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Chapter 1

Introduction

Starformation is one of the most important processes that modern astrophysics
deals with. The birth of a star is a very complex phenomenon and a huge amount
of work has been invested in order for scientists to be able to describe it, even
in rough lines. Numerous observations of starforming regions, combined with
analytical arguments and numerical experiments, compose our current under-
standing of the evolution of a molecular gas cloud, as it cools down and collapses
under its own gravity, forming a single central core or a multiple system of cores
which evolve into stars through the accretion of the surrounding gas.

Nevertheless we are still unable to describe with certainty the detailed evo-
lution from the initial molecular cloud down to the final star, and there are
numerous questions that have not been answered with clarity. How does the
original cloud become fragmented and forms condensations? What are the prop-
erties of these condensations? When do they become gravitationally bound and
begin collapsing under their own gravity? When exactly is the core created and
what is the form of the infalling gas envelope around it? How is this envelope
accreted onto it and what is the exact role of accretion phenomena such as ac-
cretion shocks and disks? How are magnetic fields affecting the whole process?
How many stars will eventually be created and how much gas will finally end
up on their surface? What are the properties of these final stars? For some of
these questions and many similar ones, we are very close to a definite answer.
Yet there are many left unanswered since we are still trying to figure out which
factors are affecting each phase of the gravitational collapse and to what extent.

A very rough description of this kind of collapse is the following:
The initial cloud displays a non-homologous density distribution and in certain
points some condensations tend to appear. Those on scales smaller than the
Jeans length will eventually be smoothed out by acoustic waves, but large scale
or very high density inhomogeneities, exceeding the Jeans length, will survive
and grow in mass and size, resulting in the fragmentation of the cloud. Eventu-
ally, the gravitational forces acting on their surrounding gas, become much more
important than the gas’s self-gravity, leading to the halt of further fragmenta-
tion, and the collapse of the remaining material assumes the characteristics of

3



an accretion process. In the absence of any rotation, almost all the material
around a core will end up on it, by following a motion that resembles free-fall.
If there is substantial rotation, some part of the surrounding gas will form a ro-
tating disk around the core, since it will probably not have enough time to loose
its initial angular momentum. The evolution of such a disk is quite complex
and a final theory has not been established yet. In any case, it is suggested that
through the several angular momentum transferring processes that are known,
a part of the disk will finally reach the central star while the rest will remain
orbiting and will be the source of any subsequent planet formation.

The case of spherical collapse without rotation or magnetic fields is consid-
ered to be well understood and it has been followed analytically down to the
formation of a central protostar. The exact description of the axisymmetric
rotating collapse is much more complicated. The formation of a flattened disk
rotating around its center is almost definite but its evolution appears to be hard
to follow. One of the most important problems remaining still unanswered, is
how the disk’s angular momentum will be transferred outwards, so that the ma-
terial becomes able to fall in the central core. The state of energy minimization
for such a system has almost all the mass accumulated in the center, and only
a small fraction left rotating, carrying all the gas’s initial angular momentum.
After all, this is more or less the picture of our solar system, where most of the
mass is located in the sun and almost all the angular momentum is carried by
the planets.

The mechanisms of angular momentum transport are, so far, poorly under-
stood. The general idea is that friction between two disk particles, rotating at
neighboring radii, will try to speed up the slower one and slow down the faster
one. And since in most cases, the disk’s angular velocity decreases outward, it
follows that the inner particle will slow down, thus loosing part of its angular
momentum and move inwards. On the other hand, the outer one will speed up
and move to bigger radii. The net motion of angular momentum is outwards
while the net motion of the disk mass is inwards, resulting to the disk accretion.

Since viscous transport processes are currently not well understood, many
different possible mechanisms have been studied. Molecular viscosity appears
to be too small to be effective enough. Turbulent convection was another possi-
bility, but it has been suggested that it actually transports angular momentum
inwards (Stone & Balbus (1996)). The most promising possibility so far is
the “magneto-rotational instability”, or “Balbus-Hawley” instability (Balbus &
Hawley (1991)), where the stretching of the magnetic field lines due to different
rotational velocities of neighboring annuli in the radial direction, causes the in-
ner annulus to slow down and move inwards and the outer one to speed up and
move outwards. Finally, another promising idea is the angular momentum trans-
fer through gravitational instabilities that are created on the disk (Laughlin &
Bodenheimer (1994)), provided that it has enough mass to be self-gravitating.
In this scenario, some radially-extended mass condensations are created and
they may form a spiral arm, rotating along with the disk. The inner part of
the arm pulls the slower, outer one, trying to accelerate it, thus causing a net
flow of angular momentum outwards. Naturally, in order for gravitational in-
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Figure 1.1: A thick dusty disk around a protostar in the Orion Nebula, seen
edge on, through the Hubble Space Telescope. The left image is taken in blue,
green, and red emission lines. The right image was taken through a different
filter, which blocks any bright spectral emission lines from the nebula, and hence
the disk itself is less distinctly silhouetted against the background. However,
clearly visible in this image are nebulosities above and below the plane of the
disk; these betray the presence of the otherwise invisible central star, which
cannot be seen directly due to dust in the edge-on disk.

5



Figure 1.2: A striking NASA Hubble Space Telescope near-infrared picture of a
disk around the star HD 141569,in the constellation Libra. Hubble shows that
the 75 billion-mile wide disk seems to come in two parts: a dark band separates
a bright inner region from a fainter outer region. The cause of this gap could
be a planet.

stabilities to grow, the disk must have appreciable mass. All these mechanisms
and more, are studied in order to appreciate which one (or which combination
of them) is more efficient and realistic and produces the observed properties of
the protoplanetary disks.

Most analytical arguments concerning the creation of a disk and its evolution
have been tested through experiments, made with the use of numerical codes
in one or more dimensions, according to the symmetry of the phenomenon.
Unfortunately, the process seems to be quite sensitive to numerical methods
and errors, since it is very hard to handle correctly properties such as numerical
viscosity, diffusivity etc. Consequently, there is a rather vast variety of results,
some of which were in agreement with analytical arguments, and others were
the inspiration for further research.

It is useful to remind here, that although in most numerical simulations of
rotating collapse, a disk does appear, its further evolution is still uncertain.
How stable is this disk? Does it ever reach a Keplerian profile? Will it accrete
most of its mass in the center? How much mass will remain orbiting? Note that
the numerical experiments made by some researchers (Larson (1972), Black &
Bodenheimer (1976)) describe the formation of a ring structure following that
of a disk. They predict that this ring is unstable and will fragment into at least
a binary system of condensations, orbiting around each other. Therefore there
is still a great deal of uncertainty in the detailed description of gravitational
collapse of even a very simple initial gas cloud.

Naturally, all this research at the analytical and numerical level has to be
confirmed through astronomical observations. Numerous observations have been
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Figure 1.3: Optical image of an accretion disk surrounding the main sequence
star Beta Pictoris. The bottom false-color image is applied through image pro-
cessing and the inner edge of the disk is slightly tilted from the plane of the
outer disk because of the possible presence of a planet.

made in starforming regions like the Taurus, Ophiuchus and Orion nebulae,
which are the three most well-studied ones. Initially several attempts were
made to detect protostellar cloud collapse by detecting directly the gas infall
motions, but it has proven to be very difficult. The most general evidence for
protostellar collapse is the detection of heavily-extincted infrared sources of low
luminosity in starforming regions like the T Tauri stars. It has been proved that
in the case of spherical collapse without rotation, were the infalling gas follows
an almost free-fall motion, the protostars radiate most of their energy in the
mid to far-infrared spectral region. Fortunately, NASA’s IRAS satellite mission
(launched in 1983) found many objects with spectral energy densities similar to
those predicted by infall models. Disk formation in the rotating collapse cases
is also supported by observations. Lynden-Bell & Pringle (1974) suggested that
the excess near-infrared emission seen in many T Tauri stars could be powered
by the accretion of dusty disks around the stars. Later on, it was proved that
it could only be dust and not hot gas that causes this near-infrared emission.
Therefore, dusty disks were the only plausible candidates for explaining the
observed infrared spectra. The disk formation theories were later backed up by
high spatial resolution imaging at optical and near-infrared wavelengths and by
optical, near-infrared and infrared spectroscopy. The Hubble Space Telescope
has recently given us some very impressive images of accretion disks around
young stars (see Figures 1.1 - 1.3) so that the formation of disks in rotating,
collapsing clouds is by now, undeniable.

