit the value of i.
if(irecw.eq.0) then

open(iunit ,file=file ,form=’unformatted ’,status=stat)
else if(irecw.eq.1) then

open(iunit ,file=file ,form=’formatted ’,status=stat)
else if(irecw.gt.1) then

open(iunit ,file=file ,access=’direct ’,recl=irecw ,&
form=’unformatted ’,status=stat)

else
stop

endif
end subroutine§ ¦

A.1.2 IDL

Creating Plots. The routine plotrel.pro reads data from files scratch.txt, scratch2.txt,
numofparticles.dat and rtheta.dat. Moreover, it plots a single-particle trajectory in 2-D space
and the effective potential of the magnetized and non-magnetized black hole. File scratch.txt
is the same as inirel.txt with the comments removed. File scratch2.txt contains the number of
steps/points of the orbits. Data are equally spaced in a given time interval. File numofparticles.dat
includes the number of particles orbits we would like to examine each time. Routine plotrel.pro
provides us with the 2-D single-particle orbits plots and effective potential plots illustrated in
Section 3.2.

¨ ¥
pro plotrel ,x,y,z;,t,r,phi ,theta ,file=file

get_lun ,ldum
openr ,ldum ,’scratch.txt’
readf ,ldum ,h1 ,hmin ,eps ,numdt
readf ,ldum ,t1 ,t2
readf ,ldum ,a,mb,Ic,ro
close ,ldum
free_lun ,ldum
print ,"info: scratch.txt file was read"
get_lun ,ldum
openr ,ldum ,’scratch2.txt’
readf ,ldum ,n
close ,ldum
free_lun ,ldum
print ,"info: scratch2.txt file was read"

get_lun ,ldum
openr ,ldum ,’numofparticles.dat’
readf ,ldum ,numpart
close ,ldum
free_lun ,ldum
print ,"info: numofparticles.dat file was read"

n=long(n);+1l ; array size in the dummy
;numpart=long(numpart)
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print ,’3-DÃprojectiveÃplots’
file=’rtheta.dat’

q=dblarr(numpart)
L=q
E=q
mpart=dindgen(numpart)
tau=dblarr(n,numpart)
t=dblarr(n,numpart)
r=dblarr(n,numpart)
phi=dblarr(n,numpart)
theta=dblarr(n,numpart)
vt=dblarr(n,numpart)
vr=dblarr(n,numpart)
vphi=dblarr(n,numpart)
vtheta=dblarr(n,numpart)

get_lun ,ldum
openr ,ldum ,file
for i=0L,n-1L do begin
for k=0,numpart -1 do begin
readf ,ldum ,qi ,mparti ,taui ,ti ,ri,thetai ,phii ,vti ,vri ,$

vthetai ,vphii ,Li,Ei
q[k]=qi
mpart[k]= mparti
tau[i,k]=taui
t[i,k]=ti
r[i,k]=ri
phi[i,k]=phii
theta[i,k]= thetai
vt[i,k]=vti
vr[i,k]=vri
vphi[i,k]= vphii
vtheta[i,k]= vthetai
L[k]=Li
E[k]=Ei

endfor
endfor
close ,ldum
free_lun ,ldum

x=dblarr(n,numpart)
y=dblarr(n,numpart)

x=sqrt(r^2+a^2)*cos(phi)
y=sqrt(r^2+a^2)*sin(phi)

rs1=1.d0 -sqrt (1.d0^2-a^2)
rs2=1.d0+sqrt (1.d0^2-a^2)

DEVICE ,RETAIN =2
ni=180
phiangle =(2.d0 * !dpi / double(ni -1)) * DINDGEN(ni)

xin=dblarr(ni)
yin=dblarr(ni)

rin=dblarr(ni)

xrs1=dblarr(ni)
yrs1=dblarr(ni)
xrs2=dblarr(ni)
yrs2=dblarr(ni)

for i=0,ni -1 do begin
xrs1[i]=sqrt(rs1^2+a^2)*cos(phiangle[i])
yrs1[i]=sqrt(rs1^2+a^2)*sin(phiangle[i])

endfor

for i=0,ni -1 do begin
xrs2[i]=sqrt(rs2^2+a^2)*cos(phiangle[i])
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yrs2[i]=sqrt(rs2^2+a^2)*sin(phiangle[i])
endfor

rerg =2.d0
for i=0,ni -1 do begin

xin[i]=sqrt((rerg)^2+a^2)*cos(phiangle[i])
yin[i]=sqrt((rerg)^2+a^2)*sin(phiangle[i])

endfor

window ,xs=500,ys=500
range1=max(x,/absolute ,/NAN)
range2=max(y,/absolute ,/NAN)
range =[range1 ,range2]
ranges=abs(max(range ,/absolute ,/NAN))
;xr=[-ranges ,ranges]
;yr=xr
;zr=xr

timestring=’tÃ=Ã’+string(t[long(n-1) ,0],format=’(e12.4)’)

close ,ldum
free_lun ,ldum

timestring=strcompress(’!8tÃ=Ã’+string(t[n-1l,0],$
format=’(e12 .4)’)+’!8Ã[GM/c!S!E3!RÃ]’,/remove_all)

titlestring=strcompress(’!8r=’+string(r[0,0], format=’(e12 .4)’)+$
’!8,Ãa=’+string(a,format=’(e12 .4)’)+$
’!8,ÃL=’+string(L[0], format=’(e12 .4)’)+’!8,Ã$

ÃÃÃÃÃÃÃÃÃÃÃÃE=’+string(E[0], format=’(e12.4)’)+’!8,ÃI!Dc!N=’+$
string(Ic ,format=’(e21 .3)’),/remove_all);+’!8, I!Dc!$
N=’+string(Ic,format=’(e21.3)’)

name_jpgÃ=strcompress(Ic ,/ remove_all)

ÃÃÃxr=[-ranges ,ranges]
ÃÃÃyr=xr
Ãset_plot ,’ps’
Ãname=’./ di_motion.ps’

ÃDEVICE ,XSIZE=8,ÃYSIZE=8,Ã/inches ,BITS_PER_PIXEL =8,Ã$
ÃÃÃÃÃÃÃÃCOLOR=1,filename=name

ÃTVLCT ,Ã[0,255,0,0],Ã[0,0,255,0],Ã[0,0,0,255]
Ãget_lun ,ldum
Ãopenr ,ldum ,name
ÃÃÃÃplot ,x[*,0:numpart -1],y[*,0:numpart -1],xr=xr ,yr=yr,$
ÃÃÃÃÃÃÃÃ/isotropic ,xtitle=’!8x [GM/c!S!E2!R ]’,$
ÃÃÃÃÃÃÃÃytitle=’!8y [GM/c!S!E2!R ]’,charsize =1.2

ÃÃÃÃoplot ,xrs1 ,yrs1 ,color=1,linestyle =1
ÃÃÃÃoplot ,xrs2 ,yrs2 ,color=2,linestyle =1
ÃÃÃÃoplot ,xin ,yin ,color=3,linestyle =3
ÃÃÃÃxyouts ,0.5 ,0.97 , titlestring ,align =0.5 ,/ normal ,charsize =1.2
ÃÃÃÃxyouts ,0.95 ,0.93 , timestring ,align =1.0 ,/ normal ,charsize =1.2
Ãclose ,ldum
Ãfree_lun ,ldum
Ãdevice ,/close
Ãset_plot ,’x’
ÃÃÃÃplot ,x[*,0:numpart -1],y[*,0:numpart -1],xr=xr ,yr=yr,$
ÃÃÃÃÃÃÃÃÃ/isotropic ,xtitle=’!8x [GM/c!S!E2!R ]’,$
ÃÃÃÃÃÃÃÃÃytitle=’!8y [GM/c!S!E2!R ]’,charsize =1.4