In this project we present some numerical experiments, made with a 3-
dimensional, hydrodynamical, numerical code (developed by Prof. Åke Nord-
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lund), that simulate the gravitational collapse of several different cases of molec-
ular clouds. We will deal with one spherical non-rotating collapse and three
axisymmetric, rotating ones. The spherical case is the collapse of a singular
isothermal sphere, where we make one simulation with a sink-cell in the center
of the cloud, so that we can reproduce the self similar solution described by
Shu (1977), and one without the application of a sink-cell in order to study its
effects on the collapse. The next experiment sets the singular isothermal sphere
in uniform rotation and examines the differences in the presence of significant
rotation. Further on we observe the collapse of a rotating, spherical cloud with
uniform initial density, where we can examine the first stages of the disk’s evo-
lution. We then repeat the same experiment with higher resolution in order to
examine the effects of the boundaries. Finally we deal with the case of a non-
axisymmetric rotating collapse where we initially have two layers of gas with
different densities and rotational axes, so that we can see how the profile of the
collapse changes when we move to more complex initial conditions. Throughout
all these experiments, we set the temperature to be constant and we apply no
magnetic fields at all. Wherever there is a specific analytical solution, we make
the appropriate comparisons with our results. Our aim is to examine whether
the theories which already exist predict similar results as the ones we get in
our experiments, and to comment on the possible reasons for any differences
observed.
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Chapter 2

Numerical Method

Throughout all the experiments conducted, we have used the HD version of a
3D MHD numerical code in FORTRAN 90, developed by Prof. Åke Nordlund,
called “stagger-code”.

This code solves the standard MHD equations in the following form:

∂ρ

∂t
= −∇ · ρu

∂B
∂t

= −∇× e

e = −(u×B) + ηJ

J = ∇×B

∂ρu
∂t

= −∇ · (ρuu + τ)−∇P + J×B− gρ

∂e

∂t
= −∇ · (eu)− P∇ · u + Qcool + Qvisc + QJoule

where ρ, u, B, e, η, J, τ, e, g, P = (γ − 1)e = 2
3e, T = p/ρ, Qcool, Qvisc,

and QJoule are the density, velocity, magnetic field, electric field, electric resis-
tivity, electric current, viscous stress tensor, internal energy, constant of gravity,
gas pressure, temperature, cooling term, viscous dissipation and Joule dissipa-
tion respectively.

The variables are represented on staggered meshes, where in terms of a unit
cube, ρ and e are volume centered, B and ρu are face centered and e and J
are edge centered. A sixth order accurate method, involving the three nearest
neighbor points on each side, is used for determining the partial derivatives.
The result is returned at a point which is shifted half a grid point up or down
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relative to the input values. A fifth order accurate interpolation method, again
involving the same six neighboring points, is used in order to shift the result into
place. Artificial diffusion is handled through a technique similar to the one used
by Richtmeyer & Morton (1964). The boundaries are set to be periodic and for
evolving the MHD equations in time, the explicit 3rd order predictor-corrector
procedure by Hyman (1979) is used, modified for variable time steps.
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Chapter 3

Singular Isothermal Sphere

3.1 Theoretical Introduction

In the first experiment of this project, we deal with a non-rotating cloud. We
examine the gravitational collapse of a gas sphere that initially has initial density
profile ρ ∝ r−2 and no velocities at all.

There are numerous earlier publications on this subject, some dealing with
it analytically and others using numerical HD codes. One of the most influential
articles is that of F. Shu (1977), where he examines the collapse of an isothermal
gas sphere whose initial density profile is:

ρ =
c2
s

2πG
· 1
r2

where cs is the sound speed and G is the gravitational constant, so the mass
enclosed in radius r, is increasing linearly as:

Mr =
2c2

s

G
r

Shu is making a reference to earlier works by other scientists, which demon-
strate that prior to core formation, collapse eventually leads to such an r−2

density profile of the cloud. He supports this claim with the argument that
such a distribution of mass is as close as possible to mechanical balance. In
order to be achieved, though, it is necessary that all the parts of the gas can
communicate acoustically, meaning that the earlier phases of the gas flow should
be subsonic.

From the moment this distribution is established, the gas sphere is in highly
unstable equilibrium and with a small perturbation, starts to collapse. He
examines this collapse analytically and concludes that it happens in a self-
similar way. His main argument is that the time needed by each spherical cell
to fall to the central core is approximately equal to its free-fall time:

t ≈ tff ∝ 1√
< ρ >

∝ r
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and since M ∝ r, it leads to dM
dt =constant. So the accretion rate should be

constant, and subsequently the core mass should increase linearly with time.
Thus, after developing the HD equations in a self-similar manner, he describes
the collapse as follows:

A spherical expansion wave is created, moving from the center outwards with
the speed of sound (rw = cs · t). The parts of the gas enclosed by the wave are
falling freely towards the center. The outermost regions remain unaffected until
the expansion wave reaches them, where they loose their pressure support (since
the inner layers have begun collapsing) and start falling as well. The layers that
are collapsing will have a density distribution as: ρ ∝ r−3/2 while their velocity

profile has the form of the free-fall case: uff ≈
√

2GM
r ∝ r−1/2. Until this wave

reaches the outer boundary the collapsing process is self-similar and the mass
that reaches the center per unit time is constant, leading to a core mass that is
increasing linearly with time.

This analysis is supported by the work of Boss and Black (1982) who used
an 1-D HD code with 40 grid cells, and a sink-cell at the core, and reached the
same conclusions.

We want to examine the same case, by making simulations with a full 3-D,
HD, numerical code (stagger-code) at higher resolution, and to see whether we
find similar density and velocity profiles. Therefore we make two experiments:
In the first one, a sink-cell is applied in the center of the cloud, unlike the
second case. Meaning that in the first experiment, the mass that reaches the
center of the cloud is removed and placed in one central cell, thus separating the
core region from the rest of the cloud (envelope). In this way, the gravitational
effect of the core is retained while any other possible effects on the envelope are
avoided.

3.2 Experiment With Sink Cell

We use an 100x100x100 grid points box, in the center of which, we implement a
gas sphere with a radius of 50 grid points (the physical radius is scaled to range
from 0 to 0.5). The initial density profile of the sphere is:

ρ = ρ0[(r6 + 16)1/6]−2

where ρ0 = 0.1, which remains very close to r−2 even for small radii, but still
flattens close to the center of the box. Thus, the total scaled mass inside the
box is Mtot = 0.758 (as computed numerically). We also scale the gravitational
constant, so that G = 25

4π in order to achieve an initial condition that is very
close to hydrodynamical equilibrium. Finally, we apply a softening in the grav-
itational potential so as to avoid a singularity in the center. The code ran for
500 timesteps.

In Figures 3.1 to 3.4 are the plots of four similar quantities. The spherically
averaged mass in each spherical cell (upper left panels), the spherically averaged
density in each spherical cell in logarithmic scale (upper right panels), the mass
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Figure 3.1: Spherically averaged mass (upper left panel), spherically averaged
density in logarithmic scale (upper right panels), mass and density enclosed in
each radial cell(lower left and right panels respectively). The dotted line in the
spherically averaged density plots stands for r−2 power law, and the dashed one
(see subsequent figures), for r−3/2. Timestep=0
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Figure 3.2: Same for timestep=250
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Figure 3.3: Same for timestep=350
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Figure 3.4: Same for timestep=450

and the density enclosed in each cell(lower left and right panels respectively).
The dotted line in the spherically averaged density plots stands for the r−2

power law and the dashed one for the r−3/2. The four timesteps plotted are
timestep=0, 250, 350, 450. In each case, the physical scaled time is shown on
top of the figure.

It is obvious that the initial density distribution is very close to r−2 and the
enclosed mass ranges as: Mr ∝ r. The mass in each spherical cell is naturally
constant (Fig 3.1).

For t ' 0.07, the gas in the inner radii has already started to collapse as the
expansion wave has reached rw ' 0.09 (note that the sound speed is unity so
the result is quite in agreement with rw = cs · t). In later timesteps the wave is
moving further out (Fig3.3 and 3.4), resulting in an increase of infalling mass.
The density distribution of the collapsing gas is very close to: ρ ∝ r−3/2. Note
though, that the mass which reaches the central core is put in the sink-cell, so
that it has infinitesimal volume, not blocking the free-fall.

In Figures 3.5 to 3.7 are the plots of the radial velocity in logarithmic scale,
for the previous timesteps (except of course for t=0). The dotted line represents
the r−1/2 power law. Although the wave is very clear, the velocity profile inside
it has little resemblance with free fall. This is because free-fall is an ideal state
and the velocity distribution appears more sensitive to diversions from this
situation.