ÃÃÃÃoplot ,xrs1 ,yrs1 ,color =255, linestyle =1
ÃÃÃÃoplot ,xrs2 ,yrs2 ,color =255, linestyle =1
ÃÃÃÃoplot ,xin ,yin ,color =100, linestyle =3
ÃÃÃÃxyouts ,0.5 ,0.95 , titlestring ,align =0.5 ,/ normal ,charsize =1
ÃÃÃÃxyouts ,0.95 ,0.91 , timestring ,align =1.0 ,/ normal ,charsize =1

ÃÃk=600
ÃÃr=( dindgen(k)+1.2d0*100. d0)/100. d0
ÃÃtheta1 =!dpi/2.d0
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ÃÃtheta=theta1

ÃÃq1 = -0.92972282038001278947774046315D-40
ÃÃmpart1 =0.45546909400000000000000000000D-61

ÃÃL1=L[0]

ÃÃq=q1
ÃÃmpart=mpart1
ÃÃL=L1

ÃÃS=dblarr(k)
ÃÃD=dblarr(k)
ÃÃB=dblarr(k)
ÃÃNewmanAt=dblarr(k)
ÃÃNewmanAf=dblarr(k)
ÃÃAt=dblarr(k)
ÃÃAf=dblarr(k)
ÃÃalpha=dblarr(k)
ÃÃbeta=dblarr(k)
ÃÃgamma0=dblarr(k)
ÃÃalpha1=dblarr(k)
ÃÃbeta1=dblarr(k)
ÃÃVeffect=dblarr(k)
ÃÃEn=dblarr(k)
ÃÃxy=dblarr(k)
ÃÃz=dblarr(k)
ÃÃalphano=dblarr(k)
ÃÃbetano=dblarr(k)
ÃÃgamma0no=dblarr(k)
ÃÃVeffno=dblarr(k)

ÃÃm=1.d0
ÃÃQbh=0.d0

ÃÃS=r^2+a^2*cos(theta)^2
ÃÃD=r^2+a^2-2.d0*m*r
ÃÃB=(r^2+a^2)^2-D*a^2* sin(theta)^2

ÃÃEn[*]=E[0]
ÃÃgamma=sqrt(m^2-a^2)

;ÃÃÃNewmanAt=Qbh*r/S

;ÃÃÃNewmanAf=-Qbh*a*r/S*sin(theta)^2

ÃforÃj=0,k-1ÃdoÃÃbegin

ÃÃS[j]=r[j]^2+a^2* cos(theta)^2
ÃÃD[j]=r[j]^2+a^2-2.d0*m*r[j]
ÃÃB[j]=(r[j]^2+a^2)^2-D[j]*a^2*sin(theta)^2

ÃÃNewmanAt[j]=Qbh*r[j]/S[j]

ÃÃNewmanAf[j]=-Qbh*a*r[j]/S[j]*sin(theta)^2
ÃÃifÃ(r[j]ÃgtÃro)ÃthenÃÃbegin
ÃÃbeta1=-3.d0*Ic/8.d0/( gamma ^2)/ro*(ro*(ro^2+a^2) -2.d0*a^2*m)

ÃÃAt[j]=2.d0*a*beta1/S[j]*((r[j]*(r[j]-m)$
ÃÃÃÃÃ+(a^2-m*r[j])*cos(theta)^2)/2.d0/gamma*alog((r[j]-m+$
ÃÃÃÃÃgamma)/(r[j]-m-gamma)) -(r[j]-m*cos(theta)^2));+ NewmanAt[j]

ÃÃAf[j]=( beta1*sin(theta)^2/S[j])*((r[j]Ã-Ãm)*a^2* cos(theta)^2Ã+$
ÃÃÃÃÃÃÃÃr[j]*(r[j]^2Ã+Ãm*r[j]Ã+2.d0*a^2)Ã-Ã(r[j]*(r[j]^3Ã-Ã$
ÃÃÃÃÃÃÃÃ2.d0*m*a^2Ã+a^2*r[j])$
ÃÃÃÃÃÃÃÃ+D[j]*a^2* cos(theta)^2)/2.d0/gamma*$
ÃÃÃÃÃÃÃÃalog((r[j]Ã-ÃmÃ+Ãgamma)/(r[j]Ã-ÃmÃ-Ãgamma)));+ NewmanAf[j]

ÃÃÃENDIFÃELSEÃIFÃ(r[j]ÃltÃro)ÃthenÃBEGIN

ÃÃÃalpha1=Ã3.d0*Ic/8.d0/ro/gamma *((2. d0*(ro^2+a^2) -(ro-m)*ro)+$
ÃÃÃÃÃÃÃÃÃÃÃ1.d0/2.d0/gamma*alog((ro-m+gamma)/(ro -m-gamma))*(ro^2*$
ÃÃÃÃÃÃÃÃÃÃÃ(ro -2.d0*m)$
ÃÃÃÃÃÃÃÃÃÃÃ -2.d0*(ro -m)*(ro^2+a^2)))

ÃÃAt[j]=2.d0*a*alpha1/S[j]/ gamma*(r[j]^2-m*r[j]-m*r[j]*cos(theta)^2+$
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ÃÃÃÃÃÃÃÃa^2* cos(theta)^2)+$
ÃÃÃÃÃÃÃÃa*Ic/ro;+ NewmanAt

ÃÃAf[j]= alpha1*sin(theta)^2/S[j]/gamma *(D[j]*( -2.d0*a^2*cos(theta)^2+$
ÃÃÃÃÃÃÃÃS[j]) -2.d0*r[j]*(r[j]^2+a^2)*(r[j]-m));+ NewmanAf

ÃÃÃend

ÃÃalpha[j]Ã=ÃB[j]-Qbh^2*a^2*sin(theta)^2
ÃÃbeta[j]Ã=Ã(-q/mpart*At[j]*(B[j]-Qbh^2*a^2*sin(theta)^2)Ã+$
ÃÃÃÃÃÃÃÃÃÃÃÃ(2.d0*m*r[j]-Qbh^2)*a*(LÃ-Ãq/mpart*Af[j]))
ÃÃgamma0[j]Ã=Ãq^2/ mpart ^2*At[j]^2*(B[j]-Qbh ^2*a^2* sin(theta)^2Ã)$
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃ -(4.d0*m*r[j]-2.d0*Qbh^2)*a*q/mpart*At[j]*(LÃ-$
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃq/mpart*Af[j])Ã-ÃS[j]/sin(theta)^2*(LÃ-Ãq/mpart*Af[j])^2$
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃ*(1.d0Ã-Ã(2.d0*m*r[j]-Qbh ^2)/S[j])Ã-Ã(D[j]+Qbh^2)*S[j]

ÃÃVeffect[j]Ã=Ã(beta[j]Ã+ÃSqrt(beta[j]^2Ã-Ãalpha[j]* gamma0[j]))/$
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃalpha[j]
ÃÃxy[j]=r[j]
Ãend

ÃÃAt [*]=0
ÃÃAf [*]=0
ÃÃalphanoÃ=ÃB

ÃÃbetanoÃ=Ã(-q/mpart*At*(B)$
ÃÃÃÃÃÃÃÃÃ+(2.d0*m*r)*a*(LÃ-Ãq/mpart*Af))

ÃÃgamma0noÃ=Ãq^2/ mpart ^2*At^2*(B)$
ÃÃÃÃÃÃÃÃÃÃÃÃ -(4.d0*m*r)*a*q/mpart*At*(L)Ã-Ã$
ÃÃÃÃÃÃÃÃÃÃÃÃS/sin(theta)^2*(LÃ)^2Ã*(1.d0Ã-Ã(2.d0*m*r)/S)Ã-Ã(D)*S

ÃÃVeffno =( betanoÃ+ÃSqrt(betano ^2Ã-Ãalphano*gamma0no))/alphano

set_plot ,’ps’
name=’./ di_potential.ps’
DEVICE ,ÃBITS_PER_PIXEL =8,ÃCOLOR=1,filename=name
ÃTVLCT ,Ã[0,255,0,0],Ã[0,0,255,0],Ã[0,0,0,255]
Ãget_lun ,ldum
Ãopenr ,ldum ,name

plot ,xy[where(rÃneÃro)],Veffect[where(rÃneÃro)],xtitle=’!8r’,$
ÃÃÃÃÃytitle=’!8V!Deff!N’,charsize =1.4

oplot ,xy,En,color=1
oplot ,xy[where(rÃneÃro)],Veffno[where(rÃneÃro)],linestyle =1
xyouts ,0.5 ,0.96 , titlestring ,align =0.5,/normal ,charsize =1.2
Ãclose ,ldum
Ãfree_lun ,ldum
Ãdevice ,/close
Ãset_plot ,’x’

window ,1,xs=500,ys=500
plot ,xy[where(rÃneÃro)],Veffect[where(rÃneÃro)],xtitle=’!8r’,$
ÃÃÃÃÃytitle=’!8V!Deff!N’,charsize =1.4
oplot ,xy,En,color =255
oplot ,xy,Veffno ,linestyle =1
xyouts ,0.5 ,0.96 , titlestring ,align =0.5,/normal ,charsize =1.2
cursor ,xp ,yp
print ,xp,yp

end§ ¦

Routine testrel.pro reads data from files scratch.txt, scratch2.txt, rtheta.dat and numofparticles.dat
and plots the trajectories of particles in 3-D space. Routine plotrel.pro provides us with the
2-D single-particle orbits plots and effective potential plots illustrated in Sect. 3.3 and Chap. 4 .

¨ ¥
pro testrel ,x,y,z,field;,t,r,phi ,theta ,file=file

get_lun ,ldum
openr ,ldum ,’scratch.txt’
readf ,ldum ,h1 ,hmin ,eps ,numdt
readf ,ldum ,t1 ,t2
readf ,ldum ,a,mb,Ic
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close ,ldum
free_lun ,ldum
print ,"info: scratch.txt file was read"
get_lun ,ldum
openr ,ldum ,’scratch2.txt’
readf ,ldum ,n
close ,ldum
free_lun ,ldum
print ,"info: scratch2.txt file was read"

get_lun ,ldum
openr ,ldum ,’numofparticles.dat’
readf ,ldum ,numpart
close ,ldum
free_lun ,ldum
print ,"info: numofparticles.dat file was read"

n=long(n);+1l ; array size in the dummy
;numpart=long(numpart)
print ,’3-DÃprojectiveÃplots’
file=’rtheta.dat’

q=dblarr(numpart)
L=q
E=q
mpart=dblarr(numpart)
tau=dblarr(n,numpart)
t=dblarr(n,numpart)
r=dblarr(n,numpart)
phi=dblarr(n,numpart)
theta=dblarr(n,numpart)
vt=dblarr(n,numpart)
vr=dblarr(n,numpart)
vphi=dblarr(n,numpart)
vtheta=dblarr(n,numpart)

get_lun ,ldum
openr ,ldum ,file
for i=0L,n-1L do begin
for k=0,numpart -1 do begin
readf ,ldum ,qi ,mparti ,taui ,ti ,ri,thetai ,phii ,vti ,vri ,vthetai ,$

vphii ,Li,Ei
q[k]=qi
mpart[k]= mparti
tau[i,k]=taui
t[i,k]=ti
r[i,k]=ri
phi[i,k]=phii
theta[i,k]= thetai
vt[i,k]=vti
vr[i,k]=vri
vphi[i,k]=vphii
vtheta[i,k]= vthetai
L[k]=Li
E[k]=Ei

endfor
endfor
close ,ldum
free_lun ,ldum

x=dblarr(n,numpart)
y=dblarr(n,numpart)
z=dblarr(n,numpart)

x=sqrt(r^2+a^2)*cos(phi)*sin(theta)
y=sqrt(r^2+a^2)*sin(phi)*sin(theta)
z=r*cos(theta)

a_dummy = fltarr (10 ,10) ; the dummay array to be used
x_dummy = findgen (10) ; the dummy axis vectors
y_dummy = findgen (10)
x_dummy = x_dummy;-x1 ; the axis starts at -n/2, not a 0
y_dummy = y_dummy;-y1
a_dummy=a_dummy

;x2=max(x_dummy)
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;y2=max(y_dummy)

x2=max(x) ; the upper limit of the plot
y2=max(y)
z2=max(z)
x1=min(x) ; min. values of the axes
y1=min(y)
z1=min(z)

rs1 =1.d0-sqrt (1.d0^2-a^2)
rs2 =1.d0+sqrt (1.d0^2-a^2)

DEVICE ,RETAIN =2

ni=21
thetaangle=findgen(ni)
rerg=findgen(ni)
phiangle=findgen(ni)
thetaangle=thetaangle *(180/(ni -1))
phiangle=phiangle *(180/(ni -1))
xin=dblarr(ni ,ni)
yin=dblarr(ni ,ni)
zin=dblarr(ni ,ni)
rin=dblarr(ni ,ni)
thetaangle=thetaangle *!dpi /(180. d0)
phiangle =2.d0*phiangle *!dpi /(180. d0)

xrs2=dblarr(ni,ni)
yrs2=dblarr(ni,ni)
zrs2=dblarr(ni,ni)

for j=0,ni -1 do begin
for i=0,ni -1 do begin

xrs2[i,j]=sqrt(rs2 ^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yrs2[i,j]=sqrt(rs2 ^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zrs2[i,j]=rs2*cos(thetaangle[j])

endfor
endfor

for j=0,ni -1 do begin
rerg[j]=1.d0+sqrt (1.d0-a^2*( cos(thetaangle[j]))^2)
for i=0,ni -1 do begin

xin[i,j]=sqrt((rerg[j])^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yin[i,j]=sqrt((rerg[j])^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zin[i,j]=rerg[j]*cos(thetaangle[j])
rin[i,j]=sqrt(xin[i,j]^2+ yin[i,j]^2)

endfor
endfor

window ,xs=500,ys=500

range1=max(x,/absolute ,/NAN)
range2=max(y,/absolute ,/NAN)
range3=max(z,/absolute ,/NAN)
range =[range1 ,range2 ,range3]
ranges=abs(max(range ,/absolute ,/NAN))
;xr=[-ranges ,ranges]
;yr=xr
;zr=xr

Surface ,zin ,xin ,yin ,/SAVE ,$
xstyle=1,ystyle=1,xrange=[-ranges ,ranges],$
yrange=[-ranges ,ranges],$
zrange=[-ranges ,ranges],zst=1,$
ax=30,az=30,$
CHARSIZE =2.0,$
xtitle=’!3xÃ[GÃm/c!S!E2!RÃ]’,$
ytitle=’!3yÃ[GÃm/c!S!E2!RÃ]’,$
ztitle=’!3zÃ[GÃm/c!S!E2!RÃ]’,/noerase

plotsym , 0, 1, /FILL ,Color= 1

for i=0,numpart -1 do begin

plots ,x[*,i],y[*,i],z[*,i],/T3D ,/data ,color =255,/ continue



A.1. EQUATIONS OF MOTION 81

end
timestring=’tÃ=Ã’+string(t[long(n-1) ,0],format=’(e12.4)’)
xyouts ,0.7,0.9 , timestring ,/ normal

close ,ldum
free_lun ,ldum

sphereImg1 = obj_new(’orb’, POS=[0,0,0], $
RADIUS =2.0, COLOR =[240 ,0 ,0])

sphereImg2= obj_new(’orb’, POS=[0,0,0], $
RADIUS =2.0, COLOR =[0 ,240 ,0])

oModel1 = obj_new(’IDLgrModel ’)
oModel1 ->Add , sphereImg1; Don ’t need [i,j] referencing in IDL