Finally we plot the central mass and accretion rate as a function of time,
which can be seen in Figures 3.8 and 3.9. There we see, that after a peak
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Figure 3.5: Radial velocity in logarithmic scale. Dotted line stands for r−1/2.
Timestep=250
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Figure 3.6: Same for timestep=350
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Figure 3.7: Same for timestep=450
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Figure 3.8: Central mass as function of time
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Figure 3.9: Accretion rate as function of time

in the accretion rate, it reaches a rather constant value of dM
dt ≈ 0.2 and the

sink particle mass grows linearly with time, thus verifying Shu’s description of
collapse in a qualitative way. The above results are also in close agreement with
the numerical ones of Boss and Black, although extended in three dimensions.

3.3 Experiment Without Sink Cell

In the second experiment, the sink cell was not applied, in order for us to be
able to examine what is the influence of the accumulation of mass close to the
center in a core that has a certain volume. Here, the gravitational constant is
set to G = 35

4π , and the exact density profile is now:

ρ = ρ0[(r6 + 36)1/6]−2

The central softening in the gravitational potential is naturally still applied.
This simulation ran for 1000 timesteps.

In Figures 3.10 to 3.13, the same mass and density variables are plotted as
before, for timesteps: 125, 250, 500, 750 (Timestep 0 is practically the same as in
Fig 3.1. Note that in timestep=125, the gas in a lot of spherical cells has already
started to collapse, deviating from the initial distribution. In timestep=250,
almost the whole cloud is collapsing, but still the collapsing regions have density
distribution quite close to the r−3/2 power law, which they retain even in later
times. Yet, there seems to be no obvious expansion wave this time, and so the
infalling layers are not well distinguished from the rest.

In Figures3.14 to 3.17 the radial velocity plots for each of the previous
timesteps are presented. The deviation from the r−1/2 power-law is obvious
once more, since the velocity is increasing much faster as we move inwards.
This is probably because there is pressure from the outer layers, acting on the
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Figure 3.10: Same as in Fig3.1, but for the non sink cell case. Timestep=125
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Figure 3.11: Same for timestep=250
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Figure 3.12: Same for timestep=500
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Figure 3.13: Same for timestep=750
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Figure 3.14: Radial velocity in logarithmic scale. Dotted line stands for r−1/2.
Timestep=125
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Figure 3.15: Same for timestep=250
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Figure 3.16: Same for timestep=500
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Figure 3.17: Same for timestep=750
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Figure 3.18: Mass accumulating at the central core as function of time

collapsing ones, and thus accelerating them more than gravitational accelera-
tion. The equilibrium is destroyed from early times, which is natural, since the
idealized case of the sink-cell does not apply here. The central core has a vol-
ume that is increasing continuously as matter is piling up on it, and the infalling
material is dealing with increasing pressure from inside-out.

It is interesting to examine whether the constant accretion rate condition
holds in this case. In Figures 3.18 and 3.19 the core mass and the accretion
rate are plotted as functions of time (We assume that the core extends over the
innermost three cells).

There is a very distinct peak in the early phase of the accretion rate, and
after t ≈ 0.2, it comes close to becoming quite constant for only a short period.
Naturally, at this time, the core mass reaches an almost linear relation with
time. Note that the mass accumulated in the center, in this case, reaches much
greater values than in the sink cell case. This happens because most of the layers
start falling in very soon and so, as mentioned before, the pressure exerted on
the inner shells by the outer ones increases their inward acceleration, resulting
in greater infall speeds and thus greater accretion rates.

We can conclude that in order to reproduce Shu’s self-similar results, to a
satisfying degree, we have to store the mass that has accumulated close to the
center into an extremely small space, which is the sink-cell, so as not to prevent
the collapse of the outer radii in any way. Otherwise, the deviation from self-
similarity analysis very soon becomes important, and self-similar results can not
be applied as a realistic model.

3.4 Conclusions

With the application of a sink-cell, we observe:
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Figure 3.19: Accretion rate as function of time

• a spherical expansion wave traveling outwards

• density distribution close to an r−3/2 power-law

• velocity distribution deviating from the expected r−3/2 power-law

• accretion rate becoming constant after the first steps.

Without the application of a sink-cell:

• there is no distinct expansion wave. The equilibrium is soon lost and the
whole cloud collapses.

• we do not observe the density and velocity distributions indicating free-fall

• the accretion rate is never stabilized.

Therefore, by applying a central sink-cell we can describe the singular isothermal
sphere’s collapse in terms of an almost free-fall state. But in a more realistic
experiment we see that the volume and mass increase of the central core region
is strongly affecting the procedure and the pressure forces that develop around
this region can result in a big deviation from free-fall.
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Chapter 4

Rotating Singular
Isothermal Sphere

4.1 Theoretical Introduction

Having examined the case of the non-rotating, singular, isothermal sphere we
continue with the same spherical cloud in which we now implement an initial
rotation with uniform angular velocity (solid body rotation).

Cassen and Moosman (1981) used ballistic orbit analysis in order to describe
the particles trajectories as a function of their initial angle with the rotational
axis. Later on Tereby, Shu and Cassen (1984) expanded the self similarity
solution of singular isothermal spheres (see Chapter 3) for slowly rotating cases,
where they dealt with rotation as a small perturbation to the equations. Boss
and Black (1982) also worked on this subject by using a 2D numerical code.

Firstly, we look at how a simplifying, theoretical analysis describes this col-
lapse. Since the collapse is happening in dynamical timescales, it is unlikely that
there will be enough time for the angular momentum to be efficiently transferred
to the external medium. So the different parts of the cloud that are at a distance
from the rotational axis, carrying substantial angular momentum, will start col-
lapsing not towards the core itself, but towards the equatorial plane where they
meet their symmetric particles coming from below. There they will collide and
a shock wave will be produced, carrying their dissipated energy. So they will
remain close to the equatorial plane forming a flattened structure i.e. a disk,
that is rotating around the central core.

A specific particle that initially carries angular momentum L, which is con-
served during its motion, will end up on this disk, in some final radius rd around
the center. There the centrifugal force will eventually counterbalance gravity,
leading to the relation :

GM

r2
d

= Ω2rd =
L2

r3
d
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Figure 4.1: Streamlines of particles. Distance scales from the polar axis z and
the cylindrical radius R are given in units of the final disk radius Rd. The
streamlines shown are in steps of 0.1 in cosφ0 with the lowest streamline for
cosφ0 = 0.9

So we can compute its orbiting radius :

rd =
L2

GM

And since the initial angular momentum is equal to : L = Ωr2
0 sin2 φ0 (where φ0

is the initial angle from the rotational axis) we can derive, that the bigger φ0 is,
the bigger the final radius will be. Therefore the material that is initially on the
equatorial plane (φ0 = π/2), will finally have the biggest radius, corresponding
to the disk’s outer radius:

Rd =
Ω2r4

0

GM
(4.1)

Note that in the analysis above we made two simplifying assumptions: That
the pressures forces are negligible and that the whole mass of the cloud is
accumulated in the center, meaning that the disk has no self gravity. In a
more realistic analysis, those constrains should not hold a priori and the result
could be quite different. From the moment the particle reaches its final orbit-
ing radius, its rotational velocity will, theoretically, become a Keplerian one:
Ud =

√
GM
rd

= L
rd

. Assuming that initially the cloud was rotating with a solid
body rotation (which gives the constant Ω and the angular momentum profile
L0 = Ωr2

0 sin2 φ0), we can use ballistic trajectories, i.e. follow the particles
parabolic motion around the central point mass (see Fig 4.1), and end up with

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

z

Figure 4.2: Density contours of equation 4.2. The flattening of the contours on
the equatorial plane is evident

the equation for the density of the infalling material:

ρ =
Ṁ

4π
√

(GMr3)
(1 +

cosφ

cos φ0
)−1/2(

cos φ

cos φ0
+

2 cos2 φ0

r/Rd
) (4.2)

The density contours of this distribution become flat for small r, representing
the creation of a disk. This is clearly depicted in Fig 4.2. For r À Rd it becomes
ρ ∝ r−3/2 (like in free-fall motion) while for r ¿ Rd it goes to ρ ∝ r−1/2. So
as we move towards the center, the density should increase with a smaller rate,
since rotation becomes preeminent and material is landing on the disk instead
of the core.

Unfortunately, equation 4.2 is deduced after neglecting a lot of factors and
making (perhaps too many) oversimplifying assumptions. Apart from the ones
mentioned above, a basic simplification made is that for the occurring density
distributions, we assumed that all the mass that is landing on the core (and
comes mainly from the columns around the rotational axis where L is very
small) is cramped in an infinitesimally small volume (like a sink-cell), so that
it has only a gravitational effect and does not effect the rest of the cloud with
its volume and the pressure forces that develop around it. In addition to that,
in the distributions prementioned, the density of the disk itself is not included,
since it is assumed to be infinitely thin and without self gravity. So finally the
two density profiles correspond only to the infalling material. Another essential
assumption is that the central accretion rate is constant, which leads us to
the same conditions set by Shu’s self similarity solutions for the non rotating
isothermal sphere. This is exactly the reason why we get once more the free
fall density profile: ρ ∝ r−3/2 for the outer shells, where the effects of rotation
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can be neglected. Remember that in the same self similar analysis, the radius
of the layers that begin collapsing is increasing linearly with time (r0 ∝ t)
through the expansion wave (rw = cst), and since Ṁ =constant⇒ M ∝ t, it is
deduced from equation 4.1 that the disk’s radius is related with time through
eq. 4.1, as: Rd ∝ t3. Finally, note that for the ballistic analysis to be valid,
the streamlines of the particles with different φ0 must not intersect in any point
of their motion, so that shocks will not be created and angular momentum can
not be redistributed. That is the reason why we have to begin with solid body
rotation where L is increasing monotonically with φ0 meaning that the rd does
so as well.

4.2 Experiment

We have implemented the initial conditions for the rotating isothermal sphere,
mentioned above, into the 3D stagger code, where naturally, the numerous con-
strains are not set beforehand, in order to examine whether the results will be
in agreement with the theory.

The initial density profile is the same used in the previous section:

ρ = ρ0[(r6 + 16)1/6]−2

where ρ0 = 0.1. The scaled angular velocity is set to: Ω = 4.9 while we set
G = 55

4π so that we have a ratio of rotational to gravitational energy

β =
1
2LΩ
GM
r0

=
Ω2r3

0

2GM
≈ 0.47

which is slightly less than the equilibrium value β = 1
2 (where we assumed that

all the cloud’s mass is concentrated in the center. Theoretically, in order for the
sphere to be close to HD equilibrium, having the Ω we set, it should be for the
external layer (r0 = 0.5):

GM = Ω2r3
0 ⇒ G ≈ 51.8

4π

Instead we set the slightly greater value mentioned, because there are pressure
forces that have to be surmounted as well. So initially, the cloud is close enough
to HD equilibrium. Note that once again we applied softening in the gravita-
tional potential while a sink particle was not used. The box is 100x100x100
grid points where the scaled radius ranges from 0 to 0.5. The code run for 1000
timesteps.

Central mass and the accretion rate are plotted over time, in Figures 4.3 and
4.4 respectively. Until time t ≈ 0.1 the mass in the central core is increasing
quickly, thus resulting in the distinct peak in the accretion rate. This is mainly
due to the collapse of the inner cells which are very close to the core, where
the effect of rotation is negligible. But the violent increase of the core’s mass
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Figure 4.3: Mass accumulating at the central core as function of time
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Figure 4.4: Accretion rate as function of time
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Figure 4.5: Contours of particles trajectories. Each column has a different
specific angular momentum. The physical time is written on top. Timestep=0

should be mostly attributed to the collapse of the material close to the rotational
axis. After this sudden increase, the accretion rate drops quickly, and gradually
tends to 0, as one can also derive from the Fig 4.3 where the central mass tends
to become constant. It is also remarkable that the accretion rate has a very
similar profile as the one acquired in the previous experiment (see Fig 3.19).
The distinct peak in the beginning has the same value (≈ 2.6) caused by the
infall of inner layers, where rotation is negligible, and then drops by following a
similar curve, thought with much lower values since most gas is now not falling
directly to the core.

In Figures 4.5, 4.9 a slice of the box, passing through the meridional plane
of the cloud, is depicted. The pictured timesteps are 0, 250, 500, 750, 1000.
Each column corresponds to a different specific angular momentum and it is
interesting to see how they are compressed by gravity near the equator, forming
a flat disk around the center. The deformed columns in the final timestep
essentially depict the trajectories followed by the particles and where they finally
settled on the disk. By following each grid box one can see its initial and final
location. Note that the trajectories do not seem to intersect. The dashed line
in the final timestep represents the theoretical disk radius for a Keplerian disk,
as given by Eq 4.1.

Looking at the plots of the rotational velocities along the equatorial plane
in Figures 4.10 to 4.13 one can get a good impression of the disk rotational
profile. The dashed lines correspond to Keplerian velocities (where we assumed
that all the mass which affects the disk gravitationally is confined within the
5 inner radial cells). The velocities start as sub-keplerian but slowly increase
with time as mass from the outer layers is accumulated on the disk, carrying
greater L. The result is that the velocities become superKeplerian towards the
final timesteps, which should result in the redistribution of mass and L. Note
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Figure 4.6: Same for timestep=250
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Figure 4.7: Same for timestep=500
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Figure 4.8: Same for timestep 750
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Figure 4.9: Same for timestep 1000
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Figure 4.10: Rotational velocity over radius, on the equator. Dashed line stands
for Keplerian rotation. Timestep=250
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Figure 4.11: Same for timestep=500
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Figure 4.12: Same for timestep=750
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Figure 4.13: Same for timestep1000
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Figure 4.14: Spherically averaged mass (upper left panel), spherically averaged
density in logarithmic scale (upper right panels), mass and density enclosed by
each spherical cell (lower left and right panels respectively). The dotted line in
the spherically averaged density plots, stands for r−2 power law, and the dashed
one, for r−3/2. Timestep=250

that only for a short period does the disk come close to being Keplerian, after
which it looses its stability again.

In the density plots, in Figures 4.14 to 4.17, we can see how the inner shells
that collapse first, form the core’s mass, allowing the outer shells to start col-
lapsing as well, acquiring a motion that seems close to free fall, since the density
distribution resembles that of the power law ρ ∝ r−3/2 (dashed line). The lay-
ers that are close to the outer boundary show little motion and remain close
to their original distribution. This image that resembles self similar solutions
is soon lost, since the outer cells quickly start collapsing, carrying along their
high angular momentum values and finally settling near the equator. From the
plots of velocity or averaged mass, in timestep=1000, we can derive that the
disk’s radius is roughly Rd ≈ 0.15. If the velocities were Keplerian like, and
the orbits were stable, the radius could be derived from the angular momentum
conservation:

Ωr2
0 = Ukeprkep ⇒ rkep =

Ωr2
0√

GM
rkep

⇒ rkep =
Ω2r4

0

GM

This formula of course, is the same as in Eq.4.1. Again we assumed that all
the mass is accumulated in the core. So the Keplerian disk radius should be
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Figure 4.15: Same for timestep=500

     0.273678

0.0 0.1 0.2 0.3 0.4 0.5
radius

0.00

0.02

0.04

0.06

0.08

0.10

0.12

av
er

ag
ed

 m
as

s

-2.0 -1.5 -1.0 -0.5 0.0
log radius

-1

0

1

2

3

4

lo
g 

av
er

ag
ed

 d
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5
radius

0.0

0.2

0.4

0.6

0.8

en
cl

os
ed

 m
as

s

-2.0 -1.5 -1.0 -0.5 0.0
log radius

0

1

2

3

4

lo
g 

en
cl

os
ed

 d
en

si
ty

Figure 4.16: Same for timestep=750
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Figure 4.17: Same for timestep=1000

Rd ≈ 0.471 which is shown as the dotted line in Figure 4.17. What we get
though is a much smaller disk, since it never really managed to reach a stable
Keplerian state and conserve it for long. Another reason for the divergence from
the theoretical radius is that the theory does not take into consideration the
pressure forces that develop both from the core towards the collapsing material
and from the outer layers pressing the inner ones as they collapse. Finally one
should note that the boundaries could also be affecting the outer layers.

Therefore we can conclude that although we started from a condition very
close to HD equilibrium, and we did observe the main stages of the described
process (central collapse of the inner shells, formation of disk), the detailed evo-
lution was totally differently from the theoretical one. The collapse of the outer
layers resembled self similar free fall only for a very small period in the beginning
of the process, while we never found a distribution of r−1/2 close to the core,
since it didn’t work as a sink-cell and the disk did not have a negligible mass.
Finally, a main difference from the constrains set in the theoretical analysis,
is that the accretion rate is very far from being constant in any time, and the
pressure’s effects can not be neglected at all.