; Add directional light to the model to highlight the 3D shape of the
;spheres

oLight1 = obj_new(’IDLgrLight ’, LOCATION =[799 ,499 ,12] , TYPE =2)
oModel1 ->Add , oLight1

oModel2 = obj_new(’IDLgrModel ’)
oModel2 ->Add , sphereImg2 ; Don ’t need [i,j] referencing in IDL

; Add directional light to the model to highlight the 3D shape of the
; spheres

oLight2 = obj_new(’IDLgrLight ’, LOCATION =[799 ,499 ,12] , TYPE =2)
oModel2 ->Add , oLight2

timestring=’!8tÃ=Ã’+string(t[n-1l,0], format=’(e12 .4)’)+$
’!8Ã[GM/c!S!E3!RÃ]’

titlestring=’!8a=’+string(a,format=’(e12 .4)’)+$
’!8,ÃL=’+string(L[0], format=’(e12 .4)’)+’!8,ÃE=’+$
string(E[0], format=’(e12.4)’)+’!8,ÃI!Dc!N=’+string$

(Ic,format=’(e21.3)’);+’!8, I!Dc!N=’+ string$
(Ic,format=’(e21.3)’)

name_jpg =field+strcompress(Ic ,/ remove_all)
; preparing the data and plotting:

flat_surface=fltarr (2,2)
xsurf=flat_surface
ysurf=xsurf
xsurf [0,*]=-ranges -1
xsurf [1,*]= ranges +1
ysurf [*,0]=-ranges -1
ysurf [*,1]= ranges +1

xr=[-ranges ,ranges]
yr=xr
zr=[-ranges ,ranges]

iplot ,x[*,0:numpart -1],y[*,0:numpart -1],z[*,0:numpart -1],$
BACKGROUND_COLOR =[0,0,0], COLOR =[240,0,0], xrange=xr,$
yrange=yr,zrange=zr ,XGRIDSTYLE =1, YGRIDSTYLE =1,$
xstyle=1,ystyle=1,zstyle=1,$
identifier =1

isurface ,zrs2 ,xrs2 ,yrs2 ,color =[0,240,0], XGRIDSTYLE =1, YGRIDSTYLE =1,$
BACKGROUND_COLOR =[0,0,0], xrange=xr,yrange=yr ,zrange=zr,$
xstyle=1,ystyle=1,zstyle=1,overplot=1,$
identifier =2,Name=’OuterÃEventÃHorizon ’

isurface ,zin ,xin ,yin ,transparency =35, color =[72 ,72 ,255] ,$
BACKGROUND_COLOR =[0,0,0],$
XGRIDSTYLE =1, YGRIDSTYLE =1,overplot=2,$
macro_names =[’axis_color ’],$
xrange=xr,yrange=yr ,zrange=zr,xstyle=1,ystyle=1,zstyle=1,$
identifier =3,xtitle=’!8xÃ[GM/c!S!E2!RÃ]’,$
ytitle=’!8yÃ[GM/c!S!E2!RÃ]’,ztitle=’!8yÃ[GM/c!S!E2!RÃ]’,$
Name=’Ergosphere ’,/VIEWPLANE_RECT
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isurface ,flat_surface ,xsurf ,ysurf ,transparency =35,$
color =[20 ,20,20] ,$
BACKGROUND_COLOR =[0,0,0],$
XGRIDSTYLE =1, YGRIDSTYLE =1,$
xrange=xr ,yrange=yr,zrange=zr ,xstyle=1,ystyle=1,$
zstyle=1,overplot=3,$
macro_names =[’axis_color ’],$
identifier =4,xtitle=’!8xÃ[GM/c!S!E2!RÃ]’,$
ytitle=’!8yÃ[GM/c!S!E2!RÃ]’,ztitle=’!8yÃ[GM/c!S!E2!RÃ]’,$
Name=’Ergosphere ’,/VIEWPLANE_RECT

ixyouts ,strcompress(titlestring ,/ remove_all), ALIGNMENT =1.0, $
COLOR =[255 ,255 ,255] , FONT_SIZE =11, $
LOCATION =[0.9, 0.85, 0.0],/ normal

ixyouts ,timestring , ALIGNMENT =1.0, COLOR =[255 ,255 ,255] , $
FONT_SIZE =11, LOCATION =[0.9 , 0.75, 0.0] ,/ normal

DEVICE ,RETAIN =2

itool_write_graphic_kpb ,name_jpg ,type=’jpeg’,clobber=1,quality =100

set_plot ,’x’
end§ ¦
Routine veff.pro plots the effective potential and its contours (Sec. 2.3). The effective potential
function is specified by Veffect. Concerning a magnetized Kerr-Newman black hole, we would have
to take into account that the net vector potential is given by the superposition of the dipolar or
uniform magnetic fields with the one that corresponds to the Kerr-Newman solution (NewmanAt,
NewmanAφ). The output of this routine can be seen for example in fig. 4.1 for the uniform
magnetic field case.

¨ ¥
pro chniveaux , cmax , cmin , nlevels , ctype , levels
;
; Computation of contour levels
;
; Parameters : Cmax Highest contour to be drawn (input)
; Cmin Lowest contour to be drawn

(opt. if linear scaling) (input)
; nlevels Number of contours to be drawn (input)
; Ctype Scaling of contour levels (input)
; (1 = linear , 2 = logarithmic base 10)
; Levels Array of contour levels (output)
;
levels = fltarr(nlevels)
If(ctype eq 1.) then begin

deltai = cmax/(nlevels -.5) ; Interval between successive
; equidistant contours

if(cmin ne 0.) then deltai = (cmax -cmin)/(nlevels -1.)
levels = cmax -(nlevels -1.- findgen(nlevels))*deltai

endif else if(ctype eq 2.) then begin
clmax = alog10(cmax) & clmin = alog10(cmin)
deltai = (clmax -clmin)/(nlevels -1.)
levels = 10.^( clmax - (nlevels -1.- findgen(nlevels))*deltai)

endif else begin
Print ,’OtherÃnonlinearÃcontourÃintervalsÃnotÃavailable ’

endelse
return
end

pro veff ,L,a,MinVeff ,levels ,Bo ,Qbh ,Veffect ,xy,z

n=179;+1l ; array size in the dummy
k=2000
k=long(k)

m=1.d0
mpart =0.83631079000000000000000000000D-58
q=0.92972282038001278947774046315D-40

theta =( dindgen(n)+1)*!dpi /180.d0
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r=( dindgen(k)+1.8*100. d0)/100
S=dblarr(n,k)
D=dblarr(k)
B=dblarr(n,k)
NewmanAt=dblarr(n,k)
NewmanAf=dblarr(n,k)
At=dblarr(n,k)
Af=dblarr(n,k)
alpha=dblarr(n,k)
beta=dblarr(n,k)
gamma0=dblarr(n,k)
Veffect=dblarr(n,k)
xy=dblarr(n,k)
z=dblarr(n,k)

for i=0,n-1 do begin
for j=0l,k-1l do begin
S[i,j]=r[j]^2+a^2* cos(theta[i])^2
D[j]=r[j]^2+a^2-2.d0*m*r[j]
B[i,j]=(r[j]^2+a^2)^2-D[j]*a^2*sin(theta[i])^2

NewmanAt[i,j]=Qbh*r[j]/S[i,j]

NewmanAf[i,j]=-Qbh*a*r[j]/S[i,j]*sin(theta[i])^2

At[i,j]=-a*Bo*(1.d0-m*r[j]/S[i,j]*(2.d0-sin(theta[i])^2))+$
NewmanAt[i,j]

Af[i,j]=Bo*sin(theta[i]) ^2/2.d0/S[i,j]*(B[i,j]-4.d0*m*a^2*r[j])$
+NewmanAf[i,j]

alpha[i,j] = B[i,j]-Qbh^2*a^2*sin(theta[i])^2
beta[i,j] = (-q/mpart*At[i,j]*(B[i,j]-Qbh^2*a^2*sin(theta[i])^2) $