As mentioned, Boss and Black (1982) applied an axisymmetric 2D HD nu-
merical code on a similar initial condition, but their results were quite different.
Naturally a disk was created in their experiments as well, but there was a circula-
tion of gas on the disk, with material moving outwards, reaching the boundaries
and then flowing away from the equator, only to join a flow towards the inner
parts of the disk again. That kind of gas circulation was not observed in our
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experiments. The gas moving outwards could be attributed to angular momen-
tum redistribution, but the fact that it then returns to the disk is probably
due to the boundary conditions. They also found a monotonically increasing
accretion rate which is in total inconsistency with our experiment. But note
that they applied a sink particle in the core thus excluding any significant pres-
sure forces close to the center, and the effects of the mass as it piles up in the
inner cells; effects that, according to our experiment, prove to be important in
the evolution of the collapse. Finally take into consideration that they set the
rotational-to-gravitational energy parameter to: β = 0.1, meaning that in their
simulation, gravity was far exceeding rotation from the beginning, while in our
case the clouds is initially close to equilibrium.

4.3 Conclusions

The theoretical analysis assumes the following simplifying conditions:

• the particles’ trajectories do not intersect

• all the core mass is cramped in an infinitesimal space in the center of the
cloud.

• the disk has no significant mass and thus no self-gravity as well

• there are no significant pressure forces

• the accretion rate is constant

In our simulation we have not implemented such simplifications. The results
suggest that:

• truly the trajectories do not intersect significantly during collapse

• the core is not infinitesimally small. In fact, its size and most importantly
the pressure forces around it are significantly affecting the collapse.

• the density distributions are not the expected ones. Only in the first
steps do we observe one similar to free-fall density distribution. An r−1/2

power-law is never reached by the infalling gas for r ¿ Rd

• a rotating disk is observed as expected

• the disk did not acquire a Keplerian profile, therefore it never became
stable

• the disk contains a significant portion of the cloud’s mass, suggesting that
its self-gravity should not be neglected

• the accretion rate is far from being constant at all times.
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Chapter 5

Rotating Uniform Sphere

5.1 Theoretical introduction

In the same paper where they studied the collapse of a rotating singular isother-
mal sphere, Boss and Black also studied the case of an isothermal sphere with
uniform initial density, rotating as a solid body. They describe the evolution as
follows:

The collapse is occurring in roughly free fall timescales. The cloud starts
collapsing at all radii but the core mass remains low, because there is no initial
central concentration of mass like before. After some time, the core is massive
enough to cause a violent runaway collapse, where the mass that is close to the
rotational axis is falling freely inwards, while some material is accumulating on
the equatorial plane. After a while, most of the gas has fallen into the core and
there is a small part that was initially away from the axis, having large angular
momentum, still rotating around it, in the form of a disk. The accretion rate
now drops close to 0. The gravitational forces on the rotating gas are not enough
to keep it from flowing outwards, so one part of it reaches the outer boundaries
and stays there while the rest reaches a maximum radius and then is accreted
again, partly reaching the core and partly reaching a stable Keplerian rotation.
In the end only 5% of the initial cloud mass is left in the disk, unlike the centrally
condensed cloud where the rotating gas was finally roughly 25% of the mass.
Finally there are no circulation currents found in this case.

The main difference between these two cases is that in the uniform sphere,
almost all the gas reaches the core! From a first point of view this might seem
strange and one would expect the centrally condensed sphere to have less gas
rotating around the core, since there is initially more central concentration of
gas. Note though, that in the singular sphere the rotational to gravitational
forces ratio is:

γsing =
Ω2r
GM
r2

=
Ω2r3

GM
=

Ω2r3

G
∫

4πρr2dr
=

Ω2r3

G4πρ0

∫
dr

=
Ω2r3

G4πρ0r
=

Ω2r2

4πGρ0
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while in the case of the uniform density sphere the same ratio is:

γun =
Ω2r3

G4πρ0

∫
r2dr

=
Ω2r3

G4πρ0
r3

3

=
3Ω2

4πGρ0
=

3
r2

γsing

Therefore as r →∞ the ratio becomes: γun ¿ γsing indicating that for the
same angular velocity, the gravitational forces will be much stronger than the
rotational ones when the cloud has a uniform density profile (ρ = ρ0) than when
it has a centrally condensed one (ρ = ρ0

r2 ). This is why the rotational effects in
the uniform sphere are milder and the core accretes more mass.

5.2 Experiment

We want to study the same case by applying the HD version of the 3D stagger
code. We use a 100x100x100 box in the center of which we implement a spherical
cloud with constant scaled density ρ = ρ0 = 1 which extends up to r ≈ 0.3,
beyond which it abruptly drops to 0, leaving its surroundings almost empty of
gas. We also set an initial constant angular velocity: Ω ≈ 9.5. Therefore by
setting γ = 3Ω2

4πGρ0
= 1 (rotational forces equal to gravitational in any radius r)

we can compute the required value of G:

G =
3Ω2

4πρ0
=

270.76
4π

Therefore we set G = 300
4π which proves enough to counterbalance both rotation

and the pressure forces, in the first timesteps. With this values, the final radius
of a Keplerian disk that has all the cloud mass concentrated in the center, is

Rd =
Ω2r4

0

GM
=

3Ω2r0

4πGρ0
≈ 0.27

and the ratio of rotational to gravitational energy is

β =
Ω2r3

0

2GM
=

3Ω2

8πGρ0
≈ 0.45

(β for rotational-gravitational balance would be β = 1
2 ) indicating that gravity

has only a small dominance over rotation. Having set these values we let the
code run for 2000 timesteps. The evolution observed is the following:

Initially, the gas near the poles of the sphere is collapsing while the gas on the
equatorial plane is moving outwards since gravity is not yet enough to surmount
pressure and rotation. After some mass from the rotational axis has reached the
core, gravitational forces are great enough for the equator to start contracting
again, rather rapidly, pushing the infalling gas from the poles, outwards. Soon
though, gravity takes over in all shells and the whole cloud is contracting. The
material near the axis that was pushed out is accreted again and the gas that
has enough angular momentum gradually approaches the equatorial plane. The
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Figure 5.1: Contours of particles trajectories. Each column has a different
specific angular momentum. Timestep=0

result is the formation of a thick disk around the core, where gas is gradually
settling down near the equator. From timestep ≈ 1000 up to 1250 the core-
disk system reaches a quite stable condition. By now, some material that was
originally ejected towards the boundaries is returning, carrying some angular
momentum and when it reaches the disk, four distinct arms are formed; but
generally the disk’s stability does not seem to be severely disrupted by this
effect.

Once more we use contours where each column has a different value of specific
angular momentum, in order to depict this process as clearly as possible. In
Figures 5.1 to 5.5, the snapshots are plotted at timesteps 0, 500, 750, 1000,
2000 respectively, with the scaled time written on top of each Figure.

By t ≈ 0.225, the gas close to the equator has begun forming the thick
disk, while the parts near the axis are rapidly collapsing to the core, increasing
the gravitational energy of the rotating parts. As time goes by, more gas is
landing near the equatorial plane carrying high values of L. In the last timestep,
the effects of the material that bounced on the periodic boundaries and then
mixed with the rest of the gas are evident, as the homogeneity of the collapse
is destroyed. The bouncing gas is mixed with the rotating layers, creating some
turbulence while redistribution of L is occurring through the viscous torques
that are developing. Yet, the disk structure remains, and its outer radius is in
the last snapshot Rd ≈ 0.20, which is a value quite close to the theoretically
predicted for Keplerian disks.

We now examine the evolution of the central mass and the accretion rate
as a function of time, shown in Fig 5.6 and 5.7. The central mass is initially
increasing rapidly as gas from the inner shells with low rotational energy and
most importantly, gas near the axis, is accreted, resulting in the distinct peak
in the accretion rate. Later on, the rate is dropping as the outer layers land
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Figure 5.2: Same for timestep=500
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Figure 5.3: Same for timestep=750
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Figure 5.4: Same for timestep 1000
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Figure 5.5: Same for timestep 2000
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Figure 5.6: Mass accumulating at the central core as function of time
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Figure 5.7: Accretion rate as function of time
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Figure 5.8: Rotational velocity on the equator, over radius. Dashed line stands
for Keplerian rotation. Timestep=500

on the disk rather than the core. But although, after some point (t ≈ 0.65),
the majority of the rotating gas has reached the equator, the redistribution of
mass and angular momentum is continuing, resulting in mass leaving the disk
and falling into the core, thus increasing the accretion rate once again. A closer
study of this redistribution is done below.