+(2.d0*m*r[j]-Qbh^2)*a*(L - q/mpart*Af[i,j]))
gamma0[i,j] = q^2/ mpart ^2*At[i,j]^2*(B[i,j]-Qbh^2*a^2*$

sin(theta[i])^2) -(4.d0*m*r[j]-2.d0*Qbh^2)*a*$
q/mpart*At[i,j]*(L - q/mpart*Af[i,j]) - $
S[i,j]/sin(theta[i])^2*(L - q/mpart*Af[i,j])^2 *$
(1.d0 - (2.d0*m*r[j]-Qbh^2)/S[i,j]) - (D[j]+Qbh ^2)$
*S[i,j]

Veffect[i,j] = (beta[i,j] + Sqrt(beta[i,j]^2 - alpha[i,j]*$
gamma0[i,j]))/alpha[i,j]

xy[i,j]=Sqrt(r[j]^2+a^2+Q^2)*sin(theta[i])
z[i,j]=sqrt(r[j]^2+Q^2)*cos(theta[i])

endfor
endfor

set_plot ,’ps’
name=’./fig.ps’
DEVICE , BITS_PER_PIXEL =8, COLOR=1,filename=name
TVLCT , [0,255,0,0], [0,0,255,0], [0,0,0,255]
get_lun ,ldum
openr ,ldum ,name

white = 255
black = 0

chniveaux , Max(Veffect), MinVeff , levels , 2, userlevels
Contour , Veffect , xy, z,$; /Fill , C_Colors=Indgen(levels)+3,$

Background =1,Levels=userLevels ,c_charsize =1.4,$
charsize =1.8, xrange =[0,10], yrange =[-15,15], xstyle=1,$
ystyle=1,Color=black ,$
xtitle=textoidl(’sqrt(r^2+a^2)Ãsin\theta’),$
ytitle=textoidl(’rÃcosÃ\theta’)

Contour , Veffect , xy, z, /Overplot , Levels=userLevels ,$
/Follow ,c_charsize =1.4, charsize =1.8;, Color=black

close ,ldum
free_lun ,ldum
device ,/close

set_plot ,’x’
device ,retain=2, decomposed =0

Window , 1, Title=’UserÃSpecifedÃContourÃIntervals ’,$
XSize =500, YSize =700
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chniveaux , Max(Veffect), MinVeff , levels , 2, userlevels
Contour , Veffect , xy, z, $

Levels=userLevels , $
xtitle=textoidl(’sqrt(r^2+a^2)Ãsin\theta’),$
ytitle=textoidl(’rÃcosÃ\theta’),xrange =[0,10],$
yrange =[-15,15],$
xstyle=1,ystyle=1, c_charsize =1.4, charsize =1.8

Contour , Veffect , xy, z, /Overplot , Levels=userLevels ,$
/Follow ,c_charsize =1.4, charsize =1.8

end
;Kerr -Newman -Example
;veff , -0.8 ,0.9 ,0.9722 ,15 ,3.309484d -16 ,4.d -19§ ¦
Routine minimum.pro finds the off-equatorial local minima for the effective potential as we increase
the value of the black hole’s rotation a, implementing Powell’s method. The output of this routine
can be seen for example in fig. 4.4 for the uniform magnetic field case. Plots contain also the
projection of the main curve to the xy-, yz-, xz-planes. We have also written similar routines for
the calculation of off-equatorial local minima for the effective potential with varying quantities the
ratio q/m, the strength of the magnetic field Bo (only for the uniform magnetic field) or the ring
current Ic (only for the dipole magnetic field), the net charge of the black hole Qbh and the angular
momentum L of the charged particle.

¨ ¥
PRO minimum ,xps ,yps ,Veffs
COMMON mina ,a,m,mpart ,q,L,Qbh ,Bo

n=100
numb=5 ;number of xyouts written on plot
xps=dblarr(n)
yps=dblarr(n)
Veffs=dblarr(n)
a1=dblarr(n)
a0=0.0d0

;Define initial conditions
m=1.d0
mpart =0.83631079000000000000000000000D-58
q=0.92972282038001278947774046315D-40
L=31.9d0
Bo=1.0d-17
Qbh =0.0d0

; Define the starting point:
P = [7.547d0, !dpi -2.292 d0]

for i=0,n-1 do begin
; Define the fractional tolerance:
ftol = 1.0d-14

a=a0+double(i)*0.01d0
a1[i]=a

; Define the starting directional vectors in column format:
xi = TRANSPOSE ([[1.0 , 0.0] ,[0.0 , 1.0]])

; Minimize the function:
POWELL , P, xi, ftol , fmin , ’powfunc ’
xy=Sqrt(P[0]^2+a^2)*sin(P[1])
z1=P[0]* cos(P[1])

print ,"a: ",a," xy: ", xy ," z: ",z1
; Print the solution point:
PRINT , ’SolutionÃpoint:Ã’, P

xps[i]=Sqrt(P[0]^2+a^2)*sin(P[1])
yps[i]=P[0]* cos(P[1])
Veffs[i]=fmin

; Print the value at the solution point:
PRINT , ’ValueÃatÃsolutionÃpoint:Ã’, fmin
endfor
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set_plot ,’ps’
name1=’./a_min.ps’
DEVICE , BITS_PER_PIXEL =8, COLOR=1,filename=name1
TVLCT , [0,255,0,0], [0,0,255,0], [0,0,0,255]
plotsym , 0, 1, /FILL ,Color= 1
get_lun ,ldum3
openr ,ldum3 ,name1
white = 255
black = 0

plot_3dbox ,xps ,yps ,Veffs ,psym=8,linestyle =0,$
xtitle=textoidl(’sqrt(r^2+a^2)ÃsinÃ\theta’),$
ytitle=textoidl(’rÃcosÃ\theta’),ztitle=textoidl(’V_{eff}’),$
title=textoidl(’a-Dependence ’) ,/xy_plane ,$
/xz_plane ,/yz_plane ,$
xystyle=5,xzstyle=5,yzstyle=5,charsize =1.8,/ noerase

plots ,xps ,yps ,Veffs ,/continue ,color=1,psym=8,linestyle =0,/t3d

for j=0,n-1,numb do begin
timestring=’ÃÃÃ’+string(a1[j],format=’(f4.2)’)
xyouts ,xps[j],yps[j],z=Veffs[j],timestring ,/data ,CHARSIZE = 1.8,/t3d

endfor

close ,ldum3
free_lun ,ldum3
device ,/close
set_plot ,’x’
device ,retain=2, decomposed =0
TVLCT , [0,255,0,0], [0,0,255,0], [0,0,0,255]

window ,xs=500,ys=500

plot_3dbox ,xps ,yps ,Veffs ,psym=8,linestyle =0,$
xtitle=textoidl(’sqrt(r^2+a^2)ÃsinÃ\theta’),$
ytitle=textoidl(’rÃcosÃ\theta’),$
ztitle=textoidl(’V_{eff}’),$
title=textoidl(’a-Dependence ’) ,/xy_plane ,$
/xz_plane ,/yz_plane ,$
xystyle=5,xzstyle=5,yzstyle=5,charsize =1.8,/ noerase

plots ,xps ,yps ,Veffs ,/continue ,color=1,psym=8,linestyle =0,/t3d ,/data

for i=0,n-1,numb do begin
timestring=’ÃÃÃ’+string(a1[i],format=’(f4.2)’)
xyouts ,xps[i],yps[i],z=Veffs[i],timestring ,/data ,CHARSIZE = 1.8,/t3d

endfor
return
END

FUNCTION powfunc , x
COMMON mina ,a,m,mpart ,q,L,Qbh ,Bo

gamma=sqrt(m^2-a^2)

S=x[0]^2+a^2*cos(x[1])^2
D=x[0]^2+a^2-2.d0*m*x[0]
B=(x[0]^2+a^2)^2-D*a^2* sin(x[1])^2