After examining more thoroughly the structure of the thick disk that has
formed, one easily notices that it actually surrounds a thin quasi-Keplerian disk
which extends over the equatorial plane and the planes close to it. It is this
thinner disk that represents the most stably rotating part of the gas. Naturally,
as its mass and total angular momentum are increasing by the accumulation
of particles from the outer shells, it soon starts to decline from its Keplerian
profile. These remarks are more clearly depicted in Figures 5.8 to 5.11, where the
rotational velocities of the equatorial plane are plotted over radius. The dashed
lines stand for Keplerian velocities profile of each timestep, where we assumed
that the mass which acts as a gravitational center is the mass accumulated
in the inner 5 shells. Note that another reason why the Keplerian profile is
totally lost by the final timesteps could be the gas that reaches the disk from
the boundaries, pressing it inwards, altering the quasi-equilibrium state that the
Keplerian part of the thick disk had reached.

So, although we expected most of the gas to end up in the core, finally we
find large amounts still rotating around it. Therefore we can conclude that
independent of the initial density profile of the cloud, a disk is more or less
bound to appear, were all the gas’s angular momentum is stored. This disk will
become stable when most of the gas reaches Keplerian orbits, but it does not
seem very possible that it will be able to retain this profile for more than a few
timesteps, since further accumulation of mass and energy dissipation through
viscous processes will probably alter its structure.
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Figure 5.9: Same for timestep=1000
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Figure 5.10: Same for timestep=1500
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Figure 5.11: Same for timestep 2000

We now elaborate further on the subject of the redistribution of mass and
angular momentum. When the particles settle on the disk or around it, the only
way for them to end up in the core is to loose their angular momentum through
some mechanism. These mechanisms are mostly viscous and magnetic torques
that will dissipate energy (see Introduction). Since we have not set any magnetic
fields in our experiments we will only study the first case. Between neighboring
fluid parcels that rotate in slightly different radii, torques will develop because
of their kinematic viscosity. These torques will cause the transport of angular
momentum from the inner parcel to the outer one, causing the inner one to
loose its rotational energy and move inwards. Theoretically, the final state of
such a system would have all the mass having lost its angular momentum and
fallen in the core, and only a very small amount of material, remaining in orbit
at large radii, carrying all the angular momentum the cloud initially had. Of
course this is a totally idealized situation, and an interesting question is how
much mass will actually be wasted in carrying all the angular momentum?

Figure 5.13 shows the circularly averaged angular momentum per unit mass,
of the gas rotating on the equatorial plane, plotted against radius. Several
timesteps are depicted. It is obvious that most of the specific angular momentum
is transported outwards during the first timesteps when the gas near the equator
was moving outwards. The part of this gas that remained close to the boundaries
has retained these high values of specific angular momentum that decreased only
slightly throughout the whole run. On the other hand, the values of angular
momentum in the inner shells are continuously increasing due to the settling of
material arriving from the outer ones.

Further on, we plot the spherically averaged angular momentum (not angular
momentum per unit mass) over radius. Specifically it is the spherically averaged
specific angular momentum, multiplied with the average of the mass enclosed
within each spherical cell (< L >=< M >< Lpermass >). The plot is shown in
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Figure 5.12: Angular momentum per unit mass, averaged over circular cells, on
the equatorial plane. The timesteps are 0 (solid line), 500 (dotted line), 1000
(dashed line) 2000 (dashed-dotted line)
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Figure 5.13: Spherically averaged angular momentum over radius. The
timesteps are 0 (solid line), 500 (dotted line), 1000 (dashed line) 2000 (dashed-
dotted line)
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Figure 5.14: Contours of particles trajectories. Each column has a different
specific angular momentum. Timestep=0

Figure 5.13 for the same timesteps as before. There we can see that although
almost all the angular momentum is carried by gas contained in the disk, there
is mass left rotating close to the boundaries, carrying some part of the initial L.

5.3 Experiment with higher resolution

From both the latter plots it is clear that the initial expansion near the equator,
which ejects gas to the boundaries, has a significant effect on the results. The
gas that returns from the boundaries is altering the disk’s structure as it mixes
with it, through the four arms that are formed. Some mass is left rotating
close to the boundaries which is also making quite unclear whether there is any
angular momentum transport from the inner parts of the disk to the outer cells.
In order to elaborate further on this collapse, and also diminish these drawbacks,
we rerun the same experiment, but within a bigger box. We implement the same
sphere with the same rotation, in a 200x200x100 box, in order for most of the gas
near the equator not to reach the boundaries (we needn’t use more grid points
in the z direction since the gas close to the rotational axis is accreted from the
beginning). The only difference between this experiment and the previous one
is that we have now set the sound speed to be equal to 0.5, while up until now,
it always had the normalized value of 1. This means that the information of the
density evolution is transported with half the speed it had before, thus altering
the pressure effects. The code run for 1500 timesteps and the collapse is shown
in Figures 5.14 to 5.19, where again each column corresponds to a different value
of specific angular momentum and one can see the particles’ trajectories.

Since this time, the gas has enough space to expand without reaching the
boundaries and bouncing there (except for a very small fraction), the evolution
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Figure 5.15: Same for timestep=250
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Figure 5.16: Same for timestep=500
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Figure 5.17: Same for timestep=750
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Figure 5.18: Same for timestep 1000
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Figure 5.19: Same for timestep 1500

we observe is quite different. Once again the cloud’s equator is initially expand-
ing due to lack of efficient gravity, until most of the material from the axis has
reached the core. Then it starts being accreted again and the equatorial plane
contracts. A disk structure is soon emerging as the rotating gas is landing on it
(Fig 5.15). Yet the pressure forces on the central part of the cloud appear now
to be too strong, and as a result gas is leaving the core, while another part is
still falling in from outer shells. This combination of pressure that drives the
inner gas outwards, gravity that drives the outer parts inwards and rotation that
spins the whole system creates an unstable flat structure on the equator that
initially was disk-like but as time passes, eventually forms a ring. Now most of
the mass is concentrated on this ring (Fig 5.16), at a distance from the core,
and most of the infalling, rotating gas is landing on it. The ring is expanding
since gravity seems to be inadequate to counterbalance rotational energy and
pressures. Soon this unstable ring reaches a maximum radius which retains for a
few timesteps and then contracts again, under its own gravity (Fig 5.17). After
a while it looses its structure once more, and four spherical gas clumps form,
which rotate around the center (Fig 5.19). (The fact that structures like the
gas clumps in this experiment or the arms in the previous one, are always four,
is due to the symmetry of the cubic box). Any gas that was left rotating is now
accreted on these clumps, increasing their mass. This process is more clearly
depicted in Figure 5.20 where density is plotted, in logarithmic scale, over the
equatorial plane for timesteps 0, 500, 1000, 1500. There, the four stages of the
process are obvious: uniform sphere, accretion disk, accretion ring, spherical
gas clumps.

We can see that when the cloud is not tightly bound by boundaries, that
more or less help it acquire a stable profile, but on the contrary, when it is
free to expand in space and evolve under its own gravity and pressure, different
structures occur. The evolution is much more complex as the gravity forces
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Figure 5.20: Logarithm of density on the equatorial plane. The physical, scaled
times are 0.000, 0.258, 0.354, 0.459
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are not always enough to surmount the very high pressures that develop in the
central region. In addition to that, rotational energy is another factor that
makes the case even more complicated.

In the previous experiment, where the box was smaller, the sphere followed
a more simple and predictable path, where part of the gas reached the core
forming a robust gravitational center, while the rest settled on a disk around
it. Eventually, some of this disk’s mass ended up in the core, and the rest re-
mained in a rotational state carrying the angular momentum the cloud initially
had. Theoretically we would expect most of the gas to reach the core, since in
the case of the uniform sphere, the gravitational forces dominate the rotational
ones, and this dominance grows with time as more mass reaches the core, mainly
from the axis. Yet the disk managed to accumulate a great amount of the mass,
(actually there is much more gas left rotating than in the core), indicating that
either the particles that initially had a lot of angular momentum had not enough
time to loose it, or that the viscous mechanisms, responsible for carrying angu-
lar momentum outwards, are not efficient enough. It appears though, that the
fact that the sphere was contained within a small volume helped it evolve more
normally. The gas that was initially in the equator and was ejected outwards,
reached the boundaries very soon, there it met its symmetric parts from the
exactly opposite side (since periodic boundaries are applied) which are rotating
in the opposite direction. The viscous forces that developed dissipated its ro-
tational energy hence the gas was driven back into the cloud pushing the disk
inwards and causing it to decline from its quasi-Keplerian profile. The impor-
tance of this effect on the cloud’s collapse is somewhat doubtful since most of
the gas never reached the boundaries in the first place. In this latter experi-
ment though, where the cloud had adequate space to expand, it appears that
this factor was crucial. Yet, another factor that could also affect the different
evolution observed in this last experiment is the reduced sound speed.

As it can be seen in Figure 5.21, the averaged specific angular momentum
is evolving in a totally different way. This time the mass located close to the
center is gradually loosing angular momentum though material is landing on
it. On the other hand, the regions outside the ring have particles with angular
momentum that is monotonically increasing with time. This feature is indicating
that major quantities of angular momentum are being transferred outwards as
some gas is leaving the disk (and later the ring), carrying high values of L with it.
These particles will, eventually, reach the boundaries. Also the pressure forces
appear to be determining, to a great extent, the way angular momentum will
be distributed on the various radial cells and therefore the fate of the collapse
itself. The high pressure that arises in the core soon counterbalances gravity,
allowing the rotational forces to carry material outwards and to form a ring
instead of a disk. But the circulation of angular momentum is continuing, with
gas settling on the ring from above and below, carrying L with it, while some
particles that developed great velocities are leaving the ring near the equator,
thus decreasing its total specific angular momentum. This fact, along with
the viscous forces that develop, finally results in the fragmentation of the ring
into the four spherical clumps that rotate around the center. So instead of one
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Figure 5.21: Angular momentum per unit mass, averaged over circular cells, on
the equatorial plane. The timesteps are 0 (solid line), 500 (dotted line), 1000
(dashed line) 1500 (dashed-dotted line)

central core, we end up with four smaller cores that rotate around their center
of mass.

5.4 Comparison with previous works

Although this latter experiment’s results seem strange, we must note that sim-
ilar results were obtained by previous studies. Simulations of gravitational col-
lapse of a uniform sphere, rotating as a solid body, were made by R.B. Larson
(1972) with the use of a 2D numerical code. He found that after the initial
flattening of the density distribution, “centrifugal forces in the central part of
the cloud begin to exceed gravity and collapse perpendicular to the axis of ro-
tation is halted near the center. Meanwhile, collapse along the axis of rotation
continues unimpeded until nearly all of the material near the axis has fallen
into the core. After that, the central density stops increasing and even begins
to decrease as the material rebounds outward in the equatorial plane. At the
same time, material from the outer part of the cloud continues to fall inward
and accumulate in a ring-shaped region around the periphery of the center. The
density builds up rapidly in this region, while the central density continues to
decrease so that the density distribution begins to resemble a “doughnut” with
a density minimum at the center. Once such a “doughnut” or ring has begun
to form, its gravitational attraction draws more material into it and the ring
becomes steadily more massive and condensed”. Larson finds the formation
of such a ring in nearly all of his experiments not surprising, since a flattened
rotating disk is subject to numerous instabilities (actually an equilibrium disk
was never really formed). He suggests that since this ring structure is highly
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unstable, the ultimate outcome will most probably be the fragmentation into a
binary or multiple system of condensations orbiting around each other and he
proposes that this could be the mechanism for the formation of multiple systems
of stars, which is the most common case in the universe. Our current results
appear to be in full agreement with Larson’s description of such a collapse.

In addition, Black and Bodenheimer (1976) came to very similar conclusions
based on experiments made with a 2D hydrodynamical code. They describe the
collapse as split into 5 distinct phases: 1) the initial flattening of the cloud, 2) the
formation of an axisymmetric ring-like structure in the inner part of the cloud,
3) a brief equilibrium phase of the ring, 4) the ring collapse upon itself, where it
begins to contract under the influence of its self-gravity and 5) an ejection of a
high velocity “sheet” of material from the outer periphery of the ring. After this
latter phase they stop their simulations since numerical errors become crucial.
Our experiment is consistent with the first four stages. We did not observe
such an ejection of material, but as they suggest, this effect could actually be a
numerical artifact, or it could be due to lack of angular momentum transport
mechanisms, such as viscosity, in their equations. They also note that if this is
the case, then the likely post-equilibrium ring evolution is the fragmentation into
two or more condensations, just like Larson suggested. Our results support this
suggestion. Finally, note that in both cases, the “angular momentum problem
is resolved, since much of the cloud’s initial angular momentum either goes to
the orbital motion of the condensations or it is transported outward through
the ejection of the sheet of gas.

There are however, more recent experiments with highly sophisticated nu-
merical codes, such as those of Abel, Bryan and Norman (2001), that take into
account many more factors and have come up with only one single central core.
They argue, that the idea of such a multiple system formation is the effect
of unrealistic initial conditions like the ones used in this simulation and those
mentioned above. They also suggest that many details of the collapse forming
a primordial star are determined by the properties of the hydrogen molecule.
It should be mentioned though, that our aim is not to simulate a fully realis-
tic collapse of a primordial gas cloud, but rather to examine the gravitational
collapse of relatively simple initial gas spheres.

One more conclusion that seems quite safe to deduce from the previous
experiments is that there is a tendency for specific angular momentum to ac-
cumulate in as small a volume as possible. In the experiments with the small
resolution, almost all of the angular momentum is stored on a disk which has
a small radius around the center (smaller than the theoretically predicted one)
and therefore it rotates rapidly. A very small amount is carried by particles near
the boundaries. On the higher resolution, latter experiment, the angular mo-
mentum is more efficiently transferred outwards and the fraction that is stored
in the disk and then piled into the ring eventually creates instabilities that frag-
ment the ring. Finally, all the angular momentum that had not yet been driven
out, is carried by even smaller structures, the four gas clumps. As a conclusion
one can assume that a system whose angular momentum is distributed in a big
volume of mass, is unstable and will probably evolve towards a state where its
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total angular momentum will be carried by as small volumes of mass as possible.
Note though that this does not necessarily mean that it will be carried away
from the cloud. The latter experiment shows that although large amounts of L
are being driven outwards, the rest is still crucial in determining the fate of the
collapse.

Therefore we can conclude that the issue of how angular momentum is being
redistributed while collapse is occurring is a very complicated one and although
the initial cloud is a simple structure, its final state is sensitive to how much
angular momentum will be efficiently transported outwards, and how the rest
of it will be distributed in the cloud.

5.5 Conclusions

The conclusions that can be reached from the first experiment are:

• A disk is once again formed, as expected.

• The disk’s mass and self-gravity are not negligible. Actually more mass
is left rotating than in the core although theoretically we expected the
opposite.

• The inner parts of the disk do become Keplerian but only for a brief
period of time. It is those parts that remain orbiting until the end of the
simulation.

• The accretion rate is far from constant. It is also totally different from
Boss and Black’s (1982) figure.

• Most of the cloud’s angular momentum is stored in the disk and is not
sufficiently transported outwards throughout the simulation.

From the second experiment we can deduce that:

• The low resolution and the periodic boundaries are significantly affecting
the collapse. By confining the cloud in a small grid box we seem to promote
a specific evolution. When we move to higher resolution and allow the
cloud to expand freely, a different evolution is observed.

• Pressure forces and mass accumulation around the core can become crucial
and do play a major role in the collapse.

• The disk that forms can be highly unstable and can lead to the formation
of a ring structure which, being unstable as well, fragments into a systems
of spherical clumps.

• Therefore a single central core is not the only possible outcome of an ax-
isymmetric collapse. A multiple system of cores can arise.
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• This evolution is much more efficient in transporting angular momentum
outwards. The rest is transformed into orbital angular momentum of the
multiple cores.
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Chapter 6

Non Uniform Rotation

So far, we have studied the collapse of a non rotating singular isothermal sphere,
of a rotating one and of a uniform density rotating sphere. One common aspect
that all these models share, is that they have a very simple, symmetric, initial
density and velocity profile. Their density distributions were either: ρ ∝ r−2 or
ρ = ρ0 which are simple, spherically symmetric distributions of mass for all radii.
In the rotating cases, the cloud initially rotates as a rigid body, which simplifies
the theoretical analysis very much, since the collapsing particles’ trajectories
don’t intersect, thus allowing us to apply ballistic orbits in order to study them
analytically.