NewmanAt=Qbh*x[0]/S

NewmanAf=-Qbh*a*x[0]/S*sin(x[1])^2

At=-a*Bo*(1.d0 -m*x[0]/S*(2.d0 -sin(x[1]) ^2))+NewmanAt

Af=Bo*sin(x[1]) ^2/2.d0/S*(B-4.d0*m*a^2*x[0])+NewmanAf

alpha = B-Qbh^2*a^2* sin(x[1])^2
beta = (-q/mpart*At*(B-Qbh ^2*a^2*sin(x[1]) ^2) +$

(2.d0*m*x[0]-Qbh^2)*a*(L - q/mpart*Af))

gamma0 = q^2/ mpart ^2*At^2*(B-Qbh^2*a^2*sin(x[1])^2 )$
-(4.d0*m*x[0] -2.d0*Qbh^2)*a*q/mpart*At*(L -$
q/mpart*Af) -S/sin(x[1]) ^2*(L - q/mpart*Af)^2$
*(1.d0 -(2.d0*m*x[0]-Qbh^2)/S) - (D+Qbh^2)*S
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RETURN , (beta + Sqrt(beta^2 - alpha*gamma0))/alpha
END§ ¦

Automating the procedures - Creating simple movies. If we want to perform multiple
test-runs it would be better to create multiple start files inirel*.txt (e.g. inirel_a_0_9.txt),
and then link them to the file inirel.txt. This way we could automate the procedure by creating
a bash-script file. The script file will execute programs findroot.x and bh.x for different initial
conditions, namely for different inirel*.txt.

To automate the movie-production procedure we have written the following bash-script file
(movies.sh) which automates the whole procedure and

• links the inirel*.txt to file inirel.txt,

• compiles and runs findroot.x,

• compiles and runs bh.x, using the output data of findroot.x,

• compiles and runs routine movies.pro,

• creates movie file movie.avi,

• sends an email when test-run has finished.

The production of simple movies requires the generation of a sequence of numbered images. This
is done so by following the same principles as in testrel.pro. The only difference between
files movies.pro and testrel.pro is that the former one requires a loop over number of steps.
Moreover, file movies.pro plots particles’ position as scattered points at each timestep. Here,
protons are depicted with a red color, while electrons with a green one (Sec. 3.4). Every image
produced here, is saved with a different name and answer to the corresponding timestep.

¨ ¥
pro movies ,x,y,z,xin ,yin ,zin ,xrs2 ,yrs2 ,zrs2

get_lun ,ldum
openr ,ldum ,’scratch.txt’
readf ,ldum ,h1 ,hmin ,eps
readf ,ldum ,t1 ,t2
readf ,ldum ,a,mb,Bo
close ,ldum
free_lun ,ldum

get_lun ,ldum
openr ,ldum ,’scratch2.txt’
readf ,ldum ,n
close ,ldum
free_lun ,ldum

get_lun ,ldum
openr ,ldum ,’numofparticles.dat’
readf ,ldum ,numpart
close ,ldum
free_lun ,ldum

n=long(n);+1l ; array size in the dummy
print ,’3-DÃprojectiveÃplots’
file=’rtheta.dat’

q=dblarr(numpart)
mpart=dblarr(numpart)
tau=dblarr(n,numpart)
t=dblarr(n,numpart)
r=dblarr(n,numpart)
phi=dblarr(n,numpart)
theta=dblarr(n,numpart)
vt=dblarr(n,numpart)
vr=dblarr(n,numpart)
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vphi=dblarr(n,numpart)
vtheta=dblarr(n,numpart)

get_lun ,ldum
openr ,ldum ,file
for i=0L,n-1L do begin
for k=0,numpart -1 do begin
readf ,ldum ,qi ,mparti ,taui ,ti ,ri,thetai ,phii ,vti ,vri ,vthetai ,vphii
q[k]=qi
mpart[k]= mparti
tau[i,k]=taui
t[i,k]=ti
r[i,k]=ri
phi[i,k]=phii
theta[i,k]= thetai
vt[i,k]=vti
vr[i,k]=vri
vphi[i,k]= vphii
vtheta[i,k]= vthetai

endfor
endfor
close ,ldum
free_lun ,ldum

x=dblarr(n,numpart)
y=dblarr(n,numpart)
z=dblarr(n,numpart)

x=sqrt(r^2+a^2)*cos(phi)*sin(theta)
y=sqrt(r^2+a^2)*sin(phi)*sin(theta)
z=r*cos(theta)

a_dummy = fltarr (10 ,10) ; the dummay array to be used
x_dummy = findgen (10) ; the dummy axis vectors
y_dummy = findgen (10)
x_dummy = x_dummy;-x1 ; the axis starts at -n/2, not a 0

y_dummy = y_dummy;-y1
a_dummy=a_dummy

x2=max(x) ; the upper limit of the plot
y2=max(y)
z2=max(z)
x1=min(x) ; min. values of the axes
y1=min(y)
z1=min(z)

rs1=1.d0 -sqrt (1.d0^2-a^2)
rs2=1.d0+sqrt (1.d0^2-a^2)

DEVICE ,RETAIN =2

ni=21
thetaangle=findgen(ni)
rerg=findgen(ni)
phiangle=findgen(ni)
thetaangle=thetaangle *(180/(ni -1))
phiangle=phiangle *(180/(ni -1))
xin=dblarr(ni,ni)
yin=dblarr(ni,ni)
zin=dblarr(ni,ni)
rin=dblarr(ni,ni)
thetaangle=thetaangle *!dpi /(180. d0)
phiangle =2.d0*phiangle *!dpi /(180. d0)

xrs2=dblarr(ni,ni)
yrs2=dblarr(ni,ni)
zrs2=dblarr(ni,ni)

for j=0,ni -1 do begin
for i=0,ni -1 do begin

xrs2[i,j]=sqrt(rs2^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yrs2[i,j]=sqrt(rs2^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zrs2[i,j]=rs2*cos(thetaangle[j])

endfor
endfor
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for j=0,ni -1 do begin
rerg[j]=1.d0+sqrt (1.d0-a^2*( cos(thetaangle[j]))^2)
for i=0,ni -1 do begin

xin[i,j]=sqrt((rerg[j])^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yin[i,j]=sqrt((rerg[j])^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zin[i,j]=rerg[j]*cos(thetaangle[j])
rin[i,j]=sqrt(xin[i,j]^2+ yin[i,j]^2)

endfor
endfor

close ,ldum
free_lun ,ldum

range1=max(x,dimension =1,/absolute ,/NAN)
range2=max(y,dimension =1,/absolute ,/NAN)
range3=max(z,dimension =1,/absolute ,/NAN)
range =[range1 ,range2 ,range3]
ranges=max(range ,/NAN)
xr=[-ranges ,ranges]
yr=[-ranges ,ranges]
zr=[-ranges ,ranges]

sphereImg1 = obj_new(’orb’, POS=[0,0,0], $
RADIUS =2.0, COLOR =[240 ,0 ,0])

sphereImg2= obj_new(’orb’, POS=[0,0,0], $
RADIUS =2.0, COLOR =[0 ,240 ,0])

oModel1 = obj_new(’IDLgrModel ’)
oModel1 ->Add , sphereImg1; Don ’t need [i,j] referencing in IDL

; Add directional light to the model to highlight the 3D shape of the
;spheres

oLight1 = obj_new(’IDLgrLight ’, LOCATION =[799 ,499 ,12] , TYPE =2)
oModel1 ->Add , oLight1

oModel2 = obj_new(’IDLgrModel ’)
oModel2 ->Add , sphereImg2 ; Don ’t need [i,j] referencing in IDL

; Add directional light to the model to highlight the 3D shape of the
;spheres

oLight2 = obj_new(’IDLgrLight ’, LOCATION =[799 ,499 ,12] , TYPE =2)
oModel2 ->Add , oLight2

titlestring=’B!Do!NÃ=Ã’+strcompress(Bo ,/ remove_all)+’,$
ÃÃÃÃÃÃÃÃÃÃÃÃÃÃ$a=Ã’+strcompress(a,/ remove_all)+’,ÃM=Ã’+strcompress

$(mb ,/ remove_all)

cd ,’jpg’
for it = 0L,n-1L do begin

timestring=’tÃ=Ã’+string(t[it ,0], format=’(e12.4)’)

name_jpg =’00’+strcompress (100000+it ,/ remove_all)
; preparing the data and plotting:

timestring=’!8tÃ=Ã’+string(t[it],format=’(e12.4)’)+$
’!8Ã[GM/c!S!E3!RÃ]’

iplot ,x[it ,where(q gt 0)],y[it,where(q gt 0)],$
z[it , where(q gt 0)],sym_object=oModel1 ,$
linestyle=6, sym_color =[255 ,72 ,72] , sym_thick =10,$
sym_size =0.2,$
BACKGROUND_COLOR =[0,0,0],$
xrange=xr ,yrange=yr,zrange=zr,XGRIDSTYLE =1,$
YGRIDSTYLE =1,xstyle=1,ystyle=1,zstyle=1,$
identifier =1, /NO_SAVEPROMPT ,user_interface=’none’

iplot ,x[it ,where(q lt 0)],y[it,where(q lt 0)],$
z[it ,where(q lt 0)],sym_object=oModel2 ,$
linestyle=6, sym_color =[255 ,72 ,72] , sym_thick =10,$
sym_size =0.2, xrange=xr,yrange=yr ,zrange=zr,$
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BACKGROUND_COLOR =[0,0,0], XGRIDSTYLE =1, YGRIDSTYLE =1,$
xstyle=1,ystyle=1,zstyle=1,$
overplot=1, identifier =2,/ NO_SAVEPROMPT ,user_interface=’none’

isurface ,zrs2 ,xrs2 ,yrs2 ,color =[0,240,0], XGRIDSTYLE =1, YGRIDSTYLE =1,$
BACKGROUND_COLOR =[0,0,0], xrange=xr,yrange=yr ,zrange=zr,$
xstyle=1,ystyle=1,zstyle=1,overplot=2,$
identifier =3,$
Name=’OuterÃEventÃHorizon ’,$
/NO_SAVEPROMPT ,user_interface=’none’

isurface ,zin ,xin ,yin ,transparency =35, color =[72 ,72 ,255] ,$
BACKGROUND_COLOR =[0,0,0], XGRIDSTYLE =1, $
YGRIDSTYLE =1,overplot=3, macro_names =[’axis_color ’],$
xrange=xr,yrange=yr ,zrange=zr,xstyle=1,ystyle=1,zstyle=1,$
identifier =4,xtitle=’!8xÃ[GM/c!S!E2!RÃ]’,$
ytitle=’!8yÃ[GM/c!S!E2!RÃ]’,ztitle=’!8yÃ[GM/c!S!E2!RÃ]’,$
Name=’Ergosphere ’,/NO_SAVEPROMPT ,$
user_interface=’none’,/VIEWPLANE_RECT

ixyouts ,titlestring , ALIGNMENT =0.5, COLOR =[255 ,255 ,255] ,$
FONT_SIZE =11, LOCATION =[0.0 ,0.45 ,1.0]

ixyouts ,timestring , ALIGNMENT =1.0, COLOR =[255 ,255 ,255] ,$
FONT_SIZE =11, LOCATION =[0.45 ,0.42 ,1.0]

DEVICE ,RETAIN =2

itool_write_graphic_kpb ,name_jpg ,type=’jpeg’,clobber=1,quality =100
ixyouts ,timestring , ALIGNMENT =1.0, COLOR =[0,0,0], FONT_SIZE =11,$

LOCATION =[0.45 , 0.42, 1.0]

progress=strcompress(it ,/ remove_all)+’/’+strcompress(n,/ remove_all)
print ,progress

endfor
cd ,’../’

set_plot ,’x’

end§ ¦
Images are further processed with mencoder and outputted to an .avi file. Communication be-
tween the four programs (findroot.x, bh.x, movies.pro and mencoder) is achieved through an
IDL-script (code/idl/movies.sh)

¨ ¥
.r ixyouts.pro
.r itool_write_graphic_kpb.pro
.r movies.pro
movies ,x,y,z,xin ,yin ,zin ,xrs2 ,yrs2 ,zrs2
exit§ ¦
and a bash-shell script (code/movies.sh).

¨ ¥
echo "info:ÃRunningÃ./bh.xÃforÃtheÃuniformÃa=0.9Ãcase."
ln -s inirel_uniform_a_0 .9.txt inirel.txt
ifort -r16 findroot.f90 funcd.f90 rtbis.f90 open.f90 cstrip.f90 -o findroot.x
echo "info:findroot.f90Ãfuncd.f90Ãrtbis.f90Ãopen.f90Ãcstrip.f90Ãcompiled"
./ findroot.x
make bh.x
time ./bh.x
cp rtheta.dat ../ results/rtheta_uniform_a_0 .9.dat
cd ./idl
cp ../ scratch.txt ../ rtheta.dat ../ scratch2.txt ../ numofparticles.dat ./
idl movies.sh
cd ..
mencoder "mf:// idl/jpg/*.jpg" -mf fps =10 -o movie.avi -ovc lavc -lavcopts vcodec=msmpeg4v2:

vbitrate =800
cp movie.avi ../ results/movie_uniform_a_0 .9. avi
rm inirel.txt
rm -r ./idl/jpg/*.jpg
echo
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echo "info:ÃOutputÃwrittenÃinÃrtheta_uniform_a_0 .9.dat"
mail kdioni@physics.auth.gr -s "Test -runÃ(a=0.9)ÃhasÃfinished."< /dev/null§ ¦

A.2 Magnetic Field Lines

A.2.1 Fortran

Program field.x solves the differential equations defined in derivs.f90 using a 4th order Runge-
Kutta scheme[29]. The components of the magnetic field are calculated using the derivatives of the
vector potential specified in either uniformB.f90 or magnetize.f90 subroutines. The user has to
define how many field lines are to be plotted, the number of steps for the implementation of the
Runge-Kutta algorithm, the position of the ring current ro and the rotation a of the black hole
(init.dat).

¨ ¥
program field
implicit none
integer ::n,nstep ,numoflines ,i,k
parameter (n=3)
double precision :: yrand(n)
double precision ,allocatable ::xx(:,:),y(:,:,:),ystart (:,:)
double precision ::x1,x2,pi ,Ic ,rc,a
parameter (pi =3.14109265359 d0)
integer ::i1,i2,i5
external derivs ,cstrip

call open(i1 ,’scratch.dat’,1,’unknown ’)
call cstrip(i2,’init.dat’,i1)

read(i1 ,*) numoflines ,nstep
read(i1 ,*)a,Ic ,rc
close(i1)