As a result, all the cases follow, more or less, a similar collapse, where the
inner shells collapse quickly and so does the material close to the rotational axis,
creating a core, while the layers that initially carried a lot of angular momentum
settle on a flattened surface on the equatorial plane, which rotates around the
core, i.e. a rotating disk. This disk is unlikely to find a stable Keplerian profile
and be able to retain it for more that a few timesteps, as more material settles on
it, rearranging its structure and redistributing its mass and angular momentum.

Yet, if one wants to approach more realistic models of collapse, closer to
the interstellar gas clouds and starformation processes observed in the universe,
he should examine much more complex systems. The protostellar clouds could
not have such simple density profiles, where one power law describes their mass
distribution throughout their whole radius. It is also naive to assume that all
their spherical cells could be in such high coordination as to rotate with the
same angular velocity around a common axis.

It is closer to reality to imagine a protostellar cloud as a system of spherical
cells that have different mass distributions, different rotations, and certainly
different rotational axes. These models are expected to follow a much more
complicated gravitational collapse than the ones already described.

Hence, in an effort to approach such an intrinsic collapse, we made an ex-
periment with the 3D stagger code where a slightly more complicated initial
condition was implemented. This last case is not studied as thoroughly as the
other ones, but serves as a good example of what new features of collapse may
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Figure 6.1: The cloud is composed of two spherical concentric layers. The inner
one has density ρ = 1 and a vertical rotational axis, while the outer one has
ρ = 2 and a horizontal axis. Timestep=0

be expected.
Once again we use a 100x100x100 grid box, in the center of which we im-

plement a spherical cloud that is made up of two different concentric spherical
layers. The inner one has a uniform density: ρ = 1 and is rotating around a
rotational axis that coincides with the z axis, with Ω = 6.333. The outer layer
has uniform density ρ = 2 and rotates with angular velocity Ω = 12.666 around
a rotational axis, perpendicular to that of the inner layer. The code ran for
2000 timesteps.

The collapse is depicted in Figures 6.1 to 6.7. The physical, scaled time
is shown in each one. In the first timesteps they collapse into a bar structure,
which quickly contracts to form two spherical clumps rotating around each other
that soon merge into one elongated structure. One remarkable phenomenon is
that two disks are soon formed, one perpendicular to the other. These two disks,
not exactly flat nor symmetric around the center, compose this final structure
that appears to roughly retain its shape for most of the timesteps. The two
disks are shown in Figure 6.8 where the density isosurface ρ = 4 is plotted. One
of them, corresponding to the inner cell, is growing in size while the other is
gradually being absorbed.

The whole structure is loosing large amounts of mass continuously, as gas is
being ejected with great velocities, mostly from the two edges of the elongated
cloud while some material is landing on it. Apparently these edges have the
lowest gravitational energy since they are away from the cloud’s center, and the
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    0.0748097

Figure 6.2: Timestep=250

    0.0912269

Figure 6.3: Timestep=500

61



     0.107361

Figure 6.4: Timestep=750

     0.115143

Figure 6.5: Timestep=1000
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     0.131152

Figure 6.6: Timestep=1250

     0.181015

Figure 6.7: Timestep=2000
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Figure 6.8: 3D density isosurface (ρ = 4) where the two disks are visible.
Timestep=400

highest rotational energies since the whole structure is rotating. Therefore, the
particles with the highest values of angular momentum are leaving the cloud,
releasing large amounts of rotational energy from it, allowing it to settle in
a more stable shape. These mass jets are occurring during the whole run,
increasing and dropping every few timesteps. Close to the center, gravity is
enough to make the inner parts contract and create a single core. By the end of
the experiment, mass was still being ejected towards the boundaries, while the
inner parts where slowly accumulating closer to the center.

We can therefore see that, even when we apply a model that is only very
slightly more complicated, the evolution is much different and more complex.
Although some general features of rotating collapse (that prove unavoidable)
are seen here as well, like the formation of disk-like structures, one for each axis
of rotation, the detailed evolution is completely different. So, we can conclude
that the simple models studied above are just very rough approximations of real
collapse. They can provide a general idea about some basic features that will
probably be encountered in a realistic collapse, (like the disk or the core forma-
tion), but under no circumstance should they be considered fair descriptions of
real clouds’ collapse.

We point out once more that the way angular momentum is being redis-
tributed in all the gas throughout the collapse is also very complicated. In the
latter experiment we observed large jets of mass that carry angular momentum
along, but the central structure was still unstable and rotating, and every few
timesteps it was releasing new amounts of gas on its surroundings. It is therefore
quite naive to accept the simple theoretical model of angular momentum trans-
port, analyzed earlier, and expect that most of the mass will end up in a central
core leaving only a very tiny fraction, rotating at great distances, carrying the
initial angular momentum.
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Chapter 7

Discussion

Six experiments have been presented and analyzed in this report.
First we studied the gravitational collapse of a singular isothermal sphere

and two simulations were done for that purpose. A sink cell was applied in
the first one and most results were close to the theoretical ones, verifying to a
certain degree the self-similar solution developed by Shu (1977). The second
simulation did not have a sink cell in the core and this time the results were
different. Basic features of the self-similar collapse, such as the free-fall profile
and the steady accretion rate were not observed at all.

We then run a simulation where the singular isothermal sphere was set into
solid body rotation. The outcome was compared with the available theory
but was not found to be in agreement. Although a rotating disk was formed,
its structure and evolution was not what we expected. The infalling gas did
not have the expected density distributions as well and the accretion rate was
far from steady. This disagreement is probably caused by the fact that in
the theoretical analysis many simplifying assumptions were made, unlike the
numerical experiment.

Further on, we studied the collapse of a spherical cloud with uniform initial
density and solid body rotation. It was found that a rotating disk was once
again formed and even became quasi-Keplerian for a short period of time. The
amount of material that was still orbiting around the center by the end of
the simulation was much larger than what previous works had suggested and
it appears that angular momentum was not sufficiently transported outwards.
Since a lot of material was initially ejected and bounced at the boundaries,
we performed the same experiment in a bigger grid-box where the cloud had
enough space to expand freely. This time the collapse follows a completely new
path, where a disk is formed only to be soon followed by the formation of a
ring, which after a stabilized period breaks down to spherical clumps, rotating
around the center. This procedure appears to be much more efficient in angular
momentum transport. Results such as those are supported by some previous
studies and indicate a possible path to multiple core formation.

Finally we ended this series of experiments with the simulation of a more
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complex cloud, where two uniform density profiles and two rotations are com-
bined. This last simulation presents completely new features of collapse, such as
jets of mass and an elongated core, not observed in the previous, simple cases,
but also retains basic other ones, such as the disk formation.

From the above experiments and their analysis, we can reach some final,
basic conclusions:

• The use of a sink-cell in the core is very helpful in deducing elegant, ana-
lytical solutions, but may not be realistic. The core can grow considerably
in size, and the pressure forces around it may influence the collapse to a
great extent.

• The fact that a purely free-fall collapse was not observed indicates that
pressure forces in general play an important role in all cases, and can
alter the expected result very much. They should not be neglected when
dealing with gravitational collapse.

• A disk always appears in the rotating cloud experiments, even with more
intricate initial conditions and multiple rotational axes. It accumulates
large amounts of mass, so that its self-gravity should not be neglected. It
seems unlikely that it will ever reach a stable, Keplerian, rotation profile
and be able to retain it long enough.

• When the cloud has enough space to freely expand and evolve, without
the tight confinement of boundaries, it follows a very different and more
involved path.

• The same happens when we implement even slightly more complicated
initial conditions. A new type of evolution is obtained.

• One common feature in all previous experiments with rotation, both sim-
ple and complex ones, is that actually a lot of mass is left out of the core,
in order to carry the cloud’s angular momentum. As a result the final
core has much less mass that the theoretically predicted one. We would
like to point out that the subject of angular momentum redistribution is
still open to further and more sophisticated analysis, in order to approach
a more realistic model that will be capable of making a fair prediction of
the evolution of a collapsing cloud.

Finally it must be emphasized that all the experiments discussed here, even
the last one, have extremely simplified initial conditions and should not be con-
sidered as true and faithful representations of the gravitational collapse observed
during starformation in the universe. Yet they can serve as rough guidelines
which indicate some basic features of collapse. They also indicate that it is
essential to make numerical simulations in three dimensions, as they are much
closer to reality than the symmetric 1D or 2D ones and can offer a more complete
insight to starformation.
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