Allocate(ystart(numoflines ,n),y(numoflines ,nstep+1,n),xx&
&(numoflines ,nstep +1))

x1=0.d0
x2=36.7 d0
call open(i5 ,"fieldlines.dat",1,’unknown ’)

do i=1,( numoflines)/4
ystart(i,1) =10.d0
ystart(i,2)=1.d -5+0.05 d0*real(i)
ystart(i,3)=0.d0

enddo
do i=( numoflines)/4+1,( numoflines)/2

ystart(i,1) =10.d0
ystart(i,2)=-pi+1.d -5+0.05 d0*real(i-( numoflines)/4)
ystart(i,3)=0.d0

enddo

do i=1,( numoflines)/2
call rkdumb(Ic,rc,a,i,numoflines ,ystart ,n,x1,x2 ,nstep ,derivs ,xx ,y)
do k=1,nstep

print ’(2I,5e10.7)’,i,k,y(i,k,1),y(i,k,2)
write(i5,’(2I,4e22 .14)’)i,k,xx(i,k),y(i,k,1),y(i,k,2),y(i,k,3)

enddo
enddo

do i=( numoflines)/2+1 ,3*( numoflines)/4
ystart(i,1) =10.d0
ystart(i,2)=-(1.d -5+0.05 d0*real(i-( numoflines)/2))
ystart(i,3)=0.d0

enddo
do i=3*( numoflines)/4+1,( numoflines)

ystart(i,1) =10.d0
ystart(i,2)=pi -0.05 d0*real(i-3*( numoflines)/4) -1.d-5
ystart(i,3)=0.d0

enddo

Ic=-Ic
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do i=( numoflines)/2+1, numoflines
call rkdumb(Ic,rc,a,i,numoflines ,ystart ,n,x1,x2,nstep ,derivs ,xx,y)
do k=1,nstep

print ’(2I,5e10.7)’,i,k,y(i,k,1),y(i,k,2)
write(i5 ,’(2I,4e22 .14)’)i,k,xx(i,k),y(i,k,1),y(i,k,2),y(i,k,3)

enddo
enddo
close(i5)

deallocate(ystart ,y,xx)
end§ ¦

¨ ¥
subroutine derivs (Ic ,rc ,a,x,y,dydx)
implicit none
double precision ,dimension (3)::Bmag ,y,dydx ,y1,y2,Bmag1 ,Bmag2
double precision ::x,mu,a,pi,Ic,rc
double precision ::m,Atr ,Attheta ,Afr ,Aftheta ,grr ,gff
double precision :: gthetatheta ,gtt ,gtf ,gtfl ,gffl ,gttl
double precision ::D,S,B,normB ,gamma
parameter (m=1.d0 ,pi =3.14159265359 d0)

call magnetize(Ic ,rc,a,y,Bmag ,normB)

S=y(1) **2+a**2* cos(y(2))**2
D=y(1) **2+a**2 -2.d0*m*y(1)
B=(y(1) **2+a**2)**2-D*a**2* sin(y(2))**2

dydx (1)=Bmag (1)/normB
dydx (2)=Bmag (2)/normB
dydx (3)=Bmag (3)/normB

!print*,Bmag (1)/normB ,Bmag (2)/normB ,Bmag (3)/normB
end subroutine derivs§ ¦

A.2.2 IDL

This routine reads the data, calculated in program field.x, from file fieldlines.dat and plots
the magnetic field lines. It also plots the ergosphere (blue surface) and outer event horizon (green
surface). The output images are the ones illustrated in fig. 2.1 and 2.2.

¨ ¥
pro field ,x,y,z

get_lun ,ldum
openr ,ldum ," scratch.dat"

readf ,ldum ,numofline ,nstep
readf ,ldum ,a,mu

close ,ldum
free_lun ,ldum

file=" fieldlines.dat"
get_lun ,ldum
openr ,ldum ,file

nstep=long(nstep)
r=fltarr(numofline ,nstep)
theta=fltarr(numofline ,nstep)
phi=fltarr(numofline ,nstep)
x=fltarr(numofline ,nstep)
y=fltarr(numofline ,nstep)
z=fltarr(numofline ,nstep)
s=fltarr(numofline ,nstep)
print ,nstep
for i=0l,numofline -1l do begin

for lam=0l,nstep -1l do begin
readf ,ldum ,line ,numofstep ,si ,ri,thetai ,phii
s[i,lam]=si
r[i,lam]=ri
theta[i,lam]= thetai
phi[i,lam]=phii
x[i,lam]=sqrt(r[i,lam ]^2+a^2)*sin(theta[i,lam])*cos(phi[i,lam])
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y[i,lam]=sqrt(r[i,lam ]^2+a^2)*sin(theta[i,lam])*sin(phi[i,lam])
z[i,lam]=r[i,lam]*cos(theta[i,lam])
;print ,line ,numofstep ,s(i,lam),x(i,lam),y(i,lam),z(i,lam)

endfor
endfor
close ,ldum
free_lun ,ldum

rs1 =1.d0-sqrt (1.d0^2-a^2)
rs2 =1.d0+sqrt (1.d0^2-a^2)

DEVICE ,RETAIN =2

ni=21
thetaangle=findgen(ni)
rerg=findgen(ni)
phiangle=findgen(ni)
thetaangle=thetaangle *(180/(ni -1))
phiangle=phiangle *(180/(ni -1))
xin=dblarr(ni ,ni)
yin=dblarr(ni ,ni)
zin=dblarr(ni ,ni)
rin=dblarr(ni ,ni)
thetaangle=thetaangle *!dpi /(180. d0)
phiangle =2.d0*phiangle *!dpi /(180. d0)

xrs2=dblarr(ni,ni)
yrs2=dblarr(ni,ni)
zrs2=dblarr(ni,ni)

for j=0,ni -1 do begin
for i=0,ni -1 do begin

xrs2[i,j]=sqrt(rs2 ^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yrs2[i,j]=sqrt(rs2 ^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zrs2[i,j]=rs2*cos(thetaangle[j])

endfor
endfor

for j=0,ni -1 do begin
rerg[j]=1.d0+sqrt (1.d0-a^2*( cos(thetaangle[j]))^2)
for i=0,ni -1 do begin

xin[i,j]=sqrt((rerg[j])^2+a^2)*cos(phiangle[i])*sin(thetaangle[j])
yin[i,j]=sqrt((rerg[j])^2+a^2)*sin(phiangle[i])*sin(thetaangle[j])
zin[i,j]=rerg[j]*cos(thetaangle[j])
rin[i,j]=sqrt(xin[i,j]^2+ yin[i,j]^2)

endfor
endfor

window ,xs=500,ys=500
range1=max(x,dimension =1,/absolute ,/NAN)
range2=max(y,dimension =1,/absolute ,/NAN)
range3=max(z,dimension =1,/absolute ,/NAN)
range =[range1 ,range2 ,range3]
ranges=max(range ,/NAN)
;xr=[-ranges ,ranges]
;yr=[-ranges ,ranges]
;zr=[-ranges ,ranges]

xr=[-3,3]
yr=xr
zr=xr

Surface ,zin ,xin ,yin ,/SAVE ,$
xstyle=1,ystyle=1,xrange=xr ,yrange=yr,$
zrange=zr,zst=1,$
ax=30,az=30,$

CHARSIZE =2.0,$
xtitle=’!3xÃ[GÃm/c!S!E2!RÃ]’,ytitle=’!3yÃ[GÃm/c!S!E2!RÃ]’,$
ztitle=’!3zÃ[GÃm/c!S!E2!RÃ]’,/noerase

iplot ,x[0,*],y[0,*],z[0,*], identifier =1
for i=1l,numofline -1l do begin

plots ,x[i,*],y[i,*],z[i,*],/t3d
iplot ,x[i,*],y[i,*],z[i,*], overplot=1, identifier =1;,color =[255 ,72 ,72]
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endfor
isurface ,zrs2 ,xrs2 ,yrs2 ,color =[0,240,0], XGRIDSTYLE =1, YGRIDSTYLE =1,$

xrange=xr,yrange=yr ,zrange=zr,$
xstyle=1,ystyle=1,zstyle=1,overplot=1,$
identifier =1,/ NO_SAVEPROMPT ,user_interface=’none’,$
Name=’OuterÃEventÃHorizon ’

isurface ,zin ,xin ,yin ,transparency =35, color =[72 ,72 ,255] ,$
XGRIDSTYLE =1, YGRIDSTYLE =1,overplot=1,$
xrange=xr,yrange=yr ,zrange=zr,xstyle=1,ystyle=1,zstyle=1,$
identifier =1,xtitle=’!8xÃ[GM/c!S!E2!RÃ]’,$
ytitle=’!8yÃ[GM/c!S!E2!RÃ]’,ztitle=’!8zÃ[GM/c!S!E2!RÃ]’,$
Name=’Ergosphere ’,/NO_SAVEPROMPT ,user_interface=’none’,$
scale_isotropic =1

end§ ¦
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